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Analyzing the collective emission of a Rydberg-blockaded single-photon source
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An ensemble of rubidium atoms can be excited with lasers such that it evolves into an entangled state with just
one collective excitation within the Rydberg-blockade radius. The decay of this state leads to the emission of a
single antibunched photon. For a hot vapor of rubidium atoms in a microcell, we numerically study the feasibility
of such a single-photon source under different experimental conditions like the atomic density distribution and
the choice of electronic states addressed by the lasers. For the excitation process with three rectangular lasers
pulses, we simulate the coherent dynamics of the system in a truncated Hilbert space. We investigate the radiative
behavior of the moving rubidium atoms and optimize the laser pulse sequence accordingly. We find that the
collective decay of the single excitation leads to a fast and directed photon emission and further that a pulse
sequence similar to a spin echo increases the directionality of the photon. Finally, we analyze the residual double
excitations and find that they do not exhibit these collective decay properties and play only a minor deleterious
role.
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I. INTRODUCTION

Single-photon sources are essential components for many
upcoming technologies including quantum computation [1,2]
and quantum communication [3,4]. Most existing single-
photon source platforms use single emitters that naturally
emit antibunched light, e.g., nitrogen-vacancy centers [5],
quantum dots [6], single atoms [7], or single ions [8], all
of them with specific advantages and disadvantages [9,10].
Here instead we consider ensembles of rubidium atoms and
leverage the Rydberg-blockade effect [11] to generate an en-
tangled many-body state with only a single excitation based
on the van der Waals interaction [12] between the atoms. The
strong Rydberg-Rydberg interaction makes Rydberg atoms
interesting for several applications in the field of quantum
technologies [13], e.g., for entanglement generation or phase
gates [14–18], quantum simulations [19–21], and single-
photon sources [22–27]. While such a single-photon source
was first realized with ultracold atoms [25], it has been shown
that cooling might be omitted and a single-photon source with
Rydberg atoms can also operate at room temperature [24,27].
This however implies driving the atoms off-resonantly due
to their individual Doppler shift, a finite time of flight, and
movement-induced decoherence. Some of these challenges
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could be mitigated by an optimal pulse sequence to render the
excitation process robust against this motional noise [24,28].

In this paper we build on the work of Refs. [24,27,29]
and further investigate the emission behavior of single-photon
sources based on room-temperature rubidium-atom ensem-
bles. We also investigate the influence of the excitation
pulses on the phase information encoded in the entangled
excited state which influences the directionality of the photon
emission. Furthermore, we discuss the behavior of dou-
ble excitations and the emission of two photons. This was
already done in [26], albeit with a different approach and in
a slightly different context. We start by describing the setup
and our model of the system in Sec. II. In Sec. III we discuss
our numerical approach to simulate the quantum many-body
dynamics of the atomic ensemble. In Sec. IV we present and
discuss the results of the simulations for the emission of both
a single photon and two photons.

II. SYSTEM SETUP AND MODEL

We consider N neutral 85Rb atoms in a microscopic vapor
cell at room temperature as shown in Fig. 1(a). In one direc-
tion the atoms are confined by the cell walls that are separated
by a distance of 1 µm. Three lasers couple the ground state
|g〉 = |5S1/2〉 to the Rydberg state |r〉 = |40S1/2〉 via an inter-
mediate state |i〉 = |5P1/2〉 and finally to the excited state |e〉 =
|5P3/2〉 [Fig. 1(b)]. This procedure is also known as four-wave
mixing [30,31], where k0 = k1 + k2 − k3 is the mixed wave
vector of the three incoming lasers. For the transition from the
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FIG. 1. Setup of the system. (a) 85Rb atoms in a vapor cell which
get excited by three antiparallel lasers. The cell length as well as the
laser beam waist w0 has the size of the Rydberg-blockade radius.
(b) Four-level scheme with the respective Rabi frequencies � j and
atom decay rate �.

ground to the Rydberg state we choose the first laser to be
red detuned by 100 GHz and the second laser blue detuned
also by 100 GHz so that the two-photon transition is resonant
again. This procedure minimizes the amount of population in
the intermediate state and makes the two-photon transition
more robust. The resonant transition frequencies have been
taken from experimental data [32,33] for the |g〉 ↔ |i〉, |e〉
transitions and calculated using the program ARC: Alkali
Rydberg Calculator [34] for |i〉, |e〉 ↔ |r〉.

The atoms are initially prepared in the ground state |G〉 :=
|g1, . . . , gN 〉 with the goal of exploiting the Rydberg block-
ade to create an entangled state which contains exactly one
single excitation and stores the directional information of
the incoming photons in the relative phases. This entangled
state is the W state |W (tW )〉 = ∑

n wneik0·Rn (tW )|en〉, where
Rn(t ) is the position of atom n at time t ; tW depends on
the laser pulses, as will become clear in Sec. IV; the state
|en〉 := |g1 · · · en · · · gN 〉 denotes a single excitation of atom
n in state |e〉 with all other atoms in the ground state |g〉; and
the coefficients wn depend on the distribution of the atoms and
on the laser pulses. When this W state, which is similar to a
discrete Fourier transformation of the mixed photon wave k0,
decays, a single photon with wave vector k ≈ ke

k0
k0 is emitted

in the preferred direction k0 and with a frequency close to
the resonant transition frequency to the ground state ωe = cke.
For the laser geometry, we decide to set the second and third
lasers antiparallel to the first one. This minimizes the detuning

of the lasers from the Doppler shift and the dephasing during
the decay process [24,29].

The working principle of the single-photon source can be
divided into two temporally subsequent steps: the excitation
process from the atomic ground state |g〉 to the excited state
|e〉 via photon absorption from the three lasers and the decay
process back to the ground state via photon emission. This
separation is valid as long as the lifetime τ of the excited state
is much longer than the pulse duration t0. This is given in our
case, since the excited state has a lifetime of τ = 26.2 ns [32],
while we consider pulse durations around t0 ≈ 1.5 ns. We will
thus model the two processes separately and connect them by
using the final state of the excitation process as the initial state
of the decay process.

A. Excitation process

The many-body Hamiltonian in the laboratory frame Ĥ (t )
contains the eigenenergies of the single-atom Hamiltonian
Ĥ0 = ∑

s Es|s〉〈s| (s ∈ {g, i, r, e}), the interaction Ĥtrans(t ) =∑
n, j er̂nE j,n(t ) between the single valence electron with

dipole moment er̂n of atom n with a laser field j, and the
atom-atom interaction Ĥint (t ). For the excitation process we
describe the system in a semiclassical way, which means
that we define the electric field as a classical oscillating
wave E j,n(t ) = E j (t ) cos[k j · Rn(t ) − ω jt]ε j with linear po-
larization vector ε j , while we treat the electronic states as
a quantum system. To simplify the calculation, we transfer
the system from the laboratory frame to the rotating frame
by a unitary transformation |ψ (t )〉 = T̂ (t )|ψ̃ (t )〉. We choose
T̂ (t ) = exp[− it

h̄ (Ĥ0 − ˆ̃H0)] such that the drift part of the trans-

formed Hamiltonian ˆ̃H (t ) = ˆ̃H0 + ˆ̃Htrans(t ) + Ĥint (t ) takes the
form

ˆ̃H0 = −h̄
∑

n

δ1,n|in〉〈in| + (δ1,n + δ2,n)|rn〉〈rn|

+ (δ1,n + δ2,n − δ3,n)|en〉〈en|. (1)

We then apply the rotating-wave approximation (RWA),
which neglects the fast oscillating terms from the electric
field on timescales of femtoseconds and only keeps oscilla-
tions in the range from picoseconds up to nanoseconds. It is
important to notice that one needs to transform the system
back to the laboratory frame after the simulation to get the
actual particle-dependent phases of the quantum state. The
drift Hamiltonian in the rotating frame ˆ̃H0 contains the de-
tunings δ j,n = δ j − k j · vn of the different laser frequencies
with respect to the resonant transitions frequencies (e.g., δ1 =
ω1 − Ei−Eg

h̄ ), where we also take the Doppler shift of each
particle into account. The single-atom off-diagonal elements

ˆ̃Htrans(t ) = h̄

2

∑
n

�1,n(t )|in〉〈gn| + �2,n(t )|rn〉〈in|

+ �3,n(t )|rn〉〈en| + H.c., (2)

given by the individual Rabi frequencies � j,n(t ) = � j (t )

exp[ik j · Rn(0) − |R⊥
n (t )|2
w2

0, j
], are determined by the laser in-

tensity [e.g., �1(t ) = e
h̄E1(t )〈i|r̂|g〉 · ε1], the starting position

of each atom, the time-dependent position in the plane
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orthogonal to the laser direction R⊥
n , and the beam waist w0

of the Gaussian laser profile, orthogonal to its direction of
propagation. Finally, the interaction energy, which does not
change under the transformation, between two Rydberg atoms
n and m is given by

Ĥint (t ) =
∑
n<m

C6

d6
n,m(t )

|rnrm〉〈rnrm|, (3)

including the distance between the two atoms dn,m(t ) =
|Rn(t ) − Rm(t )| and coefficients C6 = h×642.1 MHz µm−6

[35].

B. Decay process

We start again with the Hamiltonian in the laboratory frame
Ĥd(t ) = Ĥd,0 + Ĥd,trans(t ), where Ĥd,0 contains the transition
energies and Ĥd,trans(t ) is the interaction between the atoms
and the electromagnetic field. Since we focus on the decay
of the excited state, we treat the atoms as two-level systems
|g〉 and |e〉 and neglect any atom-atom interaction. To describe
the decay process of the excited atoms and the photon emis-
sion we have to quantize the electromagnetic field En(t ) =∑

k,μ Ek (ak,μeik j ·Rn (t ) + a†
k,μe−ik j ·Rn (t ) )εk,μ with polarization

εk,μ (μ ∈ {1, 2}) and annihilation operator ak,μ. Conse-
quently, the transition elements are Ĥd,0 = h̄ωe

∑
n |en〉〈en| +∑

k,μ h̄ωk,μak,μa†
k,μ

. After transforming the system into the

rotating frame via T̂d(t ) = exp(− it
h̄ Ĥd,0) and applying the

RWA, the Hamiltonian is

ˆ̃Hd(t ) = h̄
∑
n,k,μ

gk,μσ †
n ak,μei[k·Rn (t )−(ωk−ωe )t] + H.c., (4)

with the coupling constant gk,μ = e
h̄Ek〈e|r̂|g〉 · εk,μ between

the atoms and the electromagnetic field and the lowering
operator σn = |gn〉〈en|.

1. Single excitation and single-photon emission

We first focus on the collective decay of the singly excited
states |en〉 to the many-body ground state |G〉 and the emission
of a single photon |1k,μ〉. We thus consider a general state
|ψe(t )〉 = ∑

n αn(t )|en〉|0〉 + ∑
k,μ βk,μ(t )|G〉|1k,μ〉 with one

shared excitation between the atoms and the single-photon
modes, where the αn(t ) are the coefficients for the atomic
excitation and the βk,μ(t ) for the photon modes, respectively.
At t = t0, right after the laser pulses, we consider the photon
mode not to be occupied, i.e., βk,μ(t0) = 0. The Schrödinger
equation then leads to two coupled differential equations

iα̇n(t ) =
∑
k,μ

gk,μβk,μ(t )ei[k·Rn (t )−(ωk−ωe )t], (5)

iβ̇k,μ(t ) =
∑

m

g∗
k,μαm(t )e−i[k·Rm (t )−(ωk−ωe )t]. (6)

We follow the calculations of [23,24] by integrating Eq. (6)
in time and inserting it into (5). We then apply the Wigner-
Weisskopf approximation [36,37], which assumes only small
deviations of ωk to be present around ωe (i.e., the photon
linewidth is narrow compared to its central frequency). Then
using the relation

∫ ∞
0 e−i(ωk−ωe )(t−t ′ )dk ≈ 2π

c δ(t − t ′) leads to
a finite number of coupled differential equations for the co-
efficients of the atomic excitation with the single-atom decay

rate � = 1
τ

,

α̇n(t ) ≈ −�

2

∑
m

αm(t )sinc[kedn,m(t )]. (7)

We are now interested in the population of the photon
modes which have a momentum k similar to k0. The stan-
dard approach is to insert the solutions of αn(t ) into Eq. (6)
and sum over a discrete number of βk,μ(t ) in the three-
dimensional momentum space up to a certain angle [23,24].
Another approach that we want to introduce is multiplying
the time-integrated equation (6) with its complex conjugate.
We then integrate over the whole momentum space and use
the Wigner-Weisskopf approximation again to eliminate one
time integral. Furthermore, we define the angle θ between k
and k0 and φ between k⊥ and d⊥

n,m(t ), both being the orthog-
onal part of the previously defined vectors with respect to k0.
(For a detailed calculation see Appendix A). This results in∑

k,μ |βk,μ(t )|2 ≈ ∫ π

0 p(θ, t )dθ , with the population density
function p(θ, t ) given by

p(θ, t ) = �

2
sin(θ )

∫ t

t0

∑
n,m

αn(t ′)α∗
m(t ′)e−iked‖

n,m (t ′ ) cos(θ )

× J0(ked⊥
n,m(t ′) sin(θ ))dt ′, (8)

where J0(ϕ) = 1
2π

∫ 2π

0 e−iϕ cos(φ)dφ is the Bessel function of
the first kind. We can then split this function into two parts: the
geometrical factor sin(θ ), which is the radius of an infinites-
imal slice of a unit sphere around the ensemble, and the sum
over coupled singly excited coefficients, which contains the
information on the atoms and on the absorbed photon. The ad-
vantage is that we now only have to discretize in the angle θ to
calculate the photon emission numerically. Furthermore, the
total probability of emitted photon and remaining excitation is
constant,

∫ π

0 p(θ, t )dθ + ∑
n |αn(t )|2 = ∑

n |αn(t0)|2, and as
a consequence, the collective decay rate can be conveniently
calculated from the coefficients for the atomic excitation:
∂
∂t

∫ π

0 p(θ, t )dθ = − ∂
∂t

∑
n |αn(t )|2.

2. Double excitation and two-photon emission

In more detail, after the excitation process, the population
is distributed not only over a singly excited state and
some residual ground-state population as considered in
the preceding section. The main additional contribution is
the undesired population of doubly excited states |en, em〉
(i.e., all atoms in the ground state except for atoms m
and n), which can lead to the emission of two photons
and thus are potentially detrimental for the utilization of
a single-photon source. Therefore, we want to investigate
the decay of such doubly excited states and the emission
of the two photons. We consider the state |ψee(t )〉 =∑

n<m αn,m(t )|en, em〉|0〉 + ∑
n,k,μ βn,k,μ(t )|en〉|1k,μ〉 +∑

k,μ,q,η γk,μ,q,η(t )|G〉|1k,μ, 1q,η〉, where αn,m(t ) are the
coefficients for the double excitations of the atom, βn,k,μ(t )
for the states with one atomic and one photonic excitation,
and γk,μ,q,η(t ) for the combinations of two photons with all
the atoms in the ground state. Here we neglect the fact that
photons are indistinguishable, but distinguish between the
first |1k,μ〉 (with wave vector k and polarization μ) and the
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second |1q,η〉 photon (with wave vector q and polarization η),
following Ref. [36]. The Schrödinger equation then leads to
three coupled differential equations

iα̇n,m(t ) =
∑
k,μ

gk,μβn,k,μ(t )ei[k·Rm (t )−(ωk−ωe )t]

+
∑
k,μ

gk,μβm,k,μ(t )ei[k·Rn (t )−(ωk−ωe )t], (9)

iβ̇n,k,μ(t ) =
∑
l �=n

g∗
k,μαn,l (t )e−i[k·Rl (t )−(ωk−ωe )t]

+
∑
q,η

gq,ηγk,μ,q,η(t )ei[q·Rn (t )−(ωq−ωe )t], (10)

iγ̇k,μ,q,η(t ) =
∑

l

g∗
q,ηβl,k,μ(t )e−i[q·Rl (t )−(ωq−ωe )t]. (11)

Corresponding to the product rule, we then make the ansatz
βn,k,μ(t ) = βα

n,k,μ(t ) · β
γ

n,k(t ) and associate with the derivative
β̇α

n,k,μ(t ) · β
γ

n,k(t ) the incoming population from the double
excitations given by the first term in Eq. (10) and with
βα

n,k,μ(t ) · β̇
γ

n,k(t ) the outgoing population into the two-photon
state given by the second term. This is close to the calculation
in [36], but generalized to a many-body state. We can then
decouple the double excitations in a way similar to the single-
excitation case in Eq. (7) by inserting βn,k,μ(t ) = −i

∑
l �=n

g∗
k,μ

∫ t
t0

αn,l (t ′)
β

γ

n,k (t )

β
γ

n,k (t ′ ) e
−i[k·Rl (t ′ )−(ωk−ωe )t ′]dt ′ into Eq. (9) to

obtain

α̇n,m(t ) ≈ −�

2

∑
l �=n

αn,l (t )sinc[kedm,l (t )]

− �

2

∑
l �=m

αm,l (t )sinc[kedn,l (t )]. (12)

Furthermore, we can also decouple the remaining excitation
and first-photon states from the two-photon states by inserting
the time integral of Eq. (11) into Eq. (10) and following the
same calculation to get

β̇n,k,μ(t ) ≈ −i
∑
l �=n

g∗
k,μαn,l (t )e−i[k·Rl (t )−(ωk−ωe )t]

− �

2

∑
l

βl,k,μ(t )sinc[kedn,l (t )]. (13)

Here we can also calculate a photon-population density
function for the first photon (see also Appendix A) and in
principle also for the second photon. Nevertheless, we will
not present the formula for the second photon since, unfortu-
nately, it is in any case not feasible to calculate it numerically
[as we will do in Sec. IV for Eqs. (8) and (14)] since we
would have to sum over all particle pairs twice, leading to
O(N4) terms and double time integrals over them. The density
function for the first photon is given by

p2(θ, t ) = �

2
sin(θ )

∫ t

t0

∑
n

∑
m,l �=n

αn,m(t ′)α∗
n,l (t

′)e−iked‖
m,l (t

′ ) cos(θ )

× J0(ked⊥
m,l (t

′) sin(θ ))dt ′. (14)

However, we can approximate the emission rate of the sec-
ond photon by integrating over all first photon modes, where
β

γ

n,ke
(t ) is the mean value of β

γ

n,k(t ′) over all directions:

∑
k,μ,q,η

∂t |γk,μ,q,η(t )|2 = �
∑

n

∑
m �=n
l �=n

∫ t

t0

αn,m(t ′)α∗
n,l (t

′)

× ∂t |βγ

n,ke
(t )|2

|βγ

n,ke
(t ′)|2 sinc[kedm,l (t

′)]dt ′.

III. NUMERICAL METHODS

If we want to numerically solve the equations that we
have derived in the preceding section, the main challenge is
the quantum many-body dynamics of the excitation process.
We have to efficiently sample the atoms and find a way to
effectively truncate the Hilbert space for the excitation pro-
cess. The solution of the decay process instead can be found
with a standard differential equation solver.

A. Particle sampling and velocity distribution

Before we simulate the excitation of the atoms via the
three laser pulses, we have to sample the atoms with one of
two possible distributions. The first is the standard Maxwell-
Boltzmann distribution at T = 200 ◦C, where we assume
random starting positions and a Gaussian velocity distribution
in each direction. The second is produced by light-induced
atomic desorption (LIAD) [38,39], where a completely off-
resonant laser pulse releases atoms that are sticking at the
cell walls. For the distribution in the LIAD case, these
atoms are emitted orthogonal to the glass cell walls (here
also parallel to the desorption laser), leading to a directional
velocity distribution P(v, θ ) = av2 exp(− v2

b2 ) cos(θ ), where
we choose the parameters a = 1.1×10−7 s3/m3 and b =
271 m s−1 according to Ref. [39]. With that, we can calculate
the time-dependent average number of atoms which have not
collided into the cell walls 〈N〉(t ) = N0{1 − exp[−( �x

bt )2]} if
we expect that all atoms start at t = 0 from the wall. We set the
upper limit of the complete pulse duration to 2 ns and for that
97% of all released atoms have not collided with either cell
wall. Independently of the distribution, we will only simulate
those particles which have not collided into the cell walls
during these first 2 ns. We also only take particles into account
for which the time-averaged Rabi frequency is at least 10%
of the maximum value in the middle of the Gaussian profile.
For that we consider a small beam waist of w0,1 = 0.5 µm
for the first laser and a broad waist w0,2, w0,3 = 2 µm for the
second and third lasers. This way of choosing the beam waist
ensures that only particles inside the Rydberg-blockade radius
are excited to the intermediate state, but each of them then is
transferred from the Rydberg state to the excited state even
when they fly out of the center of the beam.

Due to the Gaussian profile of the three lasers, the mo-
tion of the N atoms, and the distance-dependent interaction
strength of the N (N − 1)/2 particle pairs, we have 3N +
N (N − 1)/2 different time-dependent variables [see Eqs. (2)
and (3)]. Instead of treating all those variables separately,
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FIG. 2. Illustration of the effective description of the low-
excitation sector. The oscillations from a state with two excitations,
here |inrm〉, to N − 2 states with a third excitation get combined to
one oscillation to an effective state |inrmieff〉.

we approximate them in time via a polynomial fit f and
group terms by their time order a, e.g.,

∑
n �1,n(t )|in〉〈gn| ≈∑O

a [
∑

n f (a)(�1,n)|in〉〈gn|]t a. We fit each variable with a
polynomial up to a certain order, which is O1 = 3 for the first
laser, O2,3 = 2 for the second and third lasers, and Oint =
10 for the interaction energy. In this way, we can reduce
the number of time-dependent operators for the simulation
remarkably.

B. Effective description of the low excitation sector

For the excitation process we only simulate the low excita-
tion sector, which in our case means that we take the first two
excitations fully into account and add only a third effective
excitation of atoms in the intermediate state, e.g., |inrmil〉,
|rnrmil〉. All states with |rnrmrl〉, |rnrmel〉, and higher will be
neglected since the energy shift of three Rydberg states is
much higher than the Rabi frequency of the first two lasers
even for longer particle distances and so these states can never
be populated for all practical purposes. Note that the notation
|inrmil〉 (and similar states) means that all atoms are in the
ground state apart from the atoms m, n, and l that are in
the state indicated by the notation. We now want to describe
the oscillations in Fig. 2, between a state with two arbitrary ex-
citations n and m and the N − 2 states with an additional atom
in the intermediate state effectively. We do this by combining
the N − 2 states into one effective state and considering the
effective oscillation between this effective state and the state
carrying two excitations.

For that we will use third-order perturbation theory, where
we take the deviations of the Doppler shift from the mean
velocity as perturbation (see Fig. 2 for an illustration). We
define δ̄1 = 1

N−2

∑
l �=n,m δ1,l and |〈�1〉|2 = ∑

l �=n,m |〈�1,l〉|2,
where 〈�1,l〉 are the time-averaged Rabi frequencies of each
atom. Now the eigenenergies of the Hamiltonian projected to
this (N − 1)-dimensional subspace without perturbation are

E± = h̄
−δ̄1 ±

√
δ̄2

1 + |〈�1〉|2
2

(15)

and E1,...,N−3 = −h̄δ̄1. We then take δ̄1 − δ1,l as the perturba-
tion and calculate the corrected eigenenergies E ′

± to get the
detuning and Rabi frequencies for the oscillations between a

state with two excitations n and m and a third effective one
|inrmieff〉 (see also Fig. 2):

−δ̄′
1 = E ′

+ + E ′
−

h̄
, (16)

|〈�′
1〉| = 1

h̄

√
(E ′+ − E ′−)2 − (E ′+ + E ′−)2. (17)

The N − 3 states corresponding to the eigenenergies E ′
1,...,N−3

are dark states and not considered further.
We should mention that we only take the time-averaged

Rabi frequency for these effective oscillations for the reason
of numerical simplicity. For all other transitions (involving at
maximum two excitations) we still use the time-dependent
Rabi frequencies. Apart from these fast back and forth os-
cillations, there can be slow indirect oscillations from one
state already containing an atom in the intermediate state to
another. These oscillations are given by the effective Rabi
frequency from the adiabatic elimination [40]

ˆ̃Heff (t ) = h̄

4

∑
n

m<l

�1,l (t )�∗
1,m(t )

δ1,n + δ2,n + δ1,m + δ1,l
|rn, il〉〈rn, im| + H.c.

(18)

With this effective description of the transitions, we can
still capture all the relevant information of the third excitation
sector with a quadratic growth of the truncated Hilbert space.
The solution of the time-dependent Schrödinger equation of
the excitation process is then solved with QUTIP [41].

IV. RESULTS

We will now present the results from the simulation and
optimization of the excitation process as well as the emission
properties from the decay process. Before we optimize the
laser pulse sequence we first have to determine the optimal
target state W (tW ) by investigating the emission pattern ob-
tained for different tW in Sec. IV A. After that we optimize the
pulse sequence and Rabi frequencies for maximal excitations
and minimal phase differences of the singly excited states in
Sec. IV B. Finally, in Sec. IV C we will use the final states
from the simulation of the excitation process as initial states
for the decay process and investigate the behavior of the
single- and two-photon emission.

A. Optimal target state

In this section we will explain what would happen if
we fully reached the target state and then use this result
to determine which target state has the best emission prop-
erties. We thus assume that we prepared our system with
a laser pulse sequence of duration t0 = 1.5 ns which drives
the population into the state

∑
n=1 αn(t0)|en〉 with coefficients

αn(t0) = exp[ik0 · Rn(tW )]/
√

N , where tW is a point in time
at which the phase matching is maximized and the highest
single-photon emission rate is roughly expected. We focus
here only on the phases of the coefficients, which can vary due
the motion of the atoms and the state-preparation pulses. We
will discuss this in more detail in Sec. IV B. We then calculate
the collective decay and photon emission via Eqs. (7) and
(8) for different times tW to determine the maximal photon
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(a) (b)

FIG. 3. Emission properties of the target state: (a) total photon
emission after 10 ns into a forward cone up to a 30 ◦ angle to the
laser direction and (b) photon emission peak position tp for different
W -state phases with N = 500 atoms averaged over ten samples.

population after several nanoseconds of decay time, even if we
expect that the bulk photon population will be emitted during
the first 2 ns after the laser pulse. Furthermore, we consider
that all atoms which collide into the cell walls, from that
moment, do not contribute to the collective decay anymore,
similar to the results about the finite time of flight in Ref. [39].
Figure 3(a) shows that the maximal photon population reaches
the detector if the phase of the atoms corresponds to a position
tW forward in time with respect to t0 = 1.5 ns (i.e., tW > t0)
and that its value varies by about a factor of 3 in the analyzed
range of tW . Additionally, the peak emission rate occurs at a
time t = t0 + tp that is roughly proportional to tW − t0, as one
can see in Fig. 3(b).

In conclusion, we find that we get the most favorable emis-
sion behavior for tW ≈ 2 ns and thus choose this value for the
parameter in our target state W (tW ).

B. Optimization of the pulse sequence

To optimize the pulse sequence, we first have to fix our
target state W (tW ). Based on the analysis of the preceding
section, we choose tW = 2 ns. Furthermore, we have to fix
the weights wn. Unlike in Sec. IV A, where we chose equal
weights 1/

√
N , we now choose the time-averaged Rabi fre-

quencies wn = |〈�12,n〉〈�3,n〉|/
√∑

n |〈�12,n〉〈�3,n〉|2, where
�12,n = �1,n�2,n/2δ1,n is the Rabi frequency for the two-
photon transition after adiabatic elimination of the interme-
diate level |i〉 [40] (note that in the simulation we simulate
also the intermediate level and do not actually perform the
adiabatic elimination). This choice of weights wn reflects
the influence of the Gaussian laser profile and ensures that the
optimization focuses on the atoms in the center of the laser
beam where the intensity is close to its maximum. Note that
even if equal weights may seem reasonable, they would cause
the optimized Rabi frequencies to go beyond every technical
limit in an attempt to excite also the atoms in the tail of the
Gaussian laser-beam profile.

We can now proceed with the optimization of the pulse
sequence, where we optimize in particular the position of
the three laser pulses and their amplitudes, i.e., the constant
Rabi frequencies. We furthermore use the total pulse dura-
tion t0 as an optimization parameter and allow values out of
the interval 1.25 ns � t0 � 1.75 ns. We simulate 50 different
samples with 30 atoms each, where we randomly sample the
positions and velocities of the atoms. We then use the mean

FIG. 4. Optimized pulses obtained from the simulation of 50
samples, each with N = 30 atoms each. The atoms were sampled
once according to the Boltzmann distribution and once according
to the distribution in the LIAD case and the pulses were optimized
separately for all four scenarios. The delay between the pulse of the
first two lasers and the third one further increases the phases.

(in the sense of an average over the 50 samples) fidelity
FW = |〈W (tW )|ψ (t0)〉|2 as the figure of merit for a maximiza-
tion with the Nelder-Mead algorithm [42] implemented in the
quantum optimal control suite optimization software [43].

The resulting pulse shapes are shown in Fig. 4. We can
see a time gap between the end of the first two lasers, at
�t12, and the start of the third one, at ts,3, which resembles
a spin echo pulse [44]. This can be explained by looking at
the velocity-dependent phase of the excited state for a sin-
gle atom φe(v) ≈ [k0�t12 − k3(2ts,3 + �t3 − �t12)] · v

2 (see
Appendix B). Since we have an antiparallel laser geometry,
−k3 has the same direction as k0, but k3 > k0 and with that
the second term becomes more dominant. Therefore, the cor-
responding phase time tφ = φe(v)

k0·v can be noticeably greater
than the pulse duration t0 = ts,3 + �t3 if ts,3 > �t12. While
this calculation is for a single atom, the same consideration
holds also for the many-body state where we can numerically
calculate how the pulse duration and timing contribute to
obtaining the phases that correspond to the parameter tW of
the target state. The fidelities, the populations of the ground,
singly, and doubly excited states, and the phase time differ-
ence with respect to the pulse length are given in Table I.
The main limiting factor for the state preparation is caused
by the relative phases, while the population of the singly
excited states exceeds the state preparation fidelity in all cases.
Additionally, there is a residual population of the ground state
resulting in a no-photon error. The most problematic error
for our single-photon source is the population of the doubly

TABLE I. Fidelity FW ; populations of the ground (g), singly
excited (e), and doubly excited states (ee); and the phase time and its
difference from the the pulse duration. The difference of the phase
time with respect to the pulse length tφ − t0 is in both cases close to
the desired 0.5 ns, which we took from Fig. 3(a).

Parameter Boltzmann distribution LIAD

FW (%) 72.0 ± 4.0 65.5 ± 3.4
g (%) 3.5 ± 3.2 8.0 ± 4.7
e (%) 76.3 ± 4.4 68.8 ± 3.9
ee (%) 8.2 ± 2.0 9.0 ± 2.2
tφ − t0 (ns) 0.468 0.524
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(a) (b)

(c)

FIG. 5. Single-photon emission. (a) Photon-population density
function from the decay of a single excitation after 10 ns where we
excluded the geometrical factor sin(θ ). (b) Associated emission rate
in units of the corresponding single-atom decay rate. Both (a) and
(b) also show a comparison between the optimized pulse with the
delay of the third laser and without. (c) Linear dependence of the
maximal emission rate on the particle number N .

excited state of up to about 10%, which will lead to the
emission of a second photon. In the next section we will study
the emission of the photons and see that the deleterious effect
of the second photon is suppressed by its different emission
properties. Nevertheless, the state preparation could probably
be improved using, for example, more complex pulse shapes
based on quantum optimal control.

C. Atom decay and photon emission

To calculate the decay of the atomic excitation and the
photon emission we first take the optimized pulses from the
preceding section and simulate the excitation process of 100
samples with each of the N = 100 atoms. Since in a real
experiment the number of atoms is at least a factor of 10
higher and coefficients αn(t0) of the singly excited states are
nearly independent of each other (but depend on the velocity
and initial position of each individual atom), one can group
always 10 from the 100 samples together and only needs to
divide the coefficients αn(t0) by a factor

√
10 to obtain a

realistic estimate for the single-excitation contribution of a
1000-atom ensemble. We can take this state as the initial state
to calculate the decay process, where we thus consider 10
disjoint groups of samples with 1000 atoms each. In principle,
one could do this for an arbitrary number of samples, as long
as it is a divisor of the total number of samples. In Fig. 5(c)
we increase this number to the total number of samples, but for
the detailed analysis of the photon direction we limit this num-
ber up to 10, since the directional photon population in Eq. (8)
depends quadratically on the number of particles. For the
doubly excited states we do not group the samples together,
mainly, since their coefficients αn,m(t0) cannot be factorized
into two single-particle coefficients and further because of the

quadratically growing number of atom pairs N (N − 1)/2 and
the associated high computational cost; instead, we calculate
the decay for all of the 100 samples separately.

As we can see in Fig. 5(a), a large amount of population is
emitted with a small polar angle to k0. The emitted population
up to an angle of θ = 30◦ is in the case of the Boltzmann
distribution 0.1422 and in the case of LIAD 0.1941. This
preference in the photon direction is correlated to the occur-
rence of a superradiant emission burst during the first few
nanoseconds [Fig. 5(b)], where the collective decay rate is
several times larger than the single-atom decay rate �. Note
that we neglected possible photon emissions induced through
atom-atom and atom-wall collisions. Furthermore, we split
the simulation of the excitation and the decay of the atoms
and thus we neglected a possible photon emission during
the last laser pulse. This means that a combined simulation
would show also a photon emission for t < t0. Nevertheless,
for t > t0 the emission rate should look qualitatively the same.
Additionally, to clearly see the influence of the phases of the
singly excited states, we also run the simulations in Figs. 5(a)
and 5(b) with the same pulse but without the delay of the
third laser. This choice should have nearly no influence on
the population of the singly excited states at the end of the
pulse, since the only time-dependent part of the Hamiltonian
for the excitation process is the interaction energy. The differ-
ence of the phase time corresponding to the phase information
of the singly excited state with respect to the pulse length
tφ − t0 is now in this case 0.247 ns instead of 0.468 ns for the
Boltzmann distribution and 0.223 ns instead of 0.526 ns for
LIAD. As a consequence, we expect that the emission pattern
is changed. Indeed, we observe in the simulation that the
collective emission rate changes in both cases [see Fig. 5(b)].
While for the Boltzmann distribution the peak primarily gets
stronger at t0, in the case of LIAD it moves from around 0.5 ns
to t0. Nevertheless, for both distributions we still get a higher
photon population for small angles θ if we apply the delay,
especially in the case of LIAD. The differences between the
Boltzmann and LIAD distributions in the photon emission
originate from the nonisotropic motion of atoms in the LIAD
case, which are moving mainly parallel or antiparallel to the
direction of the lasers. This seems to be the reason for the
increased sensitivity to the phase information, as one can see
in Figs. 5(a) and 5(b). We could probably amplify this effect
by preparing the cell in a way where only one of the walls
emits atoms (thus reducing the relative motion among the
atoms even further).

In Fig. 5(c) we plotted the maximum value of the emission
rate for different sample group sizes between 5 and 100 sam-
ples, each with 100 atoms. One can see that the superradiant
emission burst increases linearly with N at rates of 3.64�

(Boltzmann distribution) and 3.39� (LIAD) per 1000 atoms.
This emission enhancement with the number of atoms is a
promising behavior for a possible experiment, since we expect
to have N = 1000–10 000 atoms in a real vapor cell. The exact
number then depends on the temperature of the vapor cell and
in the case of LIAD also on the off-resonant laser and can in
principle be controlled.

In Fig. 6(a) we show the photon-population density func-
tion p2(θ ) [Eq. (14)] for the first photon from the decay of the
double excitation. Compared to the one for a single photon,
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(a) (b)

(c)

FIG. 6. Two-photon emission. (a) Photon-population density
function for the first photon emitted from the double excitation.
(b) Corresponding emission rate in units of the single-atom decay
rate. (c) Emission rate of the second photon. The second photon is
emitted at a much lower rate and with a peak at larger t compared to
the single photon. In the LIAD case we neglected three samples for
this plot due to numerical artifacts.

it is very close to an isotropic radiation source independent
of the choice of states. This seems not surprising, since the
interaction energy results in an additional phase, which does
not depend on the position and velocity of each atom on their
own. With that, most of the stored information of the absorbed
photons is lost through this interaction-dependent phase. One
can also see that the photon emission rate is similar to an
exponential function that one would get without any collective
effects [Fig. 6(b)]. The emission rate of the second photon
is shown in Fig. 6(c). It is very similar to what one would
expect for two separately excited atoms, both with an inde-
pendent decay: One would get an emission rate proportional
to �(1 − exp(−�t )) exp(−�t ). One reason that the emission
peak obtained from the simulation occurs slightly earlier than
ln(2)/� is (apart from a slight collective behavior) the fact
that we set the condition that an atom can only contribute
to the collective decay before it collides with the wall. If we
compare the results for the LIAD and Boltzmann distributions
for the two-photon emission, there seems to be no qualitative
difference, in contrast to the single-photon emission. This is
likely due to the scrambled phase information, which gets
destroyed in both cases by the high interaction energy.

In summary, the decay of the single excitation can show
strong collective effects on the photon direction and emission
rate, while the decay of the double excitation does not show
these collective properties.

V. CONCLUSION

We have studied numerically the full dynamics of an on-
demand single-photon source based on a room-temperature
ensemble of rubidium atoms in a microcell. We divided
the process into the excitation and decay processes, which
allowed us to apply appropriate approximations for the two
regimes. We analyzed the influence of the laser pulses on
the phase information of the absorbed photons and as a
consequence on the directionality of the emitted photon and
we optimized the pulses accordingly. At the same time we
found that the choice of position and velocity distribution
of the atoms had only a marginal effect on the photon
emission.

Furthermore, we have studied the impact of the phases of
the singly excited states and have shown that it is possible to
encode a phase time tφ greater than the pulse duration t0 into
the collective excited state (see Table I). This extends the time
interval of directed emission by slowing down the motional
dephasing of the state similar to a spin echo. We extended
existing treatments of the decay process for a Rydberg-based
single-photon source to include more rigorously the effect
of motion of the atoms and described also the emission of
a second photon from a residual double excitation. For all
investigated configurations we have found that the double
excitation carries only negligible phase information and leads
to an almost isotropic emission pattern. Together with the
already low population of the double-excitation sector after
the laser pulses, this undirected emission of the second photon
further improves the quality of the single-photon source.

We believe that this theoretical work can help us in a
planned experiment, especially towards increasing the single-
photon efficiency and distinguishing single-photon emission
from multiphoton emission. One could reach more realis-
tic results by combining the simulation of the excitation
process with the atomic decay. Furthermore, it might be
advantageous to use optimal control and time-modulated
pulse shapes to reduce the effects of the Doppler shift,
the Gaussian laser profile, and time-dependent interaction
energy.
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APPENDIX A: PHOTON POPULATION DENSITY FUNCTION

This Appendix contains a more detailed derivation of Eq. (8) from Sec. II B 1. For more details see also Ref. [29]. For the
spatial profile of the single-photon emission, we are interested in the probability of the wave vector k having an angle θ with
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respect to k0. We calculate the probability density function p(θ, t ) by starting with the summed absolute value squared of Eq. (6),

∑
k,μ

|βk,μ(t )|2 = V

(2π )3

∑
n,m

∫ t

t0

∫ t

t0

αn(t ′)α∗
m(t ′′)

(∫
|gk|2e−ik·[Rn (t ′ )−Rm (t ′′ )]ei(ωk−ωe )(t ′−t ′′ )d3k

)
dt ′dt ′′. (A1)

We can reduce the double time integral to a single one by applying the Wigner-Weisskopf approximation before we integrate
over the directions. Note that even if the approximation disregards any contribution with t ′ �= t ′′, the structural information stays
the same, since the approximation is only affecting the integral over the wave number, but not over the direction of the wave
vector, which can be parametrized by the angles θ and φ. We then get the following form in Eq. (A3), with d‖

n,m(t ′) and k‖
e (θ )

the parallel parts of dn,m(t ′) and ke(θ, φ) with respect to k0. We also set the angle φ for every particle pair as the angle between
k⊥

e (θ, φ) and d⊥
n,m(t ′),

∑
k,μ

|βk,μ(t )|2 ≈ �

4π

∑
n,m

∫ t

t0

αn(t ′)α∗
m(t ′)

(∫ π

0

∫ 2π

0
e−ike(θ,φ)·dn,m (t ′ )dφ sin(θ )dθ

)
dt ′ (A2)

= �

4π

∑
n,m

∫ t

t0

αn(t ′)α∗
m(t ′)

(∫ π

0
e−ik‖

e (θ )·d‖
n,m (t ′ )

∫ 2π

0
e−ik⊥

e (θ,φ)·d⊥
n,m (t ′ )dφ sin(θ )dθ

)
dt ′. (A3)

Finally, in Eq. (A5) we obtain an integral over θ of the density function, where we insert k⊥
e (θ, φ) · d⊥

n,m(t ′) =
ke sin(θ )d⊥

n,m cos(φ) into Eq. (A3) and use the first-kind Bessel function J0(ϕ) = 1
2π

∫ 2π

0 e−iϕ cos(φ)dφ,

∑
k,μ

|βk,μ(t )|2 ≈
∫ θ

0

�

2
sin(θ )

∫ t

t0

∑
n,m

αn(t ′)α∗
m(t ′)e−iked‖

n,m (t ′ ) cos(θ )J0(ked⊥
n,m(t ′) sin(θ ))dt ′dθ (A4)

=
∫ θ

0
p(θ, t )dθ, (A5)

where the kernel of the equations yields the expression (8) for p(θ, t ). The same calculation holds for the first photon in the case
of double excitations, but instead of calculating

∑
n,k,μ |βn,k,μ(t )|2, we need to calculate

∑
n,k,μ

∫ t
t0

[∂t ′ |βα
n,k,μ(t ′)|2] · |βγ

n,k(t ′)|2dt ′
to get Eq. (14).

APPENDIX B: VELOCITY-DEPENDENT PHASE

The velocity-dependent phase of the singly excited states for several atoms, which we mentioned in Sec. IV B, can be derived
from the calculation of a single one. For that we will now briefly summarize the time evolution of a single atom with ground
state |g〉 and excited state |e〉. The transition is driven by a laser with Rabi frequency � and detuning δ. Furthermore, we make
the exception that we start in the ground state at time ts. The Hamiltonian looks like

ˆ̃H = −h̄δ|e〉〈e| + h̄

2
(�|e〉〈g| + �∗|g〉〈e|). (B1)

The time evolution is then given by a unitary operator ˆ̃U (�t ) = exp(− i ˆ̃H�t
h̄ ), which takes a simple form by writing it in Pauli

matrices. After we transform the system back into the laboratory frame by applying exp(−iδ�t |e〉〈e|), the final state is

|ψ (t )〉 =
[

cos

(
�δ

2
�t

)
− i

δ

�δ

sin

(
�δ

2
�t

)]
ei(δ/2)�t |g〉 − i

�

�δ

sin

(
�δ

2
�t

)
e−i(δ/2)�t |e〉, (B2)

with the effective Rabi frequency �δ =
√

|�|2 + δ2. If we now set the detuning equal to δ = −k · v and the phase of the Rabi
frequency as � = |�| exp{ik · [R(0) + vts]}, we can see that the velocity-dependent phase is given by

φe(v) = k · v
(

ts + �t

2

)
= k · v

2
(2ts + �t ). (B3)

This relation is also valid for multiple atoms with more than two levels.
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