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ABSTRACT Modern manufacturing industry relies on complex machinery that requires skills, attention,
and precise safety certifications. Protecting operators in the machine’s surroundings while at the same
time reducing the impact on the normal workflow is a major challenge. In particular, safety systems
based on proximity sensing of humans or obstacles require that the detection is accurate, low-latency, and
robust against variations in environmental conditions. This work proposes a functional safety solution for
collision avoidance relying on Ultrasounds (US) and a Temporal Convolutional Network (TCN) suitable for
deployment directly at the edge on a low-power Microcontroller Unit (MCU). The setup allowed to acquire
a sensor-fusion dataset with 9 US sensors mounted on a real industrial woodworking machine. Applying
incremental training, the proposed TCN achieved sensitivity 90.5%, specificity 95.2%, andAUROC0.972 on
data affected by the typical acoustic noise of an industrial facility, an accuracy comparable with the State-of-
the-Art (SoA). Deployment on an STM32H7MCU yielded amemory footprint of 560 B (3× less than SoA),
with an extremely low latency of 5.0 ms and an energy consumption of 8.2 mJ per inference (both >2.3× less
than SoA). The proposed solution increases its robustness against acoustic noise by leveraging new data, and
it fits the resource budget of real-time operation execution on resource-constrained embedded devices. It is
thus promising for generalization to different industrial settings and for scale-up to wider monitored spaces.

INDEX TERMS Collision avoidance, embedded systems, incremental learning, microcontroller, public
dataset, real-time, temporal convolutional networks (TCN), time series, TinyML, ultrasounds.

I. INTRODUCTION
Nowadays several industrial sectors employ autonomous
moving machinery that can constitute a source of hazard and
must therefore be operated by workers with specific training
and skills, with well-defined safety practices and working
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conditions. A major concern is safeguarding operators’
health. Solutions to do so with a reduced impact on
the workflow of the machinery aiming at achieving high
productivity and safety are currently an active field of
research & development.

Industrial machines can be equipped with sensors that
enable them to continuously monitor their surroundings
in an automated way. This enables safeguards that halt
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operations and drive the machinery to a safe state if people or
dangerous obstacles are detected. The technical challenge in
this scenario is to make the detection robust against variations
in environmental conditions across multiple deployment sites
(i.e., in ‘‘space’’) and across several operational conditions
of the same site (i.e., in ‘‘time’’). Safety systems operating
in an automated way belong to the domain of functional
safety [1], where protection is framed and implemented as an
active, input-output system. The safety function is the action
generated in response to the processed input. Functional
safety does not include passive systems (e.g., thermal
insulation or fire-resistant doors) but involves electronics,
software, and actuators.

Recently, methods based on Machine Learning (ML), and
specifically Deep Learning (DL), have been gaining adoption
in domains such as machine vision and data analytics [2].
Deep Neural Networks (DNNs) can now be regarded as a
mature methodology in data analysis. Hence, DNNs are also
promising for information processing tasks of active systems
for functional safety since they can integrate multiple data
streams and extract information from them. As to execution,
ML/DL algorithms can be run in the cloud or at the edge,
i.e., locally on a platform closely connected to the devices
acquiring data [3], [4]. More specifically, recent advances
in the field of Tiny Machine Learning (Tiny ML) [5], [6],
[7] are enabling the porting of real-time ML inference onto
embedded computing platforms with strict constraints in
terms of memory or power envelope, such as microcontroller
units (MCUs) [8], sometimes equipped with accelerators for
ML/DL. For safety-critical systems, processing the data near
the sensors can enhance reliability and ultra-low latency and
increase the trust in ML-based solutions in industries such as
manufacturing, mobility, and robotics [9], [10].

Safety solutions relying on ML/DL make it necessary
to elaborate and advance the international standards that
regulate functional safety. The major challenge is that the
current versions of international standards do not cover
novel, most recently introduced technologies and paradigms.
This is an issue since innovative methods or algorithms can
not be certified by definition. Hence, innovative solutions,
even if proven effective for operators’ safety and production
efficiency, undergo a large delay before inclusion into a
new version of a standard; in turn, inclusion happens when
a solution is mature and able to induce industrial interest
in its inclusion. For this reason, the adoption of ML/DL-
based solutions in Electro-Sensitive Protective Equipment
(ESPE) systems [11] has not been addressed yet by any
industrial safety standard. The authors’ stance in this
regard is that interest from the industry must be fostered by
showcasing innovative prototypes able to demonstrate the
power of ML/DL for functional safety: this is the direction
of the research presented in this work.

This work targets the specific domain of industrial
woodworking machinery. It proposes a functional safety
prototype for collision avoidance based on ultrasound (US)
sensing and processing based on a Temporal Convolutional

Network (TCN), a DNN specialized for time series. The
system is able to detect persons or obstacles in the field
of view of the US sensors, which are mounted on the
woodworking machine in such a way as to probe the space
of operation of the machine’s moving parts. A detection
triggers a stop of machine movement in real time. In detail,
the contribution is multiple:

• This work implements a system based on 9 US sensors,
an FPGA, and an MCU, mounted onto an industrial
woodworking machine.

• The setup is used to collect a dataset for the detection
task (i.e., clear space vs. human or obstacle), represen-
tative also of the acoustic noise conditions typical of
an industrial facility , which are challenging since they
impact the US signals; this curated dataset contains a
total of 5085 US signal windows organized in 170 runs
of the system in different obstacle and noise conditions.

• A TCN trained and tested for the purpose achieved
sensitivity 96.7%, specificity 99.1%, and AUROC
0.993 in the absence of acoustic noise.

• In the presence of noise, exploiting an incremental
learning technique proved that the proposed setup and
model are able to leverage increasing amounts of
data, attaining sensitivity 90.5%, specificity 95.2%, and
AUROC 0.972.

• Deployment of the proposed TCN on the STM32H
743ZI MCU yielded a profiling which outperforms the
State-of-the-Art (SoA) TCN model for the task [12]:
memory footprint of 560B (3× smaller than SoA), with
a latency of 5.0ms and energy consumption of 8.2mJ
per inference (both 2.3× less than SoA).

The proposed solution improves detection robustness against
acoustic interference characteristic of a manufacturing
environment, working with a resource budget fit for real-
time execution on resource-constrained edge computing
platforms. Table 1 reports a scheme of the advances of this
work compared to the SoA represented by Conti et al. [12] .
The proposed paradigm is generalizable to different sectors;
in particular, the limited hardware requirements allow the
scale-up of the approach, enabling adoption in scenarios with
more sensors and, thus, wider monitored space in terms of the
number of machines and extent of the probed areas.

For reproducibility and advance in the research & develop-
ment community, this work also releases the curated dataset1

and publishes open-source the developed code.2

II. RELATED WORK
A. SAFETY SYSTEMS IN INDUSTRIAL WOODWORKING
MACHINERY
1) GENERAL
Industrial woodworking machines typically have a static
base and a moving cabinet that slides horizontally at speed

1https://github.com/MarcelloZanghieri2/collision_avoidance_
ultrasound_dataset

2https://github.com/MarcelloZanghieri2/edge_tcn_collision_avoidance
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TABLE 1. Contribution of this work in terms of the advances compared to the SoA represented by Conti et al. [12].

up to 1m/s and operates over a working surface of the
order of 4m × 1.5m [13]. Overall, these machines have a
length of 5 - 10m, a width around 5m, and a height of
1 - 3m [14], [15]. The moving cabinet can hit operators
or objects, causing severe injuries or damage. In general,
existing machine models rely on both active and non-
active safety systems [13], [14], [15], [16], [17]. Non-active
safety includes simple elements such as enclosures of the
working units by fences, lateral curtain guards, transparent
hatches, or perspex windows, based on the desired tradeoff
of protection vs. accessibility and visibility. LEDs signal the
machine status in real-time with a simple color code. This
work focuses on more advanced active safety systems.

Active safety is based on real-time anti-collision systems
required to operate while machines work at medium or
maximum speed in a premise sharedwith workers performing
regular work in the surroundings. Since detecting hazardous
situations forces the machine to a safe-state mode, which can
be unlocked only manually, erroneous automatic detection
can cause a slowdown in the workflow. Active safety systems
include: soft bumpers that stop the machine in case of
accidental contact with persons or objects; pressure-sensitive
floor mats; photocell barriers that detect the approach of
persons or objects, automatically reduce the speed of the
machine, and restore the maximum speed when the obstacle
leaves the area; laser scanners that only enable the machine to
start after the operator has left the area; automatic verification
of the locking systems’ positioning.

The proposed setup exploits US signals, processed for
detecting objects or people within the space of operation of
the machine. Compared to existing solutions, the proposed
setup has several advantages. First, the proposed solution
is a proximity sensor designed to trigger the stop of the
machine before a collision, in contrast to bumpers. As to
established collision avoidance systems, the existing laser
scanners only probe a horizontal plane (at a height < 1m
above the floor) [14] , whereas the proposed ultrasound
sensors probe a 3D field of view. Compared to all alternative
setups, including photocell barriers, the proposed solution
can improve its detection accuracy during its lifetime since
the proposed DNN benefits from incremental learning from
data acquired in new conditions.

It is worth remarking that the technical documentation
uses the term collision avoidance also for potential collisions
between machinery’s equipment or between tools and

material, handled during the virtual prototyping of the piece
and the simulation and scheduling of numerical control
positioning [13], [15], [16]; this kind of internal collision
is not related to the topic of this work. It is also worth
stressing that this work does not deal with inner systems for
safety or maintenance such as air conditioning of electrical
components or automatic lubrication.

2) BASED ON ULTRASOUNDS AND DL
A relevant earlier work tackling US-and-DL-based functional
safety for woodworkingmachinery is byConti et al. [12], who
employ TEMPONet, a TCN previously applied to embedded
biosignal processing in real-time [18], [19]. The previous
work by Conti et al. [12] stemmed from the same project
as this paper but only has the nature of a technical report
documenting an incomplete stage of the research. Although a
direct accuracy comparison is not viable since [12] relies on
a different 1-channel dataset, it is possible to highlight several
advancements (also reported in Table 1 ) : (i) the proposed
system mounts 9 ultrasound sensors, whereas the previous
work mounted just 1; (ii) this work releases the dataset open-
source; (iii) this work employs a smaller DNN, reducing
the hardware resources and latency budget for execution;
(iv) this work tackles a noisy environment by implementing
an incremental training protocol instead of brute-force data
augmentation.

B. RATIONALE OF THIS WORK IN RELATION TO THE
ESTABLISHED FUNCTIONAL SAFETY STANDARDS
All safety equipment applied on industrial machines must
get certified according to standards, such as the ones by the
International Electrotechnical Commission (IEC) (covering
electrical, electronic, and related technologies), that define
the Safety Integrity Level to be met. Machinery-halting
safety systems such as [12] and the one presented in
this work fall under the regulations concerning non-contact
Electro-Sensitive Protective Equipment (ESPE) sensors (e.g.,
photodiodes). More in detail, IEC 61508 [1] regards any
electrical/electronic/programmable electronic (E/E/PE) for
functional safety systems, such as sensors, control logic,
or actuators, and also microprocessors; EN IEC 61496 [11]
focuses on the requirements of design, building, and verifica-
tion of systems based on non-contact ESPEs to detect persons
in a safety system, focusing on indoor environments; EN IEC
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62046 [20] addresses ESPEs for human detection for safety,
focusing on industrial environments with machinery.

The authors are aware that novel ML/DL-based research
& development prototypes such as the one presented in this
work are not covered by current standards, nor can they
receive certification in the short term. This limitation means
that, as of today, developing finalized products based on
the presented proof-of-concept is not possible. The purpose
of this work is to push research and technical expertise
ahead of current standards and certifications. The authors’
motivation in undertaking the present research is to showcase
how promising data-driven safety systems are, intending to
incentivize both technical exploration and regulatory interest.
The authors believe that this line of research, in addition to
improving the SoA ( II-A2 ) as to hardware-software figures
of merit, will stimulate the attention from the industry for this
class of approaches and methods, prompting a push for the
inclusion of ML/DL-based functional safety into the future
versions of the standards.

III. MATERIALS AND METHODS
A. TARGETED WOODWORKING MACHINE
The specific industrial woodworking machine used in this
work is an SCM Morbidelli X200 [21], depicted in Fig. 1.
This machine features two panels with a 3 × 2 and a 1 ×

3 array of US sensors, as shown in Fig. 2. Fig. 3 schematizes
the spatial configuration of the proposed proximity sensing
system. This setup was used to collect data on the machine
and test the accuracy and performance of the proposed
solution. This setup is easily generalizable to machines and
environments in different industrial sectors.

B. SYSTEM ARCHITECTURE
The hardware architecture of the proposed system is shown in
Fig. 4 and relies on transducers that emit US pulses and sense
the echo if a pulse hits an obstacle; if a detection happens, the
system outputs a stop signal to the machine control. The main
elements of the system are (i) the US sensors and their drivers,
(ii) a Lattice FPGA for low-latency data collection, and (iii) a
Nucleo-144 board mounting an STM32H743ZI MCU . This
system performs both data collection and obstacle detection.

The data are acquired by a 2 × 3 plus 1 × 3 configuration
of 9 Multicomp Pro MCUSD14A58S9RS-30C ultrasonic
ceramic transducers.3 Using 9 sensors instead of just 1 is
one of the key advances compared to [12]. Each transducer
works both as an emitter and as a sensor for sound
waves with a frequency between 30 kHz and 50 kHz; the
sensing consists in emitting US pulses and receiving the
echo reflected by obstacles. Each sensor is operated by a
Texas Instruments PGA460, which integrates a low-noise
amplifier, a programmable time-varying gain stage, a 12-
bit ADC, and a DSP.4 The configured ADC resolution was
set to 8 bits, producing uint8 data, which is a convenient

3https://octopart.com/mcusd14a58s9rs-30c-multicomp-30988352
4https://www.ti.com/product/PGA460

format for a DNN quantized to 8 bits; the sampling frequency
was set to 100kHz, and the sampling duration was set to
20.48ms-windows.

The low-power Lattice ECP5 LFE5U-85F FPGA5 collects
the data from all 9 sensors. It communicates with the sensors
via USART, and configures the resolution, sampling rate,
and sampling duration at start-up. Then, the FPGA transmits
the package of 2048 samples × 9 channels 8-bit to the
MCU via SPI. The motivation for using an FPGA for data
aggregation is that the STM32H743ZI MCU does not have
enough external interfaces; the FPGA allows to receive data
from all 9 US sensors and convey them to the MCU through
a single interface (i.e., the SPI).

The task of the MCU is to receive the data from the
FPGA, run the DNN, and command the machinery to stop
upon detection. The MCU is an STM32H743ZI,6 mounted
on a STM32 Nucleo-144 board.7 This MCU mounts an
ARM Cortex-M78 processor with double-precision FPU
operating at 480MHz, 2MB of Flash memory, 1MB of
SRAM (with 192 kB of tightly coupled scratchpad memory
for real-time tasks), 4 DMA controllers, and peripherals
such as UART/USART, SPI, Ethernet, and GPIO lines. Upon
reception of the 2048 samples × 9 channels data, the MCU
executes the DNN inference. If the outcome is positive,
the MCU raises a GPIO connected to the controller of the
industrial machine , which halts the machine .

All the listed hardware elements are commercial compo-
nents. Themotivation for this choice is that the purpose of this
work is not to profile specific hardware elements but to test
whether the task is viable with commonly available hardware.
In particular, there is no need for high-precision ultrasound
sensors since accurate acoustic waveforms are irrelevant for
a binary detection task in the presence of acoustic noise.
In general, different component choices are not expected to
alter the prototype’s performance in terms of latency and
accuracy. Profiling or designing dedicated components is
out of the scope of this work. Different component choices
to adapt the system to specific use cases do not limit the
conclusions of the methodology proposed in this work.

In a more optimized iteration of the system, the
FPGA+MCU assembly can be avoided by either (i) deploying
the TCN model onto the FPGA, removing the MCU, or (ii)
replacing the FPGA with one or more commercial off-
the-shelf ICs (or by an FPGA chosen to be as small and
inexpensive as possible) performing the data aggregation,
keeping the net on an MCU. The latter option has the
advantage of programmability for specific use cases with
environmental conditions so diverse and challenging to
require to adapt more than the net’s parameters, e.g., the
net’s structure or additional processing stages. However,
this kind of optimization is out of the scope of this work

5https://www.latticesemi.com/Products/FPGAandCPLD/ECP5
6https://www.st.com/en/microcontrollers-microprocessors/stm32h743zi.

html
7https://www.st.com/en/evaluation-tools/nucleo-h743zi.html
8https://developer.arm.com/Processors/Cortex-M7
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FIGURE 1. The SCM Morbidelli X200 industrial woodworking machine used
in this work (picture source: SCM Group [22]).

FIGURE 2. Configuration of the 9 US sensors mounted on the machine. The sensors are the grey metal round elements
on the panels; the circular black pieces are washers for fastening the panels. Compare with Fig. 3.

FIGURE 3. Spatial organization of the proposed proximity sensing system.
The 3 US sensors on the moving cabinet over the worktop proved useful in
preliminary tests to better sense the space surrounding the working table
and obstacles at the far end of the working table. Compare with Fig. 2.

since the FPGA+MCU assembly has enough performance
to make the realized prototype an effective proof-of-concept

at this applied research stage (as exposed in the results in
Section IV).

VOLUME 12, 2024 16013
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FIGURE 4. Schematic of the system architecture. Sensor fusion on data acquired from 9 sensors is one of the key proposed improvements compared to
the SoA [12].

C. DATA ACQUISITION
The dataset acquisition followed three criteria: (i) framing
the ML application as a detection task, i.e. a binary
classification task presence-vs-absence of an obstacle; (ii)
create environmental conditions analogous to the ones of the
industrial facilities where the target woodworking machine
typically operates; (iii) collect enough data to allow for a
good DNN’s recognition accuracy even on data pertaining
to diverse conditions. Time windows of US signals were
collected with and without obstacles creating a US response
echo; the different used obstacles were people, dummies,
and wood panels, also in a joint fashion. In addition to the
two classes presence-vs-absence of an obstacle, two varying
conditions produced more diverse data representative of real
variable working situations:

• obstacle-sensor distance, varied from 0.5m to 2.0m;
• application of a compressed-air jet, recreating the
environmental noise of the machinery’s room, varying
the pressure level from 0.0 bar (i.e., no noise) to 3.0 bar
and the jet-sensor distance from 0.5m to 1.5m, both in
presence and in absence of an obstacle.

First, 5 collections of data were acquired without noise,
then 3 collections with noise. In noisy acquisitions, the
compressed-air jet was always on, and the pressure value
was constant while running each acquisition. Section IV-A
reports the detailed structure of the signals and of the whole
dataset.

D. INCREMENTAL LEARNING PROTOCOL
Incremental learning on the dataset involved experiments
with incremental splits of the noisy data, i.e., collections
6-to-8. In particular, collections 6, 7, and 8 were merged
and randomly split into three blocks of equal size with
stratification (i.e., the same proportion of collections in each
block). These blocks are denoted as the noisy data’s first third,
second third, and last third. The incremental experiments use
the following splits:

• Experiment 0: training on collections 1 ∪ 3 ∪ 5 and
validation on collections 2∪ 4; this experiment involves
no noisy data and is a control on the acquisition system
and the quality of the data;

• Experiment 1: training on noiseless data, and validation
on the last 1

3 of noisy data; this experiment measures

how well a model can generalize to noisy data after only
seeing noiseless data in training;

• Experiment 2: training on noiseless data plus the first
third of noisy data, and validation on the last third of
noisy data;

• Experiment 3: training on noiseless data plus the first
and second thirds of noisy data, and validation on the
last third of noisy data.

Experiments 1, 2, and 3 show the model progressively larger
amounts of noisy data at training time; this allows assessing
how much the proposed setup can benefit from incremental
learning on newly-acquired data to improve detection. The
validation set is the same across Experiments 1 to 3 for a fair
comparison of the results.

This diverse dataset and its incremental protocol are a key
advance compared to [12], where the incremental learning
scenario is simulated by mere aggressive augmentation up
to 1000× of a single collection of 227 single-channel signal
windows (i.e., 22× fewer examples than the 5085 acquired in
this work).

It is important to remark that incremental training is not
meant to be run in real-time: real-time is only required for
inference, which is part of the online pipeline of acquisition-
transmission-processing. When the operators desire new
data to improve the detection under specific challenging
conditions, the system can collect new data and store them
to a server (e.g., via the MCU’s Ethernet), which retrains the
net by including the new data and sends the updated model
parameters back to the MCU. This process is not meant to
be real-time because the new acquisition and the retraining
typically need human supervision and iterations. Typically,
the bottleneck is not transmission or latency but resides in
(i) data acquisition, which requires materially preserving or
reproducing the conditions of interest, and (ii) the search
for the training settings able to fit both the old and the
new data. This process occurs at the time scale of human
manual experimentation, not at the time scale of the online
acquisition-transmission-execution pipeline.

E. TEMPORAL CONVOLUTIONAL NETWORK: STRUCTURE,
TRAINING, AND DEPLOYMENT
Temporal Convolutional Networks (TCNs) are a category of
Convolutional Neural Networks (CNNs) specialized for time
series. TCNs are based on 1D convolutions along the time
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TABLE 2. Detailed structure of the proposed TCN, including the breakdown of all layers’ memory footprint and computational load. All layers are
sequential in a feed-forward fashion so that each layer’s output format is the input format of the next one. As to sizes, the numbers of tensor elements
directly correspond to the memory occupancy in bytes, thanks to 8-bit quantization. The field ‘‘# MAC’’ refers to the number of Multiply-and-Accumulate
(MAC) operations.

dimension, and they outperform Recurrent Neural Networks
on image segmentation, object detection, and biosignal
processing [19], [23], [24], [25]. TCNs have also proven
amenable to hardware-friendly parallelization strategies that
reduce inference latency and energy consumption [26].

The proposed TCN has 6 convolutional layers followed
by 3 linear layers, and Table 2 reports the net’s complete
structure. The input x is a 2048 samples × 9 channels
uint8 US signal window produced as per III-B and III-C.
The 6 linear layers have 4, 4, 2, 2, 1, and 1 output channels,
all with kernel size k = 3, full padding (i.e., zero-padding
with length p = 1), and stride s = 2. The 3 linear layers have
size 32-to-8, 8-to-8, and 8-to-1; the final scalar represents the
input’s score ŷsoft = TCN(x) ∈ [0, 1], which is the soft (i.e.,
not yet binarized) assignment for the binary classification.
All layers have batch-norm (BN) and ReLU activation except
the last linear layer, which flows into a sigmoid. After
training, BN folding is applied to merge each BN with its
previous layer, slightly reducing the number of parameters
and operations.

This TCN has just 560 parameters and requires just
151 · 103 Multiply-and-Accumulate (MAC) operations; The
activation memory footprint is the maximum consecutive
activation maps, i.e., input and output of a single layer;
this is reached in the first convolutional layer with 22.5 ·

103 activations (9 × 2048 input plus 4 × 1024 output. With
8-bit quantization (explained in the next paragraphs), the
parameters and activations memory footprints amount to
560B and 22.0KiB, respectively.

This size makes the net very hardware-friendly for
resource-constrained embedded platforms for computation
and memory requirements. Moreover, it directly processes
the raw signals without any handcrafted feature extraction
or pre-processing, thanks to automatized feature learning at
training time: this avoids time-consuming feature engineering
and computation latency before inference.

Training consisted in 2 epochs in float32, followed by
Post-Training Quantization (PTQ) to 8 bit and 16 epochs of
Quantization-Aware Training (QAT). Quantization to 8-bit
reduces the parameters memory requirement to 560B and the
activations memory requirement to 22.0KiB, which are both
1
4 of their float32 counterparts. Both stages of training
used balanced binary cross-entropy loss, Adam optimizer,
initial learning rate 10−4, and minibatch size 64. Both PTQ
and QAT used the technique of PArameterized Clipping
acTivation (PACT) [27].

Both trainings exploited the augmentation of the training
set by a factor 64×, which consisted in producing 64 altered
versions from each original US window by applying two
transformations:

• a scaling by a factor from a uniform random distribution
on [0.95, 1.05), followed by casting back to uint8;

• a temporal shift by a random amount from a uniform
distribution on {−25, · · · , +25} samples.

This augmentation scheme is similar to [12]; still, the
advances of this work allow to achieve accurate detection
with 15× milder augmentation (i.e., 64× instead of 1000×),
thanks to the inherent richness of the novel dataset (III-C).

In this setup, the sources of randomness are augmentation,
net initialization, and stochastic minibatching. So, each of
the Experiments 0, 1, 2, and 3 involved 64 repetitions to get
statistics about the detection metrics.

The TCN was implemented using Python 3.8, PyTorch
1.9.0, and the open-source quantization library QuantLib.9

The TCN quantized to 8 bit was exported in ONNX format
and deployed onto the STM32H743ZI MCU using the
environment STM32CubeIDE 1.12.0 for code generation
and exploiting X-CUBE-AI 8.0.0, a software extension for
configuring DNN inference execution on STM32 MCUs
using ARM CMSIS kernels. The stages in STM32CubeIDE

9https://github.com/pulp-platform/quantlib
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or X-CUBE-AI did not include any further quantization or
compression.

F. EVALUATION METRICS
This work targets both classification metrics, which measure
the correctness of the TCN’s detection, and deployment
metrics, which quantify the computation and resource budget
required by the TCN on the STM32H743ZI MCU .

The addressed classification metrics are the ones typical of
detection (i.e., binary classification) on unbalanced data:

• sensitivity (synonym of True Positive Rate (TPR)
or recall): the fraction of actual positives correctly
detected:

sensitivity =
TP

TP + FN
; (1)

• specificity (synonym of True Negative Rate (TNR)): the
fraction of actual negatives correctly classified:

specificity =
TN

TN + FP
; (2)

• balanced accuracy (synonym of macro-average accu-
racy): the average of sensitivity and specificity.

• Area Under the Receiver Operating Curve (AUROC).
All these metrics are independent of the class imbalance
in the data, as opposed to naïve unbalanced accuracy.
The pair sensitivity-specificity provides a more complete
characterization than the pair precision-recall often used for
binary classification since the latter pair does not consider
the number of True Negatives; in contrast, the former
pair considers all four possible outcomes. As to AUROC,
it is independent of the threshold 2 used to determine the
estimated hard labels ŷhard ∈ {0, 1} from the TCN(·) model’s
output soft labels ŷsoft ∈ [0; 1] for each input x:

ŷhard =

{
1 if ŷsoft = TCN(x) > 2

0 otherwise.
(3)

Thus, the AUROC is methodologically interesting because
it allows assessing the detection correctness independently
from the specific sensitivity-specificity tradeoffs fixed in
different application use cases. Since sensitivity and speci-
ficity depend on the choice of the discrimination threshold,
the reported results refer to the threshold values tuned to
maximize the balanced accuracy to report an example of
tradeoff.

The addressed deployment metrics profile the workload
of the real-time on-edge computation: memory footprint of
the model; latency per inference; power consumption of
inference, measured in working conditions fclock = 480MHz
and Vdd = 3.3V, via a USB power meter averaging over 30 s
while executing inferences in loop; and energy per inference,
determined as power×latency.

IV. EXPERIMENTAL RESULTS
A. DATASET
Fig. 5 and Fig. 6 show the typical behaviour of the acquired
signals. All windows begin with the final segment of the US

burst, which saturates the ADC’s uint8 dynamic range and
carries no information about the class. However, this segment
is a valuable control for diagnostics since it always presents
the same timing across different recordings.

The initial saturation in each sensor’s data only comes
from the final segment of the US burst of that sensor. This
check consisted in the following experiment. The procedure
to check whether the burst from sensor i affected sensor j ̸=

i involved running obstacle-less, noise-less runs starting
sensor i’s acquisition 10ms after sensor j’s acquisition.
This means that sensor i’s burst emission happens between
time 0ms and time 10ms of sensor j’s acquisition (which
is 20.48ms in total, as per III-B). So, if cross-sensor
interference is present, it is visible in the first half window of
sensor j’s data. Looping i and j ̸= i over all 9 sensors showed
no cross-sensor interference for any (i, j) pair. This means that
the adopted sensor placement causes no interference across
sensors in the burst emission stage.

Later in the window, after the initial saturation due to
the final segment of the emitted US burst, the echo carries
the information of interest. As shown in Fig. 6, the noise
resulting from a compressed air jet strongly affects the pattern
of the echo signal envelopes. This makes it hard to devise
handcrafted features that intuitively discriminate obstacle
echoes from intensity due to noise, making classification
hard, especially concerning specificity and the occurrence of
false positives. This confirms the motivation for the recourse
to DNNs (particularly TCNs) capable of automatic feature-
learning at training time to obtain a data-driven feature
extraction based solely on optimizing detection accuracy.

The realized dataset has the structure reported in Table 3.
The whole dataset consists of 8 collections, and each
collection is composed of 10 to 30 runs, for a total of
170 runs. The choice of the terms collections and runs is
to avoid ambiguous naming such as acquisitions, samples,
or sessions. Each collection corresponds to a value of the
distance of the compressed-air jet, when applied; globally, the
dataset contains 5 collections without noise and 3 collections
with pressure noise. Within each collection, the different
runs correspond to a choice of the obstacle-sensor distance
and the jet’s pressure and orientation (if applied). Between
runs, the whole system was turned off and on. So, runs
are homogeneous subsets of the dataset since they contain
2048-sample windows acquired in identical conditions of all
settings, namely obstacle-sensor distance, compressed air jet
pressure, and compressed air jet distance. Each collection
consists of runs acquired with the same compressed air jet
distance (if present), hence containing 2048-sample windows
that are diverse due to varying obstacle-sensor distance and
compressed air jet pressure (if present).

B. ACCURACY RESULTS
Fig. 7 and Table 4 report the detection results of the four
experiments conducted as per Subsection III-D . Statistics
are computed over the 64 repetitions of each experiment,
performed to account for the fluctuations introduced by
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FIGURE 5. Example of a US window with obstacles and without noise (collection 1, run 10, window 1; all 9 channels, all samples except the last 48). It is
possible to see the initial US burst, the subsequent silence, and the echoes received by the sensors facing obstacles.

FIGURE 6. Example of a US window without obstacles and with noise from the compressed air jet (collection 8, run 50, window 1; all 9 channels, all
samples except the last 48). The sensors most affected by noise sense an amplitude comparable to obstacles’ echoes in the absence of noise (Fig. 5).

the sources of randomness in the process, namely data
augmentation, initialization of the net’s parameters, and
minibatching for stochastic gradient descent, as explained
in Subsection III-E . Fig. 7 shows that the experimental
distributions obtained for the detection metrics are highly
skewed, as can be seen from the asymmetric IQR ranges,
whiskers, and outliers; therefore, median ± Mean Absolute
Deviation (MAD) is a convenient choice for summarizing
each experiment in a way that is more robust and less sensitive

to skewness compared to average ± standard deviation. The
MAD is defined as

MAD ≜ mediani (|ai − ã|) (4)

where ai’s are the accuracy values of a single repetition,
and ã is the experiment’s median. It is worth remarking
that, due to the non-linearity of the median, the median
balanced accuracy is not the average ofmedian sensitivity and
median specificity, in general. The next subsections expose
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the results of Experiments 0, 1, 2, and 3 (structured as per
Subsection III-D), discussing each experiment individually.

1) EXPERIMENT 0
Experiment 0 is based on noiseless data for both training and
validation (details in III-D). Therefore, this experiment is a
check for the setup and the produced data. The outcome of
this experiment is positive since all detection metrics (namely
sensitivity, specificity, balanced accuracy, and AUROC –
explained in Subsection III-F) have a median > 97%. For
instance, these results show a key successful sanity-check in
that the working surface (Fig. 1, Fig. 2, and Fig. 3) is correctly
discriminated from the added obstacles, despite being itself a
physical object in the sensors’ field of view.

2) EXPERIMENT 1
Experiment 1 consists in training on noiseless data and
validation on noisy data (details in III-D). This experiment
yields a balanced accuracy and an AUROC collapsed to
values compatible with the chance level, which is 1

2 for both
these detection metrics. This collapse shows that recognition
of noisy data is impossible if the model has never seen data
affected by the compressed air jet pressure at training time;
this confirms the motivation of the chosen protocol for data
collection and incremental learning.

3) EXPERIMENT 2
Experiment 2 adds 1

3 of the noisy data to the training set
(details in III-D). The results of this first step of incremental
learning on noisy data show that the detection in the presence
of noise strongly surpasses the chance level, yielding a
sensitivity of 85.0±5.5)% and all other metrics > 88%. This
experiment crucially proves that the data contain a pattern
also in the presence of noise and that this pattern is strong
enough to allow for an accurate data-driven detection.

4) EXPERIMENT 3
Experiment 3 adds a further 1

3 of the noisy data to the
training set (details in III-D). In this experiment, all
the detection metrics except specificity further increase
compared to Experiment 2. Specificity stays constant since
it only decreases by 1.2%, and the new value is consistent
with Experiment 2 within the variability MAD = 2.8%. This
experiment proves that the proposed system and DL setup are
able to leverage increasing amounts of data to improve its
accuracy on the challenging real working conditions of the
industrial facility’s environment.

Discussing detection metrics with an end-to-end view
requires explaining what happens if the proposed system fails
to detect an obstacle. In this case, a collision can happen
between the obstacle and a machine’s soft bumper; this
kind of collision is not dangerous since bumpers are part
of the active safety system that stops the machine in case
of contact (as explained in Subsection II-A1). In general,
it is possible to create even more redundancy by combining
the proposed systems with any of the existing SoA active

safeguards illustrated in II-A1, such as pressure-sensitive
floor mats, photocell barriers, or laser scanners.

C. PERFORMANCE AND MEMORY FOOTPRINT RESULTS
Table 5 reports the results of the TCN profiling, compared
with [12]. For a fair comparison, since [12] dealt with
just 1 input channel, that net is also extended to support
9 input channels as the new data. Memory footprints refer
to TCN quantized to 8 bit. Memory footprints of activations
are determined as the maximum sum of two consecutive
feature maps since batch normalizations and ReLUs can
be computed in place; for all models, the maximum-
size pair is the input-output of the first convolutional
layer, which occupies (CinTin + Chid 1Thid 1) bytes, where
Tin = Thid 1 = 2048 samples, Cin is 1 channel for [12]
and 9 channels for extended- [12] and the proposed new net;
and Chid 1 is 2 channels for [12] and extended- [12], and
4 channels for the proposed new net.

The energy consumption per inference was determined
based on the power draw measured experimentally, which is
(1.63 ± 0.01)W, which is in the same range as the previous
work [12]. Overall, the results show that the proposed new
TCN improves all the deployment metrics, except the RAM
used for activations, which is the same as the reference
model, i.e., 22.0KiB (2.1% of the total 1MiB available
on the STM32H743ZI MCU). The advantage of the new
compact model lies in the latency and energy consumption
per inference reduced by > 2.27× compared to [12].

It is essential to note that a latency of 1tinfer =

5.0ms/inference does not imply a rate of 1/1tinfer =

200 inferences/s. In general, the entrance of operators or
objects into the space spanned by the moving parts of the
machine (corresponding to the field of view of the sensors)
can be detected using an inference rate much lower than
200 inferences/s. For specific applications, the inference rate
choice is based on the use case’s requirements. Moreover,
a higher inference rate gives some degrees of freedom
for post-processing operations such as majority voting or
averaging of the scores to make accuracy more robust.
In situations that do not require a high inference rate, using
an MCU with lower performance is possible, continuing to
satisfy the real-time requirements.

It is worth discussing the latency results in more detail.
The speed vcabinet of the machine’s moving parts is of the
order of 1m/s (as explained in II-A1), and the speed
vobs of potential obstacles, i.e., people and objects in the
surroundings, is typically lower. Assuming the worst case,
i.e., the machine’s moving cabinet and an obstacle moving
towards each other from a distance d , the maximum allowed
stopping time Tmax is

Tmax =
d

vcabinet + vobs
. (5)

A conservative estimate of Tmax, which corresponds to
a conservative upper bound on latency, can be obtained
assuming vcabinet = 1m/s, vobs = 1m/s, and d = 0.5m,
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TABLE 3. Dataset of ultrasound windows realized for setup validation and incremental learning. The dataset consists of collections; in turn, every
collection contains runs. Each run contains data acquired with the same obstacle-sensors distance, and the air jet pressure (if present) and air jet
distance. Each collection contains runs corresponding to different obstacle-sensors distances and air jet pressures, but the same air jet distance.

FIGURE 7. Experimental distributions of the detection metrics obtained for Experiment 0 (validation of setup and data) and Experiments 1-to-3
(incremental training on noisy data); for the details of the experimental protocol, see Subsection III-D. Notice the different y-scales in the two plots. The
lower (resp., upper) whisker is set at the lowest datum above Q1 − 1.5 IQR (resp., Q3 + 1.5 IQR), with Q1 and Q3 the first and third quartiles respectively,
and IQR ≜ Q3 − Q1 the interquartile range. The general trend shows high accuracy in Experiment 0, the collapse in Experiment 2, and the incremental
recovery in Experiments 2 and 3. Moreover, the asymmetric IQR ranges, whiskers, and outliers highlight high skewness; this motivates the recourse to
median ± Mean Absolute Deviation (MAD) for more robust summaries compared to average ± standard deviation.

TABLE 4. Detection metrics results for Experiments 0, 1, 2, and 3 (protocol detailed in Subsection III-D). Distributions are summarized as median ± Mean
Absolute Deviation (MAD). This chart complements Fig. 7 by reporting quantitatively the high accuracy of Experiment 0, the collapse in Experiment 1, and
the recovery in Experiments 2 and 3.

TABLE 5. Results of the profiling of the proposed TCN’s deployment and execution.

which is the shortest distance used in our dataset (III-C).
These values yield

Tmax =
0.5m

1.0m/s + 1.0m/s
= 0.25 s. (6)

This underestimate of the maximum allowed latency is 12×
the acquisition time of the signal, i.e., 20.48ms ( III-B ),
and 50× the computation latency of the TCN inference, i.e.,
5.0ms. The US sensors can detect obstacles at a maximum
distance of 2m to 2.5m, so more time is generally available.
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Even in the worst case, the proposed system’s latency for data
acquisition and processing is one order of magnitude shorter
than the available time: the proposed solution has a latency
sufficiently short for the task, with a significant margin for
future scenarios with faster-moving cabinets and obstacles.

V. CONCLUSION
This work proposes a solution for collision avoidance
applied to the use case of a real woodworking industrial
machine. This work also publicly releases a novel curated
sensor-fusion dataset for US-based proximity sensing of the
machine surroundings and implements a TCN setup. The
proposed TCN is able to increase its detection accuracy
by exploiting new data, thus proving able to tackle real
industrial environments that are challenging due to noise.
At the same time, the proposed TCN has a complexity
low enough to fit embedded platforms’ memory, latency,
and energy constraints, as proven by deploying it onto an
edge MCU. The proposed solution can be easily applied to
different premises and machines; in particular, it is more
hardware-friendly than the available SoA models, and its
limited hardware requirements allow the setup to scale up to
monitor larger environments.

ACKNOWLEDGMENT
The authors GIACOMO MICHELE PUGLIA and FELICE
TECCE were with DPControl S.r.l., Nocera Inferiore, Italy.

REFERENCES
[1] International Electrotechnical Commission (IEC), Functional Safety of

Electrical/Electronic/Programmable Electronic Safety-Related Systems—
Part 1: General Requirements, document IEC 61508-1:2010, ed. 2.0, 2010.
[Online]. Available: https://webstore.iec.ch/publication/5515

[2] A. Shrestha and A. Mahmood, ‘‘Review of deep learning algorithms and
architectures,’’ IEEE Access, vol. 7, pp. 53040–53065, 2019.

[3] K. Cao, Y. Liu, G. Meng, and Q. Sun, ‘‘An overview on edge computing
research,’’ IEEE Access, vol. 8, pp. 85714–85728, 2020.

[4] F. Wang, M. Zhang, X. Wang, X. Ma, and J. Liu, ‘‘Deep learning for edge
computing applications: A state-of-the-art survey,’’ IEEE Access, vol. 8,
pp. 58322–58336, 2020.

[5] D. L. Dutta and S. Bharali, ‘‘TinyMLmeets IoT: A comprehensive survey,’’
Internet Things, vol. 16, Dec. 2021, Art. no. 100461.

[6] P. P. Ray, ‘‘A review on TinyML: State-of-the-art and prospects,’’ J. King
Saud Univ. Comput. Inf. Sci., vol. 34, no. 4, pp. 1595–1623, Apr. 2022.

[7] Y. Abadade, A. Temouden, H. Bamoumen, N. Benamar, Y. Chtouki, and
A. S. Hafid, ‘‘A comprehensive survey on TinyML,’’ IEEE Access, vol. 11,
pp. 96892–96922, 2023.

[8] A. Burrello, M. Scherer, M. Zanghieri, F. Conti, and L. Benini, ‘‘A
microcontroller is all you need: Enabling transformer execution on low-
power IoT endnodes,’’ in Proc. IEEE Int. Conf. Omni-Layer Intell. Syst.
(COINS), Aug. 2021, pp. 1–6.

[9] R. S. Peres, X. Jia, J. Lee, K. Sun, A. W. Colombo, and J. Barata,
‘‘Industrial artificial intelligence in Industry 4.0—Systematic review,
challenges and outlook,’’ IEEE Access, vol. 8, pp. 220121–220139, 2020.

[10] Artificial Intelligence for Digitizing Industry, May 2019.
[11] International Electrotechnical Commission (IEC), Safety of Machinery

Electro-Sensitive Protective Equipment—Part 1: General Requirements
and Tests, document IEC 61496-1:2020, ed. 4.0, 2020. [Online]. Available:
https://webstore.iec.ch/publication/63115 +

[12] F. Conti, F. Indirli, A. Latella, F. Papariello, G. M. Puglia, F. Tecce,
G. Urlini, and M. Zanghieri, AI-Powered Collision Avoidance Safety
System for Industrial Woodworking Machinery. Copenhagen, Denmark:
River Publishers, 2021.

[13] SCM Group. (2022). Morbidelli M100/M200. Numerical-Controlled
Machining Centres. [Online]. Available: https://www.scmgroup.com/
en/scmwood/products/machining-centres.c874/cnc-machining-centres-
for-routing-and-drilling.878/morbidelli-m100-200.32314

[14] HOMAG Group. (2023). CNC Processing Center CENTATEQ P-
210. [Online]. Available: https://www.homag.com/en/product-detail/cnc-
processing-center-centateq-p-210

[15] Biesse Group. (2023). Rover K FT. CNC Machining Centre. [Online].
Available: https://www.biesse.com/ww/wood/cnc-work-centres/rover-k-ft

[16] Biesse Group. (2023). Rover K Smart. CNC Machining Centre. [Online].
Available: https://www.biesse.com/ww/wood/cnc-work-centres/rover-k-
smart

[17] Biesse Group. (2023). Rover A 12/15/18. CNC Machining Cen-
tre. [Online]. Available: https://www.biesse.com/ww/wood/cnc-work-
centres/rover-a-1215

[18] M. Zanghieri, S. Benatti, A. Burrello, V. Kartsch, F. Conti, and L. Benini,
‘‘Robust real-time embedded EMG recognition framework using temporal
convolutional networks on a multicore IoT processor,’’ IEEE Trans.
Biomed. Circuits Syst., vol. 14, no. 2, pp. 244–256, Apr. 2020.

[19] M. Zanghieri, S. Benatti, A. Burrello, V. J. K. Morinigo, R. Meattini,
G. Palli, C. Melchiorri, and L. Benini, ‘‘SEMG-based regression of
hand kinematics with temporal convolutional networks on a low-power
edge microcontroller,’’ in Proc. IEEE Int. Conf. Omni-Layer Intell. Syst.
(COINS), Aug. 2021, pp. 1–6.

[20] International Electrotechnical Commission (IEC). Safety of Machinery—
Application of Protective Equipment to Detect the Presence of Per-
sons, document IEC 62046:2018, ed. 1.0, 2018. [Online]. Available:
https://webstore.iec.ch/publication/27263

[21] SCM Group. (2019). Morbidelli X200/X400. CNC Nesting
Machining Centres for Drilling and Routing. [Online]. Available:
https://www.scmgroup.com/products/docs/CDL/Morbidellix200-
x400rev00mag19_Ing.pdf

[22] Höchsmann. SCM Morbidelli X200. [Online]. Available: https://wtp.
hoechsmann.com/it/lexikon/40505/morbidellix200

[23] C. Lea, M. D. Flynn, R. Vidal, A. Reiter, and G. D. Hager, ‘‘Temporal
convolutional networks for action segmentation and detection,’’ CoRR,
vol. abs/1611.05267, Dec. 2016.

[24] S. Bai, J. Z. Kolter, and V. Koltun, ‘‘An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling,’’ CoRR,
vol. abs/1803.01271, Sep. 2018.

[25] M. Zanghieri, A. Burrello, S. Benatti, K. Schindler, and L. Benini,
‘‘Low-latency detection of epileptic seizures from iEEG with temporal
convolutional networks on a low-power parallel MCU,’’ in Proc. IEEE
Sensors Appl. Symp. (SAS), Burrel, Benin, Aug. 2021, pp. 1–6.

[26] A. Burrello, A. Dequino, D. J. Pagliari, F. Conti, M. Zanghieri, E. Macii,
L. Benini, and M. Poncino, ‘‘TCN mapping optimization for ultra-low
power time-series edge inference,’’ in Proc. IEEE/ACM Int. Symp. Low
Power Electron. Design (ISLPED), Jul. 2021, pp. 1–6.

[27] J. Choi, Z. Wang, S. Venkataramani, P. I. Chuang, V. Srinivasan,
and K. Gopalakrishnan, ‘‘PACT: Parameterized clipping activation for
quantized neural networks,’’ CoRR, vol. abs/1805.06085, Apr. 2018.

MARCELLO ZANGHIERI (Graduate Student
Member, IEEE) received the M.Sc. degree in
physics from the University of Bologna, Italy,
in 2019, where he is currently pursuing the Ph.D.
degree in data science and computation with the
Energy-Efficient Embedded Systems Laboratory
(EEES Lab), DEI Department, under the super-
vision of Prof. Luca Benini. In 2019, he held a
Research Scholarship with EEESLab, with a focus
on research studentship. His research interests

include time series analysis with machine learning and deep learning,
focusing on ultrasounds, EMG, and EEG, to advance human–machine
interaction based on low-power computing platforms.

16020 VOLUME 12, 2024



M. Zanghieri et al.: Extreme-Edge TCN-Based Low-Latency Collision-Avoidance Safety System

FABRIZIO INDIRLI (Graduate Student Member,
IEEE) received the M.Sc. degree in computer sci-
ence and engineering from Politecnico di Milano,
Italy, in 2019, where he is currently pursuing the
Ph.D. degree in information technology. Since
2020, he has been collaborating with STMicro-
electronics, where he was a Software Design
Engineer. He has coauthored several scientific arti-
cles for both industrial and academic projects. His
research interests include tiny machine learning

and compilers for neural processing units.

ANTONIO LATELLA received the M.Sc. degree
in computer and automation engineering from
Marche Polytechnic University, Ancona, Italy,
in 2018. Since 2018, he has been with SCMGroup
S.p.a., Rimini, Italy. In 2020, he was involved in
European projects in the research and development
field. He is currently involved in the development
of digital and industrial IoT services related to
machines in the after-sales and assistance fields.

GIACOMO MICHELE PUGLIA received the
M.Sc. degree in computer science from the
University of Trento, Italy, in 2014. Since 2014,
he has been a Firmware-Software Developer in
various capacities. From 2019 to 2021, he was
with DPControl S.r.l., Italy, where he dedicated
his efforts to projects centered around image
processing and neural networks. Since 2022,
he has been employed with Bitron, Italy, as a
Firmware and Software Developer for electric

vehicle charging stations.

FELICE TECCE received the degree in electronic
engineering from the University of Naples Fed-
erico II, in 2019. In the same year, he specialized in
digital electronics and began his working career in
the same year with DPControl S.r.l., as a Digital
Designer on FPGA devices. Since 2022, he has
been with the Analog MEMs and Sensors (AMS)
Research and Development Group, STMicroelec-
tronics (ST), Italy, as a Front-End ASIC Designer,
taking part in projects related to different operating

sectors, such as power management and biomedical. He is currently involved
in projects aimed with acquiring and processing video streams and sensor
interfacing.

FRANCESCO PAPARIELLO received the M.Sc.
degree (summa cum laude) in computer sci-
ence engineering from the University of Pisa,
Italy, in 2000. Since 2000, he has been with
STMicroelectronics in different countries (France,
Switzerland, and Italy). He has been responsible
for the design and development of a retargetable
multi-core simulation infrastructure. He is cur-
rently a Senior Member of the Technical Staff
with STMicroelectronics. He also contributed to

the design and verification of hardware platforms for video surveillance and
HW-accelerated neural network inference. He coauthored several scientific
articles and filed three patents. He contributed and is contributing to several
EU-funded projects.

GIULIO URLINI received the M.Sc. degree in
electronic engineering from the University of
Brescia, Italy, in 1999. Since 2000, he has
been with STMicroelectronics, Italy, where he is
currently a Senior Program Manager.

LUCA BENINI (Fellow, IEEE) received the Ph.D.
degree from Stanford University. He is currently
a Full Professor with Università di Bologna,
Italy. He holds the Chair of Digital Circuits
and Systems with ETH Zürich, Switzerland. His
research interests include energy-efficient parallel
computing systems, smart sensing micro-systems,
and machine learning hardware. He is a fellow of
ACM and a member of the Academia Europaea.
He was a recipient of the 2016 IEEE CAS

Mac Van Valkenburg Award, the 2020 EDAA Achievement Award,
the 2020 ACM/IEEE A. Richard Newton Award, and the 2023 IEEE CS
E. J. McCluskey Award.

FRANCESCO CONTI (Member, IEEE) received
the Ph.D. degree in electronic engineering from
the University of Bologna, Italy, in 2016.
From 2016 to 2020, he held a research grant with
the University of Bologna and was a Postdoctoral
Researcher with ETH Zürich. He is currently
a tenure-track Assistant Professor with DEI
Department, University of Bologna. His research
is centered on hardware acceleration in ultra-
low power and highly energy-efficient platforms,

with a particular focus on system-on-chips for artificial intelligence
applications. His research work has resulted in more than 70 publications
in international conferences and journals and was awarded several times,
including the 2020 IEEE TRANSACTIONSONCIRCUITSAND SYSTEMS—I: REGULAR

PAPERS Darlington Best Paper Award.

Open Access funding provided by ‘Alma Mater Studiorum - Università di Bologna’ within the CRUI CARE Agreement

VOLUME 12, 2024 16021


