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Abstract. We study three different extended scalar-tensor theories of gravity by also allowing
a negative sign for the kinetic term for the scalar field in the Jordan frame. Our scope is
to understand how the observational constraints for these models cope with the volume of
the parameter space in which the theory is healthy. Models with a negative kinetic term
lead to decreasing effective gravitational constant with redshift and behave as an effective
relativistic component with a negative energy density as opposite to their corresponding
version with a standard kinetic term. As a consequence, we find that the extended branch
with a negative sign for the kinetic term correspond in general to lower H0 and σ8 compared
to ΛCDM. We find that in all the cases with a negative sign for the kinetic term studied
here, cosmological observations constrain these models around GR and prefer a volume of the
parameter space in which the theory is not healthy since the scalar field behave as a ghost also
in the related Einstein frame. We show that also in the phantom branch early modify gravity
with a quartic coupling can substantially reduce the H0 tension fitting the combination of
cosmic microwave background data from Planck, baryon acoustic oscillations from BOSS and
eBOSS, and Supernovae from the Pantheon sample with calibration information by SH0ES.
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1 Introduction

The ΛCDM model represents the current standard cosmological model providing an excellent
fit to most of cosmological observations: measurements of luminosity distances of Type Ia Su-
pernovae (SN Ia) [1–3], measurements of cosmic microwave background (CMB) anisotropies
in temperature and polarization [4], measurements of the baryon acoustic oscillations (BAO)
in galaxy and cluster distribution [5, 6], cosmic shear measurements of the CMB [7–9] and of
the galaxy distribution [10, 11], and the predicted abundance of light elements [12]. While
the ΛCDM model provides an accurate description to most of cosmological observations, it
relies on a number of assumptions and unknown ingredients such dark matter, dark energy,
and a suitable mechanism to produce its initial condition.

In addition to the interest in testing at which extent the validity of the ΛCDM model
holds with better and more data, the theoretical search for extended models [13–21] has been
fueled by the persisting cosmological tensions or rather intriguing inconsistencies between
different measurements under the framework of the minimal ΛCDM model; see refs. [22–29]
for reviews on the topic.

Among the many proposed models, there are still difficulties in finding a candidate able
to completely solve the discrepancy between the value of the Hubble parameter inferred in
ΛCDM using CMB data from the Planck DR3, i.e. H0 = (67.36±0.54) km s−1 Mpc−1 at 68%
confidence level (C.L.) [30], with the measurement from the SH0ES team [31] obtained with
cosmic distance ladder calibration of SN Ia from the revised Pantheon+ compilation [3], i.e.
H0 = (73.0± 1.0) km s−1 Mpc−1 at 68% C.L., once all cosmological data are combined.
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It is even more difficult to reconcile the value of the Hubble parameter together with
the persistent but less significant tension between Planck and galaxy shear experiments,
quantified through the value of S8 ≡ σ8

√
Ωm/0.3, see [27]. Adopting a flat ΛCDM model,

cosmic shear analysis of the fourth data release of the Kilo-Degree Survey (KiDS-1000) re-
ported S8 = 0.759+0.024

−0.021 [10] and S8 = 0.776± 0.017 from Dark Energy Survey (DES) Year 3
(Y3) combination of three large-scale structures (LSS) two-point correlation functions (3× 2
pt) [11], while the value measured by Planck corresponds to S8 = 0.832 ± 0.013 [30]. In-
deed, while minimally and nonminimally coupled scalar field have been extensively studied
as possible solutions to the Hubble tension, they usually lead to a higher value of the Hubble
constant together with a larger growth of structures on small scales, i.e. a higher value of σ8,
see refs. [13, 14, 32–36]. However, they generally predict a value of S8 compatible to the one
obtained in ΛCDM avoiding to exacerbate the tension on the growth of structure amplitude
since the larger σ8 is compensated by a larger value of H0 and a lower value of Ωm [20, 37–39].

One possibility is to extend the dynamics of the scalar field to behave differently at
early- and late-time in order to solve both tensions at the same time. The possibility to have
models with phenomenology in both the early and late universe has been tried in the context
of modified gravity [20, 38], early dark sector [40], and combining modified gravity or early
dark energy to extended neutrino physics [19, 41, 42].

In this paper, we study modified gravity models with a nonminimally coupled scalar
field with negative kinetic energy, so-called phantom field. Note that this is not strictly
related to the phantom dark energy models for which the dark energy (DE) equation of state
can cross the phantom divide line wDE = −1. Moreover, scalar-tensor models can be realized
with no necessity to introduce a ghost field [43] avoiding the problems in ghost phantom
DE [44] to be plagued by classical and quantum instabilities [45]. Such a the non-canonical
kinetic energy term can occur in supergravity models [46] and in higher derivative theories
of gravity [47]. We show how a nonminimally coupled scalar field with the negative sign of
its kinetic term (phantom branch) behaves differently compared to the case with standard
kinetic term (standard branch) and we derive the constraints on these models combining the
information from Planck 2018 DR3 CMB temperature, polarization and lensing, together
with a compilation of BAO measurements from the releases DR7 and DR12 of the Baryon
Oscillation Spectroscopic Survey (BOSS) and Lyα measurements from the extended Baryon
Oscillation Spectroscopic Survey (eBOSS), and uncalibrated SN Ia from the Pantheon sample.

The paper is organized as follows. After this introduction, we describe the implemen-
tation of the various basic quantities in the context of scalar-tensor theories in section 2.
In section 3, we describe the datasets and prior considered and we discuss our results for
the three models studies: induced gravity, non-minimal coupling, and early modified gravity.
In section 4 we draw our conclusions. In appendix A, we collect the tables with the con-
straints on all the cosmological parameters obtained with our MCMC analysis. Background
equations, linear perturbations, and initial conditions for background and cosmological fluc-
tuations are collected in appendices B–D. In appendix E, we present a comparison of the
results by using CMB data plus different combinations of LSS measurements.

2 Theory and cosmological background dynamics

We study the action for the scalar-tensor theory in Jordan frame [48] which is given by

S =
∫

d4x
√
|g|
[
F (σ)R

2 − Z(σ)
2 (∂σ)2 − V (σ) + Lm

]
(2.1)
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where |g| is the absolute value of the determinant of the metric gµν , σ is the scalar field, F (σ)
is the non-minimal coupling function, R is the Ricci scalar, V (σ) is the potential for σ, and
Lm the Lagrangian density of matter minimally coupled to the metric (without introducing
any direct coupling between the scalar field and the matter content we guarantee that the
weak equivalence principle is exactly satisfied). The function Z(σ) in front of the kinetic
term can be set to ±1 by a redefinition of the scalar field.

In this model, the effective gravitational constantGeff for the attraction between two test
masses [having the same physical meaning as the Newton gravitational constant in general
relativity (GR)] is given by

Geff = 1
8πF

ZF + 2F 2
σ

ZF + 3
2F

2
σ

(2.2)

on all scales for which the scalar field is effectively massless [43], i.e. Vσ ' 0 and Vσσ ' 0.
The current values of the time derivative and field derivative of coupling F in these theo-

ries — assuming a homogeneous evolution of the scalar field for all the scales — are strongly
constrained by Solar System tests of post-Newtonian parameters (for these quantities, we
drop here the subscript 0)

γPN = 1− F 2
σ

ZF + 2F 2
σ

(2.3)

βPN = 1 + 1
4

FFσ
2ZF + 3F 2

σ

dγPN
dσ (2.4)

as well as the time variation of the effective cosmological constant. Current constraints [49–
52] correspond to

γPN − 1 = (2.1± 2.3) · 10−5 (2.5)
βPN − 1 = (−4.1± 7.8) · 10−4 (2.6)

Ġ/G = (7.1± 7.6) · 10−14 yr−1 . (2.7)

On cosmological scales, post-Newtonian parameters are weakly constrained from current
cosmological data, see ref. [19], with the perspective to reach the Solar System accuracy with
the combination of future cosmological surveys [38, 53, 54].

There are essentially two stability conditions which impact on these scalar-tensor theo-
ries. The condition

Geff > 0 (2.8)

is one of the stability conditions of this theory meaning that the graviton is not a ghost.
Moreover, we have the inequality

ZF

F 2
σ

> −3
2 (2.9)

requiring the positivity of the kinetic energy of the scalar field in the Einstein frame [55].
Eqs. (2.8), (2.9) reduce to ZFF−2

σ > 0 for Z = +1 or −3/2 < ZFF−2
σ < 0 for Z = −1,

and to F > 0. This condition can be mapped to a range of allowed parameter space for
the parameters modelling F (σ). However, we will consider a larger parameter space in the
following analysis testing the models also for parameters violating the stability conditions in
an agnostic way.
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3 Constraints and results

In this section, we present our constraints on the cosmological parameters of the models
studied. In particular, we study the nonminimally coupling F = ξσ2, i.e. induced gravity
(IG) [56, 57], and F = N2

Pl + ξσ2 (hereafter NMC) both with a phantom scalar field, i.e.
Z = −1; in both cases we consider V (σ) = λF 2(σ)/4 which yields to an effectively massless
dynamic [58, 59]. We study also the early modified gravity (EMG) model proposed in ref. [20]
extended to Z = −1. This last case is given by F = M2

Pl + ξσ2 and V = Λ + λσ4/4 with a
negative amplitude λ of the self-interaction term in order to produce the peculiar evolution
of the scalar field damped into coherent oscillations within the phantom branch. We perform
a Markov-chain Monte Carlo (MCMC) analysis using a modified version of the CLASSig
code [13], based on the Einstein-Boltzmann code CLASS1 [60, 61], interfaced to the publicly
sampling code MontePython2 [62, 63]. The datasets used in this work include

• P18 refers to the CMB temperature, polarization, and lensing from Planck DR3 [64, 65].

• FS refers to the combination of pre-reconstructed full-shape monopole and quadrupole
galaxy power spectra for three different sky-cuts CMASS NGC, CMASS SGC and
LOWZ NGC [66] based on the publicly available code PyBird3[67].

• BAO refers to the post-reconstruction measurements from BOSS DR12 [68], low-z BAO
measurements from SDSS DR7 6dF and MGS [69, 70], Lyα BAO measurements from
eBOSS, and combination of those [71–73].

• SN refers to the Pantheon catalogue of high-redshift supernovae, spanning the redshift
range 0.01 < z < 2.3 [74].4

• Additional constraints of a Gaussian prior on the density of baryons (hereafter BBN)
motivated from Big Bang nucleosynthesis (BBN) constraints corresponding to ωb =
0.02235 ± 0.0005 [12], used in combination to FS and SN for the CMB-independent
analysis.

• Additional constraints that include a Gaussian prior on the Hubble constant [hereafter
p(H0)], H0 = (73.04± 1.04) km s−1 Mpc−1 at 68% C.L., from ref. [31].

We vary 6 standard parameters, i.e. ωb, ωc, H0, τ , ln
(
1010As

)
, ns, and the modified gravity

parameters. We assume 2 massless neutrino with Nur = 2.0328, and a massive one with fixed
minimum mass mν = 0.06 eV. We fix the primordial 4He mass fraction Yp according to the
prediction from PArthENoPE [75, 76], by taking into account the relation with the baryon
fraction ωb and the varying gravitational constant which enters in the Friedman equation
during nucleosynthesis.

Following the minimization method of ref. [27], we report for each combination of
datasets the ∆χ2 values calculated with respect to the ΛCDM model where negative val-
ues correspond to a better fit of the dataset.

1https://github.com/lesgourg/class_public.
2https://github.com/brinckmann/montepython_public.
3https://github.com/pierrexyz/pybird/.
4https://github.com/dscolnic/Pantheon.
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Figure 1. Time evolution of the coupling to the Ricci scalar F = ξσ2 (left panel) and of the Hubble
parameter (right panel) for different values of the coupling parameter ξ in the standard branch (solid
lines) and in the phantom one (dashed lines) for IG (F = ξσ2, V = λF 2/4).

3.1 Phantom induced gravity

For IG (or equivalently extended Jordan-Brans-Dicke), with coupling F (σ) = ξσ2, we sample
on the quantity ζIG ≡ ln (1 + 4ξ) which corresponds to a linear prior on the coupling to the
parameter ξ for ξ � 1. Here we impose the following boundary condition on the current
value of the effective gravitational constant

Geff(z = 0) = G (3.1)

which fixes the final value of the scalar field.
Scalar-tensor theories of gravity such as extended Jordan-Brans-Dicke models, lead to

a modification of the Hubble parameter H0 due to the time evolution of σ and due to the
redshift evolution of the gravitational strength. Indeed, a variation of the strength of gravity
can be connected to a change of the expansion rate of the universe as

H(ξ 6= 0)
H(ξ = 0) ≈

√
M2

Pl
F (σ) . (3.2)

For a fixed matter content, reducing the Planck mass F (σ) < M2
Pl with respect to the GR

prediction increases the expansion rate at a given time and consequently reduces the comoving
sound horizon at recombination

rs =
∫ ∞
z∗

dz′ cs(z′)
H(z′) (3.3)

where z∗ is the redshift parameter at recombination and cs is the speed of sound in the
photon-baryon fluid. We show in figure 1 that the coupling function increases in the branch
with standard kinetic term (solid lines) while decreasing in the phantom branch (dashed
lines). This different behaviour is connected with a different late-time evolution of the Hubble
parameter (when the scalar field starts to evolve driven by the non-relativistic matter) which
is larger than the ΛCDM case in the standard branch and lower in the phantom branch. This
effect induces also a modification on the comoving angular diameter distance

DM(z) =
∫ z

0

dz′
H(z′) (3.4)

– 5 –
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Figure 2. CMB temperature anisotropies power spectrum (left panel) and relative differences with
respect to the ΛCDM case (right panel) for different values of the coupling parameter ξ in the standard
branch (solid lines) and in the phantom one (dashed lines) for IG (F = ξσ2, V = λF 2/4).

and does not cancel out on the angular size of horizon at the last-scattering surface θ∗

θ∗ = rs
DM(z∗)

(3.5)

driving a shift on the acoustic peaks of the CMB connected to the evolution of the coupling
F [19, 77, 78]. In figure 2, we show the shift of the acoustic peaks of the CMB temperature
anisotropies angular power spectrum imprinted by the evolving effective Planck mass. The
peaks move to the right in the positive branch and to the left in the phantom one. Indeed,
in order to compensate this shift (keeping nearly unchanged the value of the CDM density
parameter) the two branches go in the direction of a larger or a smaller value of Ωm once
the CMB data are included in the analysis, see figure 3. Therefore it is possible to break
the degeneracy at background level between the scalar field σ and the density parameters by
combining early- and late-time probes.

In figure 3, we compare the CMB-only constraints for IG in the phantom branch to the
standard case. We see that the degeneracy direction in the ξ–H0 plane changes orientation
going from one case to the other according to eq. (3.2). It turns out that the phantom branch
allows much larger values of the coupling ξ and predicts a lower value for the Hubble constant
without any prospect to reduce the H0 tension. It is interesting to note that the extension of
our study to the phantom case strengthen the correspondence between the kinetic term and
the spatial curvature: the standard (phantom) kinetic term shifts the position to the right
(left) as a negative (positive) spatial curvature.

Finally, it is interesting to note that the matter density root mean square fluctuations
σ8 goes toward lower values in the phantom branch compared to both the standard branch
and the ΛCDM model predictions, see figure 4. This behaviour can be understood studying
the late-time solution of the perturbation equation for the matter density contrast in the
linear regime, on sub-horizon scales

δ′′m +
(3
a

+ H ′

H

)
δ′m −

Geff
2GH2

ρm
a2 δm ' 0 (3.6)

where primes are derivatives with respect to the scale factor a. By rewriting the Friedmann

– 6 –
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Figure 3. Marginalized joint 68% and 95% C.L. regions 2D parameter space using the CMB alone
data for IG (F = ξσ2, V = λF 2/4) with Z = 1 (orange) and for IG with Z = −1 (blue).

equations (B.4), (B.5)

H2 = ρ+ V

3F (1 + f) (3.7)

H ′

H
= − 3

2a −
3
2aw −

F ′

2F −
f ′

2(1 + f) (3.8)

introducing the quantity

f = +aFσ
F
σ′ − a2Z

6F σ′2 (3.9)

and where we used ρ′/ρ = −3(1 + w)/a, we can write eq. (3.6) as

δ′′m +
[ 3

2a(1− w)− F ′

2F −
f ′

2(1 + f)

]
δ′m −

3
2a2

2ZF + 4F 2
σ

2ZF + 3F 2
σ

(1 + f) ρm
ρ+ V

δm ' 0 . (3.10)

– 7 –



J
C
A
P
0
4
(
2
0
2
3
)
0
2
9

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
z

0.3

0.4

0.5

0.6

0.7

0.8

0.9
8(

z)
CDM
= 5 × 10 3

= 2, 5 × 10 3

= 10 3

10 4 10 3 10 2 10 1 100

k [h Mpc 1]

20

10

0

10

20

30

%
P(

k)

CDM
= 5 × 10 3

= 2, 5 × 10 3

= 10 3

Figure 4. Time evolution of the amplitude of matter perturbation within spheres of radius 8h−1 Mpc
(left panel) and relative differences of the linear matter power spectrum at z = 0 with respect to ΛCDM
(right panel) for different values of the coupling parameter ξ in the standard branch (solid lines) and
in the phantom one (dashed lines) for IG (F = ξσ2, V = λF 2/4).

During the matter-dominated era, the scalar field evolves as σ ∼ a2Zξ [59] leading for IG to

f ∼ +10Zξ
3 (3.11)

and consequently

δ′′m + 3
2a

(
1− 4Zξ

3

)
δ′m −

3
2a2

(
1 + 16Zξ

3

)
δm ' 0 . (3.12)

In the weak coupling regime for ξ � 1, which turns out to be the range allowed from
observations, the leading-order growing solution of eq. (3.12) goes as δm ∼ a1+4Zξ showing a
slower (faster) growth of structures compared to the ΛCDM case for Z < 0 (Z > 0) during
the matter dominated era.

We show the results for most of the combination of datasets on figure 5 (in appendix E,
we show a comparison between P18+BAO and P18+BAO+FS). The marginalized upper
bound on the coupling parameter ξ at 95% C.L. corresponds to < 0.0024 for FS+SN, < 0.0018
for P18, < 0.00046 for P18+BAO, and < 0.00040 for P18+BAO+SN; see table 1 for the
constraints on all the parameters.

In figure 5, we see the larger marginalized uncertainties for the analysis without CMB
information, i.e. combining FS with SN and a Gaussian prior on ωb motivated from BBN,
and the analysis with CMB alone. In these cases larger value of ξ can be accommodated by
changes in the density parameters and in the scalar spectral index.

The marginalized means and uncertainties for the Hubble constant H0
[
km s−1 Mpc−1

]
at 68% C.L. correspond to 67.4± 1.8 for FS+SN, 63.6+2.7

−1.9 for P18, 67.17+0.64
−0.50 for P18+BAO,

and 67.29+0.60
−0.47 for P18+BAO+SN; all of them are lower than the corresponding results we

found in the standard branch, see refs. [19, 79]. The upper bound on ξ becomes much tighter,
i.e. ξ < 0.00016 at 95% C.L., once we add a prior on H0 in order to reproduce a larger value
of the Hubble parameter, i.e. 68.34± 0.41 at 68% C.L., see figure 6 and table 4.

The marginalized constraint on the present value of σ8 at 68% C.L. corresponds to
0.717 ± 0.049 for FS+SN, 0.784+0.021

−0.015 for P18, 0.799+0.010
−0.009 for P18+FS, and 0.8059 ± 0.0058

for P18+FS+SN. However, the combination S8 ≡ σ8
√

Ωm/0.3, commonly used to quantify

– 8 –
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Figure 5. Marginalized joint 68% and 95% C.L. regions 2D parameter space using the CMB-
independent combination FS+SN (red), P18 (green), the combination P18+BAO (orange), and the
combination P18+BAO+SN (blue) for IG (F = ξσ2, V = λF 2/4) in the phantom branch (Z = −1).

the tension between Planck and weak lensing of galaxies measurements, moves to the wrong
direction. In order not to spoil the fit to CMB and galaxy measurements, an increase of the
matter energy density is needed to compensate for the shifted position of the CMB acoustic
peaks and of the BAO. Indeed, we find for S8 0.744± 0.050 for FS+SN, 0.850+0.016

−0.019 for P18,
0.831+0.011

−0.012 for P18+FS, and 0.825 ± 0.012 for P18+FS+SN at 68% C.L., resulting to be
larger than in the standard branch as shown in figure 3.

The constraints found are at odds with the parameter space free from ghost which
corresponds for IG to ξ > 1/6 according to eqs. (2.8), (2.9). Note that, this condition for ξ can
be relaxed if one considers a more general Lagrangian with respect to the one introduced in
eq. (2.1). Higher order terms in the kinetic energy X ≡ −∂µσ∂µσ/2 [80] appear in low-energy
effective string theory [81] or in tachyon condensation [82]. In a more general Lagrangian

– 9 –



J
C
A
P
0
4
(
2
0
2
3
)
0
2
9

66 67 68 69
H0 [km s 1 Mpc 1]

0.78

0.80

0.82

8

0.80

0.85

S 8

2×10 4

4×10 4

6×10 4

147

148

149

r s
[M

pc
]

0.30

0.32

m

0.30 0.32
m

147 148 149
rs [Mpc]

2 4 6
×10 4

0.80 0.84
S8

0.80 0.82
8

P18 + BAO + SN
P18 + BAO + SN + p(H0)

Figure 6. Marginalized joint 68% and 95% C.L. regions 2D parameter space using the combination
CMB+BAO+SN (orange) and CMB+BAO+SN+p(H0) (blue) for IG (F = ξσ2, V = λF 2/4) in the
phantom branch (Z = −1).

containing also a Galileon term G3 [83, 84] as in L = G4(σ)R+G2(σ,X) +G3(σ,X)�σ, the
conditions for the avoidance of such instabilities are

qs ≡ 4G4
{
G2X + 2G3σ + σ̇

[
(G2XX +G3Xσ)σ̇ − 6G3XH

]}
+ 3(2G4σ +G3X σ̇

2)2 > 0 (3.13)
c2
s ≡

[
4G2XG4 + 8G3σG4 + (6G2

4σ −G3X σ̇
2)(2G2

4σ +G3X σ̇
2)

− 8G4(G3X σ̈ + 2G3XHσ̇ +G3Xσσ̇
2)
]
/qs > 0,

(3.14)

which reduce to eqs. (2.8), (2.9) when G3 = 0; but, in general, depending on the functional
form of the cubic interaction term and its magnitude, can allow for ξ < 1/6 while maintaining
the theory free of ghost and Laplacian instabilities [77, 85–87].
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3.2 Phantom non-minimal coupling
For NMC+ (NMC-) [14], with coupling F (σ) = N2

Pl + ξσ2 and coupling V (σ) = λF 2(σ)/4,
we sample on the dimensionless parameter ∆ÑPl ≡ NPl/MPl − 1 and ξ.

We show the results for all the combinations of datasets on figure 7 for NMC+ and
for NMC- in figure 8. Marginalized constraints on cosmological parameters are consistent to
the results obtained for IG for each combination of datasets. The marginalized limits on the
coupling parameters for NMC+ (NMC-) at 95% C.L. correspond to ξ < 0.0015 (> −0.039)
and NPl > 0.91 (< 1.18) for P18+BAO, and to ξ < 0.0019 (> −0.027) and NPl > 0.83
(< 1.21) for P18+BAO+SN; see tables 2 and 3 for the constraints on all the parameters. As
observed in refs. [14, 19], there is a strong degeneracy between the coupling parameters NPl
and ξ for the form of non-minimal coupling F (σ) = N2

Pl+ξσ2. Since cosmological observables
are affected by contributions O

(
ξσ2/N2

Pl
)
, it is possible to compensate the effects due to a

large value of |ξ| increasing |ÑPl − 1| and vice versa.
In this case eqs. (2.8), (2.9) reduce to(

NPl
ξσ

)2
+ 1
ξ
< 6 . (3.15)

Also in this case, a large portion of the allowed parameter space is at odds with eq. (3.15)
despite the larger number of degrees of freedom.

3.3 Phantom early modified gravity
For EMG [20], with coupling F (σ) = M2

Pl + ξσ2 and potential V (σ) = Λ +λσ4/4, we sample
on the quantity ξ and V0 where λ ≡ −102V0/M4

Pl. The scalar field decays around the local
maximum of the potential, i.e. σ = 0, showing tachyon instability. In this case, we do not
have to impose the boundary condition (3.1) being automatically satisfied for each initial
value of scalar field. This leads to a third free parameter which we identify with the initial
value of the scalar field σini [MPl].

In figure 9, we compare the background evolution and spectra of EMG in the standard
branch (Z = 1) to the phantom branch case (Z = −1). The evolution of the scalar field σ
is very similar in the two cases. Starting with the scalar field at rest in the radiation era, it
starts to grow around the recombination driven by the coupling to the non-relativistic matter
component and it is subsequently driven into damped coherent oscillations from the quartic
potential. The different evolution of the coupling function, which increase in the branch
with standard kinetic term while decreasing in the phantom branch before the scalar field
starts to decay, due to the different sign of the coupling parameter ξ induces different effects
on the spectra. The acoustic peaks of the CMB temperature anisotropies angular power
spectrum are shifted to right in the standard branch (Z = 1) when the scalar field starts
to move before recombination (V0 = 2) and in the phantom branch (Z = −1) if the scalar
field decays after recombination (V0 = −1), vice versa they shift to the left with respect
the ΛCDM case. The situation is different on the linear matter power spectrum were we
observe a suppression of power in the standard branch (Z = 1) despite the value of V0 and
an increase of power at small scales in the phantom branch (Z = −1). This highlights the
importance of the combination of combining early- and late-time probes in order to break
the degeneracy between the extra parameters of the model and also to discriminate between
the two different branches.

We show the results for the combinations of datasets P18+BAO+SN and P18+BAO+
SN+p(H0) on figure 10. In this case we find that ξ is not constrained by data on the
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Figure 7. Marginalized joint 68% and 95% C.L. regions 2D parameter space using the P18 (green),
the combination P18+BAO (orange), and the combination P18+BAO+SN (blue) for NMC+ (F =
N2

Pl + ξσ2, V = λF 2/4) in the phantom branch (Z = −1).

prior considered [−0.1, 0]. For this reason, we show constraints on the combination ξσ2
ini

[M2
Pl] (connected to the additional contribution to the expansion rate evolution (3.2) be-

fore recombination). The marginalized upper bound on the coupling combination ξσ2
ini at

95% C.L. corresponds to > −0.0026 for P18+BAO+SN and when we include the Gaussian
prior on the Hubble parameter we obtain at 95% C.L. −0.006± 0.005. Analogously, for the
initial value of the scalar field σini [MPl] we find < 0.45 for P18+BAO+SN and 0.35+0.17

−0.15
for P18+BAO+SN+p(H0) both at 95% C.L. Also V0 is not well constrained. We find a
95% C.L. upper bound only when we include the Gaussian prior on the Hubble parameter
corresponding to V0 < 0.81.

The marginalized means and uncertainties for the Hubble constant H0
[
km s−1 Mpc−1

]
at 68% C.L. correspond to 68.44+0.62

−0.79 for P18+BAO+SN and 70.18+0.59
−0.68 for P18+BAO+SN
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Figure 8. Marginalized joint 68% and 95% C.L. regions 2D parameter space using the P18 (red),
the combination P18+BAO (green), the combination P18+BAO+SN (orange), and the combina-
tion P18+BAO+SN+p(H0) (blue) for NMC- (F = N2

Pl + ξσ2, V = λF 2/4) in the phantom
branch (Z = −1).

+p(H0). The marginalized constraints on S8 correspond to S8 = 0.827±0.011 for P18+BAO+
SN and S8 = 0.822± 0.010 for P18+BAO+SN+p(H0). See table 5 for the constraints on all
the parameters. Finally, we show in table 6 the best-fit ∆χ2 for all the four model analyzed
with respect to the ΛCDM model for each dataset for the combination P18+BAO+SN and
P18+BAO+SN+p(H0).

4 Conclusions

We have studied the dynamics and inferred the cosmological constraints for modified gravity
models with a nonminimally coupled scalar with a kinetic term which can also have a negative
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Figure 9. Time evolution of the scalar field σ (upper left panel) and of the coupling to the Ricci scalar
F (σ) (upper right panel). Relative differences of the CMB temperature anisotropies power spectrum
with respect to the ΛCDM case (bottom left panel) and of the linear matter power spectrum at z = 0
(bottom right panel). Different lines correspond to different value of the amplitude of the effective
potential V0 for |ξ| = 0.1 in the standard branch (solid lines) and in the phantom one (dashed lines)
for EMG (F = M2

Pl + ξσ2, V = Λ + λσ4/4).

sign. For stable models with an effectively massless scalar field σ, like IG and NMC, the
change of sign in front of the kinetic term of the scalar field modifies the evolution of the
scalar field which is at rest during the radiation-dominated epoch and evolves like σ ∼ a2Zξ

during the matter-dominated era.
We have shown the effect of the sign of the kinetic term on cosmological observables. We

have computed the marginalized constraints for different combination of cosmological datasets
by allowing the coupling to the Ricci scalar and the rest of cosmology (standard cosmological
parameters and nuisance ones) to vary. Combining Planck 2018 DR3 measurements with
BAO from BOSS and eBOSS, and uncalibrated SN Iα from the Pantheon sample we constrain
the coupling parameters at 95% C.L. to ξ < 0.00040 for F (σ) = ξσ2 and for F (σ) = N2

Pl+ξσ2

to ξ < 0.0019 (> −0.027) and NPl > 0.83 (< 1.21).
Nonminimally coupled scalar-tensor theories with early-time deviation from GR predic-

tions usually lead to higher values of the Hubble parameter H0, a lower value of the matter
density parameter Ωm, and a larger value of the σ8 [19, 77, 78]. In their phantom construc-
tion, the modified evolution of the scalar field, connected to a different time evolution of the
effective gravitational constant, inverts the degeneracy between these parameters and the
coupling ones. Indeed, we find a lower values of both σ8 and H0 compared to the branch
with standard kinetic term.
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Figure 10. Marginalized joint 68% and 95% C.L. regions 2D parameter space using P18+BAO+SN
(orange) and the combination P18+BAO+SN+p(H0) (blue) for EMG (F = M2

Pl+ξσ2, V = Λ+λσ4/4)
in the phantom branch (Z = −1).

We have also studied the phantom version of the EMG model introduced in ref. [20].
While the evolution of the scalar field is very similar, with the quartic potential leading
the scalar field to decay into damped coherent oscillations, different signatures appear on
the cosmological observables. Compared to the ΛCDM model, the CMB acoustic peaks
of the CMB are shifted to right in the standard branch (Z = 1) when the scalar field
starts to move before recombination (V0 = 2) and in the phantom branch (Z = −1) if
the scalar field decays after recombination (V0 = −1), vice versa they shift to the left.
Matter perturbations on sub-horizon scales are suppressed in the standard branch (Z = 1)
and enhanced in the phantom branch (Z = −1) despite the value of amplitude of the self-
interaction term parameterized by V0.
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The allowed parameter space for the coupling parameters by our analysis is at odds with
the parameter space free from ghosts and Laplacian instabilities. It would be interesting to
understand if instead there are healthy scalar-tensor theories which retain the possibility to
alleviate the current tensions between different cosmological observations.
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A Tables

P18 P18 + BAO P18 + BAO + SN
ωb 0.02223± 0.00017 0.02244± 0.00013 0.02245± 0.00013
ωc 0.1204± 0.0012 0.11896± 0.00099 0.11882± 0.00096

H0 [km s−1 Mpc−1] 63.6+2.7
−1.9 67.17+0.65

−0.48 67.29+0.60
−0.47

τ 0.0523± 0.0071 0.0584+0.0070
−0.0083 0.0584+0.0068

−0.0076

ln
(
1010As

)
3.037± 0.015 3.051+0.014

−0.016 3.051± 0.014

ns 0.9574+0.0067
−0.0057 0.9668± 0.0038 0.9671± 0.0036

ξ < 0.0018 (95% C.L.) < 0.00046 (95% C.L.) < 0.00040 (95% C.L.)
γPN > 0.9928 (95% C.L.) > 0.9982 (95% C.L.) > 0.9984 (95% C.L.)
δGN/GN (z = 0) < 0.057 (95% C.L.) < 0.014 (95% C.L.) < 0.012 (95% C.L.)

1013ĠN/GN (z = 0) [yr−1] < 2.43 (95% C.L.) < 0.57 (95% C.L.) < 0.50 (95% C.L.)

GN/G (z = 0) 0.9982+0.0013
−0.00074 0.99965+0.00033

−0.00013 0.99968+0.00030
−0.00012

Ωm 0.354+0.020
−0.032 0.3135+0.0059

−0.0068 0.3120+0.0056
−0.0065

σ8 0.784+0.021
−0.015 0.8053+0.0083

−0.0069 0.8053+0.0078
−0.0066

S8 0.850+0.016
−0.019 0.823± 0.011 0.821± 0.010

rs [Mpc] 148.89+0.8
−1.4 147.62+0.31

−0.50 147.62+0.29
−0.44

∆χ2 −2.8 0 −0.5

Table 1. Constraints on the main and derived parameters (at 68% C.L. if not otherwise stated)
considering P18 in combination with BAO and BAO+SN for the IG model.
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P18 P18 + BAO P18 + BAO + SN
ωb 0.02224+0.00018

−0.00016 0.02246± 0.00013 0.02246+0.00011
−0.00014

ωc 0.1206± 0.0012 0.1190+0.0014
−0.0011 0.1189± 0.0010

H0 [km s−1 Mpc−1] 64.1+2.6
−1.7 67.28± 0.59 67.42± 0.52

τ 0.0514± 0.0081 0.0590± 0.0052 0.0583± 0.0071
ln
(
1010As

)
3.037+0.015

−0.023 3.0517+0.0074
−0.015 3.051± 0.014

ns 0.9580+0.0058
−0.0047 0.9673± 0.0042 0.9674± 0.0039

ξ < 0.030 (95% C.L.) < 0.015 (95% C.L.) < 0.019 (95% C.L.)
NPl [MPl] — > 0.91 (95% C.L.) > 0.83 (95% C.L.)
γPN > 0.9941 (95% C.L.) > 0.9986 (95% C.L.) > 0.9987 (95% C.L.)
βPN > 0.999965 (95% C.L.) > 0.999994 (95% C.L.) > 0.999994 (95% C.L.)
δGN/GN (z = 0) < 0.052 (95% C.L.) < 0.011 (95% C.L.) < 0.012 (95% C.L.)

1013ĠN/GN (z = 0) [yr−1] < 1.94 (95% C.L.) < 0.42 (95% C.L.) < 0.40 (95% C.L.)

GN/G (z = 0) 1.00134+0.00063
−0.0011 1.000255+0.000097

−0.00024 1.000221+0.000084
−0.00023

Ωm 0.349+0.017
−0.030 0.3121+0.0068

−0.0056 0.3110± 0.0061

σ8 0.788+0.021
−0.013 0.8069± 0.0069 0.8064+0.0079

−0.0065

S8 0.849+0.013
−0.019 0.823+0.014

−0.009 0.821+0.012
−0.011

rs [Mpc] 148.56+0.90
−1.3 147.54+0.30

−0.48 147.52+0.27
−0.44

∆χ2 −1.5 0 −0.5

Table 2. Constraints on the main and derived parameters (at 68% C.L. if not otherwise stated)
considering P18 in combination with BAO and BAO+SN for the NMC+ model.
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P18 P18 + BAO P18 + BAO + SN
ωb 0.02230± 0.00014 0.02245± 0.00013 0.02247± 0.00013

ωc 0.11982+0.00068
−0.0011 0.11891± 0.00094 0.11875+0.00078

−0.0010

H0 [km s−1 Mpc−1] 64.1+3.1
−2.1 67.26+0.59

−0.45 67.44+0.57
−0.45

τ 0.0548+0.0072
−0.0059 0.0573+0.0061

−0.0074 0.0590± 0.0068

ln
(
1010As

)
3.041+0.017

−0.013 3.049± 0.014 3.052+0.014
−0.012

ns 0.9604+0.0067
−0.0045 0.9669+0.0043

−0.0035 0.9675± 0.0036

ξ > −0.036 (95% C.L.) > −0.039 (95% C.L.) > −0.027 (95% C.L.)
NPl [MPl] < 1.13 (95% C.L.) < 1.18 (95% C.L.) < 1.21 (95% C.L.)
γPN > 0.988 (95% C.L.) > 0.998 (95% C.L.) > 0.998 (95% C.L.)
βPN < 1.00018 (95% C.L.) < 1.000022 (95% C.L.) < 1.000017 (95% C.L.)
δGN/GN (z = 0) < 0.060 (95% C.L.) < 0.012 (95% C.L.) < 0.010 (95% C.L.)

1013ĠN/GN (z = 0) [yr−1] < 3.85 (95% C.L.) < 0.62 (95% C.L.) < 0.50 (95% C.L.)

GN/G (z = 0) 1.00224+0.00080
−0.0021 1.00037+0.00012

−0.00037 1.00030+0.00012
−0.00030

Ωm 0.348+0.021
−0.033 0.3125+0.0052

−0.0065 0.3106+0.0050
−0.0068

σ8 0.786+0.025
−0.011 0.8047± 0.0076 0.8064± 0.0062

S8 0.844+0.011
−0.018 0.821± 0.011 0.8204+0.0091

−0.012

rs [Mpc] 148.91+0.77
−1.6 147.60+0.28

−0.43 147.57+0.30
−0.40

∆χ2 −2.8 0 −0.3

Table 3. Constraints on the main and derived parameters (at 68% C.L. if not otherwise stated)
considering P18 in combination with BAO and BAO+SN for the NMC- model.
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IG NMC+ NMC-
ωb 0.02260+0.00012

−0.00014 0.02262± 0.00013 0.02260+0.00014
−0.00012

ωc 0.11747± 0.00086 0.11752± 0.00086 0.11753+0.00095
−0.00069

H0 [km s−1 Mpc−1] 68.34± 0.41 68.42+0.44
−0.36 68.38± 0.41

τ 0.0617+0.0067
−0.0085 0.0636+0.0071

−0.0081 0.0644+0.0068
−0.0090

ln
(
1010As

)
3.055+0.013

−0.017 3.059+0.014
−0.016 3.061+0.014

−0.017

ns 0.9711± 0.0036 0.9716± 0.0037 0.9712± 0.0035
ξ < 0.000075 (95% C.L.) < 0.0096 (95% C.L.) > −0.022 (95% C.L.)
NPl [MPl] 0 > 0.82 (95% C.L.) < 1.24 (95% C.L.)
γPN > 0.9993 (95% C.L.) > 0.9995 (95% C.L.) > 0.9994 (95% C.L.)
βPN 1 > 0.999999 (95% C.L.) < 1.000004 (95% C.L.)
δGN/GN (z = 0) < 0.0056 (95% C.L.) < 0.0041 (95% C.L.) < 0.0042 (95% C.L.)

1013ĠN/GN (z = 0) [yr−1] < 0.23 (95% C.L.) < 0.16 (95% C.L.) < 0.19 (95% C.L.)

GN/G (z = 0) 0.99987+0.00013
−0.000042 1.000080+0.000028

−0.000090 1.000102+0.000043
−0.00011

Ωm 0.2999± 0.0050 0.2994+0.0046
−0.0052 0.2997+0.0053

−0.0047

σ8 0.8055+0.0059
−0.0069 0.8078± 0.0066 0.8086± 0.0063

S8 0.805± 0.010 0.807± 0.010 0.8082± 0.0094

rs [Mpc] 147.63+0.23
−0.29 147.56± 0.25 147.58+0.21

−0.24

Table 4. Constraints on the main and derived parameters (at 68% C.L. if not otherwise stated)
considering the combination with P18+BAO+SN+p(H0) for IG, NMC+, and NMC-.
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P18 + BAO + SN P18 + BAO + SN + p(H0)
ωb 0.02246± 0.00014 0.02255± 0.00014
ωc 0.1194± 0.0010 0.11900± 0.00099

H0 [km s−1 Mpc−1] 68.44+0.62
−0.79 70.18+0.59

−0.68

τ 0.0536± 0.0080 0.0503+0.0085
−0.0073

ln
(
1010As

)
3.043± 0.016 3.035+0.017

−0.015

ns 0.9671+0.0036
−0.0042 0.9687± 0.0038

ξσ2
ini [M2

Pl] > −0.0057 (95% C.L.) −0.0062+0.0028
−0.0023

V0 — < 0.81 (95% C.L.)

σini [MPl] < 0.446 (95% C.L.) 0.348+0.062
−0.097

Ωm 0.3028± 0.0068 0.2875± 0.0056

σ8 0.823+0.010
−0.013 0.840± 0.011

S8 0.827± 0.011 0.822± 0.010
rs [Mpc] 147.00± 0.40 146.56± 0.46

Table 5. Constraints on the main and derived parameters (at 68% C.L. if not otherwise stated)
considering P18 in combination with BAO+SN and BAO+SN+p(H0) for the EMG model.
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P18+BAO+SN IG NMC+ NMC− EMG (Z = 1) EMG (Z = −1)
Planck high-` TTTEEE −1.2 −1.3 −1.6 −0.8 −0.6
Planck low-` EE 0.4 0.4 1 0.1 −0.3
Planck low-` TT 0.2 0.3 0.3 −0.2 0.5
Planck lensing −0.2 −0.2 −0.3 0 0.8
BAO 0.2 0.2 0.2 0 −0.5
Pantheon 0.1 0.1 0.1 0 −0.2
Total −0.5 −0.5 −0.3 −0.9 −0.3

P18+BAO+SN+p(H0) IG NMC+ NMC− EMG (Z = 1) EMG (Z = −1)
Planck high-` TTTEEE −1.2 −0.8 −1.4 −0.7 −6.5
Planck low-` EE 0.8 0.4 0.7 0.4 −1.8
Planck low-` TT −0.1 −0.2 −0.2 −0.2 1.1
Planck lensing −0.1 −0.1 −0.2 −0.1 0.6
BAO 0.1 0.1 0 0 5
Pantheon 0 0 0 0 0.4
H0 0 0.2 0.6 −17.8 −13.7
Total −0.5 −0.4 −0.5 −18.4 −14.9

Table 6. Best-fit ∆χ2 with respect to the ΛCDM model for each dataset for the combination
P18+BAO+SN (upper table) and P18+BAO+SN+p(H0) (lower table) for IG, NMC+, NMC-,
and EMG.
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B Background equations

Starting from eq. (2.1), it is possible to write down the equations governing the background
evolution. Specializing to a spatially flat Friedmann-Lemaître-Robertson-Walker (FLRW)
universe described by the line element

ds2 = a2(η)
(
−dη2 + dx2

)
, (B.1)

where η is the conformal time and x the spatial comoving coordinate. The Einstein equations
are obtained by varying the action (2.1) with respect to the metric, they correspond to

Gµν = 1
F

[
Tµν −

Z

2∇
µσ∇νσ − gµνV + (∇µ∇ν − gµν�)F

]
(B.2)

where the energy-momentum tensor for a perfect fluid is given by

Tµν = pgµν + (ρ+ p)uµuν (B.3)

where a sum over all the species in the Universe is taken for granted, i.e. ρ ≡ ∑
i ρi

and p ≡∑i pi.
From eq. (B.2), the Friedmann equations in Jordan frame are as follows

3F H2 = a2 (ρ+ V ) + Zσ′ 2

2 − 3HF ′ (B.4)

−2F H′ = a2

3 (ρ+ 3p− 2V ) + 2
3Zσ

′ 2 + F ′′ (B.5)

and the Einstein trace (the Ricci scalar) equation results

a2FR = a2(ρ− 3p) + 4a2V − 3Fσ
(
σ′′ + 2Hσ′

)
− (Z + 3Fσσ)σ′ 2 . (B.6)

Finally, the evolution equation of the scalar field σ is governed by the modified Klein-Gordon
equation

σ′′ + 2Hσ′ − Fσ
2ZF + 3F 2

σ

[
a2(ρ− 3p) + 4a2

(
V − F

2Fσ
Vσ

)
− (Z + 3Fσσ)σ′ 2

]
= 0 . (B.7)

C Linear perturbed equations

In the synchronous gauge, up to linear order in perturbed quantities, the perturbed FLRW
metric is

ds2 = a2(η)
[
−d2η + (δij + hij)dxidxj

]
(C.1)

where hij is the metric perturbation.
From this point on, we move in Fourier space for the calculation of the perturbed

quantities. The scalar mode of hij can be express as a Fourier integral as

hij(η, x) =
∫

d3keık·x
[
k̂ik̂jh(η, k) +

(
k̂ik̂j −

δij
3

)
6ξ(η, k)

]
(C.2)

where k̂i = ki/k with k = |k| and h ≡ δijhij is the Fourier transform of trace of hij(η, x).
We follow the conventions of ref. [88].
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C.1 The perturbed Einstein field equations

Splitting the Einstein tensor as the sum of the background (mean) part Ḡµν and its corre-
sponding perturbation δGµν , i.e. Gµν = Ḡµν + δGµν , the scalar perturbations in synchronous
gauge are usually presented as time-time, longitudinal time-space, trace space-space, and
longitudinal traceless space-space parts of the Einstein equations in Fourier space as follow

ξk2 − Hh
′

2 = a2 δG
0
0

2
= 4πGa2δT 0

0 , (C.3)

k2ξ′ = a2∇iδG0
i

2
= 4πGa2(ρ̄+ p̄)θ , (C.4)

h′′ + 2Hh′ − 2ξk2 = −a2δGii

= −8πGa2δT ii , (C.5)

h′′ + 6ξ′′ + 2H(h′ + 6ξ′)− 2k2ξ = −3a2
(
k̂ik̂j −

δij
3

)
δGii

= −24πGa2(ρ̄+ p̄)Θ (C.6)

where we used the definition

(ρ̄+ p̄)θ ≡ ıkiδT 0
i , (C.7)

(ρ̄+ p̄)Θ ≡ −
(
k̂ik̂j −

δij
3

)
Σi

j , (C.8)

Σi
j ≡ T̄ ij − δij

T̄ kk
3 , (C.9)

and splitting the total energy density and pressure in a background and perturbed parts, we
obtain the following elements

T̄00 = a2(ρ̄+ δρ) , (C.10)
T̄0i = −a2(ρ̄+ p̄)vi , (C.11)
T̄ij = a2δij (p̄+ δp) + a2Σij . (C.12)

The first perturbed equation involving total density fluctuations reads

ξk2 − Hh
′

2 = −(8πG)a2 δρ̃

2F (C.13)

with

δρ̃ = δρ− h′σ̄′F̄σ
2a2 + δσ′

a2

(
Zσ̄′ − 3HF̄σ

)
− δσF̄σ

a2F̄

[
a2ρ̄+ Z

2 σ̄
′2

+a2
(
V − Vσ

F

Fσ

)
− 3HF̄σσ̄′ + 3HFσσF

Fσ
σ̄′ + k2F

]
. (C.14)
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The second perturbed equation involving total velocity reads

k2ξ′ = (8πG)a2 (ρ̃+ p̃)θ̃
2F (C.15)

with
(ρ̃+ p̃) θ̃ = (ρ̄+ p̄) θ + k2

a2
[(
Zσ̄′ −HFσ + Fσσσ̄

′) δσ + Fσδσ
′] . (C.16)

The third perturbed equation involving total pressure reads

h′′ + 2Hh′ − 2k2ξ = −3(8πG)a2 δp̃

F
(C.17)

with

δp̃ = δp+ h′F ′

3a2 + Z

a2 σ̄
′δσ′ − δV + 2

3a2k
2δF + H

a2 δF
′ + δF ′′

a2

− δσ F̄σ

a2F̄

(
a2p̄+ Z

2 σ̄
′2 − a2V̄ +HF ′ + F ′′

)
. (C.18)

The fourth perturbed equation involving total shear reads

h′′ + 6ξ′′ + 2H(h′ + 6ξ′)− 2k2ξ = −3(8πG)a2 (ρ̃+ p̃)Θ̃
F

(C.19)

with
(ρ̃+ p̃)Θ̃ = (ρ̄+ p̄)Θ + 2k2

3a2

(
Fσδσ + F ′

h′ + 6ξ′
2k2

)
. (C.20)

The perturbed Ricci scalar is given by

a2FδR = a2(δρ̄− 3δp̄)− 3h′F ′
2 − 2Zσ̄′δσ′ + 4a2Vσδσ − 6HδF ′ − 3δF ′′

− 3k2δF − δσFσ
F

[
a2(ρ̄− 3p̄)− Zσ̄′2 + 4a2V̄ − 3F ′′ − 6HF ′

]
. (C.21)

C.2 The perturbed Klein-Gordon equation
The perturbed equation for the evolution of the scalar field perturbation δσ is

Zδσ′′ + 2HZδσ′ +
[
Zk2 + a2

(
Vσσ −

RFσσ
2

)]
δσ + Z

h′σ̄′

2 − a2Fσ
2 δR = 0 . (C.22)

D Initial conditions

The adiabatic initial condition for the background correspond to

a(τ) =
√

ρr 0
3Fini

τ

[
1 + Z

4 ωτ −
5ZF 2

ini,σ (Z + 3Fini,σσ)
64ZFini + 96F 2

ini,σ
(ωτ)2

]
,

H(τ) = 1
τ

[
1 + Z

4 ωτ − Z
2Fini + F 2

ini,σ (8Z + 15Fini,σσ)
32ZFini + 48F 2

ini,σ
(ωτ)2

]
,

σ(τ) = σini + 3Fini,σ
4 ωτ − Fini,σ

4ZFini(2Z − 3Fini,σσ) + 27F 2
ini,σ (Z + Fini,σσ)

32(2ZFini + 3F 2
ini,σ) (ωτ)2

(D.1)

– 24 –



J
C
A
P
0
4
(
2
0
2
3
)
0
2
9

where

ω = ρm, 0√
3ρr, 0

2
√
Fini

2ZFini + 3F 2
ini,σ

. (D.2)

For the cosmological fluctuations in the synchronous gauge, we have as adiabatic initial
conditions

δγ(k , τ) = δν(k , τ) = 4
3δb(k , τ) = 4

3δc(k , τ) = −(kτ)2

3

(
1− Zωτ5

)
(D.3)

θν(k , τ) = −k
4τ3

36
23 + 4Rν
15 + 4Rν

[
1− 3

20
Z
(
275 + 50Rν + 8R2

ν

)
Fini + 15(5− 4Rν)F 2

ini,σ
(15 + 2Rν)(23 + 4Rν)Fini

ωτ

]
(D.4)

θγ(k , τ) = θb(k , τ) = −k
4τ3

36

[
1− 3

20
Z(1−Rν + 5Rb)Fini + 15

2 RbF
2
ini,σ

(1−Rν)Fini
ωτ

]
(D.5)

θc(k , τ) = 0 (D.6)

σν(k , τ) = 2(kτ)2

3(15 + 4Rν)

1 +
(−5 + 4Rν)

(
2ZFini + 3F 2

ini,σ

)
8(15 + 2Rν)Fini

ωτ

 (D.7)

h(k , τ) = (kτ)2

2

(
1− Zωτ5

)
(D.8)

η(k , τ) = 1− (kτ)2

12(15 + 4Rν)

[
5 + 4Rν −

2Z(5 + 4Rν)(65 + 4Rν)Fini + 75(−5 + 4Rν)F 2
ini,σ

20(15 + 2Rν)Fini
ωτ

]
(D.9)

δσ(k , τ) = − 1
16Fini,σk

2τ3ω

[
1−

2Z(8Z − 9Fini,σσ)Fini + (45Fini,σσ + 48Z)F 2
ini,σ

40ZFini + 60F 2
ini,σ

ωτ

]
(D.10)

where Rν = ρν, 0/ρr, 0 and Rb = ρb, 0/ρm, 0. These quantities reduce to induced gravity for
Z = 1 and F = ξσ2 [89], to a non-minimally coupled scalar field with standard kinetic term
for Z = 1 and F = N2

Pl + ξσ2 [14], and General Relativity for Z = 1 and F = M2
Pl [88].

E Comparison between BAO, and FS + BAO joint analysis

We compare here the results adding different datasets of galaxy information to the Planck
DR3 data such as the full shape (FS) of BOSS DR12 pre-reconstructed power spectrum
measurements [66, 67], BAO of BOSS DR12 post-reconstruction power spectrum measure-
ments [68], low-z BAO measurements from SDSS DR7 6dF and MGS [69, 70], Lyα BAO
measurements from eBOSS [71–73], and combination of those including the covariance among
the DR12 datasets.

In figure 11, we show the marginalized posterior distributions of the cosmological pa-
rameters for IG with P18 plus different combinations of the FS and BAO measurements.
We see that the posterior distributions are very robust among the combination considered
and that the addition of FS information to the combination P18+BAO does not change the
marginalized constraints for the models studied here.
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Figure 11. Marginalized joint 68% and 95% C.L. regions 2D parameter space using the CMB P18
data for IG (F = ξσ2) in the phantom branch (Z = −1) in combination with BAO from BOSS DR12
(red), BAO from BOSS DR12/SDSS DR7 6dF-MGS/eBOSS (green), FS plus BAO from BOSS DR12
(orange), and FS plus BAO from BOSS DR12/SDSS DR7 6dF-MGS/eBOSS (blue).
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