
14

InDaMul: Incentivized Data Mules for Opportunistic Networking

Through Smart Contracts and Decentralized Systems

MIRKO ZICHICHI, Ontology Engineering Group, Universidad Politécnica de Madrid

LUCA SERENA, Department of Computer Science and Engineering, University of Bologna

STEFANO FERRETTI, Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”

GABRIELE D’ANGELO, Department of Computer Science and Engineering, University of Bologna

The rise of Internet-of-Things enables the development of smart applications devoted to improving the quality of life in

urban and rural areas, thus fostering the creation of smart territories. However, some dislocated areas are underprivileged

in providing such services due to the lack, inefficiency, or excessive cost of Internet access. Opportunistic networking tech-

niques might aid in surmounting these problems. In this article, we propose a framework that relies on an untrusted Data

Mule to carry data from an offline source to an online destination. In particular, we present a framework that enables the

communication between different actors and a reward mechanism using Distributed Ledger Technologies, Smart Contracts,

and Decentralized File Storage. The protocol involved in bringing a Client’s message online and getting back a response is

thoroughly explained in all its steps and then discussed on the most important trust and security issues. Finally, we evaluate

such a protocol and the whole framework through a series of communication latency tests, an analysis of the Smart Con-

tract usage, and simulations in which buses act as Data Mules. Our results suggest the feasibility of our proposal in a smart

territory scenario.

CCS Concepts: • Networks→ Mobile networks; Network simulations; • Computer systems organization→ Distributed

architectures; • Security and privacy→ Domain-specific security and privacy architectures;

Additional Key Words and Phrases: Distributed ledger technology, mobile networking, smart contracts, state channels

ACM Reference format:

Mirko Zichichi, Luca Serena, Stefano Ferretti, and Gabriele D’Angelo. 2023. InDaMul: Incentivized Data Mules for Oppor-

tunistic Networking Through Smart Contracts and Decentralized Systems. Distrib. Ledger Technol. 2, 2, Article 14 (June 2023),

28 pages.

https://doi.org/10.1145/3587696

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-

Curie International Training Network European Joint Doctorate grant agreement No 814177 Law, Science and Technology Joint Doctorate

- Rights of Internet of Everything. This work was partially supported by project SERICS (PE00000014) under the MUR National Recovery

and Resilience Plan funded by the European Union - NextGenerationEU. This research was also funded in part by the University of Urbino

through the “Bit4Food” research project.

Authors’ addresses: M. Zichichi, Ontology Engineering Group, Universidad Politécnica de Madrid, ETS de Ingenieros Informaticos (ETSIINF)

- Campus de Montegancedo s/n, Boadilla del Monte 28660, Comunidad de Madrid, Spain; email: mirko.zichichi@upm.es; L. Serena and

G. D’Angelo, Department of Computer Science and Engineering, University of Bologna, Mura Anteo Zamboni, 7, Bologna 40126, Italy;

emails: {luca.serena2, g.dangelo}@unibo.it; S. Ferretti, Department of Pure and Applied Sciences, University of Urbino “Carlo Bo”, Piazza

della Repubblica, 13, Urbino 61029, Italy; email: stefano.ferretti@uniurb.it.

This work is licensed under a Creative Commons Attribution-ShareAlike International 4.0 License.

© 2023 Copyright held by the owner/author(s).

2769-6472/2023/06-ART14 $15.00

https://doi.org/10.1145/3587696

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

https://orcid.org/0000-0002-4159-4269
https://orcid.org/0000-0002-7951-4682
https://orcid.org/0000-0002-1911-4708
https://orcid.org/0000-0002-3690-6651
https://doi.org/10.1145/3587696
http://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3587696
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3587696&domain=pdf&date_stamp=2023-06-08

14:2 • M. Zichichi et al.

1 INTRODUCTION

Smart cities are an ongoing breakthrough, gradually pushing a tidal wave of technological change into our daily
lives. The generalization of such a term, i.e., a smart territory, can be defined as a geographic space that, through
the use of digital technologies, pursues as its primary goal the generation of more sustainable economic devel-
opment and a better quality of life [38, 46]. However, not all territories are equal, and for some underprivileged
ones, it is unfeasible to implement (costly) smart city services. This is due to very different economic circum-
stances or unavailable, unreliable, or too expensive network infrastructures [22]. It has been recognized that
what is outside smart cities is often “left behind” [27, 38]. Thus, intending to mitigate this novel form of digital
divide somehow, some research efforts now focus on smart territories that include rural and dislocated loca-
tions and that distinctly emerge as opposition to fully serviced smart cities [17, 23]. What is needed is a set
of novel opportunistic solutions able to dynamically exploit all the resources that the territory community can
share. These solutions would foster a plethora of possible services and applications, ranging from the provision
of (delay-tolerant) connectivity, smart farming applications, traceability, and remote monitoring in the agrifood
supply chain, up to structural health monitoring of country roads, bridges, and buildings. In such applications,
we cannot give comprehensive area network connectivity for granted, and specific networking solutions (e.g.,
satellite connections) might be unfit or too costly.

Clearly enough, to build such a kind of service ecosystem, adequate incentive strategies are needed, i.e., reward-
ing those users that offer their service to others (being a datum, a wireless relay, etc.), as well as mechanisms that
provide an adequate level of trust in data sharing processes. To this regard, the use of distributed technologies,
such as Distributed Ledger Technologies (DLTs) and Decentralized File Storages (DFSs), and cryptocur-
rencies (or tokens [20]) represents a novel and possibly beneficial solution that may foster the provision of smart
services in dislocated communities [9]. Anytime a user acts as a middleman and shares/provides a resource, they
earn some tokens; every time they access a resource from another peer, they consume some tokens. At the same
time, some mechanisms are needed to help communities deal with possibly untrusted service providers, assum-
ing that, in some cases, trust is brought by (entirely or partially) tracing and validating interaction processes
through DLTs.

In this article, we focus on data transmission issues in territories where the broadband Internet connection is
not taken for granted as in smart cities. We propose a framework that enables any Client that finds itself in an
offline condition (e.g., being in a no broadband connection area) to send data to any online Server. We designed
a Proxy tunneling service between such a Client and a Server enabled by a set of decentralized and distributed
systems. In particular, DLTs and Smart Contracts are used for rewarding service providers and validating the
processes. Moreover, a Data Mule acts as the ferryman for data retrieved offline to bring it online. In literature,
Data Mules are mobile devices with wireless communication capability and storage for data collection [6, 32, 36].

This work aims to propose and validate the framework called InDaMul, with the main goal of adding trust to
the opportunistic data management activities provided by the Data Mule. In particular, in this article, we provide
the following main contributions:

• A detailed description of the decentralized system and distributed technologies involved in the framework,
i.e., DLTs, DFS, and the authorization systems;
• A detailed description of the protocol to allow Clients to communicate with a Server, i.e., through untrusted

Data Mules and Proxies;
• An experimental evaluation of the proposed framework based on two phases, i.e., (i) evaluation of Client-

Mules offline interactions and Mules-DLT-Proxy online interactions, and (ii) a simulation to reproduce
actors’ behavior and then evaluate the communication delay.

The remainder of this article is organized as follows. Section 2 provides the background and related works.
In Section 3, the framework, together with the main protocol, is presented, while in Section 5, we discuss some

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:3

Table 1. Summary of the Features and Comparison of Related Works with Our Work

Work Uses Data Mule
DLT-based
incentives

Experimental Evaluation Results

[14] Yes No incentives None A new Data Mule model.

[32] Yes No incentives
Random walks used to
analyze the predicted

performance of the model

The average latency of a message is

inversely proportional to the number of

mules and access points in the system.

[16]
Yes,

vehicles in an
archipelago

No incentives Simulation of mobility model

In a network with known routes,
e.g., checkpoint, spreading

messages is more efficient.

[25]
Yes,

vehicles in rural
area scenario

No incentives Simulation of mobility model

Guarantee a high rate of successful

message delivery under

different conditions.

[43]
Yes,

vehicle-to-vehicle
communication

No incentives Simulation of mobility model

The model performs well for networks

with frequent partitioning and

rapid topology changes.

[10] Yes,
disaster management

Yes, Smart Contracts None
A new Data Mule model

based on DLTs.

Ours Yes
Yes,

Smart Contracts +
State Channel Network

Simulation +
Smart Contract Gas

Transmission from/to a moving mules

is incentivized and can be
considered viable and reliable.

security considerations. In Section 6, we present the experimental evaluation, and finally, Section 7 provides the
conclusions.

2 BACKGROUND AND RELATED WORK

This section introduces the needed background and describes some related works. Our approach combines differ-
ent technologies, i.e., a delay tolerant scheme typically referred to as a data mule, DLTs, and DFSs. Table 1 shows
a comparison of related approaches, with a summary of which technologies are used, if a related experimental
evaluation is discussed to support the proposed approach, and a brief description of the overall service provided.
As shown in the table, to the best of our knowledge, this is the first proposed system that employs the benefits
of different decentralized solutions to support data delivery in opportunistic networks.

2.1 Data Mules

Data Mules (an acronym for Mobile Ubiquitous LAN Extensions [32]) is a technology aimed to provide digital
communication in places without direct connectivity to the Internet. It is thus a specific type of solution for
offering opportunistic networking [21]. They are mobile devices that consist of a storage device and a short-
range wireless communication medium (e.g., Wi-Fi or Bluetooth). They can exchange data to/from a nearby
static sensor or access point that they encounter [6]. As a result of their movement between remote areas, they
effectively create a data communication link [16]. Since device movement is of primary importance for message
delivery, this solution is suitable for delay-tolerant services.

Data Mules allow for communication and data transfer even in the absence of the Internet, and they can
be essential tools for the functioning of applications concerning the Internet-of-Things (IoT). Data Mules are
generally employed for services based in smart cities or villages, with a significant dataflow coming from remote
areas. Depending on the context, Mules can be either transportation vehicles like buses or cars [14] or walking
persons.

In the last few years, many works have been presented on Data Mules. For instance, in [32], a study was made
with several Data Mules performing independent random walks that collect data from static sensors and deliver

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:4 • M. Zichichi et al.

them to base stations without a forward to other Data Mules. Other works refer to real vehicular network use
cases, focusing on routing algorithms for the exchange of messages between Mules and other nodes [16, 25, 43].

We are aware of just one work on integrating Data Mules and DLTs. It is a system for exchanging the
Ethereum [13] blockchain blocks in a delay tolerant network [10]. However, in that paper, the authors do not
provide an experimental evaluation of the proposal and do not include DLT-based incentives for the participating
actors.

2.2 Distributed Ledger Technologies

DLTs consist of a network of nodes that maintain a distributed ledger following the same protocol. In the case
of the blockchain, the ledger is organized into chronologically ordered blocks where each block is sequentially
linked to the previous one. Thus, DLTs are cryptographically guaranteed to be tamper-proof and unforgeable, en-
abling the creation of a “trusted” mechanism that can be exploited by multiple users in a distributed environment
with no need for third-party intermediaries.

2.2.1 Smart Contracts. Smart Contracts are instructions stored in the blockchain and automatically triggered
once the default condition is met. We will refer to Ethereum [13] due to its widespread public open-source
blockchain use and its provision of robust Smart Contract development tools. Smart Contracts allow anyone to
employ DLTs to operate well beyond just currency transactions [44]. For instance, the creation of smart services
based on Smart Contracts may enable users to interact with devices/vehicles in smart transportation systems or
favor the interoperability among the devices and resources of smart cities [20, 48].

In DLTs such as Ethereum [13], it is possible to build structures through Smart Contracts that act as second-
layer cryptocurrencies, i.e., tokens [39]. The use of tokens as a complementary monetary system has the potential
to create clusters of existing community resources that can be traded with each other in order to promote smart
territories [9].

2.2.2 State Channels for Services Payments. Since transactions in Smart Contracts and DLTs can be expen-
sive in terms of fees and latencies, state channels have been introduced to provide rapid DLT payments without
the need to store all transactions on-chain, i.e., directly on the ledger, but mostly off-chain, i.e., outside of the
ledger [18]. State channels are regulated through Smart Contracts that manage the validation of the payments
in the channel. A prominent implementation in the Ethereum blockchain is μRaiden [18], an open-source frame-
work used to implement token-based free pay-per-use payment channels. The state channels protocol can be
summarized in a few steps:

• Opening Channel - A user U opens a new state channel in a Smart Contract (i.e., 1st transaction) by
depositing an amount of the ERC-20 token and indicating the other channel party V .
• Updating Balance - Both U and V , now, can communicate off-chain by exchanging digitally signed
balance messages. Both parties authenticate themselves using the public–private key-pair to derive their
addresses on the Smart Contract. The exchanged messages are used to update a balance value between U
and V , e.g., if U has to pay V , then the balance increases; otherwise, the balance decreases.
• Closing Channel - Both U and V can close the state channel at any time by invoking the corresponding

method in the Smart Contract (i.e., 2nd transaction). To be executed, the corresponding method needs the
copy of the last balance message exchanged and the signature of both parties. Finally, the balance value is
deducted from U ’s deposit in favor of V , while the remaining part is sent to U . A dispute mechanism can
be implemented to freeze the transfers.

When U has a channel opened with V , and V has one with W , U can pay W through V . These consist of
establishing state channel networks, where the participants pay by using other participants as relays among
many state channels, forming a connected network. It is specifically a Layer-2 network application running on

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:5

Fig. 1. Overview of the InDaMul framework. It can be compared with a tunneling protocol where the Client (C) is offline
(and possibly with some Neighbors N) and manages to send data to the Server (S) via Mules (M) and Proxies (P).

top of the Layer-1 services of a cryptocurrency [18]. It is the main idea behind Bitcoin’s Lightning Network [28]
and Ethereum’s Raiden Network [18].

2.3 Decentralized File Storages and Content Addressing

DFSs enable a content-based addressing approach, where the users, rather than establishing a connection with a
Server, query the network asking for specific items. InterPlanetary File System (IPFS) [11] is one of the most
used DFS protocols. A cryptographic hash function is applied to the resources to identify the items through the
Peer-to-Peer (P2P) network that runs the IPFS protocol. It means creating a unique Content Identifier (CID)
that can be used to retrieve and share files. In the literature, it is possible to find some related works that involve
the use of Smart Contracts and DFS to share data between actors [35, 40].

3 INDAMUL FRAMEWORK

In this work, we are interested in describing a framework that enables any Client (C) that finds itself in an offline
condition (e.g., it is in a no broadband connection area, hence having short-range wireless communication as the
sole option to transmit data), to send a message to any Server (S) that is online. This framework is supported by a
Data Mule (M), which takes care of retrieving (offline) the payload ofC , via short-range wireless communication
technology, and bringing it to a Proxy (P), which in turn forwards (online) the message to the Server (S). P , then,
sends back a possible response through another (or, possibly, the same) Mule. An overview of this framework
is shown in Figure 1. A tunneling protocol is put in place where C is offline; C interacts only with the Data
Mules, while S may not even be aware of the protocol. All the “dirty” work is performed by M and P that, in turn,
communicate and organize themselves through a set of distributed systems and technologies (i.e., the green slice):

• Smart Contract enabled DLT - To allow the execution of payments and information verification in
a distributed way, thanks to the use of Smart Contracts; in our description, we refer to the Ethereum
blockchain [13];
• State Channels - To enable offline payments between Clients and Mules;
• Announcement service - To make new announcements between online nodes regarding operations to

perform, e.g., a publish/subscribe system in which nodes publish requests, and subscriber nodes can decide
to take charge of such requests; the service can also be divided based on specific geographical zones;
• DFS - To store data using immutable identifiers and to enable asynchronous communication between

Mules and Proxies; we used IPFS;
• Decentralized authorization service - To enable access to encrypted data through a network of nodes

that only operate following Smart Contract dictated policies; we refer to the implementation shown in [47].

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:6 • M. Zichichi et al.

Fig. 2. Graphical representation of the Client-Server Forward Direction phase of the InDaMul protocol.

The framework components described in the previous list enable the execution of a protocol at the core of
InDaMul. The protocol allows C and S to communicate and can be divided in two directions, almost mirrored
in their behavior: (i) the sending of a message from C to S , and (ii) the answer replied by S to C . Here, C and S
can be distinguished because the former is always offline during the main phases of the protocol (apart from the
setup phase) while the latter is assumed to be always online.

In the following subsections, we describe the protocol, aided by Figures 2 and 3. Algorithms 1–3 show the re-
lated pseudo-code for the Client-Server forward direction. For the sake of conciseness, we show only algorithms
for this part. The response direction has, in essence, a mirrored behavior. We thus omit its related algorithms
while describing it in detail in the text.

3.1 Data Structures

Actors in the framework use a set of data structures to create objects they exchange between them during the
protocol execution. We introduce such data structures intending to make the protocol clearer.

3.1.1 Keys.

• (PubKey , PrivKey) - Each actor maintains a pair of public and private asymmetric keys. For simplicity,1 we
make use of a unique key-pair for the encryption and signature operations, as well as for generating the
actor’s DLT address [13].
• X and Y - Two sets of symmetric keys thatC generated in the setup phase. To refer to the symmetric keys

within these sets, we associate an identifier, e.g., idx identifies x ∈ X . These symmetric keys are generated
randomly using C’s local device as entropy source.

3.1.2 Payloads.

• mC→S - The message that C wants to send to S . This message consists of a message plaintext and a nonce
that have been encrypted using S’s public key, i.e., mC→S = EncAsymm (message_plaintext| |nonce, PubS),
where EncAsymm is a public key encryption operation. This definition of a message (and later of a response)
has been left general, but could be also referred to a message in the HTTPS protocol.

1Protocols such as the Dual-Key Stealth Address Protocol [15] can be implemented for higher levels of privacy. However, this work does not

describe their use because they are not functional requirements and would render the framework description more complex.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:7

Fig. 3. Graphical representation of the Server-Client Response Direction phase of the InDaMul protocol.

• idдeo - The unique identifier of the geographical zone within the system.
• cдeo - The concatenation of a timestamp and a geodata, encrypted using a symmetric key y ∈ Y and a

symmetric encryption operation, i.e., cдeo = EncSymm (timestamp| |geodata,y).
• pC - The payload object that is created by the symmetric encryption of the concatenation of cдeo , idy , idдeo

andmC→S with a symmetric key x ∈ X , i.e., pC = EncSymm (cдeo | |idy | |idдeo | |mC→S | |PubS
,x).

• mS→C - The response forC . It consists of a response plaintext and a nonce that have been encrypted using
C’s public key, i.e.,mS→C = EncAsymm (response_plaintext| |nonce, PubC).
• pS - The payload object containing mS→C , encrypted by P using C’s public key, i.e., pS =

EncAsymm (mS→C , PubC).

3.1.3 Proofs.

• tenderC - A data structure used by C for announcing a new tender and for operating with the Smart
Contracts, containing these elements:
– addrInDaMul - address of C’s InDaMul contract;
– idchain - DLT identifier needed for the parties to agree on the DLT used;
– exID - an exchange alphanumeric identifier for the forward direction (also acts as a nonce);
– pPayID - an exchange alphanumeric identifier for the backward direction (also acts as a nonce);
– URIpC

- an immutable URI, e.g., an hash pointer, that identifies a payload pC ;
– offer - a numerical value representing C’s offer to P ;
– idx - the id of a symmetric key with whichmC→S has been encrypted;
– addrM - the DLT address of the Mule M ;
– hashbalanceProof - the hash digest of the balanceProo f object exchanged between C and M ;

– sigtender - signature on the above data.
• balanceProo f - A data structure containing a set of information used by C for updating the balance in a

state channel. It contains:
– addr - address of the StateChannel contract;
– idchain - DLT identifier;
– idchannel - channel identifier inside the StateChannel contract;

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:8 • M. Zichichi et al.

ALGORITHM 1: Client C Sending a Message to the Server S

Global Data:

- (PubC , Pr ivC): C ’s key-pair

- addrC : C ’s address

- X , Y : sets of symmetric keys

- idдeo : identifier of the geographical zone

- geodata: indicating C ’s position

- addrI nDaMul : address of C ’s InDaMul contract

- idchain : the DLT identifier

- addr : address of the StateChannel contract

Input:

- PubS : S ’s public key

- message_plaintext: message to send to S

- x ∈ X , idx : random symmetric encryption key for the payload

- y ∈ Y , idy : random symmetric encryption key for the geodata

- offer: tokens’ offer intended for the Proxy

- muleOffer: tokens’ offer intended for the Data Mule

Result:

sends balanceProofM1, tenderC and payload pC to a Mule M1

1 function:

2 nonce , ex I D , pPayI D ← getRandom(3) // generate 3 random objects

3 mC→S ← EncAsymm (message_plaintext | |nonce, PubS)

4 cдeo ← EncSymm (timestamp | |geodata, y)

5 pC ← EncSymm (cдeo | |idy | |idдeo | |mC→S | |PubS , x) // generate payload pC

6 U RIpC
← getURIThroughHash(pC)

7 sizepC
← len(bytes(pC))

8 par tialT enderC ← addrI nDaMul || idchain || ex I D || pPayI D || U RIpC
|| offer || idx // generate partial tender

9 notSent ← True

10 while notSent do

/* broadcast request to passing mules and receive a response */

11 addrM1 ← await(broadcastToAMule(addrC , sizepC
, muleOffer))

12 idchannel ← getChannelFromAddressInLocalStorage(addrM1, addr , idchain)

13 if idchannel != null then

14 balance ← getBalanceFromChannelInLocalStorage(idchannel , idchain)

15 balance ← balance + muleOffer

16 nonceM1← getRandom()

17 balanceProofM1 ← addr || idchain || idchannel || balance || nonceM1 || U RIpC
// generate balance proof

18 hashbal ancePr oofM1
← getHashDigest(balanceProofM1)

19 sigpr oof ← sign(hashbal ancePr oofM1
)

20 tenderC ← par tialT enderC || addrM || hashbal ancePr oofM1
// generate tender

21 hasht enderC
← getHashDigest(tenderC)

22 sigt enderC
← sign(hasht enderC

)

23 sendToMule(balanceProofM1, sigpr oof , tenderC , sigt enderC
, pC)

24 sig2pr oof ← await(listenToAMule()) // receive and store the signature of balanceProofM1 made by M1

25 notSent ← False

26 end

27 end

28 return

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:9

ALGORITHM 2: Mule M1 Receiving a Message Directed to the Server S

Global Data:

- addrM1: M1’s address

- addr : address of the StateChannel contract

- idchain : the DLT identifier

Result:

mule M1 publishes tenderC and payload pC

1 function:
/* receive a broadcasted request and send a response */

2 addrC , sizepC , muleOffer← await(listenToAClient())

3 sendToClient(addrM1)

/* receive balance proof, tender and payload */

4 balanceProo fM1, sigproof , tenderC , sigtenderC
, pC ← await(listenToAClient())

5 idchannel ← getChannelFromAddressInLocalStorage(addrC , addr , idchain)

6 if idchannel != null then
/* validate signature to identify C */

7 addr1 ← verify(tenderC , siдtenderC
)

8 addr2 ← verify(balanceProo fM1, sigproof)

9 if addr1 == addr2 == addrC then
/* identity confirmed */

10 balance ← getBalanceFromChannelInLocalStorage(idchannel , idchain)

11 tempBalance ← balance + muleOffer

12 if tempBalance == balanceProo fM1. balance then

13 hashbalanceProofM1
← getHashDigest(balanceProo fM1)

14 sig2proof ← sign(hashbalanceProofM1
) // sign balance proof and send it to the client

15 sendToClient(sig2proof)

/* mule goes online */

16 await(isOnline())

17 announce(tenderC , sigtenderC
)

18 uploadToDFS(pC)

19 end

20 end

21 end

22 return

– balance - balance amount;
– nonce - strictly monotonic value used to order transfers (starts at 1);
– hash - an additional hash digest of an application specific data payload;
– sigproof - signature on the above data.

• tenderP - A data structure used by P for announcing a new tender and operating with Smart Contract
containing:
– addrInDaMul - address of C’s InDaMul contract;
– idchain - DLT identifier;
– exID - an exchange alphanumeric identifier for the forward direction (also acts as a nonce);
– pPayID - an exchange alphanumeric identifier for the backward direction (also acts as a nonce);
– URIpS

- an immutable URI, e.g., an hash pointer, that identifies a payload pS ;
– cдeo - the geolocation for C , encrypted using y ∈ Y ;

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:10 • M. Zichichi et al.

ALGORITHM 3: Proxy P Takes Charge of a Payload and Sends it to the Server S

Global Data:

- (PubP , PrivP): C’s key-pair

- addrP : P ’s address

- t : the threshold for the key fragments in the authorization service

Input:

- PubS : S’s public key

- tenderC : took in charge

- sigtenderC
: tender signature by C

- pC : payload to send to S
Result:

sends the messagemC→S to a Server S
1 function:

2 URIpC ← getURIThroughHash(pC)

/* verify payload and then submit tender to InDaMul smart contract */

3 if URIpC == tenderC .URIpC then

4 smartContractInstance← getSmartContract(tenderC .addrInDaMul , idchain)

5 result← smartContractInstance.submitTender(tenderC , sigtenderC
, addrP)

6 if result != error then
/* request key fragments to the authorization service */

7 fragments← []

8 for i← 0; i < t; i++ do
/* each of the t nodes in the authorization service checks the InDaMul smart contract acl if

idx is associated to addrP */

9 hashr equest ← getHashDigest(i || idx)

10 sigr equest ← sign(hashr equest)

11 fragments[i]← requestFragmentToNodei(i, idx , sigr equest)

12 end

13 x ← reconstruct(fragments)

// reconstruct the key used to encrypt the payload

14 cдeo , idy , idдeo ,mC→S , PubS ← DecSymm (pC ,x) // decrypt the payload and send it to S

15 sendToServer(mC→S , PubS)

16 end

17 end

18 return

– idy - the id of the key with which cдeo has been encrypted;
– idдeo - the id of C’s geographical zone;

– sigtender - signature on the above data.
• unlockProo f - A data structure containing a set of information used by a Mule M to unlock the payments

in its favor and in favor of P . It contains:
– exID - the exchange alphanumeric identifier found in tenderC for the forward direction;
– addrM - the DLT address of the Mule M ;
– pPayID - the exchange alphanumeric identifier for the backward direction, included in the unlockProo f

object only if P behaved correctly;
– hashbalanceProof - the hash digest of the balanceProo f object exchanged between C and M ;

– sigunlockProof - signature on the above data.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:11

3.2 Setup Phase

Before the protocol execution, a setup phase is needed to configure all the services actors will exploit. During the
setup phase only, each actor involved in a task is required to be online, thus alsoC . This initialization is required
once and can be executed in many different ways (e.g., off-site or by means of a trusted device). For instance,
a dedicated service can be put in place just for the setup phase, in which a trusted mule is delegated by C to
carry online DLT transactions already signed by C . In this article, we will not focus in detail on this part of the
protocol.

3.2.1 Keys Setup.

• Key-pairs - Each actorC ,M , P , S will generate its key-pair using the same algorithm and publish its public
key certificate to be known by all (or part of all) participants. This certificate can be published directly in
the DLT, for instance.
• Symmetric keys - TheC actor stores two sets of keys,X andY , in the decentralized authorization service.

In particular, each key, x ∈ X andy ∈ Y , is generated randomly usingC’s local device as an entropy source.
Then, it is treated as a secret and shared among the nodes that compose the service using the Secret
Sharing method [33, 47]. The symmetric key x is “fragmented” into n fragments. For the data recipient,
only t < n fragments are sufficient to reconstruct x and decrypt the cyphertext in question. The secret x
can be represented as an element a0 of a finite field, then t−1 elements are chosen randomly from this field,
a1, . . . ,at1 . Using these elements this polynomial curve can be constructed f (x) = a0 + a1x + a2x

2 + · · · +
at1x

t1 . Each authorization service node is given a point found in the curve (xi , f (xi)), with 1 ≤ i ≤ n, i.e.,
the fragment. Therefore, an untrusted authorization node alone cannot decrypt the cyphertext because it
needs other t−1 fragments. Indeed, in order to obtain a0, and thus x , a subset of cardinality t of then points
(xi , f (xi)) is needed to perform the following interpolation: a0 = f (0) =

∑t−1
j=0 f (x j)

∏t−1
m=0,m�j

xm

xm−x j
.

3.2.2 Framework Parameters Configuration. An initial configuration for the framework is needed and can be
made by any participant.

• Geographical zones - The framework can be uniquely deployed to serve different smart territories and,
thus, different geographical zones. For instance, InDaMul can be set up for a specific state’s region and used
by several users in different towns. Thus, all geographical zones interested in the framework deployment
must be indexed during the setup phase. Such zones are intended to cover a wide area, including many
Clients, while their precise geolocation will be later encrypted and exchanged directly with Proxies.
• Announcement service - An announcement channel is made up for each geographical zone, and Proxies

and Mules register to the channels they are interested in serving.
• ERC20 Token - The framework uses a unique token deployed to the DLT during the setup phase (i.e., an

ERC20 Token) for allowing any payment exchange, i.e., on-chain or off-chain. This token is used by all the
actors involved. Hence in the setup phase, actorsC , M , and P are required to get hold of a certain amount
of tokens, which will be used in state channels or Smart Contracts to pay other actors.
• State Channel - The framework uses a unique Smart Contract deployed during the setup phase to manage

all the state channels, as described in Section 2.

3.2.3 Smart Contracts Configuration.

• State Channel - Using part of the token amount held, theC actor opens a set of state channels with each
one (or part) of the Mules that operate in C’s geographical zone.
• InDaMul - C also deposits a number of tokens in the InDaMul Contract, which executes most of the

protocol tasks and thus requires some tokens to pay Mules and Proxies directly. This contract is deployed
for each C at the setup phase and is owned by this one.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:12 • M. Zichichi et al.

3.3 Client-Server Forward Direction

C is willing to send a message mC→S to S and waits for a Mule. The forward direction of the protocol goes
through the following steps:

(0) C broadcasts, through the short-range communication medium, a request for taking charge of the payload
pC . Previously C prepared the following objects:
• the payload is composed of mC→S , the identifier of C’s geographical zone idдeo , the encrypted concate-

nation of the precise C’s geolocation and current timestamp, i.e., cдeo =

EncSymm (timestamp| |geodata,y), and the id of the key used for encrypting cдeo , i.e., idy . This payload is
encrypted with x ∈ X , pC = EncSymm (cдeo | |idy | |idдeo | |mC→S ,x).
• the partial tenderC object including:

– addrInDaMul - address of C’s InDaMul contract;
– idchain - the DLT identifier;
– a new exchange id exID for the forward direction and a pPayID for the backward direction;
– theURIpC

obtained using the DFS protocol for unique URIs and generated through the hash digest of
the payload;

– the tokens’ offer intended to the Proxy that will handle message;
– the idx of the key used in the payload encryption;
C will complete the creation of this object after a specific M has been identified.

(1) When a Mule, M1, passes nearby C , it receives a request containing the payload dimension (in byte) and
the tokens offered for the job.2

(2) If M1 accepts, then C transmits to M1 the following objects:
• a balanceProo fM1 object that updates the balance between C and M1 in their state channel (the fields

for this object are shown in Section 3.1.3). It also includes a signature on the data by C . M1 will create
an exact copy of the object but with its own signature;
• the complete tenderC object including the data already processed and now also:

– addrM1 - M1’s DLT address;
– the hash digest of the balanceProo fM1 object;
– C’s signature siдntender on the tenderC data;
• the payload pC .

(3) OnceM1 becomes online, it can directly announce the tender using the tenderC object to reach an audience
of different Proxies. This process happens in a dedicated announcement service.

(4) Before (or while) announcing the tender, M1 also uploads the payload pC to the DFS. The id to get pC from
the DFS shall derive from the URIpC

indicated in the tenderC and be known by all actors (e.g., the IPFS
CID, Section 2).

(5) Any Proxy can check tenderC , as well as download pC and check its integrity.
(6) A Proxy P , that decides to take charge of tenderC , simply invokes a method in the InDaMul Smart Contract

owned by C . The submitTender method:
• requires as parameters:

– the tenderC object (without signature);
– the C’s signature of tenderC ;
• automatically checks the validity of the signature and locks the number of tokens indicated by C in
tenderC in favor of P .

2An automated negotiation thread [19] may happen here, for the price (in tokens) C is willing to pay to M1 for the job to be done. However,

its implementation is out of the scope of this work.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:13

• automatically and immutably binds exID to M1 (this operation allows M1 to close the state channel with
C in the future, using the balanceProo fM1 object).
• binds P ’s address with idx .

(7) The last method’s task makes P eligible to get access to the key identified by idx . Thus, P sends a signed
request to the decentralized authorization service for accessing the key x . Each authorization node au-
tonomously checks the Smart Contract to verify that P is eligible for accessing the secret x and then re-
leases a fragment of x to this actor. Then P aggregates the fragments to obtain x using the Secret Sharing
technique [47].

(8) P can finally decrypt the payload pC (previously obtained from the DFS) through the key x and send the
messagemC→S to S .

3.4 Server-Client Response Direction

Up to this point, the payment for P is still locked. If no response is needed to return to C from S , P shall send
proof of the interaction with S . In any case, the protocol continues through the following steps:

(1r) P receives S’s response messagemS→C , encrypted usingC’s public key and then creates a new payload pS

containingmS→C (or a proof that S did not reply);
(2r) P creates:
• a tenderP object including:

– addrInDaMul - address of C’s InDaMul contract;
– idchain - DLT identifier;
– the exchange id exID and the pPayID stored in the tenderC ;
– the URIpS

obtained using the DFS protocol for unique URIs and generated through the hash digest of
the payload;

– cдeo , extracted from pC ;
– idy , extracted from pC ;
– idдeo , extracted from pC ;
– P ’s signature siдntender on the tenderP data.

(3r) Then tenderP is published in the announcement service, andpS is uploaded to the DFS. This announcement
also requires the information about the location ofC , i.e., the idдeo found in the tenderP , to allow a possible
candidate Mule to know where to deliver pS . Announcement services can be organized, thus, based on the
possible idsдeo , in such a way that Mules get only messages for the zones in which they operate. We discuss
the related privacy issues in Section 5.

(4r) A Mule, M2, that wants to take charge of tenderP , downloads the payload pS from the DFS.
(5r) M2 sends a signed request to the decentralized authorization service, including the tenderP object, for

accessing the key y identified by idy . Each authorization node has enough information to autonomously
check the state channels opened by C in the StateChannel Smart Contract in order to verify that one has
been opened with M2.3 If so, each node releases a fragment of y to M2. It allows M2 to decrypt cдeo and
to know where exactly to find C .

(6r) Once M2 reaches the vicinity ofC , the former transmits to the latter tenderP together with a price request
(in tokens) for transmitting pS .

(7r) Once C checks the validity of tenderP (i.e., address, ids, and signature validation), it may accept the price
request.4 C , then, sends to M2 a balanceProo fM2 object for updating the balance in the state channel
between C and M2 with the agreed sum.

3This means that C and M2 already interacted in the past and thus M2 can reach C ’s geolocation.
4Also here it can start an automated negotiation thread with M2 for reaching an agreement on the price’s request.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:14 • M. Zichichi et al.

Fig. 4. UML class diagram representing the Smart Contracts used in InDaMul and their relations.

(8r) M2 transmits pS .
(9r) C decrypts pS and checks the hash of pS with theURIpS

found in tenderP . If valid,C replies to M2 with an
unlockProo f object:
• exID - found in tenderC ;
• addrM2 - M2’s DLT address;
• pPayID - (optional) the alphanumeric exchange identifier for the backward direction;
• hashbalanceProof - the hash digest of the balanceProo fM2 object;
• sigunlockProof - signature on the above data.

If pS ’s hash corresponds to the information contained inURIpS
, but the data seems to have been corrupted

by P , then C can reply to M2 omitting pPayID in the concatenation.
(10r) Since the presence ofC signature is required for closing the state channel using the balanceProo fM2 object

(and thus getting paid), then M2, once online, invokes the method submitPayment of the InDaMul contract.
This one requires the unlockProo f object signed by C to unlock the payment. If pPayID is found, it also
unlocks P ’s amount.

3.5 InDaMul Smart Contract

During the execution of the protocol, mainly when Mules and Proxy are online, a set of Smart Contracts is used,
i.e., the ones shown in Figure 4. We find two main methods in the InDaMul Smart Contract. The submitTender

method (see Algorithm 4) automatically checks the validity of the signatures found in the data provided by M1
in the announcement and then binds P ’s address with idx . It makes P eligible for access to the key identified by
idx . Finally, M2 gets paid using a balanceM2 object in the challenge-response authentication. This object, when
uploaded to the InDaMul Smart Contract through submitPayment (see Algorithm 5), will unlock both M2’s and
P ’s payments.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:15

ALGORITHM 4: submitTender of InDaMul Smart Contract

Global Data:

- addrInDaMul address of the InDaMul Smart Contract

- addrC address of client C (the contract owner)

- token ERC20 Token

- tendersSet set of tenders used in the past

- openTendersAmount amount of tokens reserved for proxies in open tenders

- acl access control list for X keys

Input:

- tenderC object as defined in Section 3.1.3

- siдtenderC
the signature of tenderC

- addrP the address authorized to access idx

Result:

stores tenderC and Paddr , and unlocks payment for M1

1 function:
// validate signature to identify C

2 addr1 ← verify(tenderC , siдtenderC
)

3 if addr1 == addrC then
// identity confirmed

4 allowMulePayment(addrM1, tenderC .exID, tenderC .hashbalanceProofM1
)

5 if token.balanceOf(addrInDaMul) − openTendersAmount > tenderC .offer then
// if enough balance then set authorized address

6 tendersSet.add(tenderC)

7 openTendersAmount = openTendersAmount + tenderC .offer

8 acl .map(tenderC .idx , addrP)

9 end

10 end

11 return

4 THE ISLAND: A LOCAL STATE CHANNEL NETWORK

In case a Client C does not find itself within the action range of Mules, a network can be set up between C’s
physical Neighbors, i.e., N . We refer to this network as an “Island”, as nodes are in physical proximity, and most
of them are isolated (in terms of communication) from the rest of the territory. In order to keep this Island “alive”,
one or more Target Neighbors, i.e.,TN , must be reached by a Mule and then act as relays. Moreover, Clients that
cannot interact directly with a TN have to find a path within the Island to reach it and thus have to rely on
several forwarding Neighbors.

4.1 Structure

In order to incentivize Neighbors to relay messages, a State Channel Network is used. Each N starts the oper-
ations after a setup phase, where it announces through a short communication medium (e.g., Wi-Fi Direct) its
presence to the other Neighbors in its vicinity. If N is not isolated, then it would receive in response (from a
Neighbor) the Island configuration parameters and the current network topology. Otherwise, it will keep send-
ing announcement messages until another reachable Neighbor (e.g., a moving device) is found. Indeed, the Island
network is mainly thought to operate with nodes at fixed locations, but moving nodes might also be supported

It is worth noting that, during the setup phase only, N is required to issue at least one transaction to the DLT
in order to open a channel with one of its Neighbors. This initialization is required once and it can be executed
in many different ways (e.g., on-demand Data Mule or by means of a trusted device). During the operations, the

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:16 • M. Zichichi et al.

ALGORITHM 5: submitPayment of InDaMul Smart Contract

Global Data:

- addrC address of client C (the contract owner)

- token ERC20 Token

- tendersSet set of tenders

- openTendersAmount amount of tokens reserved for proxies in open tenders

Input:

- unlockProo f object as defined in Section 3.1.3

- siдunlockProof the signature of unlockProo f
Result:

unlocks payment for M2 and P
1 function:

// validate signature to identify C

2 addr1 ← verify(unlockProo f , siдunlockProof)

3 if addr1 == addrC then
// unlock mule payment

4 allowMulePayment(addrM2, unlockProo f .exID, unlockProo f .hashbalanceProofM2
)

5 tenderC ← tendersSet.get(unlockProo f .exID)

6 openTendersAmount = openTendersAmount - tenderC .offer

7 if unlockProo f .pPayID != null then
// unlock proxy payment

8 token.transfer(tenderC .Paddr , tenderC .offer)

9 end

10 end

11 return

Neighbors within the Island will share the information regarding their “online” or “offline” status and current
opened state channels capacities and fees for their relay. The messages within the Island can then be exchanged
using different dissemination strategies (e.g., gossip-based dissemination protocols) [31]. These strategies’ secu-
rity and privacy implications depend on the threat model one can use as a reference. In a threat model where
no malicious neighbors within the Island try to infer Clients’ activities, the protocol we describe does not need
additional mechanisms to preserve confidentiality and part of information privacy. Message content is always
encrypted; the only information disclosed to neighbors would be the payment to the Mule providing the service.
Nevertheless, also this information could be hidden using a different protocol for the State Channel Network [7].
On the other hand, in a threat model in which malicious neighbors monitor Clients’ activities, some mecha-
nisms such as Dandelion++ can be put in place [31]. In any case, a privacy-utility tradeoff makes it impossible
to get significant gains in utility by giving up a little privacy or significant gains in privacy by sacrificing a little
utility [37].

4.2 Protocol

A Neighbor that decides to send a message to a Server S becomes a Client C and seeks to reach a Data Mule M .
The protocol we use in the Island is based on the Raiden protocol [18]. In the following, we model a transfer
from an initiator, i.e.,C , to a Target Neighbor, i.e.,TN , though (zero or) some mediators, i.e., Neighbors Ni . This
transfer has the aim to reach M through TN finally.

• C creates a lockedTransfer message and propagates it toTN through multiple Neighbors. A lockedTransfer

message reserves the amount for the pending payment in each channel between C/Ni , Ni /Nj and Nj /TN ,
depending on the indicated fees.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:17

• Once the lockedTransfer reaches TN , then it requests a secret from C by sending a secretRequest message.
• WhenC gets a secretRequest message, it checks its validity. Receiving this request means thatC can safely

assume the lockedTransfer message has arrived atTN and that the latter has all the incentives to be honest
because it will be paid.
• If all checks out C sends a revealSecret message back to TN . The revealSecret message contains a se-

cret that allows each N along the path and finally TN to claim the locked amount in the pending
transfer.
• A cascade of revealSecret messages will begin from TN back to each Ni along the path. This message tells

them that the payee (either TN or another Nj) knows the secret and wants to claim the lock off-chain. So
then, they may unlock the lock and send an up-to-date balance proof to the payee. This is done by sending
the secret message back to the partner who sent the revealSecret.
• The transfer is finished when C receives a revealSecret message from the first N1 in the path.

5 SECURITY AND PRIVACY CONSIDERATIONS

In this section, we discuss the most relevant issues of the framework in terms of security and privacy concerns.
Misbehavior 1

M1 takes charge of C’s payload pC

AND does not announce pC .

Discussion: This behavior is discouraged by the protocol. In fact, if M1 does not announce pC , then it cannot
redeem the balanceProo fM1 in the state channel. It means that M1 is not paid because the balance cannot be
updated. Indeed, only the tenderC data (the included exID, in particular) and a valid signature submission to
the InDaMul Smart Contract (through the submitTender method) enable M1 to unlock the closeChannel method
with the latest balanceProo fM1 object. Otherwise, M1 can only close the channel using a previous valid balance
object, i.e., a balanceProo fM1 object obtained in a previous successful interaction with C .

Misbehavior 2

M1 takes charge of C’s payload pC

AND announces pC

AND invokes the submitTender method OR does not store pC in the DFS.

Discussion: By invoking submitTender, M1 becomes the Proxy entitled to contact the Server S . A malicious
M1, however, might never contact S while benefiting from the payment received with balanceProo fM1, which is
now valid since submitTender has been invoked. Since this contract method makes the tender information public
in the DLT, a possible solution is to set up a дracePeriod after which any new Proxy can invoke submitTender

again and substitute the previous Proxy.
A maliciousM1 might continue to invoke the method several times or not storepC in the DFS. This misbehavior

would result in a Denial of Service (DoS) attack, which can be solved by having C monitoring the Mules and
keeping a “blocklist” for Mules for which a response has never come back. In most scenarios, blocklisting M1’s
DLT address would be sufficient since payments are bounded by an already opened state channel. Indeed, a
dedicated protocol can be employed when opening new state channels, e.g., a reputation mechanism for Mules,
but it is not the scope of this article.

Misbehavior 3

P invokes the submitTender method

AND does not contact S OR produces a corrupted response.

Discussion: P is incentivized to correctly execute the protocol since it will only get paid once the signed
pPayID reaches the InDaMul Smart Contract. It can happen only if C receives a response and this one is not
corrupted. In all the other cases (e.g., even in a DoS attack by P constantly invoking submitTender), C can use
a “welcome” list of trusted Proxies. This list is implemented directly on the InDaMul contract in order to allow

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:18 • M. Zichichi et al.

only trusted Proxies to invoke submitTender.5 Moreover, if S produces no response, P can send to C a proof of
the tentative.

Finally, a malicious C might not sign pPayID for a valid response. In this case, P can blocklist C .
Misbehavior 4

M2 does not bring pS to C .

Discussion: M2 is incentivized to execute the protocol since it will only get paid once the signedunlockProo f
containing addrM2 reaches the InDaMul Smart Contract. M2 can perform a DoS attack when it is the only Mule
available for C . Indeed, P announces the tenderP for all the Mules in the geographical zone, and other Mules
can reach C before or after M2. A malicious C might not sign addrM2 for a valid response. In this case, M2 can
blocklist C .

Misbehavior 5

M2 does not invoke submitPayment.

Discussion: The data needed from P to get paid, i.e., pPayID, might not reach the InDaMul contract due to a
malicious M2 that does not interact with the Smart Contract after the communication with C . However, M2 is
incentivized to avoid this misbehavior because pPayID is concatenated with addrM2 in the unlockProo f object
and signed by C . Thus, M2 needs to submit the whole unlockProo f to unlock its payment.

Privacy Concern

C’s personal data and location privacy

Discussion: The public disclosure ofC’s geodata is a possible conflict point with personal data protection reg-
ulations since the location of an individual (C) is considered personal information [26]. The actual fine-grained
location information is never shown publicly nor stored on-chain. We follow the approach to reference per-
sonal data, i.e., pC , and their content on-chain, i.e., through URIpC

, and to store them off-chain in a DFS. A data
protection-compliant solution is to combine this approach with the use of Key Reuse Encryption and Single-Use
Salt, minimizing the risks of de-anonymization [5, 24].
P requires in input some coarse-grained information about the location of C , i.e., in order to allow candidate

Mule M2 to know where to deliver the payload pS . P only can have this information since it gets idдeo by
decrypting pC with x . On the other hand, the candidate Mule M2 knows the fine-grained position by decrypting
cдeo with y. However, this information is needed to reach C . The location information disclosed may be more
coarse or fine-grained. Nonetheless, in all cases, C must be clearly informed and must consent to this use of
personal information [24, 26].

6 EXPERIMENTAL EVALUATION

An implementation of the decentralized protocol was built using different technologies. In particular, smart
contracts were implemented in Solidity, a popular language initially designed for the Ethereum blockchain, which
is now supported by other blockchain platforms, such as Avalanche, Polygon, Wanchain, Hyperledger Besu,
ConsenSys Quorum, Binance Smart Chain [45]. The software code is available on GitHub [3]. Through the
software testing, it was possible to validate the implementation and assess the viability of the system deployment.
We conducted a set of experiments to evaluate the framework performances in terms of latency and Smart
Contracts operations cost.

However, due to the complexity of the protocol and the very different technologies/interactions among in-
volved entities, it was not convenient to implement a single, unified testbed environment for evaluating the
whole framework. This is also because, in different steps of the protocol, some different metrics and aspects
need to be considered. For this reason, we separate the experimental study into different parts and analyze them
in isolation. In previous works, we developed different DLT simulations that could support the evaluation of

5This list could be deployed to the Smart Contract considering mC→S being a DLT transaction containing the welcome list and S is a DLT

node, thus using the same InDaMul protocol.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:19

Fig. 5. Latencies (order of magnitude) for each interaction in the protocol. Each edge has a latency obtained by the sum of
an average latency for the protocol execution plus some context-dependent variable latencies. Such variable latencies are
shown in blue and red. Blue variables, i.e., PLi , stand for payload latencies and indicate the average latency when varying
the payload dimension; their estimations are reported in the table within the figure. Red variables represent latencies that
are discussed in detail, respectively, in Section 6: “NEG” in 6.1, “DLT ” in 6.2, and “ROAD” in 6.4.

this article [29, 30]. However, in this case, we argue that it is unnecessary to go into that level of detail. We
assume that only a synthetic measure of the latency for issuing a transaction in the DLT is needed for our
evaluation.

Concerning the InDaMul protocol, in Figure 5, we indicate the overall latencies related to each interaction
among actors and/or systems. This figure is useful to understand our evaluation setup:

(1) Section 6.1: We firstly analyze the Client-Mule offline interaction (dashed arrows between C and M);
(2) Section 6.2: Then we discuss the interaction with Smart Contracts (arrow with the “DLT" variable);
(3) Section 6.3: We discuss the interaction with the other decentralized systems;
(4) Section 6.4: Finally, we simulate and analyze how C’s data get online through the Mule (arrows with the

“ROAD" variable).

6.1 Client-Mules Offline Interactions

A critical part of the protocol is about theC-M interactions. This interaction occurs offline, and its timely success
depends on the availability of a communication medium. For this reason, we can only give an order of magnitude
to the estimated time for completion of this interaction.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:20 • M. Zichichi et al.

Table 2. Encryption (E) and Decryption (D) avg Latency Measured (ms)

10KB 50KB 100KB 500KB 1MB 5MB 10MB

E 1 11 22 111 222 1108 2227
D 1 7 13 64 129 646 1292

We simulate a scenario where C is positioned in a fixed location and communicates via Wi-Fi Direct, with M
traveling at a constant speed down the road. Inspired by [8, 41], we assume a maximum Wi-Fi link rate equal to
12 Mbps and that M’s velocity is 36 km/h. This specific simulator was developed using the Rust language and
was run on a dedicated host (i.e., Intel Core i7-6700HQ CPU, 8GB RAM). The source code can be found in [4].
Here below, we report on details about the simulation model.

6.1.1 Client to Mule. A Client C constantly broadcasts messages, including the payload dimension and the
tokens offered. The time window in our evaluation starts when M1 receives this message (forward direction,
steps 1 and 2).

(i) In the case of automated negotiation, if one of the two actors uses a time-dependent tactic [19], we can
easily assume that this part of the communication lasts 1 second at most.

(ii) Reached agreement, C sends data to M1. The tenderC and balanceProo fM1 objects and their relative sig-
natures are more or less fixed in bytes dimension (i.e., ∼500 B). In our configuration, the time required to
sign and encrypt these objects is ∼2 ms. Their transmission at 12 Mbps would require roughly 0.3 ms.

(iii) On the other hand, the time required for the payload pC transmission depends on its dimension and varies
in all cases, e.g., ∼6.7 seconds for a 10 MB payload and a 12 Mbps link rate. In this protocol step, C has
already encrypted the pC with a key x while waiting for a Mule, performed before our considered time
window.

(iv) Finally, the process where M1 decrypts the received objects (all but pC), plus the process of signatures
verification, takes an amount of time in the order of 2 ms.

From our analysis, we can deduce that steps 1 and 2 of the protocol (forward direction) mostly depend on the pC

transmission latency. The latency of the whole process we provided as an example, i.e., ∼8 sec in total would be
feasible in the scenario we considered [8].

6.1.2 Mule to Client. In this subsection, we take into account steps 6r to 9r of the response direction, and the
time window considered starts when C receives the first message from M2.

(i) M2’s first message includes tenderP and a price request for disclosing the response payload pS . The trans-
mission and verification of these data require, also in this case, an amount of time in the order of a few
milliseconds.

(ii) Once again, here, an automated negotiation can happen, thus requiring, as before, ∼1 sec latency.
(iii) A ClientC constantly broadcasts a message, including the payload dimension and the tokens offered. The

time window in our evaluation starts when M1 receives this message (forward direction, steps 1 and 2).
(iv) Finally, M2 sends pS to C . The same latency applies here for the transmission of such payload; however,

here, we have to consider C’s verification too. Indeed, in order to verify the correctness of pS , C has to
decrypt it. We provide latency values for some payload dimensions in Table 2. If valid, C can finally send
a message that includes the signed unlockProo f .

Also in this case, the overall latency depends mainly on the transmission time of the payload pS , but with the
addition of the decryption time. However, the total latency (i.e., ∼8 seconds plus ∼1, 3 seconds) would make this
protocol part feasible in our scenario. This confirms the viability of proper data transmission from the Client to
the Mule and vice versa.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:21

Table 3. Methods’ Gas Usage for Each Smart Contract in the Protocol

Smart Contract Method Gas Usage

ERC20 Token approve 44733

StateChannel openChannel 92285

StateChannel closeChannel 81315

InDaMul submitTender 263990

InDaMul submitPayment 194047

6.2 Smart Contracts Interactions and Gas Usage

The performances in terms of latency for the interactions with the Ethereum public blockchain can signifi-
cantly vary depending on the transaction fees [42] and/or on the supply and demand levels in the network
[34]. Generally, we can expect from 2 to 60 seconds of latency in the interaction with the Ethereum public
blockchain; however, maximum and average latencies decrease with the increase in gas prices [42]. With
this in view, we measure our experiments in terms of gas, the computation unit defined by the Ethereum
protocol [13]. Gas is a unit that measures the amount of computational effort it takes to execute opera-
tions in Ethereum Smart Contracts. Thus, the higher the gas usage for a method, the more intense the
computation of a blockchain node to execute the method is. Multiplying gas usage by a gas price indicates
the actual monetary cost of operating with Ethereum. The Smart Contracts implementation can be found
in [3].

Results in Table 3 show the gas usage for the methods involved in the protocol execution and their re-
lated Smart Contracts. The approve method in the ERC20Token contract is needed to open the channel in the
StateChannel contract. This gas usage, together with the openChannel and closeChannel methods’ gas usage,
is relatively low and does not deviate much from the other similar application implementations in Ethereum.
On the other hand, the submitTender and submitPayment methods in the InDaMul contract have a higher gas
usage, i.e., ∼263k and ∼194k , respectively. This is due to the fact that these operations involve more data and the
execution of signature verification.

At the time of writing, an example of gas price for the Ethereum public blockchain for issuing a transaction
within ∼30 seconds is ∼53 Gwei, i.e., 53 billionth of an Ether (the cryptocurrency of Ethereum). It means that
the total price for submitTender would be ∼263k × 53 = 0.014 Ether, which is currently ∼345 dollars. This price
does not represent a feasible option in most scenarios. However, there currently is a rise of technologies that
operate using the same protocol for executing Ethereum Smart Contracts but with fewer latencies and reduced
gas prices. For instance, in Polygon [2], the submitTender method would cost ∼ 0.005 dollars at the time of
writing. Alternatively, it would be possible to set up a dedicated permissioned Ethereum blockchain to reduce
costs further. Both would be viable alternatives for deploying our framework.

6.3 DFS and Authorization Service

The latencies experienced when interacting with the DFS or the decentralized authorization service are negligi-
ble compared to other operations performed in the framework (e.g., Mule’s mobility, analyzed in the following
subsection). Moreover, for the lack of space, we will refer to our findings in [48] (DFS) and in [47] (authorization)
without reporting all the data also in this work. About DFS, for instance, we consider an implementation in IPFS
that includes an announcement service (i.e., pub/sub). In this case (Figure 5, PLD2 variable), small messages take
on average ∼100 ms to get uploaded, while larger ones, e.g., size 1MB, up to 1 second.

In the case of a decentralized authorization service based on Secret Sharing, the whole process of getting the
fragments and decrypting (PLD3 variable) takes approximately a few milliseconds (∼50) for small messages and
up to ∼10 seconds for larger messages (10MB).

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:22 • M. Zichichi et al.

Fig. 6. Representation of the simulated area. The grid is divided into 16 regions. Thus, other than the Client nodes scattered
along the area, there are 16 Local Mules, 16 Radial Mules, and the Proxy P at the center of the grid.

6.4 Simulation of Buses Acting as Mules

InDaMul is intended for applications where high latency is an acceptable drawback (delay-tolerant networks).
Indeed, the most onerous operation in terms of latency is the Data Mule mobility from the Client to the Proxy,
which does not depend on the framework performance but on real-world limitations and decisions the Mules
takes. However, minimizing the time it takes for a Client node to contact a Proxy is still desirable. In order to have
a clearer idea about the average delay needed for message delivery, we designed and implemented a simulation
model for reproducing a scenario where buses and couriers act as data mules.

The idea is to have a population of Client nodes scattered in a simulated virtual environment and a certain
number of buses and couriers that, when moving in the virtual space, collect messages from the Client nodes and
then bring them to the destination (i.e., the Proxy). In order to model the collaboration among clients and some
opportunistic networking, typical of services built-in smart territories, we also enable the possibility of Clients
to relay some messages within the Islands (created using State Channels Networks, as discussed in Section 4).

We consider a scenario similar to the previous performance tests in whichC , with a fixed location, communi-
cates (using Wi-Fi Direct) with M traveling at a constant speed. Here, we are interested in only those measure-
ments that help us to evaluate the whole communication process. For instance, we consider the maximum Wi-Fi
link rate again at 12 Mbps and M’s velocity at 36 km/h, as in [8].

Our experiments have been conducted using the LUNES [1] simulator, which is particularly suitable for imple-
menting communication protocols populated by many interacting entities. Through this simulator, we analyze
the possible delays (and their specific composition) ranging from the creation of a message (by a Client) up to
its delivery (to a Proxy).

6.4.1 Simulation Setup. A squared discrete space composed of 1000 × 1000 cells was employed as a testbed
for the simulations, with such an area representing a unique village populated by several Clients and equipped
with couriers and a transport service, as shown in Figure 6. A cell in such a grid represents a 20m × 20m area and
potentially contains one or more Client nodes. Therefore, the total surface is composed of 20km × 20km with a
density of 25 nodes per km2. We assume that some of the couriers and some of the buses in the transportation
service also act as Mules, covering both the center and the peripheral regions. We thus divided the grid into N 2

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:23

squared regions. Specifically, in the proposed scenario, we envision that there are three different types of data
mules: (i) Local Mule buses moving only along their region of competence, picking up the messages coming from
the Clients it encounters during its path; (ii) Radial Mules buses that connect that region with the center of the
village; and (iii) Couriers that are either still or in motion toward a specific destination chosen randomly.

In our model, the interactions are based on proximity; thus, the Clients can deliver their messages only to the
Mules (or directly to P) within a specific communication range, which in our scenario was set to 200m (according
to what reported in [8], the packet loss ratio at such a distance is only 0.08). We assume that Mules are driving
on average at 36 km/h and moving to an adjacent cell at each timestep. Thus, each timestep consists of a discrete
unit of time representing 2 seconds. Furthermore, it is not always necessary for the messages to be carried by a
Mule. Clients (or couriers) can deliver their messages directly to P (or to the Radial Mule). This happens when
they are sufficiently close to communicating with them directly.

Finally, we assume that Mules skipped the announcement service and directly transferred the data to a unique
Proxy, P . From now on, we will use the generic term “message” to indicate the data that C sends to M1, which
needs to reach P , i.e., pC , tenderC , and addressM1 (shown in Section 3.3).

In our model, there are six types of simulated entities (i.e., nodes):

• Client nodes - They represent the generic C of the framework. At each timestep, there is a chance for
them to generate a new message to be delivered to P . In our experiments, there are 10,000 Clients randomly
placed in the simulated area, with either homogeneous or centralized distribution. In the former case, the
nodes are put in the grid completely randomly; in the latter, the probability for a cell to host nodes is
inversely proportional to the distance from the center. The centralized distribution aims to reproduce a
village-like scenario, where most people live near the center, while the peripheral areas are usually less
crowded.
• Neighbors nodes - They represent C’s Neighbors in its Island. We consider the chance for the Client

nodes to relay their messages within their Islands, i.e., small grid sub-regions composed of 20 × 20 cells.
We assume that all the Neighbors can communicate and exchange information since they belong to a
common communication network. When a Mule is in a Neighbor node’s vicinity, the latter signals to the
other Island’s nodes the possibility of getting in touch with a Mule and thus delivering the messages. The
Clients can deliver the messages to the Mule through one or multiple relays Neighbors.
• Local Mules - They move zigzagging along a particular grid region, traversing the local area and picking

up the messages from sufficiently close Client nodes. Once a lap is concluded, the Local Mule delivers the
messages to the Radial Mule (or directly to P if it is sufficiently close) before starting its route again.
• Radial Mules - One for each region of the simulated area, they collect the messages released by a specific

Local Mule and then bring them to P at the center of the grid. Then, they return to their original position,
waiting again for the Local Mule to complete the lap. For each Local Mule, there is a corresponding Radial
Mule.
• Couriers - They move according to the Random Waypoint mobility model [12] (i.e., they are either still

or in motion, and when they activate, they pick a random destination, moving toward such a point with
the same speed of the buses). When couriers collect messages, they carry them until a mule at a reachable
distance is found.
• Proxy node - Situated at the center of the grid, it is the final destination for all the messages. Just like the

Client nodes, P is a static entity.

6.4.2 Performance Evaluation. We performed several tests to measure the delay in delivering the messages
and the coverage achieved (i.e., the percentage of Clients nodes that can send messages to a Mule) by varying:
(i) the number of Local Mules in the grid; (ii) the distribution of the population; (iii) the presence or the absence of
Islands; and (iv) the number of couriers. In our experiments, we employed 16 Local Mules, 16 Radial Mules, and,

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:24 • M. Zichichi et al.

Table 4. Delay, Variance, and the Average Number of Hops
(i.e., Message Forwarding Toward a Mule or a Proxy) Depending
on the Number of Local Mules and the Population Distribution

Mules Distr Avg Delay ± Std (seconds) Hops (avg)

9
HOM 6 265 ± 1 984 1.959
CENT 5 327 ± 2 077 1.938

16
HOM 3 345 ± 1 092 1.959
CENT 2 658 ± 1 078 1.933

25
HOM 2 896 ± 968 1.968
CENT 2 428 ± 1 022 1.948

Fig. 7. DEL 1 = delay from the Client to the Local Mule; DEL 2 = delay from the Local Mule to the Radial Mule; DEL 3 = delay
from the Radial Mule to the Proxy P ; CEN = population with centralized distribution; HOM = population homogeneously
distributed.

if any, 16 couriers. The tests lasted 30,000 timesteps to allow the Local Mules to complete their route multiple
times. The first tests are performed without involving Neighbors, Islands, and Couriers, thus focusing on Local
Mules and Population Distribution. The second tests include all the entities.

6.4.3 Results.

Local Mules and Population Distribution. Table 4 shows the average delay for message delivery without any
Courier or Island. As expected, the delay is inversely proportional to the number of Mules. In fact, the higher the
number of Mules, the smaller the region each Mule has to cover. Thus, Local Mules are faster to complete a lap
and deliver the messages to the Radial Mule. Furthermore, a centralized population favors the speed of delivery
since more Clients are placed at the center of the Cartesian place. Thus they can deliver their messages directly
to P or a Radial Mule directed toward the center. For the same reason, in our tests, the average number of relays

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:25

Fig. 8. Heat maps representing the average delay of small regions in a scenario with a homogeneous population. The top
figure considers no presence of Islands and no couriers acting as Mules. The bottom one considers the presence of Islands
and couriers.

toward mules or proxies (i.e., hops) was slightly smaller with the centralized distribution, and the delay variance
was slightly greater. Let us consider, for example, the configuration with 16 Local Mules and a homogeneous
population. The messages coming from Clients at the edge of the grid (i.e., distant 250 or fewer cells from the
border), which are about 25% of the total messages sent, needed an average delay of 3640 seconds to be delivered
to P , compared to 2540 seconds of the messages generated in other locations. Figure 7 shows the composition
of the delays in the various configurations. Only messages conveyed via Data Mules have been considered, not
those sent directly from Clients to P .

Islands and Couriers. We previously assessed that, as expected, the average delay is inversely proportional to
the number of Mules. Thus in the following tests, we have fixed the number of Local Mules to 16 and focused
on other aspects. Table 5 shows the metrics retrieved by these tests. As expected, one can notice that, also in
this case, with a centralized population, the average delay is significantly reduced. It is also possible to observe
how the presence of Islands and couriers positively impacts the coverage achieved, significantly boosting the
percentage of nodes reachable by the Mules. The usage of couriers may also entail a higher average delay due
to more nodes at the edge of the grid using the framework. Finally, it is interesting to notice that usually, with
a centralized population, the achieved coverage is higher (the nodes at the center are easier to contact). It is
particularly evident by comparing the two heat maps in Figure 8 where, with a centralized population (despite

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

14:26 • M. Zichichi et al.

Table 5. Average Delay and Standard Deviation (i.e., Std) in
Seconds and Coverage Varying Distribution of the

Population, Islands Presence and Couriers Presence

Avg Delay ± Std (seconds) Coverage

ISL NOI ISL NOI

C
U

R HOM 2 276 ± 1 202 3 106 ± 2 324 98.3% 39.2%
CENT 1 500 ± 1 197 2 340 ± 2 311 96.7% 44.7%

N
O

C HOM 2 995 ± 2 557 3 101 ± 2 320 61.1% 39.2%
CENT 2 137 ± 2 415 2 335 ± 2 298 71.3% 44.7%

Population is HOM = homogeneous or CEN = centralized. Island is

present = ISL, or not = NOI. Couriers are present = CUR, or not = NOC.

the presence of Islands), the areas at the edge of the grid cannot get connectivity. However, this behavior is
overturned by employing couriers as well, bringing the coverage from 71.3% to 96.7% for centralized distribution
and from 61.1% to 98.3% for homogeneous distribution.

7 CONCLUSIONS

In this article, we present a framework that is thought to ensure the delivery of messages even in areas where
Internet coverage is weak or problematic. Specifically, the protocol uses technologies such as DLTs, Smart Con-
tracts, and DFSs, allowing it to run decentralized. Furthermore, an important role is played by Data Mules, having
the task of transporting the data from the source to a Proxy charged with the message delivery. After analyzing
the most concerning security issues, we investigate the feasibility of the framework’s usage in real-life scenarios.
The time required to send data from the Client to the Mule (and vice versa) depends mainly on the payload
size. Thus, the transmission from/to a moving vehicle can be considered viable and reliable for messages with
a reasonable dimension. Performing such operations with Ethereum can currently be quite expensive, but this
limitation can be overcome by employing emerging technologies that can help us significantly reduce gas prices.
Finally, the simulation of a scenario where means of transportation act as Data Mule is performed, showing a
raw estimate of the potential overall delay.

REFERENCES
[1] 2021. Dataset and scripts GitHub repository. Retrieved from https://github.com/luca-Serena/lunes-tdm-islands. Date Accessed

December 2022.

[2] 2021. Polygon - Ethereum.s Internet of Blockchains. Retrieved from https://polygon.technology. Date Accessed December 2022.

[3] 2021. TruDaMul. Retrieved from https://github.com/AnaNSi-research/TruDaMul. Date Accessed December 2022.

[4] 2021. Umbral-rs and tests. Retrieved from https://github.com/miker83z/umbral-rs. Date Accessed December 2022.

[5] Agencia Espanola Proteccion Datos. 2019. Introduction to the Hash Function as a Personal Data Pseudonymisation Technique. Technical

Report. Retrieved from https://edps.europa.eu/sites/edp/files/publication/19-10-30_aepd-edps_paper_hash_final_en.pdf.

[6] Giuseppe Anastasi, Marco Conti, and Mario Di Francesco. 2008. Data collection in sensor networks with data mules: An integrated

simulation analysis. In Proceedings of the 2008 IEEE Symposium on Computers and Communications. IEEE.

[7] Zeta Avarikioti, Krzysztof Pietrzak, Iosif Salem, Stefan Schmid, Samarth Tiwari, and Michelle Yeo. 2022. Hide & seek: Privacy-

preserving rebalancing on payment channel networks. In Proceedings of the International Conference on Financial Cryptography and

Data Security. Springer, 358–373.

[8] Arunn Balasundram, Tharaka Samarasinghe, and Dileeka Dias. 2016. Performance analysis of Wi-Fi direct for vehicular ad-hoc net-

works. In Proceedings of the 2016 IEEE International Conference on Advanced Networks and Telecommunications Systems. IEEE, 1–6.

[9] Alexandre C. Barbosa, Thays A. Oliveira, and Vitor N. Coelho. 2018. Cryptocurrencies for smart territories: An exploratory study. In

Proceedings of the 2018 International Joint Conference on Neural Networks. IEEE, 1–8.

[10] Souvik Basu, Soumyadip Chowdhury, and Sipra Das Bit. 2021. Using blockchain in intermittently connected network environments.

In Blockchain Technology and Innovations in Business Processes. S. Patnaik, T. S. Wang, T. Shen, and S. K. Panigrahi (Eds.), Springer,

33–47.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

https://github.com/luca-Serena/lunes-tdm-islands
https://polygon.technology
https://github.com/AnaNSi-research/TruDaMul
https://github.com/miker83z/umbral-rs
https://edps.europa.eu/sites/edp/files/publication/19-10-30_aepd-edps_paper_hash_final_en.pdf

Incentivized Data Mules for Opportunistic Networking Through Decentralized Systems • 14:27

[11] Juan Benet. 2014. IPFS-content addressed, versioned, P2P file system. Retrieved from https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a

6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf. Date Accessed December 2022.

[12] Christian Bettstetter, Hannes Hartenstein, and Xavier Pérez-Costa. 2004. Stochastic properties of the random waypoint mobility model.

Wireless Networks 10, 5 (2004), 555–567.

[13] Vitalik Buterin. 2013. Ethereum white paper. Retrieved from https://github.com/ethereum/wiki/wiki/White-Paper. Date Accessed

December 2022.

[14] Arnab Chakrabarti, Ashutosh Sabharwal, and Behnaam Aazhang. 2003. Using predictable observer mobility for power efficient design

of sensor networks. In Information Processing in Sensor Networks. F. Zhao and L. Guibas (Eds.), Springer.

[15] Nicolas T. Courtois and Rebekah Mercer. 2017. Stealth address and key management techniques in blockchain systems. In Proceedings

of the 3rd International Conference on Information Systems Security and Privacy.

[16] Mauro Margalho Coutinho, Alon Efrat, Thienne Johnson, Andrea Richa, and Mengxue Liu. 2014. Healthcare supported by data mule

networks in remote communities of the Amazon region. International Scholarly Research Notices 2014 (2014), 8 pages. https://doi.org/

10.1155/2014/730760

[17] G. D’Angelo, S. Ferretti, and V. Ghini. 2017. Multi-level simulation of internet of things on smart territories. Simulation Modelling

Practice and Theory 73 (2017), 3–21. DOI:https://doi.org/10.1016/j.simpat.2016.10.008

[18] Enes Erdin, Suat Mercan, and Kemal Akkaya. 2021. An evaluation of cryptocurrency payment channel networks and their privacy

implications. arXiv:2102.02659. Retrieved from https://arxiv.org/abs/2102.02659

[19] Peyman Faratin, Carles Sierra, and Nick R. Jennings. 1998. Negotiation decision functions for autonomous agents. Robotics and Au-

tonomous Systems 24, 3–4 (1998), 159–182.

[20] Pietro Ferraro, Christopher King, and Robert Shorten. 2018. Distributed ledger technology for smart cities, the sharing economy, and

social compliance. IEEE Access 6 (2018), 62728–62746.

[21] Stefano Ferretti. 2013. Shaping opportunistic networks. Computer Communications 36, 5 (2013), 481–503. DOI:https://doi.org/10.1016/

j.comcom.2012.12.006

[22] Stefano Ferretti and Gabriele D’Angelo. 2016. Smart shires: The revenge of countrysides. In Proceedings of the IEEE Symposium on

Computers and Communications. IEEE Computer Society, Washington, DC. DOI:https://doi.org/10.1109/ISCC.2016.7543862

[23] Stefano Ferretti, Gabriele D’Angelo, and Vittorio Ghini. 2016. Smart multihoming in smart shires: Mobility and communication man-

agement for smart services in countrysides. In Proceedings of the IEEE Symposium on Computers and Communications. IEEE Computer

Society, Washington, DC. DOI:https://doi.org/10.1109/ISCC.2016.7543862

[24] Michèle Finck. 2019. Blockchain and the General Data Protection Regulation: Can Distributed Ledgers be Squared with European Data

Protection Law?: Study. European Parliament.

[25] Manuel Jesús-Azabal, Juan Luis Herrera, Sergio Laso, and Jaime Galán-Jiménez. 2021. OPPNets and rural areas: An opportunistic

solution for remote communications. Wireless Communications and Mobile Computing 2021 (2021), 11 pages. https://doi.org/10.1155/

2021/8883501.

[26] Carsten Keßler and Grant McKenzie. 2018. A geoprivacy manifesto. Transactions in GIS 22, 1 (2018), 3–19.

[27] Julio Navío-Marco, Beatriz Rodrigo-Moya, and Paolo Gerli. 2020. The rising importance of the "Smart territory" concept: Definition

and implications. Land Use Policy 99 (2020), 105003–105007.

[28] Joseph Poon and Thaddeus Dryja. 2015. The bitcoin lightning network: Scalable On-Chain Instant Payments. Retrieved from

https://1bitcoin.ca/s/lightning-network-paper.pdf. Accessed Date December 2022.

[29] Edoardo Rosa, Gabriele D’Angelo, and Stefano Ferretti. 2019. Agent-based simulation of blockchains. In Methods and Applications for

Modeling and Simulation of Complex Systems. AsiaSim 2019. G. Tan, A. Lehmann, Y. Teo, and W. Cai (Eds.), Springer, 115–126.

[30] Luca Serena, Gabriele D’Angelo, and Stefano Ferretti. 2022. Security analysis of distributed ledgers and blockchains through agent-

based simulation. Simulation Modelling Practice and Theory 114 (2022), 102413–102417.

[31] Luca Serena, Mirko Zichichi, Gabriele D’Angelo, and Stefano Ferretti. 2021. Simulation of dissemination strategies on temporal net-

works. In Proceedings of the 2021 Annual Modeling and Simulation Conference. IEEE.

[32] Rahul C. Shah, Sumit Roy, Sushant Jain, and Waylon Brunette. 2003. Data mules: Modeling and analysis of a three-tier architecture

for sparse sensor networks. Ad Hoc Networks 1, 2–3 (2003), 215–233.

[33] Adi Shamir. 1979. How to share a secret. Communications of the ACM 22, 11 (1979), 612–613.

[34] Michael Spain, Sean Foley, and Vincent Gramoli. 2020. The impact of Ethereum throughput and fees on transaction latency during

ICOs. In Proceedings of the International Conference on Blockchain Economics, Security and Protocols. Schloss Dagstuhl-Leibniz-Zentrum

für Informatik.

[35] Mathis Steichen, Beltran Fiz, Robert Norvill, Wazen Shbair, and Radu State. 2018. Blockchain-based, decentralized access control for

IPFS. In Proceedings of the 2018 IEEE International Conference on Internet of Things. IEEE, 1499–1506.

[36] Ryo Sugihara and Rajesh K. Gupta. 2009. Optimal speed control of mobile node for data collection in sensor networks. IEEE Transactions

on Mobile Computing 9, 1 (2009), 127–139.

[37] Weizhao Tang, Weina Wang, Giulia Fanti, and Sewoong Oh. 2020. Privacy-utility tradeoffs in routing cryptocurrency over payment

channel networks. Proceedings of the ACM on Measurement and Analysis of Computing Systems 4, 2 (2020), 1–39.

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7zrJa3LX/ipfs.draft3.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://doi.org/10.1155/2014/730760
https://doi.org/10.1016/j.simpat.2016.10.008
https://arxiv.org/abs/2102.02659
https://doi.org/10.1016/j.comcom.2012.12.006
https://doi.org/10.1109/ISCC.2016.7543862
https://doi.org/10.1109/ISCC.2016.7543862
https://doi.org/10.1155/2021/8883501
https://1bitcoin.ca/s/lightning-network-paper.pdf

14:28 • M. Zichichi et al.

[38] Steffen Hess, Katalin Kolosy, Eamon O.Hara, Veneta Paneva, and Paul Soto. 2018. Smart villages: revitalising rural services. EU Rural

Review, Vol. 26 (2018), 1–52.

[39] Fabian Vogelsteller and Vitalik Buterin. 2015. ERC-20 Token Standard. Ethereum Foundation (Stiftung Ethereum), Zug.

[40] Shangping Wang, Yinglong Zhang, and Yaling Zhang. 2018. A blockchain-based framework for data sharing with fine-grained access

control in decentralized storage systems. IEEE Access 6 (2018), 38437–38450.

[41] Wenchao Xu, Weisen Shi, Feng Lyu, Haibo Zhou, Nan Cheng, and Xuemin Shen. 2019. Throughput analysis of vehicular internet

access via roadside WiFi hotspot. IEEE Transactions on Vehicular Technology 68, 4 (2019), 3980–3991.

[42] Lin Zhang, Brian Lee, Yuhang Ye, and Yuansong Qiao. 2021. Evaluation of Ethereum end-to-end transaction latency. In Proceedings of

the 2021 11th IFIP International Conference on New Technologies, Mobility and Security. IEEE.

[43] Mingliu Zhang and Richard S. Wolff. 2010. A border node based routing protocol for partially connected vehicular ad hoc networks.

Journal of Communications 5, 2 (2010), 130–143.

[44] Zibin Zheng, Shaoan Xie, Hong-Ning Dai, Weili Chen, Xiangping Chen, Jian Weng, and Muhammad Imran. 2020. An overview on

smart contracts: Challenges, advances and platforms. Future Generation Computer Systems 105, C (2020), 475–491.

[45] Mirko Zichichi, Michele Contu, Stefano Ferretti, and Gabriele D’Angelo. 2019. LikeStarter: A smart-contract based social DAO for

crowdfunding. In Proceedings of the 2nd Workshop on Cryptocurrencies and Blockchains for Distributed Systems.

[46] Mirko Zichichi, Stefano Ferretti, and Gabriele D’Angelo. 2020. A distributed ledger based infrastructure for smart transportation system

and social good. In Proceedings of the 2020 IEEE 17th Annual Consumer Communications & Networking Conference. IEEE, 1–6.

[47] Mirko Zichichi, Stefano Ferretti, Gabriele D’Angelo, and Víctor Rodríguez-Doncel. 2020. Personal data access control through dis-

tributed authorization. In Proceedings of the 2020 IEEE 19th International Symposium on Network Computing and Applications. IEEE,

1–4.

[48] Mirko Zichichi, Stefano Ferretti, and Gabriele D’Angelo. 2020. A framework based on distributed ledger technologies for data man-

agement and services in intelligent transportation systems. IEEE Access 8 (2020), 100384–100402.

Received 4 July 2022; revised 17 December 2022; accepted 5 March 2023

Distributed Ledger Technologies: Research and Practice, Vol. 2, No. 2, Article 14. Publication date: June 2023.

