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Abstract—Federated learning (FL) is emerging as the most
promising approach to collaboratively train a machine learning
(ML) model on a common task without centralizing data. During
each FL round, participants locally train a partial model with
its on-premises data. Such models are subsequently aggregated
to derive a global one. How these partial models are combined
is a primary concern. Traditional approaches usually rely on
a parameter server that introduces many weaknesses such as
single point of failure, lack of trustworthiness among unknown
participants, and incapacity to handle the traffic generated from
millions of devices.

Thus, to overcome such concerns, blockchain has recently
been proposed as a valuable solution to improve the robustness
of FL approaches. The full-blown benefits of using blockchain
enable tackling the limits of centralized servers. However, energy
consumption is still one of the significant factors inhibiting its
widespread due to the current discussions on climate change
and sustainability. Recently, a growing number of research
works have been focusing on integrating FL and blockchain,
nevertheless, adequate analysis and estimate of their energy and
power consumption are often lacking.

This paper presents an estimate of the power consumption of
FlowChain, an architecture that integrates FL with blockchain
to simplify the use of FL. Experimental results demonstrate that
the overall power consumption significantly depends on the ML
model adopted.

Index Terms—Blockchain, Federated Learning, Power Con-
sumption, Energy Consumption, Sustainability

I. INTRODUCTION

Nowadays, an unprecedented amount of data is generated
from multiple locations leading the way to novel machine
learning (ML) solutions. Despite the increasing data availabil-
ity, how to effectively use them is a challenging task that is
further hindered by modern privacy laws and regulations. In
this direction, federated learning (FL) [1] is envisioned as the
most promising solution [2] to leverage distributed data while
guarantying privacy. These capabilities enable overcoming
the limits of traditional ML approaches that demand data
centralization. FL enables involved parties to collaboratively
train a global model on a common task without outsourc-

ing on-premises data. An FL process consists of multiple
communications rounds: each participant, typically referred
to as a client, trains a local model through its private data
and produces an update. All clients’ contributions are then
aggregated into a global model that serves as the starting
point for the next round. How the aggregation is performed
is a critical task that is, in its original version, entrusted to a
parameter server.

However, using a central server for model aggregation poses
some challenges that must be carefully tackled. Clients may
not fully trust the server which also introduces single-point-
of-failure. A unique server may have some biases to prefer
a partial model over others. In addition, it cannot manage
the traffic generated from millions of distributed devices. To
address such concerns, blockchain has been proposed as an
attractive solution to develop a more robust and decentralized
FL approach [3]. For example, through the consensus protocol,
the blockchain can guarantee that the final global model
will be created without any kind of bias. This trend is also
corroborated by many recent works [4]–[7] that have enriched
FL with blockchain for different purposes such as account-
ability, data provenance, or improving trustworthiness among
unknown participants. Despite the full-blown benefits of using
blockchain, its widespread adoption is often inhibited by
energy consumption which is one of the significant concerns
also due to the current discussions on climate change and
sustainability [8]. In blockchain environments, determining
the exact amount of energy consumption is a hard task that
depends on several factors such as the number of participants
and the consensus mechanism adopted. For example, proof
of work (PoW) consensus requires a large extent of electrical
energy, as the entities involved in the validation process (i.e.,
miners) demand a huge amount of computational resources
to validate blocks [9]. Miners compete to confirm a block
and who wins the race advances the blockchain status. All
the other block candidates are discarded, resulting in a huge
waste of electricity put into their calculation. The difficulty



in accurately estimating the general energy consumption of
blockchain technology is further confirmed by the limited
results available in the literature [10]. Some studies [11],
[12] have provided general estimates for the lower and upper
bounds of the energy consumed, but a more comprehensive
analysis is needed.

Energy is one of the major concerns also for FL envi-
ronments [13] because participants may have heterogeneous
capabilities. In FL, clients do not offload heavy computations
to cloud-based resources, thus, their computing resources are
directly involved in the training phase. For this reason, Multi-
Access Edge Computing (MEC) servers are often leveraged
to allow users to offload a portion of their dataset for model
training [14]. Despite the increasing interest in integrating
blockchain and FL while keeping energy consumption under
control, energy and power analysis are often neglected and
hardly ever presented in novel proposals. At the state-of-the-
art, there are no works that offer an estimate of the energy
and power consumption of a blockchain employed for FL
purposes.

To fill this gap, this paper aims to estimate the power
consumption of integrating FL and blockchain. In particular,
we conduct a power consumption analysis of FlowChain [15],
a framework that integrates FL with blockchain to simplify
the use of FL. Our evaluation mainly focuses on the power
consumption of the blockchain for those operations needed
to enable FL (e.g., aggregating partial models). Experimental
results demonstrate that the overall power consumption heavily
depends on the considered ML model.

The remainder of the paper is structured as follows. Section
II provides the background to understand the framework ana-
lyzed. Then, Section III presents the power consumption model
adopted. In Section IV, we discuss the experiments conducted.
Finally, Section V draws our conclusions and introduces future
work.

II. BACKGROUND

This section provides the needed background to understand
the case study on which we conduct our analysis.

A. Federated learning

FL is a collaborative ML technique that enables training a
global ML without outsourcing local data, contrary to tradi-
tional ML which needs to centrally information. This feature is
one of the key strengths since it avoids all the concerns related
to data sharing and privacy regulations. Each participant that
joins FL locally trains a partial model using its on-premises
data. These models are then aggregated through a predefined
aggregation strategy. FL strategies comprise the algorithm
to aggregate partial models and the type of synchronization
adopted (i.e., synchronous or asynchronous).

The primary algorithms used to aggregate partial models are
federated SGD (FedSGD) and federated averaging (FedAVG).
The former applies stochastic gradient descent to optimize
federated problems. During each round, on-premises data are
used to take one step of gradient descent on the current

model, then the server performs a weighted average of the
resulting models. The latter is a slightly different version,
proposed by the same authors. Each client sends weights
instead of gradients. Partial models are typically aggregated
synchronously, only after all participants have provided their
contributions. However, asynchronous approaches are also
becoming more prevalent due to the highly distributed nature
of FL.

B. Blockchain

A blockchain is a chain of immutable blocks linked through
hashes. Blocks comprise tamper-proof information that in FL
is represented by the partial models submitted by clients. The
integrity of blocks is achieved by leveraging cryptographic
techniques (i.e., hash and digital signature). Any modification
to data produces a completely different hash, making it impos-
sible to tamper stored information. Blocks are validated thanks
to a consensus protocol that has a significant impact in terms
of energy and power consumption. For example, PoW requires
that entities responsible for validating blocks perform heavy-
burden computations to solve a complex mathematical puzzle.
Another consensus protocol, which is an energy-efficient al-
ternative, is proof of stake (PoS). In this method, the chance
of an entity to validate a block depends on its amount of
wealth in that network. Hence, such an approach saves energy
and is more sustainable than PoW [16]. Such mechanisms
protect the network against malicious adversaries. Another
relevant property of blockchain refers to the access models,
indeed, a blockchain can be permissionless and permissioned.
The former does not foresee any restrictions, while the latter
participants may not be allowed to validate or both access and
validate.

Recently, an increasing number of blockchains have started
integrating smart contracts, which are applications directly
executed on the blockchain. Therefore, consensus protocols, as
for information embedded in the blocks, assure the authenticity
of the smart contract execution. This is remarkably relevant
in FL scenarios since it provides trustworthiness on how the
global model was produced.

C. FlowChain

FlowChain is a decentralized and distributed framework for
executing FL training. Its architecture is depicted in Fig. 1.
FlowChain exploits blockchain to store partial models and
aggregate them in a fully automated way by leveraging smart
contracts. Due to the immutability property of the blockchain,
partial models can be retrieved not only from the smart
contract state but also from the blockchain by analyzing the
sequence of all executed transactions. Using a smart contract
increases the level of trust among unknown participants of the
FL training because it avoids potential biases to prefer a model
over others.

It is designed to be compatible with Flower [17], a platform
devised to favor the use of FL. For this reason, each client
comprises a Flower Client that trains partial models and a
connector to interact with the blockchain. Upon completion
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Fig. 1. FlowChain architecture.

of the partial model training, the connector pushes the model
by executing a transaction to a smart contract deployed
on the blockchain. Hence, the blockchain replaces all the
functionalities that are usually performed by a central server
(i.e., storing partial models and aggregating them). Concerning
the FlowChain blockchain, it is implemented through Hy-
perledger Fabric1, an open-source framework for deploying
permissioned blockchains. Fabric employs the Raft consensus
algorithm, which is implemented through an orderer node. The
orderer node is responsible for receiving transactions, ordering,
and creating blocks, ensuring that every validated transaction
is final and correct. This mechanism enables fast and reliable
consensus while reducing energy and power consumption
compared to traditional consensus methods like PoW and PoS.

The FlowChain smart contract can implement different
algorithms and aggregation strategies, but at present, it only
provides the FedAVG algorithm and a synchronous aggrega-
tion strategy, where the smart contract waits for all clients
before aggregating the models. In addition, FlowChain also
supports identity management through decentralized identifiers
(DIDs). Thus, each participant must be registered on the
blockchain making it possible to control who or what can
participate in the training process and track who has published
a particular partial model.

III. POWER CONSUMPTION MODEL

To effectively enable the use of blockchain in FL environ-
ments, the power consumption of a blockchain node while
performing the operations connected to an FL process needs
an adequate investigation. It is clear that all the parties involved
in FL consume energy and saving energy is fundamental to
reducing costs and avoiding environmental damages associated
with carbon emission [18].

We model the power consumption of the overall FL process
Pf as a function of the different modules involved in the
training phase. Let us consider the power consumption of an

1https://www.hyperledger.org/use/fabric

FL training during the i-th round. The client that sends partial
models consumes P i

c . The power consumption of a blockchain
node that collects partial model P i

b is a combination of power
needed to run the node P i

n and that P i
s to execute the smart

contract to aggregate partial models and generate the i+ 1-th
global model. We denote with C the number of FL clients and
with B the number of blockchain nodes. Therefore, the power
consumption of the i-th FL round can be defined as follows:

P i
f = C ∗ P i

c +B ∗ P i
b (1)

where P i
b is defined as:

P i
b = P i

n + P i
s (2)

Therefore, given N rounds of FL, the overall power con-
sumption of an FL process is given by:

Pf =

N∑
i=1

P i
f = C ∗

N∑
i=1

P i
c +B ∗

N∑
i=1

P i
b (3)

The formulas above clearly show that the total power
consumption of an FL training depends on C and B. However,
determining the optimal number of FL clients and blockchain
nodes that constitute the network goes beyond the scope of
this paper.

IV. EVALUATION

In this section, we evaluate the feasibility of employing
blockchain in an FL environment. We deploy the blockchain
component of FlowChain on 2 nodes each equipped with an
Intel(R) Core(TM) i5-3470 CPU running at 3.20GHz and 12
GB of RAM.

The main focus of our analysis is to evaluate the power
consumption of the blockchain while performing FL opera-
tions. Therefore, we did not consider the amount of power
consumed by clients while training partial models. We also
measure the consumption of the connector that allows Flower
Clients to interact with the blockchain. To do this, we use the
well-known PowerTop2 tool available for Linux. Concerning
the blockchain, since in FlowChain each component is run
inside a Docker container, we obtain power metrics through
docker-activity3, a tool developed to monitor the statics of
container and their power consumption.

A. Experiments

To estimate the power consumption comprehensively, we
conducted two experiments varying the complexity of the
employed ML models and datasets. To obtain a more accurate
estimate, each experiment was repeated 10 times and the
results are aggregated. For the first case, we used the Fashion-
MNIST dataset, a collection of Zalando item images consisting
of a training set of 60.000 examples and a test set of 10.000
examples. Each example is a 28x28 grayscale image associated
with a label of 10 classes. The used neural network has only

2https://github.com/fenrus75/powertop
3https://github.com/jdrouet/docker-activity
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Fig. 2. First experiment. Power consumption of a blockchain node while performing FL operations (blue) and client connector while interacting with the
blockchain (green).

three layers: a Flatten input layer, a Dense layer consisting of
128 neurons, and an output layer consisting of 10 neurons,
one per class. In total, the network has 101.770 parameters.

Then, for the second experiment, we increased the com-
plexity by employing CIFAR-10 and the neural network
MobileNetV2 proposed in [19]. CIFAR-10 is a well-known
dataset of 60.000 32x32 color images in 10 classes, with 6.000
images per class. There are 50.000 training images and 10.000
test images. MobileNetV2 has 2.270.794 parameters, about 20
times more than the network used for the first experiment. In
both cases, the neural network is trained locally for 5 epochs,
10 FL rounds are performed, and datasets were fairly split
among all the FL clients.

B. Results

Figures 2 and 3 give an idea of the overall power con-
sumption of FL processes, while Table I reports the memory
and CPU usage. In particular, for each experiment, we plot
the results obtained during one of the 10 executions. The
graphs sharply highlight the difference in terms of seconds
needed to perform the FL processes. Indeed, the simpler case
was deemed about 850 seconds less than the experiments
whit a more complex setting. In the second experiment,
the blockchain’s power consumption is about an order of
magnitude higher than in the first. In contrast, Figures 4
and 5 report the aggregate results of the 10 executions for
both experiments, calculating the maximum and mean value
of power consumption in different time slots. Table I proves
that, in both experiments, the blockchain node has a greater
consumption of memory and CPU compared to the client
connector. Thus, it deems more powerful resources to be
executed. In the following, we analyze in detail the power
consumption of the blockchain node and the client while
performing FL-related operations.

TABLE I
MEMORY (MB) AND CPU (%) USAGE.

Memory (MB) CPU (%)
Mean Max Mean Max

First
Experiment

Blockchain
Node 161 315 1.53 32.09

Client
Connector 106 124 1.57 9.77

Second
Experiment

Blockchain
Node 1357 2688 4.16 49.78

Client
Connector 329 385 4.17 18.81

1) Blockchain: Blockchain power consumption can be di-
vided into two main phases: the instantiation of the smart
contract and the execution of the transactions to get partial
models and combine them. In the blockchain part of Figures
2 and 3, the vertical dotted line divides the instantiation of the
smart contract and the execution of the FL process. Concerning
the power consumption during the instantiation, there are no
remarkable differences since instantiating a smart contract
does not depend on the complexity of the ML model. The
second peak, which can be appreciated in Figure 2, represents
the automatic invocation of the smart contract initialization
function. This is clearly shown in Figure 4 where the mean
power consumption during the smart contract instantiation
phase is almost equal between the two experiments. The
FL process involves three main transactions: publishing one
model, publishing a second model with subsequent aggre-
gation to create the global model, and reading the latter.
Figures 2 and 3 highlight that, in both experiments, the
aggregation is more power-intensive. Furthermore, there is
a sharp difference in terms of power consumption between
the two experiments: the second one is deemed 5 times the
consumption of the former. Figure4 shows where the peak of
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Fig. 3. Second experiment. Power consumption of a blockchain node while performing FL operations (blue) and client connector while interacting with the
blockchain (green).
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Fig. 4. Power consumption statistics of a blockchain node, respectively, for the first and second experiments.

maximum power consumption occurs throughout the execution
of the experiments. In the first one, it is interesting to note
that the consumption is higher during the smart contract
instantiation than during the transaction execution part. In
the second experiment, however, consumption is significantly
higher during transaction execution. In general, Figure 4 shows
how a more complex ML model markedly affects power
consumption during the FL process.

2) Client: On the client side, also the execution can be
divided into two phases: the creation of the connector and
the sending of the various transactions to the blockchain.
In the client connector part of Figures 2 and 3, the vertical
dotted line represents the division between the creation of the
connector and the execution of the FL process. By observing
the figures, we can state that the creation of the connector,
barring small variations, has comparable power consumption

between the first and second experiments. In both cases, as
Figure 5 shows, the peak power consumption occurs precisely
during the creation of the connector. The consumption during
sending and receiving of the various FL models is markedly
different between the first and second experiments. As Figure
5 shows, the mean power consumption during the transaction
phase increases in the second experiment by having to send
a much larger amount of data. In general, as is the case with
the first experiment, Figure 5 shows how a more complex
ML model noticeably affects power consumption during the
FL process. However, since the overall power consumption is
lower than 3W, it can be deployed in real-world scenarios.
For example, a client connector can be deployed on a Jatson
Nano4 since it provides satisfying compute performance with
5-10W of power consumption.

4https://developer.nvidia.com/embedded/jetson-nano-developer-kit
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V. CONCLUSIONS AND FUTURE WORK

The interest in integrating FL and blockchain has increased
remarkably over the last few years due to the blockchain’s
ability to address most of the weaknesses of using of a central
parameter server and enhance trust among unknown partici-
pants, which are major barriers that hinder the widespread use
of FL. However, although the blockchain brings astonishing
advantages, there are many concerns about its power and
energy consumption, which heavily depends on several factors
such as the adopted consensus protocol, blockchain platform,
and ML models

This paper presents an estimation of the power consumption
of FlowChain, a blockchain-based platform that simplifies the
use of FL. In our experiments, we demonstrated that the overall
power consumption heavily depends on the complexity ML
model employed. Furthermore, on the basis of the results
collected, we can state that FlowChain can be deployed in
real-world scenarios. In order to provide a more comprehen-
sive discussion, in our future research, we plan to conduct
further analysis by varying the deployment under study in
order to determine which configuration can best satisfy FL
requirements.
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