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Abstract
Aim: Area and environmental heterogeneity together explain most patterns of species 
diversity but disentangling their relative importance has been difficult. Here, we em-
pirically examined this relationship and parsed their relative importance, and that of 
the heterogeneity— effective area trade- off, at different spatial scales and in different 
spatial representations in simulations.
Location: Alpine grasslands of 23 mountain ranges of southern and central Europe.
Taxon: Vascular plants.
Methods: We developed metrics of climatic and edaphic heterogeneity, using princi-
pal components analyses and the shoelace algorithm, and added elevation range. We 
applied commonality analysis to partition the unique and shared explanation of the 
observed vascular plant species richness among selected metrics. A simulation was 
developed to separate the relative importance of area and heterogeneity at different 
extents and representations of spatial nestedness, and the heterogeneity— effective 
area trade- off was evaluated by altering spatial discreteness.
Results: The explanation of the observed regional richness was shared by area and 
heterogeneity. The simulation revealed that heterogeneity was consistently more 
important, but less so among smaller areas. This qualitative pattern was maintained 
regardless of whether and how nestedness was represented. The heterogeneity– 
effective area trade- off occurred in a few simulations of more discrete habitats.
Main Conclusions: Scale dependence may account for discrepancies among past em-
pirical studies wherein environmental heterogeneity has usually outweighed area in 
the explanation of species richness; and it is not affected by nestedness. The potential 
heterogeneity– effective area trade- off may be limited to locations where the envi-
ronmental heterogeneity is quite discrete or if the added environment is beyond the 
niches of any species in the potential pool. The significant importance of area per se 
in small territories indicates that microrefugia, even with an unlikely full range of het-
erogeneity, will suffer local extinctions in the face of climate change.
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1  |  INTRODUC TION

Explanations of diversity have been variously attributed to area and 
environmental heterogeneity because they are entwined (Triantis 
et al., 2003). Recent studies have argued that heterogeneity is the 
most important component of why diversity increases with area 
(Stein et al., 2014), but the balance of the two factors is uncertain:

“The question is therefore not about whether species 
richness is correlated with area or environmental het-
erogeneity, respectively, but rather about the relative 
importance of the two in explaining species richness.”

Udy et al. (2021).

Area per se is important because more individuals can be di-
vided into more species, each with a minimum population, given the 
basis of a fixed number of individuals per unit area (MacArthur & 
Wilson, 1967). Heterogeneity per se maintains diversity because more 
environments can support more specializations and species, each with 
a minimum population (e.g. Tilman, 2004). These explanations are the 
central elements of the neutral and niche theories of diversity (Chisolm 
& Pacala, 2010), and like many other ecological theories may depend 
on the scale of observations (McGill, 2010; Willis & Whittaker, 2002).

The importance of the area versus environmental heterogeneity 
(AvE) question goes beyond theoretical matters. As an example, the 
potential for species in alpine habitats— and other island- like environ-
ments— to survive climate change depends on the current area, het-
erogeneity of climate, and their effect on diversity relative to climate 
changes. Warming will shift alpine habitats upwards while spatially 
reorganizing them among microsites of current zones (e.g. Engler 
et al., 2011; Körner & Hiltbrunner, 2021; Malanson et al., 2019). The 
total area will be reduced, especially where the highest elevations 
are already occupied or consist of bare rock or ice. During this pro-
cess, increases in local diversity may occur (Steinbauer et al., 2018), 
but an extinction debt will be incurred (Dullinger et al., 2012). The 
amount of debt, and the number of eventual extinctions, will depend 
on AvE: that is, whether heterogeneity is sufficient across enough 
area to support minimum viable populations.

Although the drivers of diversity are known to vary with extent, 
the role of area per se at different extents is seldom differentiated 
(e.g. Wang et al., 2012), The effects of extent and spatial resolution 
on AvE were discussed in depth by Stein et al. (2014). They high-
lighted the collinearity of area and heterogeneity and the entangle-
ment of area and resolution, showing that the effects of resolution 
varied with area and vice versa. They concluded that heterogeneity 
was most important at intermediate extents— perhaps because they 
did not include climate, which is a factor acting at greater extents 
(McGill, 2010).

Scale dependence for patterns related to diversity have been pro-
posed and observed (e.g. Belmaker & Jetz, 2011; Daru et al., 2020; 
Rahbek, 2005; Willis & Whittaker, 2002); thus, we expect the re-
lationship of diversity to area and environmental heterogeneity to 
be scale dependent. The usual species- area curve is steeper among 
small areas than larger ones, which indicates greater sensitivity at 
the small end of the scale (except among very small islands; Triantis 
et al., 2006). The effect of area per se in maintaining diversity is 
through redundancy that provides protection from stochastic ex-
tinctions, and the value of redundancy decreases as area increases. 
Diversity tends to increase linearly with heterogeneity, however 
(see Rosenzweig, 1995 for several examples, for example, his figures 
2.25, 7.8, 8.11, 8.12, 8.22). Because heterogeneity increases with 
area, the influence of the two on diversity will diverge as the area 
examined increases.

The relative importance of AvE to diversity seems to vary be-
tween continental and island systems. For greater areal extent on 
continents, environmental heterogeneity is relatively more im-
portant in explaining species richness in several systems, for ex-
ample, Udy et al. (2021) reported contributions to explanation of 
9% and 12% for area per se globally and in the Palearctic. Studies 
of island systems reported higher relative importance for area per 
se, even while emphasizing environmental heterogeneity, for ex-
ample, Keppel et al. (2016) reported contributions of area at 40% 
and 37% for archipelagoes and individual islands, respectively, and 
Barajas- Barbosa et al. (2020) found that the effects for area were 
double those of any of the 20 heterogeneity metrics that they had 
calculated for oceanic islands. However, even at a larger scale, Udy 
et al. (2021) reported that area explained more diversity within the 
examined biogeographic provinces than it did for global diversity.

Kadmon and Allouche (2007) linked the spatial and niche frame-
works with a complicating trade- off: a heterogeneity— effective area 
trade- off (HEAT); with constant area, increases in heterogeneity 
reduce areas of specific habitats (“effective area”) and specialized 
species will have smaller populations and experience more sto-
chastic extinctions. Thus, a unimodal relationship of diversity with 
heterogeneity can appear in a constant area (Allouche et al., 2012; 
Zhou et al., 2021). This relationship may be affected by the spatial 
resolution or grain of the observations at a given extent. Although 
evidence to the contrary exists (Hortal et al., 2009, 2013), it appears 
that HEAT has a sound theoretical basis (Allouche et al., 2012; Ben- 
Hur & Kadmon, 2020a). Yet, this trade- off could also be an artefact 
of model resolution or spatially discrete habitat patterns (Durrett 
& Levin, 1994) in addition to the niche characteristics of species 
(Sfenthourakis et al., 2021).

Here, we address extent and resolution separately for the ques-
tions of AvE and HEAT in alpine habitats, another type of island sys-
tem wherein the relative importance of area and heterogeneity vary 
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(e.g. Bhatta et al., 2018; Meier & Hofer, 2016), probably because 
of the small size of the plants in relation to small- scale variation in 
microclimates, soil water and disturbance as well as species inter-
actions (Körner, 2003). Most studies have examined diversity as a 
function of environmental variables directly, not to heterogeneity 
per unit area (e.g. at 10– 100 m scale: Jiménez- Alfaro et al., 2014; 
and across mountain ranges: Engler et al., 2011, Winkler et al., 2016). 
Where heterogeneity has been addressed, it was at a specific scale. 
At fine scale (1 m2), Rose and Malanson (2012) reported that topo-
graphic heterogeneity was an indicator of disturbance, not of mi-
croenvironmental variability, which constrained diversity. At 16 m2, 
beta diversity was related to indicators of environmental difference 
(Malanson et al., 2020), and at 1600 m2 both alpha and beta diversity 
were related to microclimatic heterogeneity (Opedal et al., 2015). At 
regional scale, Tordoni et al. (2020) reported the importance of geo-
morphic variation to diversity, and at interregional scale, Jiménez- 
Alfaro et al. (2021) found that topographic ruggedness, which can 
create heterogeneous microclimates and soils, was more import-
ant than any climatic drivers of diversity. At global scale, Testolin 
et al. (2021) examined the standard deviation of environmental vari-
ables within their 26 ranges and found that only the heterogeneity 
of soil pH was important for diversity.

To unravel the relative strengths of area versus environmental 
heterogeneity (AvE) and to determine whether they are scale de-
pendent, we framed the following hypotheses for observed regional 
species richness in 23 alpine regions in southern and central Europe, 
general AvE spatial patterns, and the heterogeneity– effective area 
trade- off (HEAT):

H1: The observed vascular plant species richness, or 
species pool size, is equally related to area and envi-
ronmental heterogeneity.

H2: The relative strengths of AvH are scale depen-
dent, with area more important in smaller areas.

H3: The heterogeneity– effective area trade- off 
(HEAT) is scale dependent and occurs more often in 
smaller areas.

We tested H1 at subcontinental scale with a dataset that has 
been used in previous empirical studies and it is relatively well known 
in terms of vascular plant species richness and related biogeograph-
ical drivers. We further develop a simulation model parameterized 
with those data but representing a full factorial array of heteroge-
neities and areas for three spatial patterns, to test the more general 
H2 and H3 hypotheses. Simulation experiments allow a full factorial 
separation of area and heterogeneity that can illuminate their rela-
tive effects on a gradient of areal extent, and instances of HEAT can 
be investigated relative to model parameterization by changing the 
discreteness of the environment. The simulation addresses the rel-
ative strength of explanations and does not predict actual diversity. 

Connecting the AvE problem to scale dependence will provide a new 
perspective on the understanding of climate change effects on al-
pine diversity, with potential links to questions of current and future 
refugia.

2  |  MATERIAL S AND METHODS

2.1  |  Observed diversity

2.1.1  |  Data sources and variable selection

We used species records for the alpine habitats of 23 mountain 
regions in southern and central Europe (Appendix S1, Appendix 1: 
Figure A1.1). Jiménez- Alfaro et al. (2021) organized these data from 
16,804 relevés (vegetation plots) that were above local treeline. 
Alpine grasslands were identified using Landsat NDVI (detailed ex-
planation in Appendix S1 of Jiménez- Alfaro et al. (2021)). The spe-
cies composition is almost entirely herbaceous and differs between 
calcareous and siliceous substrates, both of which occur in all re-
gions except Corsica. For these legacy data, the sampling size in the 
23 regions was not strictly even, but the vascular plant species rich-
ness, here called the regional richness, was found to represent an 
almost- complete sampling in all regions (Jiménez- Alfaro et al., 2021).

We examined environmental heterogeneity of climatic, edaphic, 
and elevation range (the latter potentially modifying the hetero-
geneity of climate and soils, e.g. Graae et al., 2018). We selected 8 
bioclimatic variables from CHELSA V2.1 (Karger et al., 2017, 2018; 
see https://chels a- clima te.org/wp- admin/ downl oad- page/CHELSA_
tech_speci ficat ion.pdf) for the 30- arcsecond cells (c. 1 × 1 km) of the 
alpine grasslands (49,085 cells). Temperature variables are for 2- m 
above the surface. Of the 19 bioclimatic variables, we excluded: 
wet and dry season temperature and precipitation (4 variables) be-
cause they can use different seasons for different locations; the 
monthly variables (4 variables), which are highly correlated with the 
corresponding quarterly variables; and daily and annual ranges and 
isothermality (3 variables), which are correlated with temperature 
seasonality but do not have a corresponding precipitation variable 
(cf. Booth, 2022; Testolin et al., 2020).

We retained mean annual temperature and precipitation, mean 
temperature and precipitation of the warmest and coldest quar-
ters, and temperature and precipitation seasonality. Mean annual 
temperature and precipitation capture broad differences; warm 
quarter temperature and precipitation emphasize the growing 
season; cold quarter temperature and precipitation include the 
effects of snow; and temperature and precipitation seasonality 
reflect continentality and the mid- latitude vs. Mediterranean cli-
mates. We derived two- dimensional climatic envelopes for each 
of the 23 ranges using principal components analysis (PCA) in 
PC- ORD v.7 (McCune & Mefford, 2016) with a correlation- based 
cross- products matrix of the eight CHELSA bioclimatic variables. 
We assessed the significance of the eigenvectors by using the 
broken- stick method. Two eigenvectors were significant and 
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extracted 72.9% of the variance in the climatic data (Appendix S1, 
Appendix 1: Table A1.1). We plotted the points for the two ei-
genvectors for each range, selected 5– 15 points that outlined the 
distribution, including indentations and excursions but excluding 
individual points that would increase the area by > 10% as outli-
ers, and computed the area of the polygon (labelled ClimG) using 
the shoelace algorithm (Meister, 1769) (Appendix S1, Appendix 1: 
Figure A1.2) (in preliminary analyses, we found that the standard 
deviations of 11 soil and 20 climate variables were not as highly 
correlated with diversity as the metrics used here; Appendix S1, 
Appendix 1: Table A1.2).

For edaphic heterogeneity, we selected 11 variables from 
ISRIC data (https://www.isric.org/). We used data for the upper-
most layer of soil (for all 127,076 records with soil because the 
ISRIC coordinates could not be matched exactly to the grassland 
coordinates; these have a nominal spatial resolution of 250 m) for 
bulk density of the fine earth fraction, cation exchange capacity, 
volumetric fraction of coarse fragments, proportions of clay, silt, 
and sand, total nitrogen, pH, organic content in the fine earth frac-
tion, organic carbon density, and organic carbon stocks. Similar 
to the procedure for the climate data, we ran a PCA of the soils 
data and computed an area in 2D PCA space (SoilsA) (Appendix S1, 
Appendix 1: Figure A1.3), which extracted 63.2% of the variance 
in the soils data, for each mountain range (Appendix S1, Appendix 
1: Table A1.1).

Initially, we examined three indicators of topographic het-
erogeneity. Jiménez- Alfaro et al. (2021) calculated a ruggedness 
index (Rugged), and we added the highest elevation of the range 
(MaxElev) and the difference in elevation between this and the re-
gional treeline (ElevDiff), which they had identified. After prelimi-
nary analyses, we used the latter. We also included two measures 
of isolation, namely the median distance to all other ranges and 
the distance to the 3rd nearest range (the 15th percentile, which 
captures the potential for exchanges with nearby ranges), in initial 
analyses (DistX, Dist3).

2.1.2  |  Analyses of observed diversity

We used the variables as described and their log- transformed val-
ues in initial analyses. After examining correlations between regional 
richness, area and the PCA areas for climate and soils, topography, 
and isolation, we computed a commonality analysis (also referred to 
as “variance partitioning” in multivariate analysis) of regression (Ray- 
Mukherjee et al., 2014) to test our first hypothesis. We used the log of 
area and the climatic and edaphic heterogeneity of the grasslands and 
full regions, respectively (areas in PCA- space) and the untransformed 
topography indicator as independent variables (LogAreaG, LogClimG, 
LogSoilA, ElevDiff where G and A designate data from the grassland 
cells and the full mountain range, respectively); the isolation metrics 
(DistX, Dist3) were not significantly correlated with regional species 
richness and were not used. Commonality analysis allows for the iden-
tification of shared contributions in its explanation of variance.

2.2  |  Simulations

A comparison of different combinations of area and heterogeneity 
configurations using virtual species adapted to an environmental 
gradient can elucidate how diversity responds to control by geog-
raphy vs. environment. We developed a simple spatially explicit 
individual- based model with environmental and spatial variation 
represented on a grid of cells using NetLogo 6.1.1 (Wilensky, 1999). 
We first designed the model as a virtual microcosm of the observed 
areas and heterogeneities in the empirical analysis of the 23 regions 
and then ran the simulation in a more general experimental mode, 
systematically varying heterogeneity and area, still as a microcosm, 
to compare relative areas. After initializing the areas with heteroge-
neity and individuals of virtual species, those individuals reproduce, 
disperse among the cells, and die at each iteration, and the number 
of species at the end of the simulation was tallied. These steps are 
described here and the Overview, Design, Details Protocol recom-
mended by Grimm et al. (2020) is reported in Appendix S1, Appendix 
2, ODD.

2.2.1  |  Initialization

The position of each cell on a single environmental gradient was 
assigned by initializing a fractal pattern across the grid. The fractal 
pattern resembles topography with values of the environmental 
gradient assigned to each cell corresponding to its relative eleva-
tion (Appendix S1, Appendix 2: Figure A2.1). The fractal pattern of 
topography ranged 0– 1, and this value was rescaled to the range of 
environmental heterogeneity, either observed or experimentally 
defined. The range was centred on 0.5 (e.g. for a heterogeneity of 
0.1, the environmental value of the cells ranged 0.45– 0.55). Each 
grid was wrapped into a torus to eliminate edge effects, which 
is computationally more efficient and noting that alpine habitats 
are not distinct islands (obligate alpine species are only 27% of 
the flora of the alpine grasslands in the study area; Jiménez- Alfaro 
et al., 2021).

Each cell is then assigned a response value for each of 100 vir-
tual species. Each species has a Gaussian response function over 
the environmental gradient (illustrated in Appendix S1, Appendix 2: 
Figure A2.2) from which a value is assigned to each cell based on its 
environment. The response of species I at position x on the environ-
mental gradient is

where Ex is the position of the cell on the environmental gradient; 
the mi is the position of the mode of the species on the gradient, 
and σ2 is the standard deviation of the Gaussian function, chosen 
here as 0.001, which produced distributions of regional species rich-
ness (2– 100) spanning nearly the full possible range across all sim-
ulations. Thus, 100 such equations define 100 virtual species. This 
approach follows earlier theoretical models of species distributions 

Rix = e
−
((

(Ex−mi)
2
∕2�2

))
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on environmental gradients (e.g. Gauch & Whittaker, 1976), but 
we recognize that Gaussian functions are not necessarily common 
(Falster et al., 2021).

The values for the distribution of modes and σ were chosen after 
preliminary analyses of four alternatives (see Appendix S1, Appendix 
2: Simulation background, ODD Protocol). First, the modes were 
evenly distributed along the gradient for maximum niche differen-
tiation and σ was constant for all species. Second, all species had 
an identical niche with the mode centered on the gradient; rather 
than demonstrating only effects of area (for which its usefulness 
is limited by extreme competitive exclusion), illustrates HEAT and 
how species parameterization can account for it in models as noted 
by Sfenthourakis et al. (2021). Third, modes were clustered at 10 
evenly distributed points along the gradient and then minor random 
variation was added (limited runs with 2 and 3 clusters further illus-
trated HEAT in preliminary analyses). Lastly, a random distribution of 
modes with minor random variation in σ was included.

Projected regional richness from all versions except the single 
mode were nearly identical (correlations all r > 0.93; Appendix S1, 
Appendix 2: Figure A2.3 and Table A2.1), and we report the first 
approach because it aligns best with past theoretical representa-
tions (MacArthur & Levins, 1967), the species have the potential to 
fill all niches and occupy all locations, and it requires fewer repli-
cate runs. We did not simulate specialist versus generalist species 
which would require further parameterization (e.g. Malanson, 1997); 
Sfenthourakis et al. (2021) noted that this lack can affect modelling 
of the HEAT phenomenon.

A Monte Carlo process was used to initialize the distributions 
of individuals of each species per cell, that is, a species was allotted 
to each active cell if a uniform random number (0– 1) was less than 
their response value for that cell. Then, individuals were randomly 
selected and removed while the number per cell exceeded a carrying 
capacity that varied in the simulations of the regions but was con-
stant in the general experiments.

2.2.2  |  Iterated reproduction and mortality

The models cycle through two procedures at each iteration: repro-
duction with dispersal and mortality. In reproduction with dispersal, 
individuals establish an offspring on a cell in a random direction at 
a random distance of 0– 4 cells. Preliminary analyses found no sig-
nificant differences among different dispersal ranges, and this range 
was retained to simplify the comparisons. Although Ben- Hur and 
Kadmon (2020b) found that dispersal distance could matter in other 
configurations, it is limited in alpine plants (Morgan & Venn, 2017). 
For mortality, individuals were removed at each iteration if a uniform 
random number (0– 1) was greater than their response value for that 
cell. Additionally, individuals were randomly selected and removed 
while the number of individuals per cell exceeded the potential car-
rying capacity. Repeated Monte Carlo reproduction and mortality 
introduced stochasticity. Details of the replications are reported in 
Appendix S1, Appendix 2: Simulation background, ODD Protocol.

2.2.3  |  Observed parameterization

To assess how well the model reproduces the pattern of regional spe-
cies richness among ranges in the study regions, we parametrized the 
model to match our empirical study. The number of cells in each simu-
lation is set as close to the number of square kilometres in the repre-
sented range as possible for a square grid +/− one row (a grid size of 
109 would be represented by a 10 × 11 simulation grid). Random cells 
within the grid were defined as non- habitat to retain only the area of 
alpine grasslands. Thus, the relative areas of the grasslands to the full 
ranges are the same in the simulations as in the observations, but the 
cells are not meant to represent square kilometres. The environmental 
heterogeneity of each range was derived from the climatic, edaphic, 
and topographic variables by weighting the observed heterogeneities 
in the empirical analysis by their relative importance (i.e. 40%, 40%, 
20%, respectively) and assigning a relative heterogeneity (0– 1). We set 
the carrying capacity, i.e. the number of individuals per cell, using 2 as 
the lower limit (Baetic System) and scaling relative to the product of 
warm quarter precipitation and temperature (Appendix S1, Appendix 
2: Table A2.2). This limit and the total of 100 virtual species allows 
efficient computation of the relative species richness among regions 
for statistical analysis; it is not meant to represent the number of indi-
viduals per square kilometre or the number of species per range. We 
correlated the observed and simulated gamma diversities of the 23 
ranges; this pattern of diversity across the ranges, not the absolute 
values, is used to evaluate the simulation.

2.2.4  |  General spatial representations

For the general question of area vs. environmental heterogeneity, we 
evaluated three spatial representations. Square grids wrapped to tori of 
varying size and heterogeneity are the primary representation and are 
styled as islands. Concentric circles within a large grid represent nested 
areas within a mainland. Multiple nested quadrats represent provinces 
within a supercontinent (Appendix S1, Appendix 2: Figure A2.4).

For the islands, we used a full factorial design of 10 areas and 
10 levels of heterogeneity, even though these included unrealistic 
combinations of limited area and high heterogeneity and vice- versa 
for the island representations. We used a sequence of square grids 
of sizes: 100, 400, 900, 1600, 2500, 3600, 4900, 6400, 8100 and 
10,000 cells. The carrying capacity was constant at 9, the mid- point 
of the observed range. For environmental heterogeneity, we use 
ranges of 0.1– 1.0 in increments of 0.1. Ten replications of the 100 
combinations of the squares were run with a new landscape gener-
ated each time. By using the same random number seed, the land-
scapes were the same for all 10 levels of heterogeneity.

For the concentric circles, a sequence of 10 areas were delineated 
within a single large square for each of the 10 levels of environmental 
heterogeneity. The radii of the circles were set to closely approximate 
the same number of cells as the 10 square grids above (100, 4000, … 
10,000 cells). The grid was 112 × 112 cells and the radii of the circles 
were 5.7– 56.42 cells at 5.636 cell increments. This modification allows 
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consideration of the difference in diversity with area that would be 
comparable to increasing areas from a point within a continent versus 
tallying diversity on different islands. The species richness within each 
successive circle was extracted along with the range of environment.

The second nested design divided a single large area (supercon-
tinent) into six provinces. Each of these had four nested quadrats of 
increasing area and then these six were accumulated by two, four, and 
all six provinces giving seven nested areas. For these quadrats, the grid 
was 120 × 80 cells, the provinces were 40 × 40, and the subquadrats 
were at 100, 400, 900 and 1600 cells and the further clusters at 3200, 
6400, and 9600 cells. The species richness and the environmental het-
erogeneity were tallied within each quadrat, province and cluster.

2.3  |  Analyses of simulations

2.3.1  |  Virtual microcosms of the 23 ranges

With the grid sizes and heterogeneities parameterized as micro-
cosms of the 23 ranges, we correlated the simulated regional rich-
ness for each range with the observed species richness reported by 
Jiménez- Alfaro et al. (2021).

2.3.2  |  General experiments

We examined the projected increase of mean regional richness with 
increasing heterogeneity across the 10 areas and the increase of 
mean richness with increasing area across the 10 levels of heteroge-
neity. We interpret the pattern, especially the slopes of regressions 
to fit a function within these groups.

To test our second hypothesis, we used a random forest model 
(RFM; SPSS v29; cf. De'Ath, 2007) with area and environmental het-
erogeneity as continuous variables, which allows a regression ap-
proach and uses accumulated Gini impurities to determine variable 
importance (Akalin, 2021). Next, we divided the data by area into two 
equal subsets (smallest and large) and re- ran the same analyses. We 
analysed RFMs for the islands, concentric circles, and nested quadrats.

2.3.3  |  Heterogeneity– effective area trade- off

For the investigation of HEAT, we reduced the environmental resolu-
tion of the initialization of the environmental gradient on the grids by 
rounding the number of decimal places of Rix to 4, 2, or 1 (the default 
in NetLogo is 16). This modification increased the discreteness of habi-
tats so that we could differentiate discrete vs. continuous heterogene-
ity, which is known to affect system behaviour (Durrett & Levin, 1994). 
It may also elucidate how model design can confound ecological inter-
pretation if it induces more instances of the HEAT (cf. Sfenthourakis 
et al. (2021) for representations of niche). To test our third hypothesis, 
we counted the proportion of simulation runs in which the species 
richness in the most heterogeneous environment (1.0) was lower than 

in any less heterogenous case in the same replication with the same 
random number seed. We also refer to results of preliminary analyses 
with the most discrete habitats and the random distribution of niches 
and to the single niche for all 100 virtual species.

3  |  RESULTS

3.1  |  Observed diversity

The regional species richness of the 23 ranges was significantly 
correlated with several of the spatial and environmental variables 
(Table 1). The highest r values were with the LogAreaG, LogSoilA, 
and LogClimG. When these variables were used in a commonality 
analysis, most of the explained variance was shared among them 
(Table 2). However, if the shared partitions of the variance explained 
(61% of the 75%) is allotted among the four independent variables 
(e.g. 0.017 of the 0.051 of s124 is tallied with each of area, climate, 
and elevation difference), area is the largest single contributor with 
a total of 33% (43% of the explained variance) (Figure 1). Our first 
hypothesis is supported, but a greater role for area is indicated.

3.2  |  Simulations

3.2.1  |  Observed diversity

The species richness in the simulations of the 23 ranges was sig-
nificantly correlated with the observations (r = 0.725, p < 0.001; 
Appendix S1, Appendix 3: Table A3.1).

TA B L E  1  Correlations (Pearson r) between the regional richness 
of 23 mountain ranges in southern and central Europe and selected 
environmental values.

Environmental variables Richness

AreaG 0.586

LogAreaG 0.840

ClimG 0.675

LogClimG 0.842

Rugged 0.347

MaxElev 0.303

ElevDiff 0.555

LogElevDiff 0.224

SoilA 0.660

LogSoilA 0.725

DistX −0.248

Dist3 −0.109

Abbreviations: G, grassland, not the entire range; ClimG, climate 
heterogeneity of grassland area; MaxElev, elevation of highest peak of 
the range; ElevDiff, elevation of highest peak minus that of treeline; 
SoilA, heterogeneity of soils of the range; DistX, median distance to 
other ranges; Dist3, distance to the third nearest range.
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3.2.2  |  General spatial representations

The regional richness across the standard experiments using islands 
(independent tori) varied by both area and environmental heteroge-
neity but was more sensitive to the latter (Figure 2a,b; Appendix S1, 
Appendix 3: Table A3.2). The projected increases of mean regional 
richness, with increasing heterogeneity but constant area, were best 
represented by linear functions, whereas the increases of mean 

richness with increasing area but constant heterogeneity were fit by 
logarithmic functions (Figure 2a,b; Appendix S1, Appendix 3: Table 
A3.2). The sequence of slopes in each level of area or heterogeneity 
(from left to right in Figure 2a,b), however, are best fit by a logarith-
mic function for area but by a linear function for levels of heteroge-
neity (Figure 3a,b); the R2s are identical at 0.997.

The simulation results supported our second hypothesis. The 
RFM for the complete simulation results for the island tori, con-
centric circles, and nested quadrats revealed more contribution to 
the variance of regional richness from environmental heterogene-
ity than from area (Figure 4; RFM details in Appendix S1, Appendix 
3: Table A3.3). When the simulation results were divided between 
the smaller and larger areas, the relative contributions among the 
smaller ones were similar with slightly increased error. Among the 
larger areas, the importance of area was reduced, and heterogene-
ity accounted for more than 90% of the variance. The importance 
of heterogeneity was greater for the concentric circles than for 
the island tori and nested quadrats because the heterogeneity was 
calculated for each concentric circle and so the records were not 
independent given that the range of heterogeneity was from 10 

TA B L E  2  The unique (u) and shared (s) contributions of the four 
independent variables (1: LogAreaG, 2: LogClimG, 3: LogSoilA, 4: 
ElevDiff) to the explanation of variance in regional species richness 
determined by commonality analysis.

Independent variables %variance

u1 (area) 0.107

u2 (climate) 0.011

u3 (soil) 0.014

u4 (elevation diff) 0.010

s12 0.045

s13 0.151

s14 −0.009

s23 0.001

s24 −0.006

s34 0.003

s123 0.100

s124 0.051

s134 0.007

s234 −0.001

s1234 0.264

Note: Negative values indicate suppressor effects.

F I G U R E  1  The proportion of variance in regional species 
richness partitioned to the independent variables in commonality 
analysis of regression showing the unique (U) and shared (S) 
contributions. Here, the shared partitions in Table 2 were each 
divided among the contributing variables equally, and error is the 
unexplained variance.

F I G U R E  2  The regional species richness of the individual island 
simulations with (a) the 10 levels of environmental heterogeneity 
plotted over the 10 areas and (b) the 10 areas plotted over the 10 
levels of environmental heterogeneity. The error bars show the 
95% CI. The patterns in (a) are consistently linear, while those in (b) 
are logarithmic.
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landscapes while those for islands and provinces were from 100 and 
60 different landscapes, respectively.

3.2.3  |  HEAT

In preliminary analyses with all species having identical niches in the 
middle of the environmental gradient, regional richness decreased 

with increased environmental heterogeneity at all simulated areas, and 
the unimodal pattern presented by Allouche et al. (2012) is evident 
with 2 and 3 clusters (Appendix S1, Appendix 3: Figure A3.1). As noted 
by Sfenthourakis et al. (2021), these are model- selected instances of 
species being specialists relative to the environmental gradient.

Reducing the environmental resolution of the environment re-
sulted in a decrease in regional richness with an increase in envi-
ronmental heterogeneity, that is, evidence of HEAT, in a few cases 
among the smaller areas (100– 2500 cells), never in the larger areas 
(3600– 10,000 cells), thus supporting our third hypothesis. Among 
the smaller areas, it had a unimodal distribution, peaking at 35% of 
the simulation runs with an area of 200 and a resolution of 2 decimal 
places. HEAT was less frequent at even lower resolution and smaller 
areas because overall species richness was low, often a single spe-
cies. The largest area and smallest resolution at which it occurred 
was for 2500 cells and 16 decimal places where the overall species 
richness was much higher and the stochastic loss of a species among 
the replicates was more likely. HEAT was not evident in preliminary 
simulations with a random distribution of niche modes (Appendix S1, 
Appendix 3: Figure A3.1).

4  |  DISCUSSION

Although environmental heterogeneity and area can be unified 
(Triantis et al., 2003), differentiating their separate and shared ef-
fects on diversity is an important goal (Ben- Hur & Kadmon, 2020b; 
Udy et al., 2021). In our observations and simulations for European 
alpine vascular plant species richness, we found that heterogene-
ity is more important than area per se, which is the case for many 
systems worldwide (Stein et al., 2014; Udy et al., 2021), but because 
of collinearity, the effects are difficult to separate in observational 
data. The relative importance of area and environmental heteroge-
neity in explaining diversity in simulations varied with the extent 
represented. Such scale dependence is expected, but its recogni-
tion can elucidate differences among studies and has implications 
for conservation.

4.1  |  Relative influence of area and heterogeneity

In our study system, alpine regional pools are related to his-
torical as well as spatial context and topographic ruggedness 
(Jiménez- Alfaro et al., 2021) and beta diversity is scale depend-
ent (Malanson, Pansing, et al., 2022). To these reports, we add 
that regional species richness is better correlated to additional 
measures of heterogeneity of the environment than to indicators 
of its direct effect, explaining why most of the explanation was 
partitioned to shared contributions. The unique and shared com-
ponents of climatic, edaphic and topographic heterogeneity, when 
taken together, exceeded that of area (0.423 vs. 0.304). However, 
the unique contribution of area to regional richness was seven 
times greater than any of the single measures of heterogeneity for 

F I G U R E  3  Regressions of each of the 20 groups in Figure 2 
(a) Environmental heterogeneity over area and (b) area over 
environmental heterogeneity: the slopes are fit by logarithmic and 
linear functions, respectively.

F I G U R E  4  The relative importance of area and environmental 
heterogeneity to the Random Forest Model for the island tori (T), 
the concentric circles (C), and the nested provinces (P) when the 
data of all simulations are together or divided into the small and 
large areas represented in the simulations.
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climate, soils, and topography, and it is their shared contribution 
to explanation –  much of which includes area –  that makes them 
important in our analysis.

Minor differences in their contribution to regional richness were 
found for indicators of climatic, edaphic, and topographic heteroge-
neity. These variables had high multicollinearity, and their effects 
could not be fully teased apart from the observations of 23 ranges. 
However, the simulation model, which provided a reasonable ap-
proximation of the pattern of relative diversity among the mountain 
ranges given its simplicity, separated the effects of area and hetero-
geneity. The stronger contribution of heterogeneity in the simula-
tions is expected, given that the design embodies the niche theory 
of diversity, and yet, area was a consistent driver.

The effects of area are scale dependent because stochasticity is 
relatively more important in small areas. Small differences in simula-
tion area, from 100 cells to 2500 cells, changed the regional richness 
significantly, from an average of 11 to 33 species (across all levels of 
heterogeneity), while a change from 3600 to 10,000 cells changed 
slightly— 35 to 44 species. In contrast, the change from an environ-
mental heterogeneity of 0.1 to 0.5 was 10 to 28 species and from 
0.6 to 1.0 it was 33 to 54 species— a difference of 59% vs. 17%. The 
results in Figure 3a,b further reveal how the effects of environmen-
tal heterogeneity per se, as a driver of regional richness, decreases 
as area increases while the effects of area continue to increase with 
greater heterogeneity.

The same pattern of a stronger effect of area in provinces than 
globally (and on islands than mainlands) can be explained by redun-
dancy or the lack thereof. Area was relatively more important than 
heterogeneity in our representation of islands versus fully nested 
areas in mainlands. Heterogeneity dominated explanation in fully 
nested areas on mainlands simulated as concentric circles, but area 
was more important for regional richness in both other representa-
tions: provinces within a supercontinent (nesting is separate within 
provinces and then accumulates at province- to- supercontinent 
scale) and islands (non- nested areas). Given that the representation 
of provinces within a mainland had results more similar to those of 
islands than concentric circles, we conclude that the role of area was 
less relevant in a clearly nested analysis. In the nested concentric 
circles, the same environment was expanded incrementally, and re-
dundancy was duplicated, but while this happens within provinces 
the further accumulation of provinces in a supercontinent adds new 
heterogeneity. Our results indicate that this was simply because the 
importance of redundancy decreases as it is more common.

Focusing only on the most correlated combinations of area and 
heterogeneity (i.e. both low to both high, e.g. Stein et al., 2014), area 
and heterogeneity are nearly equal in importance in RFMs and without 
scale dependence. Thus, the importance of heterogeneity and scale 
dependence in the full factorial experiments depended on instances 
of low area and high heterogeneity and/or vice- versa. While the two 
factors are highly correlated within a specific system, they may be less 
correlated with a broader range of environments, and heterogeneity is 
relative to the taxa. For example, alpine grasslands may have greater 
environmental heterogeneity in a small area than would steppe, and 

chalk grasslands support greater specialization than either of those 
(e.g. Erdős et al., 2018; Zobel, 1992). Where area and heterogeneity 
covary closely, there is little scope for high heterogeneity to maintain 
diversity in small areas or for low heterogeneity to suppress it in large 
areas, and the inverse is also true. In the simulation experiments, how-
ever, the two factors did not have identical influences. The nearly lin-
ear response of species richness to heterogeneity within levels of area 
(Figure 3a) contrasted with the logarithmic response to area within 
heterogeneity (Figure 3b) (cf. Rosenzweig, 1995, as noted above)— and 
the difference between these two was greatest where either was small 
(the left- most patterns in Figure 2a,b).

Our preliminary analyses corroborate the reasoning of 
Sfenthourakis et al. (2021) on the influence of the representation of 
species niches on environmental gradients on the phenomenon of 
HEAT. Our simulation also illustrated that this phenomenon can be 
a function of the discreteness of the representation of the environ-
mental gradient. HEAT occurred in some simulations with a limited 
number of discrete habitats, but this depended on our representa-
tion of niche and so was a limited model result. Whether HEAT will 
occur in nature will be complicated by actual spatial patterns (Tews 
et al., 2004). Lastly, lack of HEAT in our smallest simulated areas may 
be because area and heterogeneity are decoupled (e.g. Triantis & 
Sfenthourakis, 2012).

4.2  |  Implications for conservation

Most of the area of the alpine sky- island grasslands of our study sys-
tem will be outside their current climate envelopes by 2100, with worst 
cases in the smaller regions (Malanson, Testolin, et al., 2022). Even if 
microrefugia, which could mitigate some impacts of climate change on 
diversity (Körner & Hiltbrunner, 2021; Randin et al., 2009), maintain het-
erogeneity, our results indicate that a substantial proportion of diversity 
depends on area per se among small islands, and microrefugia, being 
micro, cannot provide the redundancy that supports higher diversity. 
Concurrent losses of heterogeneity and increases in habitat discreteness 
will exacerbate the potential loss of species. In the smaller ranges, where 
losses of alpine grassland climate area will be proportionally greatest, the 
impact on diversity will be dire. Further investigations of scale depend-
ence between areas of microrefugia and the extent of mountain ranges 
is needed to guide mitigation efforts (Balantic et al., 2021). Responses 
will need to combine local and regional factors and the combined effect 
of area and environmental heterogeneity as the best approach to the 
impacts of projected climate change on diversity.
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