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a b s t r a c t 

In this work, we study optimization problems where some cost parameters are not known at decision 

time and the decision flow is modeled as a two-stage process within a robust optimization setting. We 

address general problems in which all constraints (including those linking the first and the second stages) 

are defined by convex functions and involve mixed-integer variables, thus extending the existing litera- 

ture to a much wider class of problems. We show how these problems can be reformulated using Fenchel 

duality, allowing to derive an enumerative exact algorithm, for which we prove asymptotic convergence 

in the general case, and finite convergence for cases where the first-stage variables are all integer. 

An implementation of the resulting algorithm, embedding a column generation scheme, is then com- 

putationally evaluated on a variant of the Capacitated Facility Location Problem with uncertain trans- 

portation costs, using instances that are derived from the existing literature. To the best of our knowl- 

edge, this is the first approach providing results on the practical solution of this class of problems. 

© 2023 The Authors. Published by Elsevier B.V. 
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. Introduction 

Robust Optimization (RO) has emerged as a solution approach 

o deal with uncertainty in optimization problems. Contrary to 

tochastic optimization, another popular approach, robust opti- 

ization does not rely on probability distributions. Indeed, RO 

onsiders an uncertainty set for the unknown parameters, against 

hich the taken decision should be immune. In that sense, con- 

traints have to be respected in every possible realization of 

he parameters and the objective function evaluated in the least 

dvantageous case. The concept was first introduced in Soyster 

1973) and received considerable attention in the scientific liter- 

ture. Recent advances in RO can be found in Bertsimas, Brown, 

 Caramanis (2010) , Hassene, Bazgan, & Vanderpooten (2009) , 

en-Tal, Ghaoui, & Nemirovski (2009) , Leyffer, Menickelly, Mun- 

on, Vanaret, & Wild (2020) and Yanıko ̆glu, Gorissen, & den Hertog 

2019) , among others. 

More formally, a basic (one-stage) robust optimization problem 

an be cast as follows 

inf 
z z z 

sup 

ξξξ∈ �
f 
(
ξξξ , z z z 

)
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ubject to g g g ( ξξξ , z z z ) ≤ 0 ∀ ξξξ ∈ �

z z z ∈ Z. (1SR-P) 

ere, the unknown data is represented by variables ξξξ that belong 

o the so-called uncertainty set �. As mentioned above, decision 

 

 

 has to be feasible in every possible occurrence of the uncer- 

ainty, hence robust solutions tend to be overly conservative. To 

ackle this drawback, Ben-Tal, Goryashko, & Guslitzer (2004) intro- 

uced the so-called adjustable robust optimization , also known as 

wo-stage robust optimization . As its name suggests, in a two-stage 

ontext, part of the decisions are made in a first stage (i.e., here- 

nd-now, before uncertainty reveals), while recourse decisions can 

e taken in a second stage (i.e., once the actual values of the uncer- 

ain data are known) as an attempt to react to the outcome of the 

ncertain process. Typically, the feasible region of (1SR-P) can, in- 

eed, be recast to embed a two-stage decision process by splitting 

ariables z z z in ( x x x , y y y ) . Here, x x x ∈ X are decisions to be made here and

ow, while y y y ∈ Y may be taken at a later instant. Accordingly, set 

is defined as X × Y . With the convention that the minimum ob- 

ective function value for an infeasible problem is + ∞ , a two-stage 

obust problem can be formulated as follows 

inf 
 

 

 ∈X 
sup 

ξξξ∈ �
inf 

y y y ∈Y( x x x , ξξξ ) 
f ( ξξξ , x x x , y y y ) , (2SR-P) 

here Y( x x x , ξξξ ) = { y y y : y y y ∈ Y, g g g ( ξξξ , x x x , y y y ) ≤ 0 } , and g g g ( ξξξ , x x x , y y y ) ≤ 0 are

he so-called linking constraints . Set X is now referred to as the 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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rst-stage feasible region. Given x x x ∈ X and ξξξ ∈ �, the resulting 

econd-stage feasible region is Y( x x x , ξξξ ) , and the second-stage prob- 

em is inf { f ( ξξξ , x x x , y y y ) : y y y ∈ Y( x x x , ξξξ ) } . It is known (see, Ben-Tal et al.,

004 ) that most of the problems which can be cast as two-stage 

obust problems are at least NP-hard. This result even holds for 

ases where first and second-stage variables are continuous and all 

he involved functions are linear. Several approaches have been de- 

eloped to tackle this class of problems. Assuming that the second 

tage is continuous and exhibits strong duality, it can be replaced 

y its dual. This way, the inner maximization problem can be refor- 

ulated using its epigraph, leading to a constraint-generation algo- 

ithm in the spirit of Benders’ decomposition (see, e.g., Bertsimas, 

itvinov, & Sun, 2013; Jiang, Zhang, Li, & Guan, 2014; Terry, Epel- 

an, & Thiele, 2009 and Gabrel, Lacroix, Murat, & Remli, 2011 ). 

 column-and-constraint-generation scheme has been proposed in 

eng & Zhao (2013) , which consists in adding one set of second- 

tage decision variables and constraints associated with each real- 

zation of the uncertainty. These realizations are dynamically gen- 

rated by solving a so-called adversarial problem which identifies 

he worst-case scenario for a current estimate of the first-stage de- 

isions. The algorithm stops when no such scenario can be found. 

ater, the same approach was used in Ayoub & Poss (2016) , where 

he authors model the adversarial problem as a mixed integer 

rogram, derived using Farkas’ lemma and standard linearization 

echniques. Note that the column-and-constraint generation ap- 

roach can handle mixed-integer second-stage decisions, which is 

ot the case for classical Benders-type approaches. Unfortunately, 

his method seems to be of practical relevance only when a small 

umber of variables has to be added for reaching optimality. 

The inherent difficulty of this class of problems motivated the 

evelopment of approximate solution methods. In the affine de- 

ision rule approach ( Ben-Tal et al., 2004 ), the second-stage de- 

isions are expressed as affine functions of the uncertainty. An- 

ther relevant approach, introduced in Bertsimas & Caramanis 

2010) , is the finite adaptability (also known as K-adaptability) 

n which the number of second-stage decisions is restricted to 

ome finite number. An MILP formulation for the case of binary 

econd-stage decisions and objective uncertainty was proposed 

n Hanasusanto, Kuhn, & Wiesemann (2015) and a branch-and- 

ound algorithm was later proposed in Subramanyam, Gounaris, 

 Wiesemann (2019) to address cases with uncertain linear 

onstraints. 

An important special case of (2SR-P) arises when uncertainty 

ffects the objective function only, i.e., Y( x x x , ξξξ ) = Y( x x x ) , ∀ ξξξ ∈ �. For

his specific case, Kämmerling & Kurtz (2020) proposed an oracle- 

ased algorithm relying on a hull relaxation combining the first- 

nd second-stage feasible regions embedded within a branch-and- 

ound framework. However, this approach applies to first-stage 

inary variables and linear constraints only. On the other hand, 

rslan & Detienne (2022) proposed an exact MILP reformulation 

f the problem in case of linear linking constraints that involve 

inary variables only. Besides solving the problem by means of a 

ranch-and-price algorithm, a further contribution of Arslan & De- 

ienne (2022) is proving the NP-completeness of the problem in 

his setting. 

Our analysis shows that, in the setting where uncertainty 

ffects the objective function only, no contribution has been 

resented in the literature for tackling problems where linking 

onstraints are defined by nonlinear functions or involve both 

nteger and continuous variables. Similarly, to the best of our 

nowledge, the case in which the objective function is nonlinear 

as not been considered yet. This paper contributes in filling this 

ap, as we consider two-stage robust problems with objective 

ncertainty, convex constraints and mixed-integer first and second 

tage. By extending in a non-trivial way some recent results from 

he two-stage stochastic optimization literature (see Sherali & Frat- 
374 
celli, 2002; Sherali & Zhu, 2006 and Li & Grossmann, 2019 ), we 

btain a relaxation of the problem, and analyze its tightness for 

ifferent special cases. This relaxation can be embedded within an 

numerative scheme thus producing an exact solution approach, 

or which we prove asymptotic convergence in the general case, 

nd finite convergence in the integer case. Besides the theoretical 

nalysis, we also show that, from a computational viewpoint, the 

roposed algorithm is able to solve instances of practical relevance 

rising from the logistic field. We also point out that the class 

f problems which can be addressed by our solution approach is 

uite large since we only require mild assumptions on the nature 

f the involved optimization problem. 

The article is organized as follows. In Section 2 we formally in- 

roduce the considered class of problems, whereas in Section 3 we 

resent a relaxation of the problem. We then derive sufficient 

onditions for the relaxation to coincide with the original prob- 

em in a mixed-integer context. So as to close the optimality 

ap, we introduce an enumerative algorithm which embeds a spa- 

ial branching mechanism on continuous first-stage variables. We 

rove asymptotic convergence of the overall algorithm in pres- 

nce of continuous first-stage decisions and finite ε-convergence 

n case of integer first-stage decisions. In Section 3.4 , we propose 

 column-generation algorithm to solve the relaxation problem. Fi- 

ally, Section 4 applies the proposed method to a capacitated fa- 

ility location problem with congestion. 

Notations Throughout this paper, matrices and vectors are writ- 

en in bold case, e.g., x x x ∈ R 

n or A 

A A ∈ R 

n ×m , while components are

ritten in normal font, e.g., x i or a i j . Columns of A 

A A are written 

n bold case with exponent indexing, e.g., a a a i . Let f : R 

n → R be

 given function with dom ( f ) = { x x x ∈ R 

n : f ( x x x ) < + ∞} ; its convex

onjugate is denoted by f ∗ : R 

n → R and is given by 

f ∗( πππ) = sup 

x x x ∈ dom ( f ) 

{
πππ T x x x − f ( x x x ) 

}
. 

imilarly, we denote by f ∗ the concave conjugate of f . Let X ⊆
 

n × Z 

n −p be a given set, described in terms of constraints and in- 

eger restrictions. We denote by X its continuous relaxation and by 

onv ( X ) its convex hull, i.e., the smallest convex set C satisfying 

 ⊆ C. 

The indicator function of X is noted δ(·| X ) and equals zero if 

ts argument belongs to X and + ∞ otherwise. Its convex conjugate 

s therefore given by δ∗( πππ | X ) = sup { πππ T x x x : x x x ∈ X} . Basic results on

onjugate calculus are summarized in Appendix A . If X is a convex 

olytope, we note vert ( X ) the set of its extreme points. Finally, for 

 logical proposition E , function 1 1 1 (E ) equals one if E is true and 

ero otherwise. 

. Problem description 

.1. General setting 

As anticipated, our goal is to solve problem (2SR-P) with ob- 

ective uncertainty, convex constraints and mixed-integer first and 

econd stages. 

For the sake of clarity, let us first introduce several sets. Set I =
 1 , . . . , n 1 } denotes the set of indices for the first-stage variables, 

artitioned into two sets I I and I C . Variables whose index belongs 

o I I are required to take integer values, while those whose index 

elongs to I C are continuous variables, i.e., wlog, X ⊂ R 

| I C | × Z 

| I I | . 
imilarly, we introduce set J = { 1 , . . . , n 2 } as the indices for the

econd-stage variables and partition this set into J I and J C , i.e., 

log, Y ⊂ R 

| J C | × Z 

| J I | . Finally, we introduce set U = { 1 , . . . , n 3 } as

he index set for the uncertain variables, i.e., � ⊂ R 

n 3 . 

We now explicit some assumptions on the problem. 

ssumption 1 (Objective uncertainty) . For all ξξξ ∈ � and x x x ∈ X , 

( ξξξ , x x x ) = Y( x x x ) . 
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ssumption 2 (Convexity) . 

1. X is compact and convex; 

2. The uncertainty set � is a finite-dimensional, bounded con- 

vex set; 

3. For all x x x ∈ X , Y ( x x x ) is a finite-dimensional, bounded convex 

set; 

4. The objective function f is a concave function of the uncer- 

tainty and a convex function of the first- and second-stage 

decisions, i.e., f x x x , y y y : ξξξ 
→ f ( ξξξ , x x x , y y y ) is a concave function for

all fixed x x x ∈ X and y y y ∈ Y ( x x x ) , and f ξξξ : ( x x x , y y y ) 
→ f ( ξξξ , x x x , y y y ) is a

convex function for all fixed ξξξ ∈ �. 

ssumption 3 (Complete recourse) . For every (relaxed) first-stage 

ecision, there exists at least one feasible second-stage decision, 

.e., for every x x x ∈ X , Y( x x x ) is a non-empty set. 

ssumption 4 (Boundedness) . 

1. The objective function f is bounded over the first- and 

second-stage feasible region, i.e., for all fixed ξξξ ∈ �, { ( x x x , y y y ) :

x x x ∈ X , y y y ∈ Y ( x x x ) } ⊆ dom ( f ξξξ ) ; 

2. For all ( x x x , y y y ) : x x x ∈ X and y y y ∈ Y ( x x x ) , relint (�) ∩ dom ( f x x x , y y y ) � = ∅ . 
ssumption 5 (Separability) . Let Q = { 1 , . . . , q } . 

1. The objective function f can be expressed as a sum of 

q functions, i.e., there exist q functions (ψ i : R 

| U| + | I| + | J| → 

R ) i ∈ Q such that f ( ξξξ , x x x , y y y ) = 

∑ 

i ∈ Q ψ i ( ξξξ , x x x , y y y ) for all x x x ∈ X , y y y ∈
Y( x x x ) and all ξξξ ∈ �; 

2. For all i ∈ Q , ψ i is separable in ξξξ and ( x x x , y y y ) meaning that

there exists functions (w i : R 

| U| → R ) i ∈ Q and (ϕ i : R 

| I| + | J| →
R ) i ∈ Q such that ψ i ( ξξξ , x x x , y y y ) = w i ( ξξξ ) ϕ i ( x x x , y y y ) . In addition, we

assume that w i (·) is a concave function and ϕ i (·) is a convex

function. 

A few remarks regarding these assumptions are necessary. First, 

ote that Assumptions 1 and 2 are here to define what we refer to

s convex mixed-integer robust problems with objective uncertainty . 

e highlight that the word “convex” is here to suggest that all in- 

olved functions are convex with respect to the first- and second- 

tage variables. Yet, in general, even under these assumptions, 

roblem (2SR-P) may fail to have a straightforward convex MINLP 

ormulation. Indeed, function h : x x x 
→ max ξξξ∈ � min y y y ∈Y( x x x ) f ( ξξξ , x x x , y y y ) is 

ot necessarily a convex function over the continuous relaxation of 

 . We give here a small example. 

xample 1 (nonconvex MINLP) . Consider the following first- and 

econd-stage feasible regions. 

 = [0 , 1] and Y(x ) = 

{
y y y ∈ { 0 , 1 } 2 

∣∣∣∣y 1 + y 2 ≤ 1 

y 1 ≤ 1 − x 

}
. 

y inspection, we have that (y 1 , y 2 ) = (0 , 0) and (y 1 , y 2 ) = (0 , 1)

re always feasible second-stage solutions, while (y 1 , y 2 ) = (1 , 0) is

easible only when x = 0 . Fixing the uncertainty set � = [0 , 1] , we

ake interest in the following convex mixed-integer two-stage robust 

roblem 

min 

 ∈ [0 , 1] 
h (x ) with h : x 
→ max 

ξ∈ [0 , 1] 
min 

(y 1 ,y 2 ) ∈Y(x ) 
ξ (−2 y 1 + y 2 + 1) . 

hough every involved functions are convex (in fact, affine) with 

espect to ξξξ , x x x and y y y , we have that 

 (x ) = 

⎧ ⎨ ⎩ 

max 
ξ∈ [0 , 1] 

min { ξ ; 2 ξ ;−ξ} = 0 if x = 0 

max 
ξ∈ [0 , 1] 

min { ξ ; 2 ξ} = 1 if x > 0 

= 1 

1 1 ( x > 0) . 

learly, h fails to be convex over [0,1] which ends our example. 

ore generally, function h can be seen as the optimal value func- 

ion of a minimization problem whose objective function is convex 
375 
ut in which the feasible region is defined by a non-convex set- 

alued map (this will be later proven in Lemma 2 ). 

Assumptions 3 is a standard assumption in the two-stage op- 

imization literature, and is known to be easy to enforce as 

oon as the considered problem is bounded, which is implied by 

ssumption 4.1 . Assumption 4.2 is not restrictive in practice, and 

ill be used in the proof of Lemma 2 . 

Finally, Assumption 5 is structural to our work, and implies the 

ollowing remarks. 

emark 1. The assumption that ϕ i (·) is a convex function (at most 

ffine) for all i ∈ Q is without loss of generality. 

roof. Let i ∈ Q such that ϕ i (·) is concave, then, to fulfill 

ssumption 2.4 , w i ( ξξξ ) must be negative forall ξξξ ∈ �. Thus, one

ay equivalently replace w i (·) by −w i (·) and ϕ i (·) by −ϕ i (·) . �

emark 2. For all i ∈ Q such that ϕ i (·) (resp. w i (·) ) is not single-

igned, then w i (·) (resp. ϕ i (·) ) is affine. 

emark 3. For all i ∈ Q such that ϕ i (·) (resp. w i (·) ) is not affine,

hen w i (·) (resp. ϕ i (·) ) is a non-negative function. 

Note that Assumption 5 could be relaxed to address situations 

n which, for i ∈ Q such that ϕ i (·) (resp. w i (·) ) is affine, there is

o restriction on the concavity (resp. convexity) of the associated 

 i (·) (resp. ϕ i (·) ). 
xample 2 (Fulfilling Assumption 5) . We give here some examples 

f functions which satisfy Assumption 5 . For simplicity, we denote 

 

 

 = ( x x x , y y y ) . 

• Uncertain linear functions of the form ( ξξξ , z z z ) 
→ ξξξA 

A A z z z where A 

A A 

is a given real matrix; 
• Diagonal uncertain convex quadratic form ( ξξξ , z z z ) 
→ 

z z z T diag ( ξξξ ) z z z where ξξξ ≥ 0 ; 
• Uncertain positively weighted sum of convex functions 

of the form ( ξξξ , z z z ) 
→ 

∑ 

i ∈ Q ξi ϕ i ( z z z ) with � ⊂ R 

| U| 
+ , e.g.,

( ξξξ , x x x , y y y ) 
→ 

∑ 

i ∈ Q ξi x 
2 
i 
/y i with y y y ≥ 0 . 

xample 3 (Violating Assumption 5) . We give here some examples 

f functions which do not satisfy Assumption 5 . 

• Non-concave functions of the uncertainty, e.g., ( ξξξ , z z z ) 
→ ∣∣∣∣z z z − ξξξ
∣∣∣∣ for any given norm; 

• General uncertain quadratic form ( 			, z z z ) 
→ z z z T 			z z z even with 

			 � 0 (unless � ∩ R 

| U| 
− = ∅ ). 

In the following lemma, we finally state the class of problems 

e consider. 

emma 1. Under Assumptions 1 –5 , there exists [ l l l , u u u ] ⊂ R 

| I| + | J| such

hat (2SR-P) is equivalent to the following two-stage optimization 

roblem with convex objective function and objective uncertainty 

inf 
 

 

 ∈X∩ [ l l l , u u u ] 
sup 

ξξξ∈ �
inf 

( t t t , y y y ) ∈Y ′ ( x x x ) 

∑ 

i ∈ Q 
w i ( ξξξ ) t i (2SRO-P) 

ith Y 

′ ( x x x ) such that Y( x x x ) = proj y y y (Y 

′ ( x x x )) and Y 

′ 
( x x x ) is a convex and

nite-dimensional set. 

roof. The existence of the hyper-rectangle [ l l l , u u u ] is trivial as X is

ssumed to be bounded ( Assumption 2.1 ). Moreover, the following 

quality holds. 

inf 
y y y 

{ ∑ 

i ∈ Q 
w i ( ξξξ ) ϕ i ( x x x , y y y ) : y y y ∈ Y( x x x ) 

} 

= inf 
y y y , t t t 

{ ∑ 

i ∈ Q 
w i ( ξξξ ) t i : y y y ∈ Y( x x x ) , t i = ϕ i ( x x x , y y y ) , ∀ i ∈ Q 

} 



B. Detienne, H. Lefebvre, E. Malaguti et al. European Journal of Operational Research 312 (2024) 373–384 

H

i  

a

B  

c

ϕ

Y

F

a

d

[

2

(

 

o

m

m

s

m

m

FFF

t

s

w

i

m

B

c

t

fi

f  

w  

b

(

T

a

s

3

o

m

c

s

t

p

r

g

a

3

e

L

l

(

w

P

p

i

v

L

n

e

p

m

e

g

P

e

xxx

s

P

g

 

. 

S

t

t

u  

o

owever, the optimization problem on the right side of the equal- 

ty may fail to be convex if there exists i ∈ Q such that ϕ i is not

ffine. Let Q 

A ⊆ Q be the set of indices for which ϕ i is affine. 

y Assumption 5 , for all i ∈ Q \ Q 

A , we have w i (·) ≥ 0 and thus

onstraint ”t i = ϕ i ( x x x , y y y ) ” may be equivalently replaced by ”t i ≥
 i ( x x x , y y y ) ”, which is convex. We therefore can choose 

 

′ ( x x x ) = 

{ 

( t t t , y y y ) : 
y y y ∈ Y( x x x ) 
t i = ϕ i ( x x x , y y y ) ∀ i ∈ Q 

A 

t i ≥ ϕ i ( x x x , y y y ) ∀ i ∈ Q \ Q 

A 

} 

. 

or every x x x ∈ X , the continuous relaxation of Y 

′ ( x x x ) is convex 

nd non-empty ( Assumption 3 ); by construction, it is also finite 

imensional. �

In what remains, we will assume to know a hyper-rectangle 

 l l l , u u u ] as described in Lemma 1 . 

.2. Special case: Linear and binary setting 

We complete the introduction by discussing the special case of 

2SRO-P) under the following additional assumptions: 

1. X , � and x x x 
→ Y( x x x ) are defined by linear constraints; 

2. there exists a matrix A 

A A ∈ R 

| U|×| Q| such that ∀ i ∈ Q, w i ( ξξξ ) =
ξξξ T a a a i ; and 

3. linking constraints are defined by functions g( x x x , y y y ) that do 

not depend on first-stage variables in I c . 

In a recent paper Arslan & Detienne (2022) , the authors 

bserved that, for this variant of the problem, the inner 

inimization min y y y ∈Y( x x x ) ξξξ
T A 

A A y y y can be equivalently replaced by 

in y y y ∈ conv ( Y( x x x ) ) ξξξ
T A 

A A y y y , i.e., the second-stage feasible region can be 

ubstituted by its convex hull. This allows to transform the min- 

ax-min problem into a min-max problem by the well known 

inimax theorem. Assuming that � is expressed as { ξξξ ∈ R 

| U| 
+ : 

 

 

 ξξξ ≤ d d d } , the inner maximization problem is dualized so as to ob- 

ain the following equivalent problem 

min 

x x x , y y y , λλλ
d d d T λλλ (1) 

ubject to x x x ∈ X (2) 

y y y ∈ conv ( Y( x x x ) ) (3) 

F F F T λλλ ≥ A 

A A y y y (4) 

λλλ ≥ 0 , (5) 

here λλλ are the dual variables associated to the inner max- 

mization problem. Note that, besides the integrality require- 

ents on the variables, the only nonconvex constraint is (3) . 

y exploiting a reformulation already used in Sherali & Frati- 

elli (2002) , Sherali & Zhu (2006) and Li & Grossmann (2019) for 

wo-stage stochastic optimization problems with mixed-integer 

rst and second stage, Arslan & Detienne (2022) showed that, 

or each fixed x̄ x x ∈ X , { ̄x x x } × conv ( Y( ̄x x x ) ) = conv ( S ) ∩ { ( x x x , t t t , y y y ) : x x x = x̄ x x }
here S = { ( x x x , y y y ) : x x x ∈ { 0 , 1 } , y y y ∈ Y( x x x ) } . Hence, constraint (3) may

e equivalently enforced as 

 x x x , y y y ) ∈ conv ( S ) . (6) 

he obtained reformulation is then solved by means of a branch- 

nd-price algorithm where branching is performed on the first- 

tage variables only. 

. A hull-relaxation-based branch-and-price algorithm 

In this section we present our main contribution and its the- 

retical foundations. We first turn problem (2SRO-P) from a min- 

ax-min problem to a min-max problem in our mixed-integer and 

onvex context. Then, since linear duality does not apply in our 
376 
etting, we resort to Fenchel duality to obtain a reformulation of 

he problem. Similarly to the linear and binary case, we then re- 

lace the counterpart of (3) by constraints which play the same 

ole as (6) . This only provides a relaxation of the problem in the 

eneral setting. This relaxation is thus embedded into an enumer- 

tive scheme to obtain an optimal solution of (2SRO-P) . 

.1. Problem reformulation 

The following lemma extends the result given in Arslan & Deti- 

nne (2022) to the mixed-integer and convex context. 

emma 2 (Single-stage reformulation) . Problem (2SRO-P) is equiva- 

ent to the following problem 

inf 
 x x x , t t t , y y y ) ∈ F 

sup 

ξξξ∈ �

∑ 

i ∈ Q 
w i ( ξξξ ) t i (7) 

ith F = { ( x x x , t t t , y y y ) : x x x ∈ X ∩ [ l l l , u u u ] , ( t t t , y y y ) ∈ conv 
(
Y 

′ ( x x x ) 
)} . 

roof. This lemma relies on the same arguments as those em- 

loyed in Arslan & Detienne (2022) : first, the feasible region of the 

nner minimization problem is replaced by its convex hull. This is 

alid by linearity of the objective function. By Assumption 2.2 and 

emma 2 , both � and conv 
(
Y 

′ ( x x x ) 
)

(for all x x x ∈ X ) are convex and fi- 

ite dimensional sets. Thus, the minmax theorem in Perchet & Vig- 

ral (2015) can be used to turn the inner sup − inf into an inf − sup 

roblem. This achieves the proof. �

The inner maximization problem may be turned into a mini- 

ization problem by use of Fenchel duality, as done in Ben-Tal 

t al. (2009) . In the following proposition, we therefore derive a 

eneral convex reformulation of problem (2SRO-P) . 

roposition 1 (Deterministic reformulation) . Problem (2SRO-P) is 

quivalent to the following problem 

inf 
 

 

 , y y y , t t t , ( v v v i ) i ∈ Q , ξξξ
δ∗( ξξξ | �) −

∑ 

i ∈ Q 
(t i w i ) ∗

(
v v v i 

)
(8) 

ubject to x x x ∈ X ∩ [ l l l , u 

u u ] (9) 

( t t t , y y y ) ∈ conv 
(
Y 

′ ( x x x ) 
)

(10) ∑ 

i ∈ Q 
v v v i = ξξξ (11) 

ξξξ ∈ R 

| U| (12) 

v v v i ∈ R 

| U| ∀ i ∈ Q . (13) 

roof. By a direct application of Fenchel duality and some conju- 

ate calculus results, the following holds. 

sup 
ξξξ∈ �

∑ 

i ∈ Q 
t i w i ( ξξξ ) = sup 

ξξξ∈ R | U| 

{ ∑ 

i ∈ Q 
t i w i ( ξξξ ) − δ( ξξξ | �) 

} 

= inf 
ξξξ∈ R | U| 

{ 

δ∗( ξξξ | �) −
( ∑ 

i ∈ Q 
t i w i ( ξξξ ) 

) 

∗

} 

= inf 
ξξξ∈ R | U| 

{ 

δ∗( ξξξ | �) − sup 
v v v i ∈ R | U| ,i ∈ Q 

{ ∑ 

i ∈ Q 
(t i w i ) ∗

(
v v v i 

)
: 
∑ 

i ∈ Q 
v v v i = ξξξ

} } 

= inf 

{ 

δ∗( ξξξ | �) −
∑ 

i ∈ Q 
(t i w i ) ∗

(
v v v i 

)
: 
∑ 

i ∈ Q 
v v v i = ξξξ , v v v i ∈ R 

| U| , i ∈ Q, ξξξ ∈ R 

| U| 
}

ee also Appendix A for more details on conjugate calculus. �

The following results show that, although the reformulation for 

he general case adds | Q| × | U| continuous variables, these addi- 

ional variables can be omitted for some relevant cases. In partic- 

lar this is true in case all the w i (·) functions are either separable

r affine. 
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Fig. 1. Graphical representation of different sets from Example 1 . 
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emark 4. Assume wlog that | Q| = | U| . If, for all i ∈ Q , w i ( ξξξ ) =
 i (ξi ) , then problem (2SRO-P) is equivalent to 

inf 
 x x x , t t t , y y y ) ∈ F 

{ 

δ∗( ξξξ | �) −
∑ 

i ∈ Q 
(t i w i ) ∗

(
ξξξ
)} 

. (14) 

roof. By assumption, we have (t i w i ) ∗( v v v i ) = (t i w i ) ∗(v ii ) . In addi-

ion, (11) is as follows 
 

i ∈ Q 
v i j = ξ j j = 1 , . . . , | U| , (15) 

nd v i j , i � = j, does not appear in the objective function. Thus,

here always exists an optimal solution such that ξ j = v j j , j = 

 , . . . , | U| . �

emark 5. Let i ∈ Q such that w i (·) is affine, i.e., w i ( ξξξ ) = ( r r r i ) T ξξξ +
 i 0 . Problem (2SRO-P) is equivalent to 

inf 
 x x x , t t t , y y y ) ∈ F 

{
δ∗( R 

R R t t t | �) + r r r T 0 t t t 
}
. (16) 

roof. Indeed, we have 

t i w i ) ∗( v v v ) = inf 
ξξξ∈ R | U| 

{ v v v T ξξξ − t i (( r r r 
i ) T ξξξ + r i 0 ) } = 

{
−t i r i 0 if v v v = t i r r r 

i 

−∞ otherwise. 

�

.2. Relaxation 

Note that the deterministic reformulation presented above still 

s not, in general, a convex MINLP. Indeed, conv (Y 

′ ( x x x )) in con- 

traints (10) depends on variables x x x . Since no tractable compact 

orm is known in the general case, we replace constraint ( t t t , y y y ) ∈
onv 

(
Y 

′ ( x x x ) 
)

by the following relaxed requirement. 

 x x x , t t t , y y y ) ∈ conv ( S ) with S = 

{ 

( x x x , t t t , y y y ) : 
l j ≤ x j ≤ u j ∀ j ∈ I 
x j ∈ Z ∀ j ∈ I I 
( t t t , y y y ) ∈ Y 

′ ( x x x ) 

} 

. 

(17)

The substitution yields the following problem, which is a relax- 

tion of (8) –(13) 

min 

x x x , y y y , ( v v v i ) i ∈ Q , ξξξ
δ∗( ξξξ | �) −

∑ 

i ∈ Q 
(t i w i ) ∗

(
v v v i 

)
ubject to x x x ∈ X ∩ [ l l l , u 

u u ] 

( x x x , t t t , y y y ) ∈ conv ( S ) ∑ 

i ∈ Q 
v v v i = ξξξ

v v v i ∈ R 

| U| ∀ i ∈ Q 

ξξξ ∈ R 

| U| . (P) 

It is clear that, for any fixed x̄ x x ∈ X , we have { ̄x x x } × Y 

′ ( ̄x x x ) = S ∩
 ( x x x , t t t , y y y ) : x x x = x̄ x x } , and that the same holds even for x̄ x x ∈ X . However,
377 
s shown, e.g., in Sherali & Zhu (2006) , the convexified counterpart 

oes not hold, in the sense that the inclusion “{ ̄x x x } × conv ( Y( ̄x x x ) ) ⊆
onv ( S ) ∩ { ( x x x , t t t , y y y ) : x x x = x̄ x x } ” may be strict. Example 4 below illus-

rates this case. 

xample 4 (Hull relaxation) . We consider the first- and second- 

tage feasible sets introduced in Example 1 . In Fig. 1a , we represent

he convex hull of S. For a fixed first-stage decision x̄ (here, x̄ = 

 . 4 ), Fig. 1b reports the feasible points for constraint (17) , whereas

ig. 1c describes the exact shape of conv ( Y( ̄x ) ) . The figure shows 

n example in which inclusion is strict. In addition, note that, 

henever x̄ attains its bounds (i.e., x̄ ∈ { 0 , 1 } ), { ̄x } × conv ( Y( ̄x ) ) =
onv ( S ) ∩ { (x, y y y ) : x = x̄ } holds. 

The following Lemma follows from the considerations above. 

emma 3 (Lower-bounding property) . Denoting by v (•) the optimal 

bjective value of problem •, we have 

 (P ) ≤ v ( 2 SRO − P ) . 

In other words, (P) is a relaxation of (2SRO-P) . In the next 

roposition, we introduce a condition under which a feasible so- 

ution for problem (P) is feasible for problem (2SRO-P) as well. 

roposition 2. If x̄ x x ∈ vert 
(
[ l l l , u u u ] 

)
, then 

 ̄x x x } × conv 
(
Y 

′ ( ̄x x x ) 
)

= conv ( S ) ∩ { ( x x x , t t t , y y y ) : x x x = x̄ x x } . 

roof. Let x̄ x x ∈ vert 
(
[ l l l , u u u ] 

)
and let ( ̂ x x x , ̂  t t t , ̂  y y y ) ∈ conv ( S ) ∩ { ( x x x , t t t , y y y ) : x x x =

¯
 

 

 } . Then, ( ̂ x x x , ̂  t t t , ̂  y y y ) can be expressed as a (finite) convex combination

f points of conv ( S ) (Carathéodory’s theorem), i.e., 

 ̂

 x x x , ̂  t t t , ̂  y y y ) = 

∑ 

e ∈ E 
( ̄x 

e , ̄t e , ̄y e ) αe , 

here E is a given index list of such elements of conv ( S ) . As- 

ume that there exists j ∈ I and i ∈ E such that x̄ i 
j 
� = x̄ j . If x̄ i 

j 
>

¯ j , condition x̄ i ∈ conv ( S ) implies that x̄ j = l j . Hence, αi = 0 since 

¯ k 
j 
≥ l j ∀ k ∈ E. The same argument shows that x̄ i 

j 
< x̄ j implies 

i = 0 . Thus, for each e ∈ E such that αe > 0 , we must have

¯
 

e = x̄ x x . This implies that ( ̄t e , ̄y e ) ∈ Y 

′ ( ̄x x x ) and thus 
∑ 

e ∈ E ( ̄t e , ̄y e ) αe ∈
onv 

(
Y 

′ ( ̄x x x ) 
)
. �

orollary 1 (Tightness condition) . Let X ∗ be the set of optimal first- 

tage decisions of problem (P) . Then 

 

∗ ∩ vert 
(
[ l l l , u 

u u ] 
)

� = ∅ ⇒ v (P ) = v ( 2 SRO − P ) . 

roof. Let ( x x x ∗, t t t ∗, y y y ∗) be an optimal solution of (P) with x x x ∗ ∈
ert 

(
[ l l l , u u u ] 

)
. From Proposition 2 , it is also feasible for problem 

2SRO-P) . Thus, Lemma 3 implies optimality for problem (2SRO- 

) . �

This result directly implies Corollary 2 which states that, in the 

pecial case where the first-stage variables are all binary, problem 

P) is always an exact reformulation of (2SRO-P) . 
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orollary 2 (Tightness condition/binary case) . If the first-stage de- 

isions are all binary, i.e., I C = ∅ and ∀ j ∈ I I , l j = 0 , u j = 1 , then 

 (P ) = v ( 2 SRO − P ) . 

roof. In this case, [ l l l , u u u ] = [ 0 , 1 ] , hence any optimal first-stage so-

ution x x x ∗ satisfies x x x ∗ ∈ { 0 , 1 } | I I | = vert 
(
[ l l l , u u u ] 

)
which, by Corollary 1 ,

roves the result. �

.3. Enumerative algorithm 

We now present an exact method for solving problem (2SRO- 

) which works as follows: 

• we exploit the deterministic reformulation (8) –(13) of the 

problem; 
• we relax requirement (10) , i.e., ( t t t , y y y ) ∈ conv (Y 

′ ( x x x )) , and re-

place it by constraint (17) imposing that ( x x x , t t t , y y y ) ∈ conv (S) ,

thus obtaining the lower-bounding problem (P) ; 
• we relax the integrality of the x x x , and impose that x x x ∈ X ; 
• we solve this relaxation, which requires to provide a descrip- 

tion of the convex hull of set S, by means of column gener- 

ation techniques; 
• as the resulting solution may violate the relaxed require- 

ments, the column generation scheme is embedded within 

an enumerative algorithm which branches on first-stage 

variables only; 
• our algorithm first branches on integer x x x variables having a 

fractional value, and then possibly resorts to spatial branch- 

ing on continuous x x x variables, until each continuous variable 

attains either its lower or upper bound; 
• when this is the case, according to Corollary 1 , the current 

solution is optimal for the actual subproblem. 

The resulting branch-and-price algorithm stores the best fea- 

ible solution found (the incumbent solution) which is returned 

hen the method stops. 

.3.1. Node solution 

Let p denote a generic node of the branching tree, associated 

ith bounds l l l p and u u u p on first-stage variables. 

A lower bound on the optimal solution value of node p can be 

omputed solving the following problem 

min 

x x x , t t t , y y y , ( v v v i ) i ∈ Q , ξξξ
δ∗( ξξξ | �) −

∑ 

i ∈ Q 
(t i w i ) ∗

(
v v v i 

)
ubject to x x x ∈ X ∩ [ l l l p , u 

u u 

p ] 

( x x x , t t t , y y y ) ∈ conv ( S p ) ∑ 

i ∈ Q 
v v v i = ξξξ

v v v i ∈ R 

| U| ∀ i ∈ Q 

ξξξ ∈ R 

| U| , LB 

p 

here S p = { ( x x x , t t t , y y y ) : l l l p ≤ x x x ≤ u u u p , x j ∈ Z , ∀ j ∈ I I , ( t t t , y y y ) ∈ Y 

′ ( x x x ) } .
his problem is exactly the continuous relaxation of problem 

P) where the bounds l l l and u u u have been replaced by l l l p and u u u p . 

ote that at the root node we have l l l 0 = l l l and u u u 0 = u u u . 

Let ( x x x p∗, t t t p∗, y y y p∗, ( v v v i p∗
) i ∈ Q , ξξξ p∗) be an optimal solution of prob-

em LB 

p . If v ( LB 

p ) is greater than or equal to the cost of the incum-

ent, the node is fathomed by bounding. Otherwise, we distinguish 

hree cases: 

• if x x x p∗ ∈ vert ([ l l l p , u u u p ]) , by Proposition 2 , this solution is opti-

mal for the current node. Hence, the node is fathomed by 

optimality and the incumbent is updated; 
378 
• if x x x p∗ ∈ X \ vert ([ l l l p , u u u p ]) , we compute a feasible solution for 

(2SRO-P) by solving the following model 

min 

t t t , y y y , ( v v v i ) i ∈ Q , ξξξ
δ∗( ξξξ | �) −

∑ 

i ∈ Q 
(t i w i ) ∗

(
v v v i 

)
subject to ( t t t , y y y ) ∈ conv 

(
Y 

′ ( x x x p∗) 
)

∑ 

i ∈ Q 
v v v i = ξξξ

v v v i ∈ R 

| U| ∀ i ∈ Q 

ξξξ ∈ R 

| U| , UB 

p 

in which the first-stage variables are fixed to x x x p∗. Note that, 

in this case, x x x p∗ is a feasible first-stage solution; hence, by 

Assumption 3 , problem UB 

p is always feasible, and possibly 

the incumbent is updated. If v (LB p ) = v (UB p ) then node p is

solved; otherwise, we perform a branching; 
• if x x x p∗ ∈ X \ X , we branch. 

In the last case, before branching, one can try to round x x x p∗; if 

he resulting point is in X , a feasible solution for (2SRO-P) can be

omputed. 

.3.2. Branching 

We now describe how to select the branching variable at node 

p. For each first-stage variable, say with index j ∈ I, we compute 

he minimum distance of x 
p∗
j 

from one of its bounds at the node, 

.e., we evaluate 

p 
j 

= 

{
min { x p∗

j 
− � x p∗

j 
�; � x p∗

j 
� − x p∗

j 
} if j ∈ I I 

min { x p∗
j 

− l p 
j 
; u 

p 
j 
− x p∗

j 
} otherwise. 

or branching, we give priority to integer variables that do not at- 

ain their bound. Otherwise, we resort to spatial branching on con- 

inuous variables. In both cases, we select the variable with maxi- 

um θ p 
j 

value, i.e., we select variable x 
j 

such that 

j ∈ 

{
argmax { θ p 

j 
: j ∈ I I } if ∃ j ∈ I I : θ j > 0 

argmax { θ p 
j 

: j ∈ I C } otherwise. 

If j ∈ I I , then a standard integer branching is executed. Other- 

ise, spatial branching generates two descendant nodes by impos- 

ng x 
j 
≤ x 

p∗
j 

for the left node and x 
j 
≥ x 

p∗
j 

for the right one. We

ssociate to each node the lower bound value of the current node 

 ( LB 

p ) and insert them in a list of open nodes. At each iteration, we

xtract from the list one node with minimum lower bound value, 

alting the algorithm when the list is empty. 

xample 5. Fig. 2 illustrates the feasible region of the left and 

ight child obtained by spatial branching on x ≤ β and x ≥ β , re- 

pectively, from Example 1 (here, β = 0 . 4 ). Clearly, the right child

llows the same second-stage decisions as in Y(x ) for all x ≥ β . 

he left child, however, still allows second-stage decisions that 

ould end up being infeasible in the original problem. In particular, 

 x x x , y y y ) = (ε, 1 − ε, 0) with ε ∈ (0 , β] is feasible for ( LB 

p ) but not for

2SRO-P) . 

.3.3. Convergence 

In the following, we analyze the convergence of the branch- 

nd-price algorithm. While finite convergence is ensured if all first- 

tage variables are integer, this may not be the case when the 

rst-stage includes continuous variables. We now consider the case 

here our algorithm has an infinite number of nodes. Note that, 

n this case, there exists at least one infinite branch to the branch- 

ng tree since the number of variables which can be selected for 

ranching is finite. We consider one such branch and denote it by 

 . For each node p ∈ P , we denote by ( l l l p , u u u p ) the associated bounds
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Fig. 2. Branching on continuous variable x from Example 1 . 
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or the x x x variables and by ( x x x p∗, t t t p∗, y y y p∗, V V V p∗, ξξξ p∗) an optimal solu-

ion to the lower-bounding problem. Additionally, we introduce the 

ollowing function 

f LB ( t t t , V 

V V , ξξξ ) := δ∗( ξξξ | �) −
∑ 

i ∈ Q 
(t i w i ) ∗

(
v v v i 

)
, (18)

hich gives the value of the lower bounding problem (P) as a func- 

ion of its arguments. Similarly, from Lemma 2 , function 

f ST ( t t t ) := sup 

ξξξ∈ �

∑ 

i ∈ Q 
w i ( ξξξ ) t i . (19) 

ives the value of the single stage reformulation as a function of 

rgument t t t . 

emark 6. For each node p ∈ P it holds f LB ( t t t 
p∗, V V V p∗, ξξξ p∗) =

f ST ( t t t 
p∗) . 

roof. This directly follows from the definition of 

 x x x p∗, t t t p∗, y y y p∗, V V V p∗, ξξξ p∗) and Proposition (1) . �

emma 4. Let P be a sequence of nodes of any infinite branch of the

ranching tree. Then, 

(i) The sequence { ( l l l p , u u u p ) } p∈ P has a unique accumulation point, 

which we denote by ( l l l ∗, u u u ∗) ; 
(ii) The sequence { ( x x x p∗, t t t p∗, y y y p∗) } p∈ P has at least one accumulation 

point; 

(iii) Let x x x ∗ be any accumulation point of { x x x p∗} p∈ P , then, for each j ∈
I C which is infinitely selected for branching, there exists a sub- 

sequence P j ⊆ P such that either { u p 
j 
} p∈ P j → x ∗

j 
or { l p 

j 
} p∈ P j →

x ∗
j 
; 

(iv) Every accumulation point x x x ∗ of { x x x p∗} p∈ P satisfies x x x ∗ ∈ 

vert ([ l l l ∗, u u u ∗]) . 

roof. 

(i) This follows from the fact that l l l p (resp. u u u p ) is a bounded, 

non-decreasing (resp. non-increasing) sequence. 

(ii) This follows from the Bolzano-Weierstrass theorem since the 

sequence { x x x p∗} p∈ P is generically bounded by [ l l l , u u u ] , X is com- 

pact and conv (S) is closed and bounded, thus compact (in- 

deed, for all i ∈ Q , t 
p 
i 

is trivially bounded by sup { ϕ i ( x x x , y y y ) : x x x ∈
X , y y y ∈ Y ( x x x ) } which is finite by Assumption 4.1 ). 

(iii) Consider any accumulation point x x x ∗ of { x x x p∗} p∈ P with its as- 

sociated convergent sub-sequence P ′ ⊆ P , i.e., { x x x p∗} p∈ P ′ → x x x ∗. 

Let j ∈ I C be as described in the lemma, and consider the 

sub-sequence P u j ⊆ P ′ such that, for all p ∈ P u j , u 
p+1 
j 

= x 
p∗
j 

.

Assume P u j is not finite. Then, we have that { x p∗
j 
} 

p∈ P u j → x ∗
j 

since P u j ⊆ P ′ . And thus, by definition of P u j , we have that

{ u p+1 
j 

} 
p∈ P u j → x ∗

j 
. We therefore chose P j = { p + 1 : p ∈ P u j }

and have { u p 
j 
} p∈ P j → x ∗

j 
. If instead P u j is finite, the sub-

sequence P l j ⊆ P ′ defined by nodes p for which l 
p+1 
j 

= x 
p∗
j 

is infinite; therefore, the similar argument can be applied. 

(iv) We have just shown that, for any accumulation point x x x ∗

of { x x x p∗} p∈ P , with its associated convergent sub-sequence 
379 
P ′ ⊆ P , and any infinitely branched index j ∈ I C , there exists

P j ⊆ P ′ such that either { u p 
j 
} p∈ P j → x ∗

j 
or { l p 

j 
} p∈ P j → x ∗

j 
. As-

sume { l p 
j 
} p∈ P j → x ∗

j 
holds. Then, we have that P j ⊆ P ′ and

{ l p 
j 
} p∈ P ′ → l ∗

j 
. Thus, x ∗

j 
= l ∗

j 
holds, since any sub-sequence of 

a converging sequence converges to the same point. The 

same argument can be applied when { u p 
j 
} p∈ P j → x ∗

j 
. �

heorem 1. Let P be a sequence of nodes of any infinite branch of the

ranching tree. Then, every accumulation point of { ( x x x p , t t t p , y y y p ) } p∈ P ,
ay ( x x x ∗, t t t ∗, y y y ∗) , is an optimal solution of problem (7) , and, thus, x x x ∗

s an optimal solution of (2SRO-P) . 

roof. By Lemma 4 (ii), there exists a sub-sequence P ′ ⊆ P such 

hat { ( x x x p∗, t t t p∗, y y y p∗) } p∈ P ′ → ( x x x ∗, t t t ∗, y y y ∗) . Note that X and conv (S) are

ompact sets, hence we have that ( x x x ∗, t t t ∗, y y y ∗) ∈ X × conv (S) . More-

ver, by Lemma 4 (iv), we know that x x x ∗ ∈ vert ([ l l l ∗, u u u ∗]) which, 

y Proposition 2 , ensures that ( t t t ∗, y y y ∗) ∈ conv (Y 

′ ( x x x ∗)) . Hence,

 x x x ∗, t t t ∗, y y y ∗) is feasible for (7) . Note that f ST is a continuous func-

ion since it is the point-wise supremum of continuous (affine) 

unctions. Thus, by Remark 6 , we have { f LB ( t t t 
p∗, V V V p∗, ξξξ p∗) } p∈ P ′ →

f ST ( t t t 
∗) . In other words, the objective value of the feasible so- 

ution ( x x x ∗, t t t ∗, y y y ∗) to (7) is f ST ( t t t 
∗) . Yet, by Lemma 2 , we know

hat (7) and (2SRO-P) have the same objective value. This makes 

 

 

 

∗ a feasible solution to (2SRO-P) of value f ST ( t t t 
∗) . Since our 

ode selection strategy always picks a node with minimum lower 

ound, for each node p ∈ P , we have f LB ( t t t 
p∗, V V V p∗, ξξξ p∗) = v (LB p ) ≤ v

2SRO-P) ≤ f ST ( t t t 
∗) . As v (LB p ) converges to f ST ( t t t 

∗) , we also have

f LB ( t t t 
p∗, V V V p∗, ξξξ p∗) = f ST ( t t t 

∗) = v (2SRO-P) . �

We conclude this section by observing that, at each node of the 

ranch-and-price algorithm, the lower bounding problem can be 

olved with ε-tolerance in a finite number of operations. Indeed, as 

hown in Ceria & Soares (1999) and Grossmann & Ruiz (2012) , one 

an reformulate a convex disjunctive program as a convex MINLP 

y introducing an exponential number of auxiliary variables that 

odel the disjunctions 
⋃ 

k ∈ Z ∩ [ l j ,u j ] { x j = k } for each j ∈ I I . The re-

ulting model can thus be solved in finite number of steps by using 

ny algorithm designed for convex optimization. However, relying 

n such a large reformulation is only acceptable for small problems 

ith a limited number of integer variables. To avoid this, we in- 

roduce a nonlinear column-generation algorithm able to solve the 

ower bounding problem at each node by sequentially improving 

n inner approximation for the convex hull of S p . This is presented 

n the next section. 

.4. A convexification scheme based on column-generation 

In this section, we propose a nonlinear column-generation al- 

orithm to be used, at each node p, to solve problem ( LB 

p ) to

-optimality in a finite number of iterations. According to this 

cheme, we approximate conv (S p ) by the convex hull of a finite 

et of points belonging to S p . 

Restricted Master Problem: To determine this set, we use an 

terative approach. At each iteration k , let K = { 1 , . . . , k } and de-
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ote by H 

pk = { ( ̄x pj , ̄t pj , ̄y pj ) : j ∈ K} the current set of points in

he restricted master. As H 

pk ⊆ S p , we have conv 
(
H 

pk 
)

⊆ conv ( S p ) , 

hus the optimal solution of the problem obtained by substituting 

onv ( S p ) with conv 
(
H 

pk 
)

in ( LB 

p ) gives an upper bound of ( LB 

p ). 

he resulting problem, denoted as ( ̂  LB 

pk 
) , is called the Restricted 

aster , and is formulated as follows. 

in x x x , t t t , y y y , V V V , ξξξ , ααα δ∗( ξξξ | �) −
∑ 

i ∈ Q 
(t i w i ) ∗

(
v v v i 

)
(21) 

subject to x x x ∈ X ∩ [ l l l p , u 

u u 

p ] (22) 

x x x = 

∑ 

j∈ K 
α j ̄x 

p j (23) 

t t t = 

∑ 

j∈ K 
α j ̄t 

p j (24) 

y y y = 

∑ 

j∈ K 
α j ̄y 

p j ( ̂  LB 

pk 
) (25) 

∑ 

j∈ K 
α j = 1 (26) 

∑ 

i ∈ Q 
v v v i = ξξξ (27) 

v v v i ∈ R 

| U| ∀ i ∈ Q (28) 

ξξξ ∈ R 

| U| (29) 

α j ≥ 0 ∀ j ∈ K. (30) 

Following the classical column-generation framework, the cur- 

ent approximation can be improved by means of a so-called Pric- 

ng Problem , aimed at identifying new points to be added to the 

estricted Master, and defined as follows. 

Pricing Problem: Let λλλpk ∗, μμμpk ∗, πππ pk ∗ and ηpk ∗ be the values of 

he dual variables associated with constraints (23), (24), (25) , and 

26) in an optimal solution of problem ( ̂  LB 

pk 
) . 

Pricing asks to solve the following problem 

x̄ 

p,k +1 , ̄t p,k +1 , ̄y p,k +1 
)

∈ argmin 

( x x x , t t t , y y y ) ∈ S p 
−λλλpk ∗T 

x x x −μμμpk T t t t −πππ pk ∗T 

y y y − ηpk ∗T 

( PP pk ) 

nd generates a new point ( ̄x p,k +1 , ̄t p,k +1 , ̄y p,k +1 ) belonging to S p . 

f v ( P P pk ) ≥ −ε, we have an ε-optimal solution to ( LB 

p ), and

ence the algorithm terminates. Otherwise, we set H 

k +1 = H 

k ∪ 

 ( ̄x p,k +1 , ̄t p,k +1 , ̄y p,k +1 ) } , k = k + 1 and iterate. Note that, at each it-

ration k , a lower bound on the optimal solution value of ( LB 

p ) is

iven by v ( ̂  LB 

pk 
) - v ( P P pk ) . This lower bound, combined with an

pper bound, can allow us to early terminate the solution of prob- 

em ( LB 

p ). 

. Computational experiments 

In this section, we report computational results of our solution 

lgorithm when applied to an uncertain Capacitated Facility Loca- 

ion Problem with congestion. 

.1. Problem definition 

We consider a variant of the Facility Location Problem, in which 

e are given a set V 1 of candidate sites for opening facilities, as 

ell as a set V 2 of clients to be served with some product. Each

lient j ∈ V 2 has a demand d j representing the quantity of product 

hat she/he wants to receive. Each site i ∈ V 1 can be activated at a

iven fixed cost f i > 0 . In this case, one has to decide the capac-

ty to be installed, at cost u i per unit of capacity. Each site i has

n upper bound q̄ i on the maximum capacity that can be installed. 

ach connection (i, j) ∈ V 1 × V 2 is associated with a fixed cost c i j ,
380 
nd a variable cost t i j per unit of product which is transported. In 

ur setting, we explicitly model congestion at each site i by means 

f an additional cost which depends on the total amount of prod- 

ct, say o i , leaving the facility. As in the congested Facility Location 

roblem considered in Desrochers, Marcotte, & Stan (1995) and in 

ischetti, Ljubi ́c, & Sinnl (2016) , the congestion cost for site i is

iven by 

 i (o i ) = (αi + βi o 
γi 

i 
) o i , (31) 

here αi ≥ 0 , βi > 0 and γi ≥ 1 are input parameters. Note that 

ach function F i is convex for non-negative arguments o i . The prob- 

em asks to determine the facilities to be opened, the capacity to 

e installed at each facility and the flow of product from facilities 

o clients, so as to serve all clients at minimum cost. This problem 

an be reduced to the one addressed in Desrochers et al. (1995) in 

ase there are no capacity constraints at the sites (i.e., q̄ i = ∞ and 

 i = 0 for each i ∈ V 1 ) and transportation costs only include a vari-

ble component (i.e., c i j = 0 for each (i, j) ∈ V 1 × V 2 ). 

In our context, connection costs are not known when decid- 

ng the capacities to be installed. Formally, for each connection 

i, j) ∈ V 1 × V 2 , we denote by c̄ i j and t̄ i j the nominal fixed and vari-

ble costs from i to j, and by ˜ c i j and 

˜ t i j their maximal deviations. 

ithout loss of generality, we assume that, for each connection 

i, j) ∈ V 1 × V 2 , the actual realizations for the costs are determined

y the same variable ξi j . In other words, we have c i j = c̄ i j + ξi j ̃  c i j 

nd t i j = t̄ i j + ξi j ̃  t i j , with ξξξ ∈ � and � ⊆ [0 , 1] | V 1 |×| V 2 | is a given un-

ertainty set (see Section 4.2 ). 

We consider the adjustable robust version of this uncertain 

roblem, where capacity installation is determined at the first 

tage whereas product flows are determined after uncertainty re- 

eals. We denote the resulting problem as ARCCFLP (for Adjustable 

obust Congested Capacitated Facility Location Problem). 

.2. Mathematical formulation 

To model ARCCFLP, we introduce, for each site i ∈ V 1 , first-stage 

ariables x i and q i ; the former takes the value 1 if site i is acti-

ated, whereas the latter denotes the actual capacity installed. The 

easible set X for the first-stage variables is defined as 

 = { ( x x x , q q q ) : x i ∈ { 0 , 1 } and 0 ≤ q i ≤ q̄ i x i ∀ i ∈ V 1 } . (32) 

Once the actual realization of uncertainty ξξξ ∈ � is known, thus 

efining the transportation costs, the remaining decisions concern- 

ng the flow of product from opened sites to clients must be taken. 

o this aim we introduce, for each connection (i, j) ∈ V 1 × V 2 , vari-

bles b i j and y i j denoting if the connection is activated and the 

raction of request of client j that is served by site i , respectively. 

or each site i , we also denote by o i the total amount of prod-

ct leaving the site. Accordingly, the feasible set Y ( x x x , q q q ) associated 

ith a given pair ( x x x , q q q ) is defined by the following constraints. 

 i = 

∑ 

j∈ V 2 
d j y i j ≤ q i ∀ i ∈ V 1 (33) 

 

 ∈ V 1 
y i j = 1 ∀ j ∈ V 2 (34) 

 i j ≤ b i j ∀ i ∈ V 1 , ∀ j ∈ V 2 (35) 

 i j ≥ 0 ∀ i ∈ V 1 , ∀ j ∈ V 2 (36) 

 i j ∈ { 0 , 1 } ∀ i ∈ V 1 , ∀ j ∈ V 2 . (37)

onstraints (33) enforce that the total demand o i leaving each site 

 does not exceed the installed capacity, while constraints (34) im- 

ose that, for each client, all the demand is served. Constraints 
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1 https://github.com/hlefebvr/AB _ AdjustableRobustOptimizationWithObjectiveUn 

certainty . 
35) activate connections with a positive flow. Finally, (36) and 

37) give the domain of the variables. 

In order to ensure complete recourse, we introduce a dummy 

acility k with f k = u k = 0 , q̄ k = 

∑ 

j∈ V 2 d j , and with very large val-

es for c̄ k j and t̄ k j for each j ∈ V 2 . By adding constraints x k = 1 and

 k = q̄ k in the definition of set X , we force facility k to be opened

t maximum capacity. This choice has zero cost in the first stage, 

nd allows a feasible solution with very large cost in the second 

tage regardless the values of the remaining first-stage variables. 

Then, ARCCFLP is formulated as 

min 

( x x x , q q q ) ∈ X 

{ ∑ 

i ∈ V 1 
( f i x i + u i q i ) + max 

ξξξ∈ �
min 

( b b b , y y y , o o o ) ∈ Y ( x x x , q q q ) 

∑ 

i ∈ V 1 

( 

F i (o i ) + 

∑ 

j∈ V 2 

(
( ̄c i j + ξi j ̃  c i j ) b i j + ( ̄t i j + ξi j ̃  t i j ) d j y i j 

)) } 

. (38) 

By applying the methodology introduced in this paper, the re- 

ulting lower-bounding problem is given as follows 

min 

 

 

 , q q q , r r r , o o o , y y y , b b b 

∑ 

i ∈ V 1 

( 

f i x i + u i q i + r i + 

∑ 

j∈ V 2 

(
c̄ i j b i j + ̄t i j d j y i j 

)) 

+ max 
ξξξ∈ �

∑ 

i ∈ V 1 

∑ 

j∈ V 2 
ξi j 

(
˜ c i j b i j + ̃

 t i j d j y i j 

)
(39) 

ubject to ( x x x , q q q ) ∈ X (40) 

 q q q , r r r , o o o , y y y , b b b ) ∈ conv 

( { 

( q q q , r r r , o o o , y y y , b b b ) : 
0 ≤ q i ≤ q̄ i ∀ i ∈ V 1 

r i ≥ F i (o i ) ∀ i ∈ V 1 

(33) − (37) 

} ) 

. 

(41) 

he inner maximization problem can then be expressed by using 

enchel duality, and the resulting formulation depends on the un- 

ertain set. In our experiments, we consider two widely used un- 

ertainty sets, namely, the �-uncertainty set and the ellipsoidal 

ncertainty set. 

�-uncertainty is a paradigm introduced in Bertsimas & Sim 

2004) to model uncertain situations in which the robustness of 

he solution can be controlled by an input parameter � > 0 . By us-

ng this uncertainty set in our context, we obtain 

� 
� = 

{ 

ξξξ ∈ [0 , 1] | V 1 |×| V 2 | : 
∑ 

i ∈ V 1 

∑ 

j∈ V 2 
ξi j ≤ �

} 

. (42) 

n this case, Fenchel duality reduces to LP duality as follows. 

ax 
∈ �� 

�

∑ 

i ∈ V 1 

∑ 

j∈ V 2 
ξi j 

(
˜ c i j b i j + ̃

 t i j d j y i j 

)
= min �λ + 

∑ 

i ∈ V 1 

∑ 

j∈ V 2 
πi j (43) 

ubject to λ + πi j ≥ ˜ c i j b i j + ̃

 t i j d j y i j ∀ i ∈ V 1 , ∀ j ∈ V 2 (44)

≥ 0 (45) 

i j ≥ 0 ∀ i ∈ V 1 , ∀ j ∈ V 2 . (46) 

The Ellipsoidal uncertainty set is defined as 

◦
� = 

{ 

ξξξ ∈ [0 , 1] | V 1 |×| V 2 | : 
√ ∑ 

i ∈ V 1 

∑ 

j∈ V 2 
ξ 2 

i j 
≤ �

} 

, (47) 

here again � is a control parameter. In this case, one obtains the 

ollowing formulation. 

ax 
∈ �◦

�

∑ 

i ∈ V 1 

∑ 

j∈ V 2 
ξi j 

(
˜ c i j b i j + ̃

 t i j d j y i j 

)
= min �λ + 

∑ 

i ∈ V 1 

∑ 

j∈ V 2 
πi j (48) 
381
ubject to νi j + πi j ≥ ˜ c i j b i j + ̃

 t i j d j y i j ∀ i ∈ V 1 , ∀ j ∈ V 2 (49)

 ∑ 

i ∈ V 1 

∑ 

j∈ V 2 
ν2 

i j 
≤ λ (50) 

≥ 0 (51) 

i j ≥ 0 ∀ i ∈ V 1 , ∀ j ∈ V 2 (52) 

i j ≥ 0 ∀ i ∈ V 1 , ∀ j ∈ V 2 . (53) 

An interested reader may refer to Li, Ding, & Floudas (2011) for 

ssociated theoretical properties of both uncertainty sets, includ- 

ng their robust counterparts and probabilistic guarantees for lin- 

ar constraints. 

.3. Test bed 

Instance generation We tested our solution method on random 

nstances, that were generated by following the guidelines of the 

xtensive computational study by Cornuejols, Sridharan, & Thizy 

1991) . Accordingly, for each facility i ∈ V 1 , the maximum capac- 

ty q̄ i and the fixed opening cost f i follow uniform distributions 

n [10 , 160] and [0 , 180] , respectively, whereas the variable coef- 

cient u i was generated in [200 / 
√ 

q̄ i , 220 / 
√ 

q̄ i ] . Moreover, loca- 

ions for each facility i ∈ V 1 and each client j ∈ V 2 were generated

n the unit square, and nominal transportation costs were set to 

he Euclidean distance multiplied by 10 and rounded up. The de- 

ands were uniformly generated between 0 and 1 and scaled so 

hat 
∑ 

i ∈ V 1 q̄ i / 
∑ 

j∈ V 2 d j = ν where ν is a parameter taking value in 

 1 . 1 , 1 . 2 , 1 . 3 } . In addition, following Desrochers et al. (1995) , for

ach i ∈ V 1 , we used γi = 1 and αi = βi = 0 . 75 , i.e., each function F i 
s quadratic with respect to the amount of product leaving site i . 

oncerning the parameters affected by uncertainty, the maximum 

eviation 

˜ t i j was set to 0 . 50 × t̄ i j , thus allowing a maximum of 50%

eviation. As to the opening cost of each arc, we randomly gener- 

ted the nominal value between 50 and 100, allowing a maximum 

f 50% deviation with respect to this value. 

Finally, the number of sites and clients take values (4 , 8) , 

5 , 10) and (6 , 12) . For each combination of | V 1 | , | V 2 | , and ν , we

enerated 5 test-cases. Each test-case was solved for � = 1 , 2 , 3 , 4 ,

oth in the �-uncertainty and in the Ellipsoidal uncertainty set- 

ings, thus producing 360 instances. 

.4. Implementation details 

We implemented our branch-and-price algorithm with spatial 

ranching in C++ and run all the experiments on an AMD Ryzen 

 PRO 4650GE at 3.3 GHz, with a time limit equal to 10,800 CPU 

econds per run (3 hours). 

At the root node, an initial upper bound is computed by solving 

he single-stage version of ARCCFLP where all decisions are taken 

ere and now. This bound is obtained by solving (39) –(41) without 

onvexifying the second-stage feasible region in constraint (41) . At 

ach node of the algorithm, we solve the restricted master prob- 

em by using Mosek 10.0.36, and the pricing problem by means 

f Gurobi 10.0. This combination of solvers turned out to be the 

ost numerically stable on our instances. Our code and instances 

re publicly available on GitHub. 1 

https://github.com/hlefebvr/AB_AdjustableRobustOptimizationWithObjectiveUncertainty
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Table 1 

Computational experiments on ARCCFLP instances. Each row refers to 15 instances. 

Time (s) Gap (%) 

| V 1 | | V 2 | � solved total RMP PP nodes columns root end 

�-unc. 4 8 1 15 2.45 0.12 2.04 4.73 42.60 0.21 

2 15 3.19 0.14 2.68 5.00 56.53 0.21 

3 15 4.75 0.26 4.03 5.27 84.60 0.22 

4 15 4.74 0.22 4.10 5.27 78.60 0.23 

5 10 1 15 44.83 0.78 42.35 5.80 110.00 0.29 

2 15 21.83 0.47 20.27 6.60 82.20 0.31 

3 15 36.59 0.64 34.70 7.53 125.87 0.33 

4 15 38.33 0.80 36.16 9.40 166.80 0.34 

6 12 1 11 319.17 1.92 313.31 4.82 139.55 0.17 0.24 

2 13 572.80 1.64 562.48 5.46 102.69 0.19 0.30 

3 13 1117.35 2.35 1110.73 6.23 162.92 0.22 0.23 

4 11 1261.83 4.63 1249.46 6.45 239.00 0.22 0.26 

Ellips. 4 8 1 13 (2) 6.64 0.35 5.70 5.00 67.92 0.22 0.11 

2 14 (1) 7.46 0.52 6.25 5.00 88.79 0.22 0.30 

3 14 (1) 12.47 0.67 10.90 5.29 121.07 0.20 0.46 

4 13 (2) 11.16 0.40 10.08 4.54 86.77 0.21 0.09 

5 10 1 12 (3) 26.96 1.27 24.59 6.00 117.58 0.26 0.44 

2 12 (3) 83.59 2.34 79.28 7.17 206.75 0.32 0.38 

3 15 82.47 3.19 76.72 8.73 278.80 0.34 

4 15 151.89 2.17 147.62 6.33 195.27 0.31 

6 12 1 14 (1) 324.66 3.45 315.11 5.29 169.57 0.18 0.21 

2 14 (1) 420.62 4.01 412.94 5.86 202.21 0.22 0.21 

3 13 859.62 5.66 847.91 7.00 280.08 0.24 0.10 

4 13 (2) 1574.26 10.83 1551.17 10.69 526.38 0.22 0.15 
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The column-generation procedure includes stabilization by dual 

rice smoothing, as described in Pessoa, Sadykov, Uchoa, & Van- 

erbeck (2013) ; and at most one column is added to the restricted 

aster problem at each iteration. 

For the branching strategy of continuous variables, we used a 

olerance of ε = 10 −3 for comparing real numbers in finite preci- 

ion. At each node, local bounds derived from branching decisions 

re applied to the column generation sub-problem. The restricted 

aster inherits all columns from the father node. For each column, 

e compare the value of the first-stage variables in the colum with 

he actual bound at the node, and possibly remove it from the 

aster when locally infeasible. 

At a given node, to check the optimality of a first-stage deci- 

ion and possibly fathom the node, we use the sufficient condi- 

ion from Proposition 2 . If the latter does not hold, we check if all

ctive columns at optimality are built on the same values for the 

ontinuous variables; in this case, Proposition 2 can be exploited 

o ensure local optimality of the solution. If the first-stage solution 

s not feasible, an upper bound is computed as follows. We detect 

he variable with largest value in the RMP current solution, recover 

he values of variables ( x x x , q q q ) that were used for generating this col-

mn and fix variables ( x x x , q q q ) to those values, possibly rounding up 

nteger variables. 

Finally, observe that branching may induce infeasibility in the 

econd stage. To early detect this situation, we consider a problem- 

pecific improvement: at a given node of the branching tree, we 

heck if 
∑ 

i ∈ V 1 x 
u 
i 
q u 

i 
< 

∑ 

j∈ V 2 d j holds, where x u 
i 

and q u 
i 

denote the 

ocal upper bound of variable x i and q i , respectively. In this case 

he node is declared infeasible. 

.5. General results 

Table 1 reports our computational results on ARCCFLP. The up- 

er part relates to experiments done with the �-uncertainty set 

 �-unc.), while the lower part addresses those with the ellipsoidal 

ncertainty set (Ellips.). Columns | V 1 | , | V 2 | and � give the number

f sites, the number of clients and the value for the uncertainty 

arameter �, respectively. Column “solved” reports the number of 
s

382 
nstances (out of 15) which could be solved to proven optimality 

ithin the given time limit. Into brackets we report the number of 

nstances for which the computation was stopped due to numerical 

ssues of the used solvers. For the sake of consistency, all remain- 

ng columns but the last one are relative to instances which could 

e solved within the time limit. In particular, columns “time” re- 

ort, from left to right, the average time needed to prove optimal- 

ty (“total”), the average time spent solving the RMP (“RMP”) and 

he average time spent solving the pricing problem (“PP”) during 

he execution of our branch-and-price algorithm. All times are ex- 

ressed in seconds. Column “nodes” reports the average number of 

xplored nodes, while “columns” gives the average number of gen- 

rated columns throughout the entire execution of our algorithm. 

inally, we report the average gap of the root node lower bound 

ith respect to the optimal solution value (“root”) and the average 

ptimality gap at time limit (“end”) (or when the algorithm was 

topped for numerical troubles). Optimality gap is computed only 

ver those instances which could not be solved to optimality. 

The table shows that our method is able to solve a large frac- 

ion of the instances, namely 168 in the �-uncertainty setting and 

62 in the Ellipsoidal uncertainty setting. In most cases, the solu- 

ion time required by the algorithm is quite small and solving the 

MP is very fast in practice (below 7% of the total time, on aver- 

ge). Indeed, the most challenging subproblem solved is the pric- 

ng problem; when increasing the size of the instances the number 

f columns that are needed increases and each execution of the 

ricing problem is more time consuming. However, the solved re- 

axation allows to compute a very tight approximation, as the gap 

etween lower and upper bounds at the root that is always be- 

ow 0.35%, and producing small enumeration trees, in which the 

umber of generated nodes is always below 11. Moreover, the per- 

ormance of the algorithm is satisfactory also for the instances 

hat were not solved to proven optimality, as the average resid- 

al gap at the end of the enumeration is always quite small (below 

.5%). Finally, observe that numerical issues arise only when uncer- 

ainty belongs to the Ellipsoidal uncertainty set, a nonlinear setting 

n which Mosek may encounter numerical instability on some in- 

tances. 
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Table 2 

Comparison of exact and linearized approaches. 

exact linearized 

| V 1 | | V 2 | solved solved avg. err. max. err. 

�-unc. 4 8 60 60 0.37 0.61 

5 10 60 60 0.38 0.63 

6 12 48 42 0.39 0.56 

Ellips. 4 8 54 58 0.36 0.59 

5 10 54 59 0.39 0.58 

6 12 54 59 0.40 0.56 
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.5.1. Linearized costs 

A classical approach for dealing with non-linearities in opti- 

ization problems is to approximate them via piecewise linear 

unctions. Thus, as an alternative approach for both uncertainty 

ets described in Section 4.2 , we considered solving a linearized 

pproximation of ARCCFLP obtained by replacing each function F i 
 i ∈ V 1 ) by a piecewise linear approximation. By introducing L ap-

roximation points { ̄o il } l=1 , ... ,L , function F i is underestimated by the 

ollowing one: 

˜ 
 i (o i ) = max 

l=1 , ... ,L 

{
F i ( ̄o il ) + F ′ i ( ̄o il )(o i − ō il ) 

}
. (54) 

n our experiments, we chose L = 10 and, for all i ∈ V 1 , defined

he approximation points to be equally distributed in the interval 

0 , q̄ i ] , i.e., ō il = q̄ i (l − 1) / (L − 1) for l = 1 , . . . , L . 

Table 2 reports the results obtained by using the linearized ap- 

roach. For each combination of | V 1 | and | V 2 | , we give for both

he exact and the linearized approaches, the number of instances 

olved to optimality. Moreover, for the latter we report the aver- 

ge and maximum percentage error introduced by the lineariza- 

ion, computed as z ∗−z L 

z ∗ , where z ∗ and z L denote the optimal values 

f an ARCCFLP instance and of its linearized counterpart, respec- 

ively. These figures are computed with respect to instances solved 

y both approaches only. 

The table shows that the linearized approach turns out to be 

omputationally harder in the �-uncertainty setting, while it gives 

ome improvement when the Ellipsoidal setting is considered; this 

s mainly due to the reduced number of instances for which we 

ncountered numerical troubles. However, in both settings, lin- 

arization introduces a nonneglibile error when underestimating 

he true cost of a solution. The average percentage error, over all 

nstances, is 0.38% and can be as large as 0.63%. 

. Conclusion 

In this work, we studied optimization problems where part of 

he cost parameters are not known at decision time, and the deci- 

ion flow is modeled as a two-stage process. In particular, we ad- 

ressed general problems in which all constraints (including those 

inking the first and the second stages) are defined by convex 

unctions and involve mixed-integer variables. To the best of our 

nowledge, this is the first attempt to extend the existing litera- 

ure to tackle this wide class of problems. 

To this aim, we derive a relaxation of the problem which can 

e formulated as a convex optimization problem, and embed it 

ithin an enumerative algorithm where branching occurs on inte- 

er and continuous variables. By combining enumeration and on- 

he-fly generation of the variables, we obtain a branch-and-price 

cheme, for which we prove asymptotic convergence in the general 

ixed-integer case and give sufficient conditions for finite conver- 

ence. 

In addition to the theoretical analysis, we applied our method 

o an optimization problem affected by objective uncertainty aris- 

ng in the logistic field, namely a variant of the congested Capaci- 

ated Facility Location problem with uncertain transportation costs. 
383
ur computational experiments showed that the proposed method 

s able to solve non-trivial instances for this problems. In addition, 

e provide a comparison with a natural approach based on lin- 

arization of the congestion function, showing that this alternative 

olution method would give marginal improvements in terms of 

erformances though introducing a nonnegligible error in terms of 

ost of the provided solution. 
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ppendix A. Recalls of convex and concave conjugate 

In this appendix we review some basic results on conjugate 

unctions and Fenchel duality. For a detailed treatment we refer 

o Rockafellar (1970) . 

Let f : R 

n → R be a given function, its convex conjugate is de-

oted by f ∗ : R 

n → R and is given by 

f ∗( πππ) = sup 

x x x ∈ dom ( f ) 

{
πππ T x x x − f ( x x x ) 

}
. 

imilarly, we denote by g ∗ the concave conjugate of a given func- 

ion g : R 

n → R , given by 

 ∗( πππ) = inf 
x x x ∈ dom ( g ) 

{
πππ T x x x − g g g ( x x x ) 

}
. 

ote that, if f is a proper convex function and g a proper concave 

unction, we have that f ∗∗ = f and g ∗∗ = g. We now state the fol-

owing Fenchel duality theorem. 

heorem 2. Let f : R 

n → R be a proper convex function and g :

 

n → R be a proper concave function, then 

inf 
 

 

 ∈ dom ( f ) ∩ dom ( g ) 
{ f ( x x x ) − g( x x x ) } = sup 

πππ∈ dom ( f ∗) ∩ dom ( g ∗) 
{ g ∗( πππ) − f ∗( πππ) } 

r equivalently, 

sup 

 

 

 ∈ dom ( f ) ∩ dom ( g ) 

{ g( x x x ) − f ( x x x ) } = inf 
πππ∈ dom ( g ∗) ∩ dom ( f ∗) 

{ f ∗( πππ) − g ∗( πππ) } . 

orollary 3 (Maximizing a concave function over a convex set) . Let 

 ⊆ R 

n be a non-empty convex set, g : R 

n → R be a proper concave

unction, then 

up 

x x x ∈X 
g( x x x ) = inf 

πππ
{ δ∗( πππ |X ) − g ∗( πππ) } , 

here δ( x x x |X ) = 

{
0 if x x x ∈ X 

+ ∞ otherwise . 

roof. The result holds from the fact that sup { g( x x x ) : x x x ∈ X } =
up { g( x x x ) − δ( x x x |X ) } and by application of Fenchel duality. More 

recisely, δ( x x x |X ) is convex and, by non-emptiness of X , is 

roper. �

Notice that Fenchel duality allows the reformulation of an op- 

imization problem which consists in maximizing a concave func- 

ion over a convex set as an unconstrained convex problem since 
∗(·|X ) and (−g ∗)(·) are convex functions and positively weighted 

ums preserve convexity. 
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Table A.1 

Some convex conjugate calculus rules. 

h ( x x x ) h ∗( πππ) 

Separable sums 

h ( x x x 1 , x x x 2 ) = f 1 ( x x x 1 ) + f 2 ( x x x 2 ) h ∗( πππ1 , πππ2 ) = f ∗1 ( πππ
1 ) + f ∗2 ( πππ

2 ) 

Scalar multiplications ( α > 0 ) 

h ( x x x ) = α f ( x x x ) h ∗( πππ) = α f ∗( πππ/α) 

Affine mapping composition ( det A A A � = 0 ) 

h ( x x x ) = f ( A A A x x x + b b b ) h ∗( πππ) = f ∗( A A A −T πππ) − b b b T A A A −T πππ

Sum with affine functions 

h ( x x x ) = f ( x x x ) + a a a T x x x + b b b h ∗( πππ) = f ∗( πππ − a a a ) − b b b 

Sum of functions 

h ( x x x ) = 

m ∑ 

i =1 

f i ( x x x ) h ∗( πππ) = inf 
v v v i ,i =1 , ... ,m 

{ 

m ∑ 

i =1 

f ∗i ( v v v 
i ) | 

m ∑ 

i =1 

v v v i = πππ

} 

P

−
P

(

g

R

A

A

B

B

B

B

B

B

C

C

D

F

G

G

H

H

J

K

L  

L

L  

P

P

R
S

S

S

S

T

Y  

Z

roposition 3. Let f be a convex function, we have (− f ) ∗( πππ) = 

f ∗(−πππ) . 

roof. 

− f ) ∗( πππ) = inf 
x x x 

{
πππ T x x x − (− f )( x x x ) 

}
= − sup 

x x x 

{
−πππ T x x x − f ( x x x ) 

}
= − f ∗(−πππ) . �

Table A.1 reports some calculus rules regarding convex conju- 

ates. The extension to concave conjugates is straightforward. 
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