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Motor improvements, such as faster movement times or increased velocity, have been associated with reward magnitude in determin-
istic contexts. Yet whether individual inferences on reward probability influence motor vigor dynamically remains undetermined. We
investigated how dynamically inferring volatile action-reward contingencies modulated motor performance trial-by-trial. We conducted
three studies that coupled a reversal learning paradigm with a motor sequence task and used a validated hierarchical Bayesian model
to fit trial-by-trial data. In Study 1, we tested healthy younger [HYA; 37 (24 females)] and older adults [HOA; 37 (17 females)], and
medicated Parkinson’s disease (PD) patients [20 (7 females)]. We showed that stronger predictions about the tendency of the action-
reward contingency led to faster performance tempo, commensurate with movement time, on a trial-by-trial basis without robustly
modulating reaction time (RT). Using Bayesian linear mixed models, we demonstrated a similar invigoration effect on performance
tempo in HYA, HOA, and PD, despite HOA and PD being slower than HYA. In Study 2 [HYA, 39 (29 females)], we additionally
showed that retrospective subjective inference about credit assignment did not contribute to differences in motor vigor effects. Last,
Study 3 [HYA, 33 (27 females)] revealed that explicit beliefs about the reward tendency (confidence ratings) modulated performance
tempo trial-by-trial. Our study is the first to reveal that the dynamic updating of beliefs about volatile action-reward contingencies
positively biases motor performance through faster tempo. We also provide robust evidence for a preserved sensitivity of motor vigor
to inferences about the action-reward mapping in aging and medicated PD.
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Significance Statement

Navigating a world rich in uncertainty relies on updating beliefs about the probability that our actions lead to reward. Here,
we investigated how inferring the action-reward contingencies in a volatile environment modulated motor vigor trial-by-trial
in healthy younger and older adults, and in Parkinson’s disease (PD) patients on medication. We found an association
between trial-by-trial predictions about the tendency of the action-reward contingency and performance tempo, with stronger
expectations speeding the movement. We additionally provided evidence for a similar sensitivity of performance tempo to the
strength of these predictions in all groups. Thus, dynamic beliefs about the changing relationship between actions and their
outcome enhanced motor vigor. This positive bias was not compromised by age or Parkinson’s disease.

Introduction
The prospect of obtaining rewards invigorates motor perform-
ance, with incentives leading to faster and more accurate move-
ments (Summerside et al., 2018; Sedaghat-Nejad et al., 2019;
Codol et al., 2020). Several nonmutually exclusive mechanisms
have been proposed to account for the beneficial effects of
reward on movement. These include the reward-driven strength-
ening of motor representations at the cortical level (Galaro et al.,
2019; Adkins and Lee, 2021), enhanced feedback-control proc-
esses (Padmala and Pessoa, 2011; Carroll et al., 2019; Manohar et
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al., 2019), increased limb stiffness (Codol et al., 2020), and coarti-
culation (Sporn et al., 2022; Aves et al., 2021). Despite the grow-
ing number of studies demonstrating how rewards positively
bias motor behavior, the evidence so far is limited to simple
manipulations of reward magnitude (presence/absence; large/
small). Yet, in our everyday life, we are exposed to environments
rich in uncertainty, where adaptive behavior relies on estimating
the changing relationship between actions and their outcomes.
How beliefs about the probabilistic structure of reward contingen-
cies modulate motor performance remains largely unexplored. In
addition, whether this modulation is compromised with age and
in neurologic conditions is unclear.

Hierarchical Bayesian inference models explain how individ-
uals learn and make decisions under uncertainty (den Ouden et
al., 2010; Feldman and Friston, 2010). On a neural level, process-
ing uncertainty and updating beliefs about action-reward contin-
gencies likely involves the anterior cingulate cortex (ACC; Behrens
et al., 2007; Hayden et al., 2011), medial prefrontal cortex (mPFC;
Rouault et al., 2019), and orbitofrontal cortex (OFC; Rolls et al.,
2022). In multi-armed bandit and reversal learning tasks, these
models describe learning as governed by inferences on the proba-
bilistic stimulus-outcome mappings, as well as higher-level beliefs
about the rate of change of these contingencies over time, labeled
volatility (de Berker et al., 2016; Sheffield et al., 2022). In Bayesian
predictive coding, beliefs about the probable causes of sensory
data are updated via prediction errors (PEs) weighted by uncer-
tainty or precision (Friston et al., 2014; Mathys et al., 2014).
Thus, dynamic estimates of uncertainty allow for the
expression of individual differences in belief updating. If
motor vigor is modulated by beliefs about the action-reward
contingencies, then individual differences in uncertainty esti-
mates could explain differences in motor vigor. Alternatively,
under equivalent signatures of decision-making behavior, indi-
viduals could exhibit differential sensitivity of motor perform-
ance to the expectation of reward probability.

We tested these hypotheses in three behavioral studies that
used a reward-based motor decision-making task based on
a reversal learning paradigm with changing stimulus-out-
come contingencies over time.

In the first study, we investigated whether dynamic pre-
dictions about volatile action-reward contingencies influence
motor sequence performance trial-by-trial. We additionally
assessed whether the sensitivity of motor performance to the
strength of these expectations undergoes changes in later
stages of life and in patients with Parkinson’s disease (PD)
on their dopamine-replacement medication. This is moti-
vated by the lack of evidence regarding how reward sensitiv-
ity and reversal learning interact to modulate motor vigor in
PD and older adults. On the one hand, evidence supports
preserved sensitivity to rewards and probabilistic learning in
aging and medicated PD (Fera et al., 2005; Euteneuer et al.,
2009; Aves et al., 2021). Yet other work suggests impover-
ished decision-making and reward-based learning in both
groups. Specifically, aging and medicated PD can underper-
form in tasks using volatile probabilistic stimulus-outcome
mappings (Cools et al., 2001; Eppinger et al., 2011; Nassar et
al., 2016). However, the medication effects on decision-mak-
ing in PD (on/off states) is still under debate (Ryterska et al.,
2013; Kjær et al., 2018). Accordingly, whether aging and medi-
cated PD can use their dynamic belief estimates to invigorate
motor performance trial-by-trial remains unspecified.

In the second study, we evaluated the potential contribution
of retrospective subjective inferences about credit assignment to

explain the motor vigor results. Last, we assessed how explicit
beliefs about the reward tendency (confidence ratings) modu-
lated motor performance trial-by-trial. This aimed at providing a
more comprehensive understanding of the motor invigoration
effect by beliefs about volatile reward probabilities.

Materials and Methods
Participants
All studies received ethical approval by the review board of Goldsmiths
(healthy sample), University of London, and the Neurology Clinic,
Padua University Hospital [Parkinson’s disease (PD) sample]. Informed
consent was acquired for each participant. Healthy younger (HYA)
and older adults (HOA) were recruited through online advertisement
and via the Research Participation Scheme (RPS) at Goldsmiths University,
while PD were enrolled at the Neurology Clinic, Padua University Hospital.

Study 1
A total of 37 HYA (24 females, age 18–40, mean age 27.8, SEM 0.67;
hereafter, we follow the intrinsic measures of precision for rounding de-
scriptive and inferential statistics as reported by Cousineau, 2020), 20
PD patients (7 females, age 40–75, mean age 58.9, SEM 1.32), and an
age-matched group of 37 HOA (17 females, age 40–75, mean age 61.5,
SEM 1.25) participated in this research. The sample size for healthy sam-
ples was informed by previous work assessing differences between HYA
and HOA in decision-making under uncertainty (de Boer et al., 2017;
N=30, 30) and our own work assessing group effects in parameters of
hierarchical Bayesian models (Hein et al., 2021; Hein and Herrojo Ruiz,
2022; N=20, 20). We increased the sample size to allow for variability
being introduced because of the nature of the online study.

All participants were right-handed, had normal or corrected vision
and were able to perform controlled finger movements. Amateur/profes-
sional pianists and participants diagnosed with a mental health disorder
were excluded from the study. Additionally, exclusion criteria for PD
patients were: implanted with deep brain stimulation (DBS), taking anti-
depressant medications, diagnosed with dementia and displaying tremor
as an onset symptom. One PD patient declared to take Laroxyl, yet con-
firmed not to be diagnosed with depression. PD were evaluated through
ITEL-Mini Mental State Examination (ITEL-MMSE; Metitieri et al.,
2001), Unified Parkinson’s Disease Rating Scale part III (UPDRS-III;
Fahn and Elton, 1987), Hospital Anxiety and Depression Scale (HADS;
Zigmond and Snaith, 1983), and State-Trait Anxiety Inventory (STAI
Y2; Spielberger et al., 1983). Supplementary disease-related information
was also gathered (Table 1). Patients completed the experiment in the
ON medication state according to their usual dopamine-replace-
ment treatment. The individual dopaminergic medication details
were collected and converted to a levodopa-equivalent daily dose
(LEDD) value (Table 1).

All participants took part in the study remotely (online), except for
five PD patients, who completed the study in the laboratory facilities of
the Neurology Clinic of Padua. An Italian translation of the original ex-
perimental instructions in English was created to test some of the HOA
participants (N=24) and all PD patients (for details on our control analyses
to assess the effect of the language of the instructions, see Results). The pre-
viously validated Italian translations of the HADS, ITEL-MMSE, UDPRS-
III, and STAI Y2 scales were used. HYA and HOA participants received a
monetary compensation of £5 (e5 for those completing the task in Italian),
which could be increased up to £10 (e10) as a function of their task per-
formance. PD patients did not receive a monetary prize, in line with the
clinical research policies at the Neurology Clinic of Padua.

Study 2
A separate sample of 39 HYA took part in Study 2, which was aimed at
evaluating the potential contribution of subjective inferences about task-
related reward (credit) assignment to explain our results (McDougle et
al., 2016). HYA participants in this experiment were divided into two
subsamples as a function of their reply (True/False) to a post-perform-
ance question (Q8; Table 2). Group Q8T consisted of 26 participants (18
females, age 18–40, mean age 24.1, SEM 1.13) and Q8F of 13 participants
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(11 females, age 18–40, mean age 25, SEM 1.7). The same inclusion/
exclusion criteria and compensation as for HYA in Study 1 applied.

Study 3
For Study 3, we recruited 33 HYA (27 females, age 18–40, mean age
22.4, SEM 1.14) with the aim of understanding how trial-by-trial explicit
confidence ratings about action-reward contingencies modulate motor
performance. The same inclusion/exclusion criteria and compensation
as for HYA in Study 1 applied.

Experimental design
In Studies 1 and 2, the experiment ran completely online on the Qualtrics
platform (https://www.qualtrics.com) and was accessible through a study

link. The task was programmed in JavaScript and embedded into the
Qualtrics form. We provide more details of the data acquisition below
(see Acquisition of online data using JavaScript).

Participants performed a novel computerized reward-based motor
decision-making task based on a reversal learning paradigm with chang-
ing stimulus-outcome contingencies over time (de Berker et al., 2016).
Participants were instructed to play one of two sequences of finger
movements on a virtual piano to express their decision, which is an
extension of standard reversal learning and decision-making tasks that
instruct participants to manifest their choice by pressing a right or left
button (Hein et al., 2021).

The task consisted of a familiarization and a reward-based learning
phase. In the familiarization phase participants learned how to play two
short sequences (seq1 and seq2) of four finger presses each. Each
sequence was uniquely represented by one of two different fractal images
(Fig. 1A). They were asked to position their right hand on the keyboard
as follows: index finger on “g” key, middle finger on “h” key, ring finger
on “j” key, and little finger on “k” key. Each key press reproduced a dis-
tinct auditory tone, simulating a virtual piano. Participants were trained to
press “g-j-h-k” for seq1 (red fractal) and “k-g-j-h” for seq2 (blue fractal).
These sequences of key presses corresponded to the “E”, “G”, “F”, “A”
notes and “A”, “E”, “G”, “F” notes on the virtual piano keyboard, respec-
tively. Online videos showing the correct hand position on the keyboard
and how to perform the two sequences were provided to increase interin-
dividual consistency. The familiarization phase terminated when an
error-free performance was achieved for five times in succession for both
sequences. The number of sequence renditions during familiarization
was recorded and used for subsequent analyses.

The reward-based learning phase consisted of 180 trials. On each trial,
participants were instructed to choose between two colored fractals (blue and
red) and correctly play the associated sequence (seq1 and seq2) to receive a
reward (five points; Fig. 1B). Trial-by-trial reward feedback about partici-
pants’ choices was provided on the screen (binary: “You earned 5 points!”
or “You earned 0 points”). The reward probability associated with each
sequence (or icon) changed every 30–42 trials (as in de Berker et al., 2016).
The mapping governing the likelihood of sequences being rewarded was re-
ciprocal [p(win|seq1)=1-p(win|seq2)] and consisted of five stimulus-

Table 1. PD clinical information

Patient # Age
UPDRS
III ON

ITEL-
MMSE

STAI
Y2 HADS_A HADS_D

Disease
duration
(years)

Main
symptom

Most
impaired side

Last drug
intake
(min) LEDD Active substance

1 57 38 22 51 6 3 10 R/B SX 30 920 Benserazide, levodopa, rasagiline, ropinirole
2 46 17 22 40 10 16 7 R SX 75 1197 Carbidopa, entacapone, levodopa
3 53 10 22 42 7 5 4 R/B DX 120 100 Rasagiline
4 63 6 22 25 4 2 3 B DX 720 50 Selegiline
5 57 6 22 33 7 7 2 R DX 120 300 Benserazide, levodopa
6 53 22 19 53 9 8 23 R/LE BOTH 130 420 Carbidopa, levodopa, rotigotine
7 62 24 22 33 4 3 11 T DX 120 1105 Benserazide, levodopa, pramipexole
8 62 6 22 28 3 5 8 R/B/D DX 75 450 Carbidopa, levodopa, opicapone, selegiline
9 62 17 22 25 4 3 8 T SX 100 652 Benserazide, levodopa, pramipexole, selegiline
10 69 7 21 45 5 6 3 B SX 120 300 Benserazide, levodopa
11 58 7 20 31 5 1 9 R DX 30 970 Amantadine, carbidopa, entacapone, levodopa,

pramipexole
12 54 25 19 32 2 5 7 R SX 40 1780 Benserazide, levodopa, rasagiline, rotigotine
13 66 16 19 34 4 10 12 R/B DX 150 1580 Amantadine, carbidopa, levodopa, opicapone,

pramipexole, safinamide
14 53 21 22 44 5 5 8 R BOTH 5 320 Ropinirole
15 55 4 22 37 4 1 2 R/T DX 30 452 Benserazide, levodopa, pramipexole, rasagiline
16 69 13 20 35 1 0 7 B SX 437 470 Benserazide, levodopa, ropinirole, selegiline
17 65 5 21 26 1 7 16 R/B SX 360 1001 3.9 ml/h

levodopa infusion gel
Levodopa, opicapone, pramipexole, trihexyphenidyl

18 59 7 21 37 2 4 2 R/B SX 5 150 Carbidopa, levodopa
19 58 8 22 30 1 4 5 R/T DX 100 452 Benserazide, levodopa, pramipexole
20 56 17 22 40 6 8 6 R DX 185 1110 Amantadine, benserazide, levodopa, pramipexole

Mini Mental State Examination (MMSE) predicted score = 1.01� ITEL-MMSE score 1 5.16; Unified Parkinson’s Disease Rating Scale part III ON medication (UPDRS III ON); State-Trait Anxiety Inventory, Form Y2 (STAI Y2);
Hospital Anxiety and Depression Scale, anxiety subscale (HADS_A); Hospital Anxiety and Depression Scale, depression subscale (HADS_D); rigidity (R); bradykinesia (B); lack of energy (LE); tremor (T); dyskinesia (D); levodopa-
equivalent daily dose (LEDD).

Table 2. Post-performance questionnaire

Please, indicate whether the following statements are True or False.
Please note that performance errors mean pressing the wrong key(s) or key(s) in the
wrong order, while bad choices mean playing a sequence that received no points on that
attempt.

1. I made fewer than 10 performance errors [True/False]
2. I made between 10 and 30 performance errors [True/False]
3. I made more than 30 performance errors [True/False]
4. I recognized a performance error, because the tone sounded different from expected
[True/False]

5. I recognized a performance error, because the finger movement felt different [True/
False]

6. I memorized the sequences focusing on the finger movements, without paying atten-
tion to the tones [True/False]

7. I memorized the sequences focusing both on the finger movements and the tones
[True/False]

8. I could always distinguish whether 0 points reflected a performance error or a bad de-
cision [True/False]

9. I was often not sure whether 0 points reflected a performance error or a bad decision
[True/False]

Post-performance questionnaire included in Study 2. Question 8 (Q8) is aimed at evaluating subjective infer-
ences about the task-related credit assignment.
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outcome contingency blocks (90/10, 70/30, 50/50, 30/70, 10/90; Fig. 1C). The
order of the contingency blocks was randomly generated for each participant.

After the first key press, subjects had up to 5000 ms to perform the
sequence, terminating in a Stop signal. Participants had no constraints on

initiating the sequence. Thus, reaction time (RT) included deliberation time,
which reflects the time for deciding which sequence to play. Visual hints
suggesting the first key to press for both sequences were displayed: “It starts
with a “g”” for seq1 (red fractal); “It starts with a “k”” for seq2 (blue fractal).

Figure 1. Task structure. A, In the task familiarization phase, participants learnt to play two sequences associated with two images (red fractal, seq1 “g-j-h-k”; blue fractal, seq2 “k-g-j-h”).
B, On each trial of the reward-based learning phase, subjects decided which sequence to play to get the reward. The two icons were always either red or blue and presented to the left or right
part of the screen, respectively. First, participants made a prediction about which sequence (associated to the corresponding icon) was more likely to give them a reward. When a decision was
reached, they played the corresponding sequence using the keyboard. Finally, the outcome (win15p or 0p) was revealed. In the example, the participant played seq1 and obtained five points,
suggesting correct prediction and execution. In Study 3, participants were instructed to rate how certain they were of being rewarded on each trial after they performed their chosen sequence.
Confidence ratings were provided by typing any number between 0 and 99 (not shown in the figure). C, Displays the typical subject-specific mapping of probabilistic stimulus-outcome contin-
gency over the course of 180 trials. In the example, the order of reward mappings for the blue icon (and corresponding seq2) is 10–50–30–90–70% (reciprocal for red icon and corresponding
seq1). In order to obtain the maximal reward, participants needed to track these changes and adapt their choices throughout the experiment. D, The trial by trial changes in performance tempo
in milliseconds (mIKI; mean interkeystroke-intervals; for further details, see Behavioral and computational data analysis) for healthy younger adults (HYA; light blue), healthy older adults (HOA;
dark blue), and patients with Parkinson’s disease (PD; in purple) across 180 trials in Study 1. Black dots represent the trial-by-trial within-group averages of performance tempo. Bars indicate
95% interval probabilities. Participants tended to play the sequences faster toward the end of the experiment, possibly reflecting a practice effect.
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Participants were instructed to press key “q” if they needed a reminder of
the order of finger presses for each sequence. No participant required this
reminder. As soon as participants completed the sequence within the allot-
ted 5000 ms, the feedback was displayed.

Correctly playing the rewarded sequence added five points to the par-
ticipants’ total score (win trial). Thus, receiving five points indicated that
participants chose the rewarded sequence on the trial and did not make
performance execution errors when playing it. Zero points, however,
could reflect participants choosing an unrewarded sequence on that trial
or, alternatively, choosing a rewarded sequence but performing it incor-
rectly (performance execution error; McDougle et al., 2016). No reward
was provided when sequence performance exceeded the 5000-ms limit
(no response trial) and participants were informed they played too slowly.

Thus, to maximize the total cumulative points over the experiment,
participants had to infer the probability of reward associated with each
sequence and adapt their choices when contingencies changed. They
also had to perform the sequences correctly. Participants were informed
at the beginning of the experiment that the stimulus-outcome mapping
would change from time to time. However, they received no detailed in-
formation regarding the frequency or magnitude of those changes. We
validated that each participant group completed the task correctly using
two measures: (1) the percentage of trials that they performed either
seq1 or seq2 (percPlayed); and (2) percPlayed by contingency phase. In
the first case, percPlayed was used to demonstrate that participants did
not have a preference toward one of the sequences, which could emerge
if they perceived one sequence to be easier with regard to their motor
skills. On average, we expected percPlayed to be 50% for each sequence
type. Next, (2) was used to assess whether their chosen sequences tracked
the contingency changes over time. To compute percPlayed by contin-
gency phase, we estimated the rate of choosing seq1 in each contingency
phase, separately in each participant. We then pooled these data across
participants in each group, sorted by phases of increasing contingency
values [0.1, 0.3, 0.5, 0.7, 0.9], as defined for seq1. See further details below
(Behavioral and computational data analysis and Results).

In Study 2, we additionally asked participants at the end of the
reward-based learning phase to reply to some questions about their per-
formance. Similarly to Study 1, RT included deliberation time, as there
were no constraints on initiating the sequence. We were particularly
interested in assessing whether participants could correctly infer what
zero points meant, that is, whether they could distinguish between a per-
formance execution error or a decision to play a sequence that was unre-
warded on the trial. Both scenarios would result in zero points. We
reasoned that participants who could not always infer the meaning of
zero might show a reduced invigoration effect. Table 2 lists the questions
of the post-performance questionnaire, which required binary responses
(True/False) and was designed based on previous work (McDougle et al.,
2016; Herrojo Ruiz et al., 2017). The binary answer to Question 8 “I could
always distinguish whether 0 points reflected a performance error or a
bad decision” was used as criterion to split the control sample into Q8T
(i.e., participants were always sure about the hidden causes for the lack of
reward) and Q8F (i.e., participants were not always sure about the hidden
causes for receiving zero points). Among other questions, participants
were asked whether the subjective number estimate of performance
errors was,10, between 10 and 30 or.30. This information was used to
investigate whether Q8T and Q8F differed in the rate of subjective execu-
tion errors. The rationale here was that Q8F participants relative to Q8T
could attribute more zeros to performance errors rather than inferring
that their choice was not rewarded on that trial. Alternatively, they could
misattribute zeros to bad decision outcomes. In both cases, their biased
credit assignment would be reflected in a more pronounced difference
between estimated and empirical error rates in Q8F. However, their belief
updating would differ; in the first case, Q8F participants relative to Q8T
would not update their beliefs following a zero outcome, as this would be
rendered as not informative feedback regarding the underlying probabil-
istic structure. Thus, differences in credit assignment could explain varia-
tion in decision-making and, potentially, associated motor vigor effects.
Finally, we also assessed the strategy that participants used to memorize
the sequences (79.5% of participants declared to have memorized the
sequences focusing both on the finger movements and the tones; Q7).

In Study 3, we conducted an offline version of the task described
above. The paradigm was coded in psychtoolbox (http://psychtoolbox.
org) and run in MATLAB (version 2021b). In order to better capture
measures of trial-wise RTs, excluding deliberation time, the 5000-ms time
window for performing the sequence started at the fractals presentation
(and not when the first key was pressed, as in Studies 1 and 2). Hence,
reward delivery was contingent on RT and movement time (MT).

Importantly, after each sequence performance we asked participants
how certain they were to be rewarded on that round (following Frömer et
al., 2021). This aimed at unveiling a potential association between trial-by-
trial explicit beliefs about the reward tendency (confidence ratings) and
motor performance. Participants were instructed to type a number in the
0–99 range on the computer keyboard with their left hand. Value 0 denoted
having no clue about receiving the points, while 99 reflected being abso-
lutely certain of being rewarded. Participants were encouraged to explore
the full 0–99 range. They were additionally asked to press the key “z” if they
thought to have committed a performance execution error. This allowed us
to estimate the percentage of correctly identified errors, which expands on
Study 2 findings by informing about trial-by-trial (real-time) subjective in-
ference on credit assignment. Participants had 3500 ms to complete the
confidence rating, and the reward feedback was displayed after this interval.

Acquisition of online data using JavaScript
In Studies 1 and 2, because of the nature of the online experiment, cross-
browser issues could emerge. A potential issue was that participants
could use a variety of computer hardware, running on different web
browsers, operating systems and keyboard types (e.g., tablets vs laptops).
To mitigate the effect of hardware variability on the acquisition of motor
performance data, we instructed participants to complete the task on a
desktop or laptop computer. An inspection of browser user agent data
suggests that the experiment was performed on a mixture of desktops or
laptops running the Chrome and Safari browsers on Windows and
Macintosh operating systems.

Timing data were collected using the web browser’s high-resolution
timer. This browser resolution timer has an upper resolution limit of
2ms on some web browsers. Therefore, all analysis scripts truncated tim-
ing data to 2-ms precision. When estimating the mean and SEM in time
variables, we therefore considered a systematic error of 1ms (2-ms preci-
sion means that our time measures were on average 1ms too short).

For each participant, keypresses, timing data, points, contingency
mapping, outcome, and other data were extracted on each trial, then
stored and uploaded via JSON to the data folder in Pavlovia (see https://
gitlab.pavlovia.org/oshah001/reward-learning-experiment).

The hierarchical Gaussian filter
To model intrasubject trial-by-trial performance in our task, we used a
validated hierarchical Bayesian inference model, the Hierarchical
Gaussian Filter (HGF; Mathys et al., 2011, 2014; Frässle et al., 2021). The
HGF toolbox is an open source software and is freely available as part of
TAPAS (http://www.translationalneuromodeling.org/tapas; Frässle et al.,
2021). Here, we used the HGF version 6.1 implemented in MATLAB
2020b (MATLAB and Statistics Toolbox Release, The MathWorks). The
HGF is a generative model that describes how individual agents learn
about a hierarchy of hidden states in the environment, such as the
latent causes of sensory inputs, probabilistic contingencies, and their
changes over time (labeled volatility). Beliefs on each hierarchical level
are updated through prediction errors (PEs) and scaled (weighted) by a
precision ratio (precision as inverse variance or uncertainty). The pre-
cision ratio effectively operates as a learning rate, determining how
much influence the uncertainty about the belief distributions has on
the updating process (Mathys et al., 2011, 2014).

In our studies, the HGF was used to characterize subject-specific
trial-by-trial trajectories of beliefs about stimulus-outcome contingencies
(level 2) and their changes over time (environmental volatility, level 3).
These belief distributions are Gaussian, summarized by the posterior
mean (m2, m3) and the posterior variance (s2, s3). The latter represents
uncertainty about the hidden states on those levels, that is, our imperfect
knowledge about the true hidden states. On level 2, s2 is termed estima-
tion or informational uncertainty. More generally, the inverse 1/s is

Tecilla et al. · Motor Invigoration by Reward Probabilities J. Neurosci., March 8, 2023 • 43(10):1757–1777 • 1761

http://psychtoolbox.org
http://psychtoolbox.org
https://gitlab.pavlovia.org/oshah001/reward-learning-experiment
https://gitlab.pavlovia.org/oshah001/reward-learning-experiment
http://www.translationalneuromodeling.org/tapas


termed precision, labeled p . The HGF provides trajectories of updated
beliefs on the current trial, k, after observing the outcome (posterior
mean mi

(k) for level i= 2, 3). Before observing the outcome, participants’
predictions are denoted by the hat operator m̂i

(k) and correspond to the
values in the previous trial (mi

(k-1)). As in previous work using reversal
learning paradigms (Iglesias et al., 2013; Mathys et al., 2014; Hein et al.,
2021), we modeled learning using the three-level HGF (HGF3) for binary
outcomes (Fig. 2A). In this hierarchical perceptual model, the hidden
state on the lowest level, x1, represents the binary categorical variable of
the experimental stimuli [for each trial k, x1

(k) = 0 if the red icon/seq1 is
rewarded (or blue/seq2 loses); x1

(k) = 1 when red fractal/seq1 is not
rewarded (or blue/seq2 wins)]. Higher in the hierarchy, x2 reflects the
true value of the tendency of the stimulus-outcome contingency, and x3
the true volatility of the environment (i.e., of x2). Belief updating in the
HGF depends on various parameters, which can be estimated in each
individual or fixed depending on the hypotheses. This allows for the
assessment of individual learning characteristics. Here, we chose to indi-
vidually estimate parameter v2, representing the tonic (time-invariant) vol-
atility on the second level, and v3, denoting the tonic volatility on the third
level. Generally, v2 and v3 parameters describe an individual’s learning
motif. Larger v2 values are associated with faster learning about stimulus
outcomes, and thus greater update steps in m2 (see simulations in Hein et
al., 2021). Similarly, greater levels of tonic volatility on level 3, v3, increase
the update steps on m3. See details on our priors in Table 3. Using simula-
tions to assess the accuracy of parameter estimation in the HGF3, we and
others have previously demonstrated that v2 can be estimated accurately,
while v3 is not estimated well (Reed et al., 2020; Hein et al., 2021).

We then coupled the perceptual HGF model to a response model for
binary outcomes, which defined how beliefs about the tendency of the
stimulus-outcome contingencies were mapped onto decisions (e.g.,
which sequence should be chosen and played according to the beliefs on
the current trial; Mathys et al., 2014). Our response model was the unit-
square sigmoid observation model for binary responses (Iglesias et al.,
2013; Mathys et al., 2014). This model estimates on each trial k the prob-
ability that the agent’s response y is either 0 or 1 (Fig. 2B; p[y(k) = 1] and
p[y(k) = 0]), as a function of the predicted probability that the icon/
sequence is rewarding. This mapping from beliefs to decisions depends
on the response parameter z (interpreted as inverse decision noise).
Higher z values indicate a greater probability for the agents to select the
option that is more likely to be rewarding according to their beliefs.
Simulations demonstrate that z is recovered well (Hein et al., 2021).

In the following, as stimuli (red and blue icons) are one-to-one asso-
ciated with motor sequences (seq1 and seq2, respectively), we will use
the term action-reward contingency when referring to stimulus-reward
or stimulus-outcome mappings.

Models and priors
In line with previous work (Iglesias et al., 2013; Hein et al., 2021) we fitted
the empirical data with different models. We started by modeling our data
with the HGF3 perceptual model1 sigmoid response model, as described
above. In this model, the third hierarchical level represents environmental
volatility, that is the rate of change in the action-reward contingencies. In
our paradigm the true volatility was constant across participants, as the
reward contingencies changed approximately every 30–42 trials. In Study
1, using relatively uninformative priors for v2, v3 as in previous work
(prior mean �4, �7, respectively; prior variance 16 in both cases; de
Berker et al., 2016; Iglesias et al., 2013; Hein et al., 2021) led to numerical
instabilities in the HGF3 in 20% of our participants across all groups, in
particular in those exhibiting high win rates and thus learning well. The
numerical instabilities also manifested when using tight priors (small var-
iance of 4 or 1 in the prior distribution of v2, v3), and when using prior
values estimated in our data using an ideal observer model. An ideal ob-
server is typically defined as the set of parameter values that minimize the
overall surprise that an agent encounters when processing the series of
inputs (see an application of an ideal observer model in Weber et al.,
2020). It is likely that the divergence of the HGF3 in 20% of our datasets is
because of the trial number being smaller than in previous studies using
the HGF3 (180 instead of 320 or 400). We therefore proceeded to use the
two-level HGF (HGF2) in all our three studies, in which beliefs on

volatility on the third level are fixed. Priors for the perceptual HGF2 model
were chosen by simulating an ideal observer receiving the series of inputs
that the participants observed. We then used the estimated posterior val-
ues on those model parameters as priors for the HGF2 perceptual model
coupled with our response model (Table 3). Complementing the HGF, we
used two standard reinforcement learning models, the Rescorla–Wagner
model (RW; fixed learning rate determined by PEs; Rescorla and Wagner,
1972) and Sutton K1 model (SK1; flexible learning rate driven by recent
PEs; Sutton, 1992). Priors for reinforcement learning models were set
according to previous literature (Diaconescu et al., 2014; Hein et al., 2021).

The different models (HGF2, RW, SK1) were fitted to the trial-by-trial
inputs and responses in each participant using the HGF toolbox, which
generates maximum-a-posteriori (MAP) parameter estimates in each
individual. To identify the model that explained the behavioral data
across all participants best, we used random effects Bayesian model selec-
tion (BMS; through the freely available MACS toolbox, https://github.
com/JoramSoch/MACS; Soch and Allefeld, 2018). Importantly, in Study
1 we used the same priors in all participant groups (HYA, HOA, PD) as
in previous studies (Powers et al., 2017; Hein et al., 2021). Note, however,
that recent computational modeling work suggests that using different
prior values in each participant group may be more suitable to capture
dissociable group effects (e.g., for mental health, see Valton et al., 2020).
This approach, albeit interesting, would not favor a standard statistical
comparison between groups: any between-group differences could be
explained by the underlying models having been constructed differently.

Behavioral and computational data analysis
First, we validated the task by assessing (1) the percentage of trials that each
sequence type was played (percPlayed) and (2) whether percPlayed followed
the contingency changes (for details, see above, Experimental design). We
additionally examined the percentage of trials in which each sequence type
was played without performance execution errors (percCorrectlyPlayed).

General task performance in each participant was assessed by analyzing
the percentage of errors (percError: rate of sequences with performance
execution errors because of one or several wrong key presses), win rate
(percWin: rate of trials in which the rewarded sequence is played without
execution errors), the average of the trial-wise performance tempo [mIKI in
milliseconds: trial-wise mean of the three interkeystroke-intervals (IKIs)
across four key presses within the same trial; for trial-wise mIKI in Study 1,
see Fig. 1D] and themean of the trial-wise RT (inmilliseconds: time interval
between the fractal presentation and first key press). Importantly, mIKI is
commensurate with movement time (MT), the time between the first and
last key press (MT = mIKI * 3). Finally, we also assessed the number of
sequence renditions that participants completed during the familiarization
phase (rendFam: average of renditions across both sequence types). Time
out trials and trials with performance execution errors were excluded from
analyses on performance tempo and RT to avoid potential confounds, such
as slowing following errors (Herrojo Ruiz et al., 2009).

Next, to investigate decision-making processes we analyzed group
effects on three computational variables that characterized learning in
each individual. The model that best explained the behavioral data across
all participants according to BMS was the HGF2 (see Results). We there-
fore assessed the perceptual model parameter v2 (subject-specific tonic
volatility, which influences the speed of belief updating on level 2), z (the
inverse decision noise of the response model), and the average across tri-
als of s2 (posterior variance of the belief distribution). The quantity s2 is
particularly interesting, as it represents informational uncertainty about
the tendency of the action-reward contingency. Moreover, beliefs on level
2 are updated as a function of PEs about the stimulus-outcome mapping
(the mismatch between the observed outcomes u=1 or 0 and the agent’s
beliefs about the probability of such an outcome) and weighted by s2

(the precision ratio on level 2). Accordingly, if agents are more uncertain
about the contingencies governing their environment, they will rely more
on PEs to update their beliefs on that level.

To test our main research hypothesis that the strength of expectations
about the action-reward contingency modulates the trial-by-trial motor
performance, as a function of the group, we focused on the trajectory m̂2
(dropping trial index k for simplicity; prediction about the tendency of the
action-reward contingency).
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In Study 3, we also measured the explicit trial-wise confidence ratings
(conf: number between 0 and 99) about the reward outcome to assess
whether motor performance was sensitive to explicit beliefs about the
reward tendency.

Statistical analyses
Bayesian analyses on Study 1

General task performance and computational variables. First, we cal-
culated the mean and SEM as summary statistics for each of our general

Figure 2. The hierarchical Gaussian filter (HGF) for binary outcomes. A, Illustration of the three-level HGF model (HGF3) with relevant parameters modulating each level (adapted from Hein et al.,
2021). Level x1 represents the binary categorical variable of the experimental stimuli on each trial k; x2 reflects the true value of the tendency of the stimulus-outcome contingency, and x3 the true
volatility of the environment. In our experiment, v 2, v 3 and z were free parameters and were estimated by fitting individual responses and observed inputs with the HGF. k represents the
strength of coupling between level 2 and 3 (fixed to 1 in our study; data not shown in the text; for the model equations, see Mathys et al., 2014). B, In our three studies, the winning model was
the two-level HGF (HGF2), in which volatility was fixed across participants. Belief trajectories for the HGF2 across the total 180 trials in a representative participant in Study 1. At the lowest level, black
dots (u) represent the outcomes, denoting whether seq1 was rewarded or not [1 = seq1 wins (seq2 loses); 0 = seq2 wins (seq1 loses)]; orange dots (y) represent the participant’s choices (1 = seq1
is played; 0 = seq2 is played); orange crosses depict performance execution errors; the black line is a subject-specific learning rate about stimulus outcomes (a for the full HGF equations, see
Mathys et al., 2014). At the second level,m2 (s 2) is the trial-by-trial trajectory of beliefs (mean and variance) about the tendency of the stimulus-outcome contingencies (x2). A mean estimatem2

shifted toward positive values on the y-axis indicates that the participant had a greater expectation that seq1 was rewarded relative to seq2. In addition, larger (absolute) m2 values on that axis
denote a stronger expectation that given the correct sequence choice a reward will be received. The trajectory of beliefs about phasic (log)volatility [m3 (s 3)] is displayed at the top level. The true
volatility in our task, x3, was constant, as the stimulus-outcome contingencies changed every 30–42 trials. In the winning model HGF2, the degree of volatility was fixed across participants. Blue
circles on the y-axis denote the upper and lower priors of the posterior distribution of beliefs,mi

(0)6 s i
(0), i=2,3.
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task performance (mIKI, RT, percError, percWin, rendFam) and com-
putation variables (v2, z , s2). Next, we evaluated between-group differ-
ences by computing Bayes Factors (BF) using the bayesFactor toolbox
(https://github.com/klabhub/bayesFactor) in MATLAB. This toolbox
implements tests that are based on multivariate generalizations of
Cauchy priors on standardized effects (Rouder et al., 2012). For each
dependent variable (DV), we calculated the BF on the model DV ;
11 group, where DV is explained by a fixed effect of group (HYA,
HOA, PD). The model was fitted using the fitlme function of the
MATLAB Statistics toolbox. Computing BF allowed us to quantify
the evidence in support of the alternative hypothesis (full model, in
our case assessing the main effect of the group) relative to the null
model (intercept-only model, i.e., DV ; 1). BF values were inter-
preted as in Andraszewicz et al. (2015). As BF is the ratio between the
probability of the data being observed under the alternative hypothe-
sis and the probability of the same data under the null hypothesis, a
BF of 20 would indicate strong evidence for the alternative hypothe-
sis. On the other hand, BF of 0.05 would provide strong evidence for
the null hypothesis (for further details, see Andraszewicz et al., 2015,
their Table 1). Accompanying the BF results, we provided the out-
comes of standard one-way ANOVA for completion. In the case of
main effects being observed in the group-level BF analysis, we con-
ducted follow-up BF analyses on independent two-sample t tests.

When analyzing RT, we excluded outliers (RT values larger than
three standard deviations above the mean) at the subject level. For BF
analyses, we used the individual average across 180 trials for the mIKI,
RT, and s 2 variables. As mIKI and RT were not normally distributed,
values were log-transformed (natural logarithm, log_mIKI and log_RT).
The same preprocessing steps were applied to RT and mIKI values in
Studies 2 and 3. The number of renditions during the familiarization
phase was averaged between both types of sequence.

Sanity checks were performed to assess that participants chose to
play each sequence as a function of the inferred action-reward contin-
gencies and not based on individual sequence preferences. These were
conducted by computing mean and SEM along with BF analyses for
paired t tests on the percentage of trials each sequence type was (cor-
rectly) played (percPlayed; percCorrectlyPlayed; outcomes of standard
paired t test reported for completion). We also report the group mean
and SEM of percPlayed by contingency phases, which allowed us to
observe whether participants’ choices followed the changes in contingen-
cies over time.

Assessing the association between predictions about the action-
reward contingency and motor performance using Bayesian linear mixed
models. Our main goal was to investigate whether trial-by-trial sequence
performance tempo (mIKI) is modulated by the expectation about the
tendency of the action-reward contingency (m̂2) in our participant

groups. In addition, we aimed to determine whether the group factor
modulated the sensitivity of performance tempo to m̂2, resulting in dif-
ferent slopes of the association.

We addressed these questions by implementing a series of Bayesian linear
mixed models (BLMMs) (R Core Team, 2022; version 4.0.3). We used the
Bayesian regression models using Stan (brms; Bürkner, 2017, 2018, 2021)
package, freely available on https://cran.r-project.org/web/packages/
brms/index.html. Brms relies on the probabilistic programming lan-
guage Stan, which implements Bayesian inference using Markov
Chain Monte Carlo (MCMC) sampling methods to estimate approxi-
mate posterior probability distributions for model parameters.

In the HGF for binary categorical inputs, the sign of m̂2 (and simi-
larly m2) is not informative, as it represents the tendency of an action-
reward mapping for an arbitrary action (e.g., for seq1). Yet, we could
similarly define the model in reference to the other action (e.g., seq2). In
line with previous work (Stefanics et al., 2018; Hein and Herrojo Ruiz,
2022), we therefore took the absolute value of m̂2 (|m̂2|) for our analysis
to represent the strength of predictions about the tendency of the action-
reward mapping. Trials with greater |m̂2| values are trials in which the
participants will have a stronger expectation of receiving a reward, given
they select the correct action. Thus, |m̂2| represents the strength of the
predictions. In one participant (HYA), we excluded |m̂2| values of the
last 27 trials, as the HGF trajectories diverged, despite the participant
exhibiting normative learning patterns. Next, we centered the |m̂2| values
(|m̂2|_c) to allow the intercept estimate for mIKI to reflect the average
|m̂2| value. As for Bayesian ANOVAs (see General task performance and
computational variables), mIKI was log-transformed to approach nor-
mality (log_mIKI). In one HOA participant, two log_mIKI values were
discarded from the analyses as they were not registered correctly in the
JSON file (i.e., represented an impossible value of mIKI;50ms).

In BLMM with brms, it is standard to select one group as reference
for the parameter estimates. Brms then estimates the posterior distribu-
tion of parameter differences between each group and the reference
group, as well as the posterior distributions of parameters in the refer-
ence group itself. We set HOA as the reference group, and therefore pos-
terior distributions of between-group differences on response variables
were assessed for HOA versus HYA and HOA versus PD.

We implemented six models of increasing complexity, with every
model including a larger number of explanatory variables (Table 4). For
simplicity, in the following we used variable label y to represent our de-
pendent variable log_mIKI, and x to represent the explanatory variable
|m̂2|_c. To answer our research questions, we primarily focused on: (1)
the fixed effect of x [sensitivity (slope) of the performance tempo to the
strength of predictions about the action-reward contingency in the refer-
ence group, HOA]; and (2) the interaction effect x * group [differences
between groups in the sensitivity (slope) of the performance tempo to
the strength of expectations about the action-reward mapping].

For each model we ran four independent chains with 5000 iterations
each, of which the first 1000 were discarded as warmup. This resulted in
a total of 16,000 posterior samples. In all models, we used a default prior
distribution for the intercept, and a normal distribution for each fixed
and random effect (fixed effects for group and x, normal [0,2)]; inter-
action term group * x, normal [0,1]; random effects for intercept by sub-
ject and intercept by trial, normal [0,2]; random effect x by subject,
normal [0,1]). The prior on the LKJ-Correlation, the correlation matrices
in brms (Lewandowski et al., 2009), was set to 2 as recommended by
Bürkner (2017). Chain convergence was assessed using the Gelman–
Rubin statistics (R-hat, 1.1; Gelman and Rubin, 1992).

Models were compared using leave-one-out cross-validation of the
posterior log-likelihood (LOO-CV) with Pareto-smoothed importance
sampling (Vehtari et al., 2017). The identification of the best fitting
model was based on the highest expected log point-wise predictive den-
sity (ELPD). We also checked that the absolute mean difference in ELPD
between two models (elpd_diff in brms) exceeded twice the standard
error of the differences (2*SE_diff). LOO-CV identified the most com-
plex model (Table 4, model number 6) as the best fitting model (for fur-
ther details, see Results). This model explained the performance tempo
as the interaction between groups and the strength of the expectation
about the action-reward contingency (in addition to main effects).

Table 3. Means and variances of the priors on perceptual parameters and
starting values of the beliefs of the winning HGF2 model

Prior Mean Variance

k (all) 1 0
v 2 (Study 1) �2.17 16
v 2 (Study 2) �2.16 16
v 2 (Study 3) �2.22 16
v 3
(0) (all) �7 0

m2
(0) (all) 0 0

s 2
(0) (all) 0.1 0

m3
(0) (all) 1 0

s 3
(0) (all) 1 0

z (all) 48 1

Free parameter v 2 was estimated in its unbounded (linear) space. The prior values on v 2 [mean (variance)]
were: �2.17 (16), �2.16 (16), and �2.22 (16) for Studies 1, 2, and 3, respectively. These prior values
were obtained using an ideal observer model that received the input that each participant had experienced.
The response model parameter, z , was log-transformed, to allow for its estimation in an unbounded space.
The remaining parameters were fixed and not estimated in each participant: s 2

(0), s 3
(0), k , m2

(0), m3
(0). The

coupling strength between levels 2 and 3 is k , which was fixed to 1 (Hein et al., 2021). Among the fixed
parameters, the following ones operate in their log-transformed space: s 2

(0), s 3
(0), k , m3

(0). The prior varian-
ces are given in the space in which the parameters are typically estimated.
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Further, it modeled the effect of subjects on the intercept and |m̂2|_c as a
random effect, and the effect of trials on the intercept as a random effect.
We reported for each parameter the posterior point estimate and the
associated 95% credible interval (CI; for further details, see Results).

Because reward expectations could also modulate RT as shown previ-
ously (Codol et al., 2020), we conducted additional analyses to assess the
effect of |m̂2| on RT trial-by-trial. Further, we evaluated whether the
group factor influences the sensitivity of RT to |m̂2|. In these analyses, we
followed the same procedure as for the sequence performance tempo
analysis. In particular, the associations between RT (log-transformed)
and |m̂2|_c were assessed by implementing and comparing six models of
increasing complexity in brms (Table 4; for further details, see Results).
RT values three standard deviations above the mean were excluded from
statistical analyses. This approach was also followed in Studies 2 and 3.
As for performance tempo, in Results, we use the variable label y for the
dependent variable (log_RT) and x for |m̂2|_c.

Bayesian analyses on Study 2
As described above, in Study 2 participants were allocated to two differ-
ent analysis groups (Q8T and Q8F) depending on their answer to a post-
performance question (“I could always distinguish whether 0 points
reflected a performance error or a bad decision”, binary answer: True/
False). This allowed us to test the potential influence of subjective infer-
ences about task-related reward assignment on the motor invigoration
effect observed in Study 1. Specifically, we reasoned that participants
who could not always infer the meaning of zero might show a reduced
sensitivity of motor performance by beliefs about the reward tendency.

As for Study 1, we computed the mean and SEM as summary statis-
tics for each dependent variable. Next, we used the bayesFactor toolbox
to calculate the evidence in support of (or against) group differences in
general task performance (mIKI, RT, percError, percWin) and computa-
tional variables (v2, z , s 2). We intentionally did not analyze the rate of
sequence renditions during the familiarization phase as here we were
only interested in assessing the role of subjective inferences about credit
assignment on motor sequence performance decision-making behavior.
We performed BF analysis on independent two-sample t tests to assess
between group-differences on the variables of interest (results on stand-
ard independent t tests also reported for completion). RT and mIKI
were log transformed and followed the same preprocessing steps as
described for Study 1.

Next, to test potential between-group differences in the mIKI-|m̂2|
association, we implemented six BLMM of increasing complexity (same
models as in Study 1; Table 4). As for Study 1, the most complex model
(Table 4, model number 6) was identified as the best fit by LOO-CV (for
further details, see Results). The same procedure was used to investigate
the associations between RT with |m̂2|.

Finally, we evaluated whether Q8T and Q8F differed in the rate of ret-
rospective subjective number estimate of performance errors. In particu-
lar, we were interested in assessing between-group differences in the
tendency of under/overestimating the number of performance errors.
For each participant, the rate of subjective performance execution errors
(subjective_percError) was calculated through the post-performance
questionnaire (see Questions 1, 2, 3; Table 2). We arbitrarily assigned a
value of 0.028 (= 5/180) if subjects thought to have committed,10 per-
formance errors; 0.111 (= 20/180) for between 20 and 40 estimated per-
formance errors; 0.222 (= 40/180) for .40 subjective performance
errors. To assess whether this rough estimate of the percentage of per-
formance errors reflected a general over or underestimation of the true
performance error rate in the total sample (N= 39), we first conducted a
BF analysis on the correlation between the subjective and empirical error
rates (Pearson’s r coefficient and p-value reported for completion). Next, we
identified potential group-related systematic biases in the subjective esti-
mate. This was done with a BF analysis using independent two-sample t
tests on the normalized rate of subjective errors [(subjective_percError-
percError)/percError; results on standard independent t tests reported for
completion].

Bayesian analyses on Study 3
In Study 3, we aimed at assessing the association between trial-by-trial
explicit beliefs about the reward tendency (confidence ratings) and motor
performance. We were particularly interested in understanding whether
being more certain (following Frömer et al., 2021) about obtaining the
reward, given the right choice, would speed up motor responses.

First, following the same steps as for Studies 1 and 2, we calculated
the mean and SEM as summary statistics for the general task perform-
ance variables (mIKI, RT, percWin, conf). Trial-by-trial confidence rat-
ings were converted to a 0–0.99 scale.

We aimed to use the confidence rating as a predictor in our BLMM
analyses to assess the sensitivity of motor performance (mIKI and RT) to
explicit beliefs about the reward tendency. This was tested by imple-
menting four BLMM of increasing complexity (Table 4).

As for Studies 1 and 2, we used the label y to represent our dependent
variable (mIKI or RT), and x for the explanatory variable (conf). To test
our hypothesis, we specifically focused on the fixed effect of x [sensitivity
(slope) of the motor performance to the confidence ratings about the
predicted outcome]. We used the same priors as in Study 1 for the corre-
sponding factors. The most complex model number four and the model
number 3 (Table 4) were identified as the best fit by LOO-CV for per-
formance tempo and RT, respectively (for further details, see Results).

In addition, as a sanity check, we evaluated the association of confi-
dence ratings with the strength of predictions about the action-reward
contingency trial-by-trial. The investigation of motor vigor effects in
Studies 1 and 2 assumed that the unsigned |m̂2| values estimated in the
HGF reflect the strength of participants’ expectation on the reward tend-
ency. However, whether this HGF quantity reflects true explicit beliefs,
assessed as confidence ratings, is not clear. We evaluated the association
between confidence ratings and the unsigned |m̂2| values using the for-
mula conf ; 1 1 |m̂2|_c 1 (1 1 |m̂2|_c|subj) 1 (1|trial) in brms. We
chose a default prior distribution for the intercept, and a normal distri-
bution for the fixed and random effects [fixed effect for |m̂2|_c, normal
[0,2)]; random effects for intercept by subject and intercept by trial, nor-
mal [0,2]; random effect |m̂2|_c by subject, normal [0,1]). The prior on
the LKJ-Correlation was set to 2 as recommended by Bürkner (2017).

Finally, we provided summary statistics for the number of empirical
performance errors and the number of subjective performance errors
(how many times the “z” key was pressed throughout the experiment).
This aimed at expanding on the findings of Study 2, informing about
participants’ ability to correctly identify performance errors and thus
infer the task-related credit assignment.

Table 4. Models of increasing complexity used for Bayesian linear mixed
models analyses

Study # Model # Model

1–2
1 y ; 1 1 (1|subject)
2 y ; 11 group 1 (1|subject)
3 y ; 11 group 1 x 1 (1|subject)
4 y ; 11 group * x 1 (1|subject)
5 y ; 11 group * x 1 (11 x|subject)
6 y ; 11 group * x 1 (11 x|subject) 1 (1|trial)

3
1 y ; 1 1 (1|subject)
2 y ; 11 x 1 (1|subject)
3 y ; 11 x 1 (11 x|subject)
4 y ; 11 x 1 (11 x|subject) 1 (1|trial)

Models of increasing complexity used in Studies 1 and 2 (top) and Study 3 (bottom). In Studies 1 and 2, y
corresponds to the motor performance (log_mIKI or log_RT); x is the unsigned centered value of the predic-
tion about the tendency of the action-reward contingency (|m̂2 |_c). This parameter represents the strength
of the predictions. In model 1, y is explained by a fixed effect of the intercept and a random effect of inter-
cept by subject (the latter accounts for repeated measurements); model 2 adds a fixed effect of group;
model 3 includes the fixed effect of x, which allows to assess the sensitivity (slope) of performance tempo
or RT to |m̂2 |_c in the reference group; model 4 incorporates the interaction term between group and x,
which allows to investigate the between-group differences in the sensitivity (slope) of performance tempo
or RT to |m̂2 |_c; model 5 includes the random effect of |m̂2 |_c by subject; last, model 6 includes a random
effect of intercept by trial. In Study 3, y corresponds to the motor performance (log_mIKI or log_RT); x is
the confidence rating. In model 1, y is explained by a fixed effect of the intercept and a random effect of
intercept by subject (the latter accounts for repeated measurements); model 2 adds a fixed effect of x, which
allows to assess the sensitivity (slope) of performance tempo or RT to confidence ratings; model 3 includes
the random effect of confidence ratings by subject; last, model 4 includes a random effect of intercept by
trial.
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Data and code availability
The data that support the main findings of these studies are available
from the Open Science Framework Data Repository under the accession
code 7kfbj (https://osf.io/7kfbj/).

Results
Study 1

Task validation. Participants played on average seq1 and seq2
50% of the trials (seq1: mean 0.490, SEM 0.008; seq2: mean
0.508, SEM 0.008). This suggests that they did not express a pref-
erence toward a sequence type (percPlayed, BF= 0.2295, moder-
ate evidence in support of the null hypothesis for no differences
in the percentage of performances by sequence type, t(93) =
�1.204, p= 0.232). Participants committed fewer performance
execution errors in seq1 (mean 0.958, SEM 0.005) than seq2
(mean 0.922, SEM 0.008; percCorrectlyPlayed, BF= 1126.7, sug-
gesting extreme evidence for alternative hypothesis that the rate
of correct performance differed in seq1 and seq2, t(93) = 4.576,
p, 0.001). Next, we observed that percPlayed in each group suc-
cessfully tracked the contingency changes over time. For true
contingencies sorted according to increasing values, [0.1, 0.3, 0.5,
0.7, 0.9], HYA participants played the corresponding sequence at
these rates: [0.18 (0.02), 0.33 (0.02), 0.48 (0.02), 0.67 (0.02), 0.81
(0.02)]. Similar values were obtained for HOA participants: [0.18
(0.02), 0.34 (0.02), 0.48 (0.02), 0.62 (0.02), 0.79 (0.02)]; and for
PD patients: [0.16 (0.02), 0.32 (0.03), 0.47 (0.03), 0.63 (0.03), 0.79
(0.03)]. Accordingly, task performance demonstrated that each

group of participants learned to flexibly adapt to the changing
contingencies over time.

General task performance. Overall, as expected, our analyses
revealed between-group differences in performance tempo
(mIKI in milliseconds, HYA: mean 300, SEM 15.8; HOA:
mean 424, SEM 19.6; PD: mean 537, SEM 26.9; Fig. 3A),
and reaction time (RT in milliseconds, HYA: mean 634,
SEM 34.9; HOA: mean 838, SEM 49.4; PD: mean 918, SEM
77.5; Fig. 3B), with movements progressively slowing down
in aging and PD patients. BF analyses on performance tempo
yielded extreme evidence for a group effect (log_mIKI:
BF= 1.1253e1 09, demonstrating extreme evidence for the al-
ternative hypothesis; F(2,91) = 35.332, p, 0.001). Post hoc pair-
wise t tests using BF showed extreme evidence for between-
group differences in HYA versus HOA (BF= 1.2044e1 04) and
in HYA versus PD (BF= 3.3592e1 07). We also found very
strong evidence for the alternative hypothesis in HOA versus
PD (BF= 32.591). Thus, performance tempo (and therefore
movement time) was differently modulated between groups,
with HYA being faster than HOA and PD, and HOA faster
than PD. Regarding RT, there was extreme evidence supporting
between-group differences (log_RT: BF = 404.521; F(2,91) =
11.383, p, 0.001). BF analysis on post hoc independent two-
sample t tests revealed extreme evidence for between-group dif-
ferences in HYA versus HOA (BF= 109.444) and HYA versus
PD (BF= 239.335). Yet, we only found anecdotal evidence in
support of the null hypothesis in HOA versus PD (BF= 0.403).

Figure 3. Markers of general task performance and decision-making across groups. Data presented for healthy younger adults (HYA; in light blue), healthy older adults (HOA; in dark blue),
and patients with Parkinson’s disease (PD; in purple) in Study 1. A, Performance tempo (mIKI, mean interkeystroke-interval, in milliseconds). B, Reaction time (RT; in milliseconds). C, Rate of
win trials (percWin). D, Rate of performance execution errors (percError). E, Tonic volatility (v 2). F, Informational uncertainty on level 2 (s 2). G, Response model parameter (z ). Values mIKI,
RT and s 2 are averaged across 180 trials within each participant. mIKI and RT values are log-transformed. In every plot, to the right of each mean (large dot) and SEM (denoted by the vertical
bar), the individual data points in each group are shown to visualize group population variability.
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Hence, despite HYA displaying shorter RTs than HOA and PD,
our analyses suggest similar RTs in HOA and PD.

In addition, we found anecdotal evidence supporting that
groups differed in the number of sequence renditions during
the familiarization phase (rendFam, HYA: mean 5.6, SEM 0.1;
HOA: mean 6.0, SEM 0.2; PD: mean 7.1, SEM 0.8; BF = 1.733;
F(2,91) = 4.448, p = 0.014). Post hoc BF analyses to assess differ-
ences between pairs of groups revealed anecdotal and moder-
ate evidence for between-group differences in HYA and HOA
(BF = 1.900) and HYA and PD (BF = 3.030), respectively. Still,
HOA and PD practiced the two sequences to a similar extent
(BF = 0.853, revealing anecdotal evidence for the null hypothe-
sis). Of note, practicing more during familiarization was not
associated with better win rates or average performance tempo
during task completion. A correlation analysis across all partici-
pants between the number of repetitions during familiarization
and these variables demonstrated moderate evidence for null cor-
relation effects (percWin: BF=0.290; Pearson r = �0.134,
p=0.200; log_mIKI: BF=0.397; Pearson r=0.158, p=0.131; note
that we excluded one PD patient who practiced 21 times during
familiarization as outlier in this correlation analysis).

The group effects observed above were not accompanied
by a dissociation between groups in the win rate or the rate of
performance execution errors (Fig. 3C,D). BF analysis on win
rates provided moderate evidence for the lack of a group effect
(percWin, HYA: mean 0.590, SEM 0.012; HOA: mean 0.561,
SEM 0.014; PD: mean 0.553, SEM 0.021; BF = 0.210, support-
ing moderate evidence for the null hypothesis; F(2,91) = 1.848,
p = 0.163). A similar outcome was observed in the analysis of
performance execution error rates (percError, HYA: mean
0.061, SEM 0.009; HOA: mean 0.057, SEM 0.008; PD: mean
0.084, SEM 0.020; BF = 0.146, moderate evidence for the null
hypothesis; F(2,91) = 1.456, p = 0.239). In sum, we found mod-
erate evidence that HYA, HOA, and PD did not differ in either
the rate of win or error trials.

Computational parameters. Decision-making was assessed by
looking at between-group differences in the computational varia-
bles v 2, z , and s 2. After excluding the HGF3 from model com-
parison because of numerical instabilities, BMS was conducted
on the HGF2 and two reinforcement learning models (RW, SK1)
using the individual log-model evidence (LME) values provided
by the HGF toolbox. The winning model was the HGF2, with an
exceedance probability of 0.95 and an expected frequency of
0.90. Of note, although the HGF3 model was not included in
BMS, a qualitative comparison of LME values for the HGF3 and
HGF2 models in the 80% participants in which HGF3 did not
lead to numerical instabilities revealed extremely similar values
(LME differences, 1). This observation suggested that both
models described behavior in our task with constant true volatil-
ity to a similar degree.

Overall, we found no group effect on the signatures of reward-
based learning and decision-making in our volatile task (Fig. 3E–
G). BF analysis on v 2 demonstrated strong evidence for the
absence of a main effect of group (HYA: mean �1.332, SEM
0.282; HOA: mean �1.686, SEM 0.438; PD: mean �1.843,
SEM 0.609; BF = 0.059; F(2,91) = 0.380 p = 0.685). Similarly,
we found strong evidence in favor of a lack of group effect on
the informational uncertainty about beliefs on the tendency
of the action-reward contingency, s 2 (HYA: mean 1.610,
SEM 0.177; HOA: mean 1.663, SEM 0.158; PD: mean 1.559,
SEM 0.218; BF = 0.045; F(2,91) = 0.074, p = 0.928). Last, groups
exhibited a similar mapping from beliefs to responses, driven
by the response model parameter z (HYA: mean 1.735, SEM

0.191; HOA: mean 1.523, SEM 0.176; PD: mean 2.095, SEM
0.469; BF = 0.114, demonstrating moderate evidence for the
null hypothesis; F(2,91) = 1.1495, p = 0.321).

A direct comparison between the Italian HOA subsample and
(Italian) PD sample revealed anecdotal or moderate evidence in
support of the null hypothesis when assessing general perform-
ance and decision-making variables (exception for log_mIKI).
These findings thus converge with the outcomes of the full HOA
sample analysis. On the other hand, the very strong evidence in
support of group effects on the performance tempo in the full
sample was only anecdotal when directly comparing Italian
HOA and PD samples on this variable (log_mIKI: BF= 2.556;
t(42) = �2.348, p=0.024). These results suggested that Italian
healthy aging was associated with slower performance tempo rel-
ative to United Kingdom healthy aging participants (log_mIKI:
BF= 6.637; t(35) = 2.871, p= 0.007; moderate evidence supporting
differences in performance tempo). Hence, between-group
effects on general task performance and decision-making cannot
be accounted for by language differences.

Sensitivity of motor performance to the strength of expecta-
tions about the action-reward contingency. For performance
tempo, LOO-CV identified the most complex model (model
number 6) as the best fit. The absolute mean difference in ELPD
between the winning model and the second best fitting model
(elpd_diff) was �665.8557 and the standard error of the differ-
ences (SE_diff) equals 39.0404 (elpd_diff. 2*SE_diff). When
ELPD differences between two models are larger than four, and
also if the number of observations is. 100, and the model is
moderately well specified, then the standard error is a good esti-
mate of the uncertainty in the difference between models
(Vehtari et al., 2017; Sivula et al., 2022). Posterior predictive
checks revealed that the best model had strong predictive power
for the range of the DV (Fig. 4A). In the following we use variable
label y to represent our dependent variable log_mIKI (in log-ms),
and x to represent the explanatory variable |m̂2|_c. Table 5
presents a summary of the posterior distributions for the winning
model.

First, we found that groups differed in performance tempo,
as expected. This is in line with our previous between-group
analyses showing a progressive slowness in execution tempo
in HOA and PD. The posterior estimate for the intercept in
the reference group, HOA, was 6.00, CI = [5.91, 6.09] (in
milliseconds, 404, CI = [368, 443]). The distribution of the dif-
ferences between intercepts in HOA and HYA had a posterior
estimated value of �0.34, CI = [�0.47, �0.21] (in milliseconds,
�116, CI = [�163,�70]), while the distribution of the differen-
ces between intercepts in HOA and PD yielded a posterior
point estimate of 0.25, CI = [0.09, 0.41] (in milliseconds, 114,
CI = [41, 192]). As neither of the two distributions overlapped
with zero, we concluded that HYA performed the sequences
faster than HOA, while PD was slower than HOA (Fig. 4B).

Next, we evaluated how the strength of predictions about
the action-reward contingency modulated performance tempo
on a trial-by-trial basis. The analyses supported our hypothesis,
showing that stronger expectations about the reward contin-
gency invigorated motor performance through faster execution
tempo. Here, we focused on the distribution of the fixed effect
of x (slope of the association between y and x) in the reference
group, HOA. This distribution informs about the sensitivity of
the performance tempo to the strength of predictions about the
action-reward contingency in HOA. The posterior estimate of x
was equal to �0.04, CI = [�0.07, �0.01]. As the distribution
did not include zero, this highlights a negative relationship
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between performance tempo and the strength of expectations
about the action-reward contingency in the reference group
(Fig. 4C).

We were also interested in evaluating between-group differ-
ences in the sensitivity of performance tempo to the strength of
expectations about the action-reward contingency. This was con-
ducted by assessing the distribution of the interaction effect
group * x on the slope. Both the posterior distributions of slope
differences between HOA and HYA and between HOA and PD
overlapped with zero, suggesting that the sensitivity was similar
between groups (HOA vs HYA: posterior estimate = �0.00, CI =

[�0.04, 0.04]; HOA vs PD: posterior estimate = �0.00, CI =
[�0.05, 0.04]; Fig. 4D).

Overall, our BLMM analysis demonstrated that motor per-
formance tempo was influenced trial-by-trial by the strength of
predictions about the tendency of the action-reward contin-
gency, with stronger expectations leading to faster execution
tempo. However, the sensitivity of performance tempo to the
strength of these predictions was not differently modulated
between groups, suggesting that all groups could successfully use
the inferred predictions to invigorate their motor performance to
a similar degree.

Figure 4. Invigoration of performance tempo by beliefs is preserved in healthy aging and in Parkinson’s disease. Bayesian linear mixed model [BLMM; model number 6, y; 11 group *
x1 (11 x|subject)1 (1|trial)] with healthy older adults (HOA) as the reference group in Study 1. A, Illustration of the posterior predictive checks where the distribution of the observed out-
come variable (y, in our case performance tempo) is compared with simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, Distributions of the difference in millisec-
onds between performance tempo (intercept) in HOA and healthy younger adults (HYA), and in HOA and patients with Parkinson’s disease (PD). For each distribution, the gray vertical bar
indicates the posterior point estimate, while the gray area under the curve represents the 95% credible interval (CI). In the current plot, CIs do not overlap with zero (the null hypothesis). This
indicates that there is a 95% probability of between-group differences in performance tempo. C, Results of the BLMM analysis. We analyzed how the strength of predictions about the action-
reward contingency modulates performance tempo separately for HYA (in light blue), HOA (in dark blue), and PD (in purple). Here, mIKI (performance tempo: mean interkeystroke-interval) val-
ues are represented in the log-scale. The negative slopes suggest that stronger predictions about the action-reward contingency are associated with faster performance tempo. D, Distributions
of the difference between slopes in HOA versus HYA, and HOA versus PD. Here, as CIs include zero, we can conclude with 95% probability that groups do not differ in how the strength of pre-
dictions about the reward contingency influences motor performance tempo. Thus, the sensitivity of performance tempo to the strength of predictions about the reward mapping is not differ-
ently modulated between groups.
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In a separate analysis, we determined whether the motor
invigoration effect extended to the RT, reflecting the time to
initiate the sequence performance (first key press). As for per-
formance tempo, LOO-CV identified model 6 as the best fit
(elpd_diff = �378.2718, SE_diff=30.69148; elpd_diff. 2*SE_diff)
and posterior predictive checks demonstrated good predictive
power for the range of the DV albeit less so than for performance
tempo (Fig. 5A). On the other hand, Gelman–Rubin statistics (R-
hat values) demonstrated an excellent chain convergence. Table 5
presents a summary of the posterior distributions for the winning
model.

Our brms analysis on the best fitting model revealed shorter
RT in HYA compared with HOA, with no differences emerging
between HOA and PD. The posterior point estimate for the
intercept in the reference group, HOA, was 6.65, CI = [6.54,
6.75] (in milliseconds, 771, CI = [693, 856]). The distribution of
the differences between intercepts in HOA and HYA was cen-
tered at �0.28, CI = [�0.42, �0.13] (in milliseconds, �188, CI =
[�289, �88]), which did not overlap with zero. On the other
hand, the distribution of the differences between intercepts in
HOA and PD yielded a posterior point estimate of 0.09, CI =
[�0.08, 0.27] (in milliseconds, 77, CI = [�65, 231]) and included
zero (Fig. 5B). These results demonstrated that HYA initiated the
sequence faster than HOA, consistent with our mIKI group
results, whereas PD and HOA had a similar RT intercept.

Regarding the association between the strength of predictions
about the action-reward contingency and RT, we observed no
trial-by-trial modulation and no group effects. The distribution
of the fixed effect of x (slope of the association between y and x
in the reference group, HOA) had a posterior point estimate of
�0.02, CI [�0.04, 0.01]. As the distribution’s center overlapped
with zero, this demonstrates that the strength of predictions
about the action-reward contingency did not modulate RT in
this group (Fig. 5C). Potential between-group differences in the
slope were assessed by investigating the distribution of the inter-
action effect group * x. Both the posterior distributions of slope
differences between HOA and HYA and between HOA and PD
included zero (HOA vs HYA: posterior estimate = �0.01, CI =
[�0.05, 0.03]; HOA vs PD: posterior estimate = �0.03, CI =
[�0.07, 0.02]; Fig. 5D). This outcome supported that the sensitiv-
ity of RT to the strength of expectations about the reward
mapping did not differ between groups. Thus, the strength of
predictions about the action-reward contingency invigorated per-
formance tempo on a trial-by-trial basis without affecting the RT.

Study 2
Subjective inference about task-related reward assignment
We conducted Bayesian analyses on the HYA sample of Study 2
to evaluate whether subjective inferences about the hidden causes
for the absence of reward could modulate the motor invigoration
effect observed in Study 1.

Overall, our analyses provided anecdotal and moderate
evidence for the lack of differences between Q8T and Q8F in
the main markers of general task performance (log_mIKI:
BF = 0.417; t(37) = �0.795, p = 0.432; log_RT: BF = 0.329;
t(37) = 0.156, p = 0.877; percWin: BF = 0.408; t(37) = 0.758,
p = 0.453; percError: BF = 0.596; t(37) = �1.252, p =0.219; for
summary statistics, see Fig. 6A–D).

Random effects Bayesian model selection yielded substantially
greater evidence in favor of model HGF2 (exceedance probability
0.94, and expected frequency 0.68). Using this model to charac-
terize decision-making processes in Q8T and Q8F samples, we
observed that a BF analysis on v2, z and s 2 provided anecdotal
evidence for the absence of a group effect (v 2: BF= 0.560; t(37) =
�1.183, p= 0.244; z : BF= 0.445; t(37) = 0.895, p=0.377; s 2:
BF= 0.463; t(,37) = �0.951, p= 0.348; for summary statistics, see
Fig. 6E–G).

Hence, whether participants were always certain (Q8T) or not
(Q8F) of the implications of receiving zero points, their general
motor sequence performance and decision-making behavior
seemed similar, albeit this interpretation is based on anecdotal
evidence.

We further investigated whether not being always sure about
the causes for the lack of reward could impact the sensitivity of

Table 5. Summary of the posterior distributions for the fixed effects of the
best fitting Bayesian linear mixed models

Study # Dependent variable Fixed effect Estimate l-95% CI u-95% CI R-hat

1
Performance tempo

y: HOA 6.00 5.91 6.09 1.00
y: HOA vs HYA �0.34 �0.47 �0.21 1.00
y: HOA vs PD 0.25 0.09 0.41 1.00
x: HOA �0.04 �0.07 �0.01 1.00
group * x: HOA vs HYA �0.00 �0.04 0.04 1.00
group * x: HOA vs PD �0.00 �0.05 0.04 1.00

Reaction times
y: HOA 6.65 6.54 6.75 1.01
y: HOA vs HYA �0.28 �0.42 �0.13 1.00
y: HOA vs PD 0.09 �0.08 0.27 1.00
x: HOA �0.02 �0.04 0.01 1.00
group * x: HOA vs HYA �0.01 �0.05 0.03 1.00
group * x: HOA vs PD �0.03 �0.07 0.02 1.00

2
Performance tempo

y: Q8T 5.62 5.51 5.72 1.00
y: Q8T vs Q8F 0.07 �0.11 0.25 1.01
x: Q8T �0.04 �0.06 �0.01 1.00
group * x: Q8T vs Q8F �0.00 �0.04 0.04 1.00

Reaction times
y: Q8T 6.24 6.13 6.34 1.00
y: Q8T vs Q8F �0.01 �0.19 0.18 1.00
x: Q8T �0.02 �0.04 0.002 1.00
group * x: Q8T vs Q8F 0.01 �0.03 0.04 1.00

3
Performance tempo

y 5.82 5.73 5.91 1.00
x �0.04 �0.08 �0.001 1.00

Reaction times
y 6.47 6.37 6.58 1.00
x �0.10 �0.20 0.01 1.00

Estimates, credible intervals (CIs) and R-hat values for the fixed effects of the best fitting models in Studies
1 and 2 [model number 6: y ; 11 group * x 1 (11 x|subject) 1 (1|trial)] and in Study 3 [model num-
ber 4: y ; 1 1 x 1 (1 1 x|subject) 1 (1|trial) for performance tempo; model number 3: y ; 1 1 x 1
(1 1 x|subject) for reaction times]. In Study 1, y: HOA refers to the posterior estimate for the intercept in the
reference group (healthy older adults, HOA). y: HOA versus HYA and y: HOA versus PD reflect the posterior distri-
butions of the differences between intercepts [HOA vs healthy younger adults (HYA); HOA vs Parkinson’s patients
(PD), respectively]. x: HOA is the posterior distribution of the association (slope) between motor performance (ei-
ther performance tempo or reaction times) and the strength of predictions about the action-reward contingency
in the reference group. group * x: HOA versus HYA and group * x: HOA versus PD are the posterior distributions
of slope differences between HOA and HYA and between HOA and PD, respectively. In Study 2, y: Q8T refers to
the posterior estimate for the intercept in the reference group (participants that replied True to Question 8, Q8T).
y: Q8T versus Q8F reflects the posterior distribution of the difference between intercepts [Q8T vs participants that
replied False to Question 8 (Q8F)]. x: Q8T is the posterior distribution of the association (slope) between motor
performance (either performance tempo or reaction times) and the strength of predictions about the action-
reward contingency in the reference group. The upper bound of the CI for the slope effect in the BLMM analyses
for RT is given with three decimal digits to demonstrate that 0 was included in the 95% CI. group * x: Q8T ver-
sus Q8F is the posterior distribution of slope difference between Q8T and Q8F. In Study 3, y refers to the posterior
estimate for the intercept. x is the posterior distribution of the association (slope) between motor performance
(either performance tempo or reaction times) and the confidence ratings. The upper bound of the 95% CI esti-
mate of the slope effect in the BLMM analyses for performance tempo was �0.001, when considering three dec-
imal digits. In all studies, l-95% CI and u-95% CI refer to the lower and upper bound of the credible intervals of
the posterior distributions of the fixed effects. For each parameter, we also reported the corresponding Gelman–
Rubin statistics (R-hat values). Values,1.1 indicate chain convergence (Gelman and Rubin, 1992).
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motor performance (mIKI and RT) to the strength of pre-
dictions about the action-reward contingency. As for the
main experiment, LOO-CV identified the most complex
model (model number 6) as the best fit (mIKI, elpd_diff =
�144.9434, SE_diff = 20.33 661; elpd_diff. 2*SE_diff; RT,
elpd_diff = �106.3677, SE_diff = 17.4019; elpd_diff. 2*SE_diff).
Table 5 presents a summary of the posterior distributions for the
winning models.

For performance tempo, the posterior predictive checks dem-
onstrated a very strong predictive power for the range of DV val-
ues in the best model (Fig. 7A). Consistent with our previous BF

analyses on mIKI, the distribution of the differences between
intercepts in Q8T and Q8F overlapped with zero, suggesting that
subjective inferences about credit assignment did not impact per-
formance tempo (Fig. 7B). BLMM analyses also revealed a nega-
tive association (slope) between the strength of predictions about
the action-reward contingency and performance tempo. This
replicates our findings in Study 1, showing that stronger predic-
tions about the reward contingencies are followed by faster exe-
cution tempo (Fig. 7C). Yet, no between-group slope differences
were observed. Thus, subjective inferences about the causes for
the absence of reward did not modulate the sensitivity of

Figure 5. Motor vigor effects on reaction times across healthy young, older, and Parkinson’s participants. Bayesian linear mixed model [BLMM; model number 6, y ; 11 group * x 1
(11 x|subject)1 (1|trial)] with healthy older adults (HOA) as the reference group in Study 1. A, Illustration of the posterior predictive checks where the distribution of the observed outcome
variable [y, in our case reaction times (RT)] is compared with simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, Distributions of the difference in milliseconds
between RT (intercept) in HOA and healthy younger adults (HYA), and in HOA and patients with Parkinson’s disease (PD). For each distribution, the gray vertical bar indicates the posterior point
estimate, while the gray area under the curve represents the 95% credible interval (CI). In the current plot, CI of the bottom distribution does not overlap with zero (the null hypothesis). This
indicates that there is 95% probability of between-group differences in RT. On the other hand, the distribution at the top includes zero. This suggests that there is 95% probability of HOA and
PD not differing in RT. C, Results of the BLMM analysis. We analyzed how the strength of predictions about the action-reward contingency modulates RT separately for HYA (in light blue), HOA
(in dark blue), and PD (in purple). Here, RT values are represented in the log-scale. We found no modulation of RT by the strength of expectations about the reward mapping. D, Distributions
of the difference between slopes in HOA versus HYA, and HOA versus PD. Here, as CIs include zero, we can conclude with 95% probability that groups do not differ in how the strength of pre-
dictions about the reward contingency influences RT. Thus, the sensitivity of RT to the strength of predictions about the reward mapping is not differently modulated between groups.
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performance tempo to the strength of expectations about the
action-reward contingency (Fig. 7D).

Regarding RT, the predictive power for the range of RT values
was weaker compared with performance tempo (Fig. 8A), yet
Gelman–Rubin statistics demonstrated an excellent chain con-
vergence (R-hat values equal to 1.00). BLMM analyses showed
no differences between Q8T and Q8F (intercepts) on RT, which
is in line with our BF results (Fig. 8B). We found no robust
evidence for an association (slope) between the strength of
predictions about the action-reward contingency and RT (Fig.
8C). The 95% CI of the slope distribution ranged from �0.04
to 0.00. A closer look at the upper bound of the distribution
including three decimal digits revealed a value of 0.002, demon-
strating that 0 was marginally part of the 95% CI. This outcome
suggests that RT is not robustly modulated by the strength of
predictions about the action-reward contingency, unlike per-
formance tempo.

No between-group slope differences were observed. Thus,
as for performance tempo, subjective inferences about credit
assignment did not modulate the association between RT and
the strength of expectations about the action-reward contin-
gency (Fig. 8D).

Finally, we investigated the effect of differences in inferences
about reward assignment on the post-performance subjective
error rate. First, the subjective error rate estimation was validated
by computing BF analysis on the correlation between subjective

and empirical error rates. Results provided strong evidence for a
positive association in the full sample (N=39; BF= 10.204;
r= 0.448, p=0.004). Next, we found no support for between-
group differences in the subjective error rate (BF= 0.432, demon-
strating anecdotal evidence for the null hypothesis; t(36) =
�0.850, p=0.401). Thus, being not always sure about the causes
for the lack of reward did not influence the rate of subjective
number estimate of performance errors.

To conclude, our analyses provided evidence for the lack
of differences between Q8T and Q8F in the evaluated parame-
ters, suggesting that subjective inferences about task-related
credit assignment do not modulate decision-making, general
motor performance or the association between expectation
on reward probability and motor vigor. Thus, even if the
groups in Study 1 would have had differences in credit assign-
ment, it is unlikely that this would have led to a modulation
of group effects. In addition, here, we found further support
for our main research hypothesis, whereby stronger predic-
tions about the action-reward contingency enhanced motor
vigor through faster movement.

Study 3
Sensitivity of motor performance to confidence ratings about

reward. In this study we focused our BLMM analysis on the asso-
ciation between motor performance (mIKI and RT) and confi-
dence ratings to investigate how explicit beliefs about the reward

Figure 6. Effect of retrospective credit assignment on general task performance and decision-making. Markers of general task performance and decision-making in participants that replied
True to Question 8 (Q8T; in dark brown) and participants that replied False to Question 8 (Q8F; in light brown) in the post-performance questionnaire (see Table 2) in Study 2. A, Performance
tempo (mIKI, mean interkeystroke-interval; in milliseconds, Q8T: mean 287, SEM 13.2; Q8F: mean 307, SEM 27.2). B, Reaction times (RT; in milliseconds, Q8T: mean 564, SEM 30.5; Q8F: mean
555, SEM 68.7). C, Rate of win trials (percWin; Q8T: mean 0.574, SEM 0.013; Q8F: mean 0.555, SEM 0.024). D, Rate of performance execution errors (percError; Q8T: mean 0.077, SEM 0.010;
Q8F: mean 0.102, SEM 0.020). E, Tonic volatility (v 2; Q8T: mean �1.624, SEM 0.510; Q8F: mean �0.715, SEM 0.357). F, Informational uncertainty on level 2 (s 2; Q8T: mean 1.740, SEM
0.203; Q8F: mean 2.057, SEM 0.237). G, Response model parameter (z ; Q8T: mean 1.599, SEM 0.237; Q8F: mean 1.271, SEM 0.206). Values mIKI, RT, and s 2 are averaged across 180 trials
within each participant. mIKI and RT values are log-transformed. In every plot, to the right of each mean (large dot) and SEM (denoted by the vertical bar) are displayed the individual data
points in each group to visualize group population variability.
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outcome modulated motor vigor. Table 5 presents a summary of
the posterior distributions for the winning models.

For performance tempo, LOO-CV identified the most com-
plex model (model number 4) as the best fit (mIKI, elpd_diff =
�112.4178, SE_diff = 15.74 263; elpd_diff. 2*SE_diff). The pos-
terior predictive checks demonstrated that the observed outcome
variable y overlapped well with the simulated datasets yrep from
the posterior predictive distribution (Fig. 9A). The y distribution
exhibited two peaks, however, denoting two modes of mean per-
formance tempo in our sample. The BLMM analyses showed a

negative association (slope) between the confidence ratings and
the performance tempo, with stronger explicit beliefs about the
reward tendency speeding up performance (Fig. 9B). The slope
estimate was �0.04 (95% CI from �0.08 to �0.001, including
three decimal digits in the upper bound; Fig. 9C).

In the case of RT, LOO-CV identified the model number
3 as the best fit (elpd_diff = �45.046830, SE_diff = 18.255767;
elpd_diff. 2*SE_diff). This model did not include trials as ran-
dom effect. The posterior predictive checks showed in this case
that the y and yrep distributions overlapped perfectly (Fig. 9D).

Figure 7. No effect of retrospective credit assignment on motor vigor: performance tempo. Bayesian linear mixed models [BLMMs; model number 6, y; 11 group * x1 (11 x|
subject) 1 (1|trial)] with participants that replied True to Question 8 (Q8T; see Table 2) as reference group in Study 2. A, Illustration of the posterior predictive checks where the dis-
tribution of the observed outcome variable (y, in our case performance tempo) is compared with simulated datasets (yrep) from the posterior predictive distribution (100 draws). B,
Distribution of the difference in milliseconds between performance tempo (intercept) in Q8T and in participants that replied False to Question 8 (Q8F; see Table 2). The gray vertical
bar indicates the posterior point estimate, while the gray area under the curve represents the 95% credible interval (CI). In the current plot, CI does overlap with zero (the null hy-
pothesis). This indicates that there is 95% probability of no between-group differences in performance tempo. C, Results of the BLMM analysis. We analyzed how the strength of pre-
dictions about the action-reward contingency modulates performance tempo separately for Q8T (in dark brown) and Q8F (in light brown). Here, mIKI (performance tempo: mean
interkeystroke-interval) values are represented in the log-scale. The negative slopes suggest that stronger predictions about the action-reward contingency are associated with faster
performance tempo, which replicates our findings in the main experiment (see Fig. 4C). D, Distribution of the difference between slopes in Q8T and Q8F. Here, as CIs include zero, we
can conclude with 95% probability that groups do not differ in how the strength of predictions about the reward contingency influences motor performance tempo. Thus, the sensitiv-
ity of performance tempo to the strength of predictions about the reward mapping is not differently modulated between groups.
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As opposed to performance tempo, we found no robust modula-
tion of RT by confidence ratings (Fig. 9E). The 95% CI of the
slope distribution ranged from �0.20 to 0.01. Thus, a zero effect
was a credible value of the slope distribution (Fig. 9F).

Overall, these results support the conclusion that being more
certain about obtaining the reward speeds up performance
tempo, and thus movement time, without having a clear effect
on RT. This expands our previous findings on the computational
parameter |m̂2|_c, supporting a motor invigoration effect by
explicit beliefs about the reward tendency under volatility.

In a separate sanity check, we assessed whether our measure
of confidence was correlated with |m̂2| in the HGF2. This would
suggest that implicit beliefs about the tendency of the action-
reward contingency, captured with computational modeling, can
be a proxy for explicit ratings about the confidence of reward
delivery. Indeed, a BLMM analysis demonstrated a strong associ-
ation between |m̂2| and confidence ratings. The posterior point
estimate for the intercept was 0.53, CI = [0.47, 0.59]. The distri-
bution of the fixed effect of the association between |m̂2| and
the confidence ratings had a posterior point estimate of 0.09,

Figure 8. No effect of retrospective credit assignment on motor vigor: reaction times. Bayesian linear mixed models [BLMMs; model number 6, y ; 11 group * x 1 (11 x|subject) 1
(1|trial)] with participants that replied True to Question 8 (Q8T; see Table 2) as reference group in Study 2. A, Illustration of the posterior predictive checks where the distribution of the observed
outcome variable (y, in our case RT) is compared with simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, Distribution of the difference in milliseconds between
RT (intercept) in Q8T and in participants that replied False to Question 8 (Q8F; see Table 2). The gray vertical bar indicates the posterior point estimate, while the gray area under the curve rep-
resents the 95% credible interval (CI). In the current plot, CI does overlap with zero (the null hypothesis). This indicates that there is 95% probability of no between-group differences in per-
formance tempo. C, Results of the BLMM analysis. We analyzed how the strength of predictions about the action-reward contingency modulates RT separately for Q8T (in dark brown) and Q8F
(in light brown). Here, RT values are represented in the log-scale. We found no robust evidence for a modulation of RT by the strength of expectations about the reward mapping. The upper
bound of the distribution including three decimal digits revealed a value of 0.002, demonstrating that 0 was marginally part of the 95% CI. D, Distribution of the difference between slopes in
Q8T and Q8F. Here, as CIs include zero, we can conclude with 95% probability that groups do not differ in how the strength of predictions about the reward contingency influences RT. Thus,
the sensitivity of RT to the strength of predictions about the reward mapping is not differently modulated between groups.
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Figure 9. Explicit confidence ratings invigorate performance tempo. Bayesian linear mixed model [BLMM; model number 4, y; 11 x1 (11 x|subject)1 (1|trial)] in Study 3 for per-
formance tempo (left) and model number 3, y; 1 + x + (1 + x|subject) in Study 3 for reaction times (RT; right)]. A, Illustration of the posterior predictive checks where the distribution of
the observed outcome variable (y, in our case performance tempo) is compared with simulated datasets (yrep) from the posterior predictive distribution (100 draws). B, Results of the BLMM
analysis. We analyzed how explicit beliefs about the reward tendency (confidence ratings) modulate performance tempo. Here, mIKI (performance tempo: mean interkeystroke-interval) values
are represented in the log-scale. The negative slope had a point estimate of�0.04 [95% credible interval (CI) from�0.08 to�0.001, including three decimal digits in the upper bound]. The
95% CI did not include zero. This suggests that being more certain about receiving a reward outcome is associated with faster performance tempo, which replicates our findings with the com-
putational parameter |m̂2| (see Figs. 4C, 7C). C, Distribution of the slope. The gray vertical bar indicates the posterior point estimate, while the gray area under the curve represents the 95%
CI. The vertical red line denotes zero. D, Illustration of the posterior predictive checks where the distribution of the observed outcome variable (y, in our case RT) is compared with simulated
datasets (yrep) from the posterior predictive distribution (100 draws). E, Results of the BLMM analysis. Here, RT values are represented in the log-scale. We found no robust evidence for a mod-
ulation of RT by the strength of expectations about the reward mapping (95% CI from �0.20 to 0.01). F, Distribution of the slope. The gray vertical bar indicates the posterior point estimate,
while the gray area under the curve represents the 95% CI. The vertical red line denotes zero.
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CI [0.04, 0.14]. R-hat values were below 1.1, indicating chain
convergence (Gelman and Rubin, 1992).

Last, descriptive statistics of performance variables in this task
revealed values consistent with HYA samples in Studies 1 and 2
(mIKI, in milliseconds, mean 335, SEM 14.4; RT, in milliseconds,
mean 662, SEM 26.7; percWin, mean 0.542, SEM 0.011; conf,
mean 0.527, SEM 0.028). Also, out of the 180 trials, participants
made 9.1 (SEM 1.6) performance errors on average, while they
subjectively reported making 4.8 (SEM 0.7) errors. Thus, they sub-
jectively reported only 53% of the performance errors they
committed.

Discussion
We investigated how predictions about the tendency of the action-
reward contingency invigorated motor performance trial-by-trial in
healthy younger adults (HYA), in medicated Parkinson’s disease
patients (PD), and in an age-matched sample of healthy older adults
(HOA). The task was a combination of a standard reversal learning
and decision-making paradigm with a motor sequence task. We fit-
ted the trial-by-trial behavioral data using the Hierarchical Gaussian
Filter (HGF; Mathys et al., 2011, 2014; Frässle et al., 2021) and per-
formed Bayesian analyses [Bayes factor and Bayesian linear mixed
models (BLMMs)].

Study 1 showed a trial-by-trial modulation of performance
tempo, commensurate with movement time, by the strength of
expectations about the action-reward contingencies. The invigor-
ation effect was limited to performance tempo and was not
observed for reaction time (RT). Moreover, BLMM revealed a
similar sensitivity of performance tempo to these predictions in
our three groups. This provides compelling evidence for a pres-
ervation of motor invigoration by expectations of reward proba-
bility in HOA and PD, expanding the understanding on how
reward sensitivity and reversal learning interact to modulate
motor vigor in aging and medicated PD.

Previous investigations of the beneficial effects of reward on
motor behavior (e.g., faster and more accurate motor perform-
ance; Sedaghat-Nejad et al., 2019) have been limited to manipu-
lations of reward magnitude (presence/absence; large/small) in
deterministic contexts (Codol et al., 2020; Aves et al., 2021;
Sporn et al., 2022). Our findings expand on computational work
that demonstrated the updating of beliefs in a perceptual task to
speed RT (Marshall et al., 2016). The authors found that, as par-
ticipants learned to track the transition probabilities between
stimuli, different decision-making variables affected RT. Our
results show that the trial-by-trial influence of motor vigor by
belief updating can be extended beyond the perceptual domain
to learning about action-reward contingencies.

Despite the preserved motor invigoration effect in HOA and
PD, we found extreme evidence for between-group differences in
the mean performance tempo. HYA were faster than HOA and
PD, and HOA quicker than PD. The slower sequence execution
in HOA is consistent with a general slowness of hand move-
ments in later stages of life (Ketcham et al., 2002; Aves et al.,
2021). Regarding PD, the slower performance is likely explained
by a sequence effect (SE). SE is a common bradykinetic symptom
in PD, which manifests through slower and attenuated sequential
movements (Kang et al., 2010). Dopamine (DA) intake does not
ameliorate symptoms associated with SE, suggesting a non-DA
involvement in the pathophysiology of this effect (Bologna et al.,
2016). Similar results were found for RT, with HYA displaying
shorter RT than HOA and PD. Yet, RT did not dissociate between
HOA and PD.

We additionally found evidence for similar win and error
rates in our three groups. Empirical findings on reward learning
in aging and medicated PD have been mixed. Some studies have
shown reduced probabilistic and reversal learning in older adults
and PD ON medication, suggesting difficulties in establishing
new stimulus-outcome associations and updating reward beliefs
(Cools et al., 2001; Eppinger et al., 2011; Nassar et al., 2016).
Consistent with this, de Boer et al. (2017) demonstrated poorer
probabilistic reversal learning in aging compared with young
participants, with the attenuation of the anticipatory values sig-
nals in the prefrontal brain accounting for the impoverished per-
formance. However, other work argued for preserved reward
sensitivity and learning in older adults and medicated PD (Fera
et al., 2005; Euteneuer et al., 2009; Aves et al., 2021). Specifically,
PD ON medication have been found to successfully learn from
rewards, and exhibit deficits in reversal learning exclusively for
negative feedback (Frank et al., 2004; Levy-Gigi et al., 2019). Also,
Hird et al. (2022) reported that age does not modulate the invigor-
ating effect of reward on motor responses. This is consistent with
our findings, highlighting a preserved motor invigoration effect by
reward in aging and medicated PD.

Our groups did not differ in the main markers of decision-
making. We provided some evidence for the absence of a group
effect on tonic volatility (v 2; index of individual learning about
the action-reward mapping under volatility; Hein et al., 2021),
estimated uncertainty about the action-reward tendency (s 2)
and on the mapping from beliefs to responses (z ). Accordingly,
belief updating in our task with changing action-reward contin-
gencies was comparable across HYA, HOA, and PD groups.

One aspect that was not identified in Study 1 was whether
participants correctly inferred the hidden causes for the lack of
reward (McDougle et al., 2016). Study 2 demonstrated that retro-
spective subjective inference about credit assignment did not
contribute to differences in general motor performance, deci-
sion-making, motor vigor or the subjective estimate of perform-
ance errors. Because the feedback that participants received was
veridical (unlike in McDougle et al., 2016), the effects of misattri-
bution of the causes of zero reward in our study are likely very
small, as the anecdotal evidence suggests. A limitation of this
study, however, was that it relied on retrospective self-report.
Accordingly, we conducted a third study to determine whether
trial-by-trial explicit beliefs about the reward tendency (confi-
dence ratings) are associated with faster motor performance.

Study 3 demonstrated that performance tempo is associated
with confidence ratings trial-by-trial: being more certain about
obtaining the reward speeded up the movement. Moreover, the
confidence ratings were robustly correlated with the strength of
the predictions. This outcome supports that implicit beliefs about
the tendency of the action-reward contingency, captured with
computational modeling, can be a proxy for explicit ratings
about the confidence of reward delivery.

The invigoration effect of beliefs (both implicit and explicit)
did not extend to RT. Accordingly, across our three studies, RT
was not robustly modulated in the same dynamic trial-wise man-
ner as performance tempo was. In Studies 1 and 2, RT included
deliberation time (no constraints on initiating the sequence),
which could have introduced noise to the RT distribution and
weakened the motor vigor effects. By contrast, RT in Study 3
excluded deliberation time.

According to current hypotheses, motor vigor is based on
trading-off future efforts and gains, reflecting a subject’s will-
ingness to invest energy to harvest future rewards (Shadmehr,
2010; Yoon et al., 2020). Specifically, it increases when the
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option is inferred to be valuable and decreases for perceived
effort. This has been demonstrated both for movement times
and RT (Summerside et al., 2018; Codol et al., 2020). It follows
that changes in vigor should be modulated by inferences on
the tendency of reward probability. We demonstrated that exclu-
sively performance tempo, commensurate with movement time, is
affected by beliefs about the action-reward contingency on a trial-
by-trial basis. The lack of robust invigoration effects on RT is con-
sistent with sequential planning effects introducing noise to the RT
distribution. Recent work has demonstrated that the preparatory
state of discrete sequential finger movements reflects sequence plan-
ning skills (Mantziara et al., 2021). Accordingly, RT in our task
would include trial-by-trial variability in sequence preparation,
which may mask the underlying motor vigor effects. A prediction
for future work would be a trial-by-trial invigoration of RT, beyond
movement time, in motor tasks that do not require preparation of
discrete movements.

A limitation of the present work is that, because of the nature
of our online experiment, we only tested PD ON medication.
Future work should investigate the effect of DA on the trial-by-
trial association between the expectations of reward probability
and motor vigor. Interestingly, a recent study by Hird et al.
(2022) found only a weak association between dopamine D1 re-
ceptor availability and the invigorating effect of reward. This out-
come, together with our finding of preserved dynamic motor
vigor effects in medicated PD, raises an interesting question: if
motor vigor and learning are driven by the dopaminergic system
as previously postulated (Balleine et al., 2007; Eppinger et al.,
2011), how robust is this association in more complex scenarios
rich in uncertainty and with changing reward probabilities over
time? Our results suggest that DA-replacement therapy could
restore putative decision-making deficits during learning in vola-
tile environments in PD.

In addition, the interplay between dynamic decision-making
and motor performance might be driven by several neurotrans-
mitter systems linked to precision weighting of prediction errors
during belief updating: acetylcholine (Moran et al., 2013), nor-
adrenaline (Dayan and Yu, 2006), in addition to dopamine
(Iglesias et al., 2013; Haarsma et al., 2021). On a neural level,
learning uncertain stimulus-reward contingencies relies on the
ACC, OFC, and portions of the mPFC (Hayden et al., 2011;
Rouault et al., 2019; Rolls et al., 2022). The mPFC is also involved
in mapping beliefs to actions during exploration-exploitation
(Domenech et al., 2020). Follow-up neuroimaging studies could
assess the role of these regions in the motor vigor effects reported
here, including the preserved effects in aging and PD.

To conclude, this study is the first to demonstrate that inferring
the probabilistic reward mappings positively biases motor perform-
ance through faster performance tempo. Additionally, we provided
novel evidence for a preserved sensitivity of the motor invigoration
effects in HOA and PD. Thus, healthy young, old and medicated
PD can similarly obtain benefits in their motor performance when
updating beliefs about the volatile action-reward contingencies.
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