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Abstract

This paper presents an extension of Defeasible Deontic Logic to deal with the Pragmatic Oddity problem. The logic applies
three general principles: (i) the Pragmatic Oddity problem must be solved within a general logical treatment of contrary-
to-duty (CTD) reasoning; (ii) non-monotonic methods must be adopted to handle CTD reasoning; (iii) logical models of
CTD reasoning must be computationally feasible and, if possible, efficient. The proposed extension of Defeasible Deontic
Logic elaborates a preliminary version of the model proposed by Governatori and Rotolo [15]. The previous solution was
based on particular characteristics of the (constructive, top-down) proof theory of the logic. However, that method introduces
some degree of non-determinism. To avoid the problem, we provide a bottom-up characterization of the logic. The new
characterization offers insights for the efficient implementation of the logic and allows us to establish the computational
complexity of the problem.

1 Introduction

A key difference between norms and other constraints is that, typically, norms can be violated.
Moreover, normative systems (especially the legal ones) contain provisions about norms that become
effective when violations occur. Since the seminal work by Chisholm [3] the obligations in force trig-
gered by violations have been dubbed contrary-to-duty (CTD) obligations. The treatment of CTDs
has proven problematic for formal (logical) representations of normative systems. Accordingly,
CTDs are the source of many paradoxes and problems and also the driver for criticizing Standard
Deontic Logic (SDL) and for the development of many new deontic formalisms (see [2, 4]).

One well-known problem of CTDs is the so-called Pragmatic Oddity paradox, which was
introduced by Prakken and Sergot [24] and is illustrated by the following example.

E 1
XAMPLE There should be no dog. 0—-d (1)
If there is a dog, then there ought to be a warning sign. d — Os 2)
There is a dog. d (3)

Vol. 34, No. 4, © The Author(s) 2022. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

Advance Access Publication on 24 October 2022  https://doi.org/10.1093/logcom/exac063

20z AP 01 uo Jasn Og elbojooisd did Ad £2869.9/869/7/7E/101E/Wo0B0]/Wod dno"olwspese)/:sdjy Wolj papPeojuMoq


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1093/logcom/exac063

Avoiding Pragmatic Oddity 699

In SDL, we have both O—d and Os. However, according to Prakken and Sergot,

“‘Surely, it is strange to say that in all ideal worlds there is no dog and also a warning sign
that there is no dog. [ ...] This oddity—we might call it a “pragmatic oddity”—seems to be
absent from the natural language version, which means that the SDL representation is not fully
adequate.’ [24, pp. 96, 95]

The oddity of Example 1, its counter-intuitiveness, seems to depend on the fact that the two
obligations O—d and Os are in force at the same time: when you fail to have no dog, you are
obliged to have no dog and obliged to hang a warning sign. The solutions proposed by Prakken
and Sergot [24] consist of representing (2) as d = Oys, where = is a suitable conditional
operator. The sentence Oys means that ‘there is a secondary obligation that s, presupposing the
sub-ideal context d’. The problem, for Prakken and Sergot, is avoided because Ogs does not
imply Os: ‘primary and CTD obligations are obligations of a different kind: a CTD obligation
pertains to, or presupposes, a certain context in which a primary obligation is already violated’
[24, p. 91].

Prakken and Sergot’s analysis is thus based on two basic principles:

PRINCIPLE 1.
The Pragmatic Oddity problem must be solved within a general logical treatment of CTD reasoning.

PRINCIPLE 2.
Primary obligations and CTD obligations are of a different kind.

In fact, most of the work on Pragmatic Oddity (in addition to [24], see, among others [2])'
focuses on the issue of how to distinguish the mechanisms leading to the derivation of the two
individual obligations and create different classes of obligations insofar as they express different
ideality levels. One solution is to prevent the conjunction when the obligations are from different
classes. Accordingly, if the problem is to avoid having a conjunctive obligation in force when the
individual obligations are in force themselves, the simplest way is to have a deontic logic that does
not support the aggregation axiom:

(Oa A Ob) — O(a A D).

This solution, among other things, was discussed by [6]: adopting a non-normal deontic logic (i.e.
weaker than K), each obligation semantically corresponds to a distinct norm that selects a set of ideal
worlds (see [5]) and aggregation cannot be allowed.

However, as suggested by Horty [17] and also recalled by Goble [6], some restricted forms of
agglomeration should be accepted: several examples seem to hold if CTDs are not considered.

Therefore, a more amenable option, as suggested by Parent and van der Torre [22, 23], is to admit
aggregation for obligations that are independent of the violation of the other obligations. We agree
with them. Indeed, in our view, what is odd is not that the two obligations are in force at the same
time, but that if one admits forming a conjunctive obligation from the two individual obligations,
then we get an obligation that is impossible to comply with.

IFor excellent overviews of the literature, see [2, 7, 23].
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700 Avoiding Pragmatic Oddity

Based on the intuition above, Governatori and Rotolo [15] proposed, in a preliminary work, an
extension of Defeasible Deontic Logic [11] to handle Pragmatic Oddity. Their solution was based on
the constructive proof theory of the logic with specific proof conditions: more specifically, to admit
the derivation of O(a A b) requires that Oa and Ob are already provable, and —a does not appear in
the derivation of Ob (similarly for Oa and —b).

The extension mentioned above of Defeasible Deontic Logic was based on Principle 1 by using
the new non-classical operator ®: the reading of an expression like ¢ ® b ® c is that a is primarily
obligatory, but if this obligation is violated, the secondary obligation is b, and, if the secondary
(CTD) obligation b is violated as well, then c is obligatory (see [11]). This approach falls within a
proof-theoretic line of inquiry about CTDs, which clearly distinguishes in the language and the logic
structures representing norms from those representing obligations [19-21].

We also complied with another principle:

PRINCIPLE 3.
Non-monotonic methods must be adopted to handle CTD reasoning.

This principle was notably defended by Horty [17] and van der Torre and Tan [25], even though,
according to Parent and van der Torre [23] it seemed not directly involved in the Pragmatic Oddity
problem. Since we stick to Principle 1, we also adopt Principle 3. However, we will see in Section 4
that the idea of defeasibility plays a role in some scenarios of Pragmatic Oddity, too.

Finally, our concern was computational since CTDs are so pervasive in normative reasoning (e.g.
in the law):

PRINCIPLE 4.
Logical models of CTD reasoning must be computationally feasible and, possibly, efficient.

The solution we proposed in [15] was based on particular characteristics of the (constructive, top-
down) proof theory of the logic. However, that method introduces some degree of non-determinism,
insofar as the solution requires the existence of a proof satisfying certain conditions, and alternative
proofs are possible.

The contribution of this paper is to present a new logical framework for the Pragmatic Oddity
problem, which

— revises the solution we advanced in [15],

— complies with the same general principles we set in [15],

— provides a bottom-up characterization of the logic that avoids the problem with the top-down
solution,

— studies the complexity of the problem (the resulting logic is computationally feasible, i.e.
polynomial in the size of the input theory); and offers insights for the efficient implementation
of the logic.

The layout of the article is as follows. Section 2 offers a high-level introduction to Defeasible
Deontic Logic, while Section 3 presents the technical details of the Defeasible Deontic Logic
used in the paper, a logic equipped with the ®-operator to identify pragmatic oddity instances.
Section 4 discusses some examples and scenarios of pragmatic oddity. Section 5 provides a bottom-
up characterization of the logic. Section 6 studies the computational complexity of the problem of
computing whether a conjunctive obligation is derivable from a given defeasible theory. The paper
ends with some brief conclusions.
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2 A gentle overview of Defeasible Deontic Logic

This section provides a gentle overview of Defeasible Deontic Logic and how to use it for normative
reasoning (see also Section 3). For more detailed presentations of the logic and its uses to model
different aspects of normative reasoning, we refer the readers to [9, 11, 14, 16].

Defeasible Deontic Logic [11] is a sceptical computationally oriented rule-based formalism
designed for the representation of norms. The logic extends Defeasible Logic [1] with deontic
operators to model obligations and (different types of) permissions and provides an integration
with the logic of violation developed by Governatori and Rotolo [13]. The resulting formalism
offers features for the natural and efficient representation of exceptions, constitutive and prescriptive
rules and compensatory norms. The logic is based on a constructive proof theory that allows for
full traceability of the conclusions and flexibility to handle and combine different facets of non-
monotonic reasoning.

Knowledge in Defeasible Logic is structured in three components:

— A set of facts (corresponding to indisputable statements represented as literals, where a literal
is either an atomic proposition or its negation).

— A et of rules. A rule establishes a connection between a set of premises and a conclusion. In
particular, for reasoning with norms, it is reasonable to assume that a rule provides the formal
representation of a norm (though, it is possible to have norms that are represented by a set of
rules). Accordingly, the premises encode the conditions under which the norm is applicable,
and the conclusion is the normative effect of the norm.

— A preference relation over the rules. The preference relation just gives the relative strength of
rules. It is used in contexts where two rules with opposite conclusions fire simultaneously to
determine that one rule overrides the other in that context.

The rules establish a relationship between a set of premises (the antecedent) of a rule and a
conclusion. We can classify rules based on (1) the strength of the relationship and (2) the type of
relationship, more precisely, the type (or mode) of conclusion or effect a rule produces. Accordingly,
arule is an expression

a19‘°'9a}’l(_>Dca (4)

where ay,...,ay is the antecedent, ¢ is the conclusion, < indicates the strength and [] the mode.
For the strength Defeasible Logic provides three kinds of rules: strict rules (represented by —),
defeasible rules (represented by =) and defeaters (represented by ~-). A strict rule is a rule in
the classical sense; every time the antecedent holds, so does the conclusion. On the other hand, a
defeasible rule can produce its effect (or conclusion) when it is applicable and when there are no
(applicable) rules for the opposite or such rules are defeated (by stronger rules). Finally, defeaters
are rules that do not directly produce a conclusion but prevent the opposite conclusion from holding.

For the type or mode of the conclusion, we distinguish between constitutive rules and normative
rules. Constitutive rules are used to define terms as defined in the normative systems the rules are
meant to formalize. Therefore, constitutive rules specify the institutional facts or statements that
hold in a given situation. Thus, for example, the constitutive rule

person,age < 18y = minor

establishing the institutional fact that minors are persons whose age is less than 18 years (for the
notation we drop the [J for constitutive rules). On the contrary, a normative rule determines the
conditions under which the conclusion is in force as an obligation or permission (one of the two
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702 Avoiding Pragmatic Oddity

modal operators of Defeasible Deontic Logic). Consider, for instance, the following two normative
rules:

r1: vehicle, redLight =@ stop 5)

1. emergency, redLight =p —stop. (6)

The first, r is a prescriptive rule (indicated by the obligation O modality) prescribing the obligation
to stop for vehicles approaching a set of red traffic lights. Thus, when the conditions set in the
antecedent hold (vehicle and redLight), the rule allows us to conclude the obligation to stop Ostop is
in force. ; is a permissive rule derogating or establishing an exception to 7| for emergency vehicles.
When its antecedent holds, we can conclude that it is permitted not to stop (P—stop). The two rules
conflict with each other, and we can use the superiority relation to state that r, overrides 1, namely
rp >ri.

As we mentioned, a characteristic of normative reasoning is its ability to deal with violations and
conditions triggered by them. To this end, Defeasible Deontic Logic extends the language with a
compensation operator @ to form expressions like

I®®- -y

called compensation chains. Compensation chains are only allowed as the conclusion of prescriptive
rules (and thus asserting that obligations are in force). Their meaning as proposed by Governatori
and Rotolo [13] and further discussed by Governatori [8] is that Oc is the primary obligation, and
when violated (i.e. —¢; holds), then Oc; is in force, and it compensates for the violation of the
obligation of ¢;. Moreover, when Oc; is violated, then Ocj is in force, and so on until we reach the
end of the chain when a violation of the last element is a non-compensable violation where the norm
corresponding to the rule in which the chain appears is not complied with.

Defeasible Logic is a constructive logic. Hence, the kernel of the logic is its proof theory, and
for every conclusion we draw from a defeasible theory we can provide a proof for it, giving the
steps used to reach the conclusion. At the same time, the derivation gives a (formal) explanation or
justification of the conclusion. Furthermore, the logic distinguishes between positive and negative
conclusion, the strength of a conclusion and its mode. This is achieved by labelling each step in a
derivation with a proof tag. A derivation is a (finite) sequence of (tagged) formulas, each obtained
from the previous ones using inference conditions. The inference conditions are formulated as proof
conditions mandating the conditions that the previous steps in a derivation have to satisfy to append a
new conclusion as the next step of a derivation. We adopt the following notation for proof tags: + and
— indicate whether we have a positive or negative conclusion, A and 9 denote, respectively, a definite
or a defeasible conclusion, and they are subscripted by the modal (deontic) operator describing the
mode of the conclusion. For example, the meaning of the tagged literal —Acp is that we definitely
refute p as an institutional fact.> This means that we explored all possible ways to prove p using
constitutive rules and facts, and we failed to derive it. On the other hand, +9g—p means that we have
a defeasible derivation for —p, where the rule used to conclude is a prescriptive rule. Finally, we say
that Op is provable if we have a positive derivation for p with mode 0. Accordingly, Op holds if we
derive +dgp (or the stronger +Agp).

Defeasible derivations have a three-phase argumentation-like structure. To show that +dqp is
provable at step 7 of a derivation we have to° :

2Similarly to the notation used for rules we drop the subscript for constitutive conclusions.
3Here we concentrate on proper defeasible derivations.
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1. give an argument for p (where the last rule is a rule for [J);
2. consider all counterarguments for p; and
3. rebut each counterargument by either:
(a) showing that the counterargument is not valid,
(b) providing a valid argument for p defeating the counterargument.

In this context, in the first phase, an argument is simply a strict or defeasible rule for the conclusion
we want to prove, where all the elements are at least defeasibly provable. In the second phase, we
consider all rules for the opposite or complement of the conclusion to be proved. Here, an argument
(counterargument) is not valid if the argument is not supported. Here ‘supported’ means that all the
elements of the body are at least defeasibly provable.

Finally, to defeasibly refute a literal, we have to show that either, the opposite is at least defeasibly
provable, or an exhaustive search for a constructive proof for the literal fails (i.e. there are no rules
for such a conclusion, or all rules are either ‘invalid’ arguments or they are not stronger than valid
arguments for the opposite).

3 A Defeasible Deontic Logic for pragmatic oddity

In this section, we present a variant of Defeasible Deontic Logic designed to deal with the issue of
Pragmatic Oddity. More specifically, we show how the proof theory can be used to propose a simple
and (arguably) elegant treatment of the problem at hand.

We restrict ourselves to the fragment of Defeasible Deontic Logic that excludes permission and
permissive rules since they do not affect the way we prevent Pragmatic Oddity from occurring:
Definitions 12 and 13, the definitions that describe the mechanisms we adopt for a solution to
Pragmatic Oddity are independent of any issue related to permission. In addition, for the sake
of simplicity and to better focus on the non-monotonic aspects that the logic offers, we use only
defeasible rules and defeaters. However, the definitions can be used directly in the full version of the
logic. Accordingly, we consider a logic whose language is defined as follows.

DEFINITION 1
Let PROP be a set of propositional atoms and O the modal operator for obligation.

— The set Lit = PROP U {—p | p € PROP} is the set of literals.

— The complement of a literal g is denoted by ~q; if ¢ is a positive literal p, then ~¢ is —p, and
if ¢ is a negative literal —p, then ~q is p.

— The set of deontic literals is DLit = {Ol, -0l |l € Lit}.

— Ifey,...,cp € Lit, then O(cy A - -+ A ¢p) is a conjunctive obligation.

In the rest of the paper, when relevant to the discussion, we will refer to elements of Lit as plain
literals, and often we will use the unmodified term ‘literal’ to indicate either a plain literal or a
deontic literal.

We formally introduce the compensation operator ®. This operator is used to build chains of
compensation called ®-expressions. The formation rules for well-formed ®-expressions are:

1. every literal / € Lit is an ®-expression;
2. ifeq,...,cx € Lit,thenc; ® - - - ® ¢y is an ®-expression;
3. nothing else is an ®-expression.
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704 Avoiding Pragmatic Oddity

Given an ®-expression A, the length of A is the number of literals in it. Given an ®-expression
A ® b ® C (where 4 and C can be empty), the index of b is the length of 4 ® b. We also say that b
appears at index 7 in 4 ® b if the length of 4 ® b is n.

DEFINITION 2
Let Lab be a set of arbitrary labels. Every rule is of the type

r: A(r) — C(r),

where

1. r € Lab is the name of the rule;

2. A(r) = {ai,...,a,}, the antecedent (or body) of the rule, is the set of the premises of the rule
(alternatively, it can be understood as the conjunction of all the elements in it). Each a; is either
a literal, a deontic literal or a conjunctive obligation;

3. —€ {=,=0,~,~0} denotes the type of the rule. If — is =, the rule is a defeasible rule,
while if < is ~, the rule is a defeater. Rules without the subscript O are constitutive rules,
while rules with such a subscript are prescriptive rules.

4. C(r) is the consequent (or head) of the rule. It is a single literal for defeaters and constitutive
rules, and an ®-expression for prescriptive defeasible rules.

Recall that prescriptive rules are used to derive obligations.
Given a set of rules R, we use the following abbreviations for specific subsets of rules:

— Ry denotes the set of defeasible rules in the set R;

—  R[g,n] is the set of rules where ¢ appears at index 7 in the consequent.* The set of rules where
q appears at any index 7 is denoted by R[q];

— RO denotes the set of prescriptive rules in R, i.e. the set of rules with O as their subscript;

—  R€ denotes the set of constitutive rules in R, i.e. R \ RO.

The above notations can be combined. Thus, for example, Rg’ [g, n] stands for the set of defeasible
prescriptive rules such that ¢ appears at index # in the consequent of the rule.

EXAMPLE 2
Let us consider the following set of rules R:
r:fi=o0a®b r:fn,8 =0b®c r3ifs = —a
rq: d ~~0 —a rs: =0a = —b re: Oa,Ob =g —c
r7:f1 = d.

The set of prescriptive rules RO is {r1,r2,ra4,76}; accordingly, the set of constitutive rules RC =
{r3,rs,r7}. Moreover, the set of prescriptive defeasible rules R? = {r1,m,r¢}. The set of rules
for —a, R[—a] is {r3,rs}; notice that this set contains a prescriptive and a constitutive rule; the
corresponding set of defeasible constitutive rules Rg[—-a] = {r3}. When we consider the index where
a literal appears we have the following sets: R[b, 1] = {r2}, R[b,2] = {r1} and R[b] = {r1,r2}.

4Strictly speaking, the notion of index is defined for ®-expressions and not for literals; however, according to the
construction rules for ®-expressions, a plain literal is an ®-expression.
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DEFINITION 3
A Defeasible Theory is a structure D = (F, R, >) where F, the set of facts, is a set of (plain) literals,
R is a set of rules and >, the superiority relation, is a binary relation over R.

A theory corresponds to a normative system, i.e. a set of norms, where every norm is modelled
by some rules; accordingly, we do not admit deontic literals in the set of facts; obligations are
determined by norms, and hence, in our framework by prescriptive rules. If both rules fire, the
superiority relation is used for conflicting rules, i.e. rules whose conclusions are complementary
literals. We do not restrict the superiority relation: it just determines the relative strength between
two rules.

DEFINITION 4

A proof (or derivation) P in a defeasible theory D is a linear sequence P(1)...P(z) satisfying the
proof conditions given in Definitions 8—13, and each P(i), 1 < i < z, is a tagged expression, i.e. an
expression of one of the forms: +dq, —dq, +90¢q, —009g, +30c1 A -+ A cy and —dgcy A -+« A Cpy-

The tagged literal +0g means that g is defeasibly provable as an institutional statement, or in other
terms, that g holds in the normative system encoded by the theory. The tagged literal —dg means
that g is defeasibly refuted by the normative system. Similarly, the tagged literal +dpg means that
q is defeasibly provable in D as an obligation or that Op is defeasibly provable. In contrast, —dpq
means that q is defeasibly refuted as an obligation, thus Op cannot be proved. For +dgcy A -+ A cpy
the meaning is that the conjunctive obligation O(c A - -+ A ¢;,) is defeasibly derivable; and that a
conjunctive obligation O(cy A - - - A ¢,) is defeasibly refuted corresponds to —dgcy A -+ - A ¢ The
initial part of length 7 of a proof P is denoted by P(1..i).

Defining when a rule is applicable or discarded is essential to characterize the notion of provability
for constitutive rules and then for obligations. A rule is applicable for a literal ¢ if ¢ occurs in the
head of the rule and all elements in the antecedent have been defeasibly proved (eventually with the
appropriate modalities). On the other hand, a rule is discarded if at least one of the modal literals
in the antecedent has not been proved. However, as literal ¢ might not appear as the first element
in an ®-expression in the head of the rule, some additional conditions on the consequent of rules
must be satisfied. Accordingly, we first define the case for a constitutive rule (body-applicable)
before moving to the condition for prescriptive rules with ®-expressions (Definition 6, where a
literal is applicable if the previous element is provable as an obligation but violated, meaning that its
complement is derivable.

DEFINITION 5
Given a proof P, arule € R is body-applicable at step P(n + 1) iff for all a; € A(r):
1. if a; = Ol then +-3g! € P(1..n);
2. if a; = =0l then —dg! € P(1..n);
3. if aq; = O(c; A-+- Acp) then +0gc) A -+ A ey € P(1..1);
4. if a; =1 € Lit then +9/ € P(1..n).
A rule r € R is body-discarded at step P(n + 1) iff 3a; € A(r) such that
1. if a; = Ol then —dg! € P(1..n);
2. if a; = =0l then +9g! € P(1..n);
3. if aq; = 0(c; A-+- Acp) then —3gcy A -+ A ey € P(1..1);
4. if a; =1 € Lit then —9/ € P(1..n).
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706  Avoiding Pragmatic Oddity

DEFINITION 6
Given a proof P, arule r € Ro[q, jlsuchthat C(r) = c1 ® - - - ® cpy 1s applicable for literal g at index
j at step P(n + 1) (or, simply, applicable for g), with 1 <j < m, in the condition for +9d¢ iff

1. ris body-applicable at step P(n + 1); and
2. forallcy € C(r), 1 <k <j,+0dock € P(l..n) and +0~cj € P(l..n).

Condition (1) represents the requirements on the antecedent stated in Definition 5; condition (2)
on the head of the rule states that each element c; before ¢ has been derived as an obligation and a
violation of such obligation has occurred.

DEFINITION 7
Given a proof P, arule r € Ro[q, jlsuchthat C(r) = ¢1 ® - - - ® ¢y 1s discarded for literal g at index
jatstep P(n + 1) (or, simply, discarded for ¢), with 1 < j < m, in the condition for +dq iff

1. ris body-discarded at step P(n + 1); or
2. there exists ¢y € C(r), 1 < k < I, such that either —dgcy € P(1..n) or —d~cy € P(1..n).

In this case, condition (2) ensures that an obligation before ¢ in the chain is not in force or has
already been fulfilled (thus, no reparation is required).
We now introduce the proof conditions for +9 and +dg:

DEFINITION 8
The proof condition of defeasible provability for an institutional statement is

+0: If P(n + 1) = +09q then
(1) ge For
(2.1) ~q ¢ F and
(2.2) 3r € Ry4[q] such that r is applicable for g, and
(2.3) Vs € R[~q], either
(2.3.1) s is discarded for ~¢q, or
(2.3.2) 3¢ € R[q] such that ¢ is applicable for g and ¢ > s.

As usual, we use the strong negation to define the proof condition for —a

DEFINITION 9
The proof condition of defeasible refutability for an institutional statement is

—0:If P(n+ 1) = —dq then
(1) g ¢ Fand
(2.1)~g e For
(2.2) Vr € Ry[q]: either r is discarded for ¢, or
(2.2) 3s € R[~q], such that
(2.3.1) s is applicable for ~¢, and
(2.3.2) V¢t € R[q] either ¢ is discarded for g or ¢ # s.

The proof conditions for 0 are the standard conditions in Defeasible Logic, see [1] for the full
explanations.
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DEFINITION 10
The proof condition of defeasible provability for obligation is

+0d0: If P(n 4+ 1) = 4004 then
(1) Ire Rg [g, 7] such that r is applicable for ¢, and
(2) Vs € RO[~q, ], either
(2.1) s is discarded for ~¢, or
22)3re Ro[q, k] such that ¢ is applicable for g and ¢ > s.

To show that g is defeasibly provable as an obligation, one must show that: the following two
conditions must hold: (i) there must be a rule introducing the obligation for ¢, which can apply;
(ii) every rule s for ~¢ is either discarded or defeated by a stronger rule for ¢g. Observe that, since
we do not admit deontic literals in 7', we do not need the equivalent of conditions (1) and (2.1) for
institutional statements to ensure that the logic is consistent.

The strong negation of Definition 10 gives the negative proof condition for obligation.

DEFINITION 11

The proof condition of defeasible refutability for obligation is
—do: If P(n + 1) = —dpq then
(1) Vr e Rg[q, i] either 7 is discarded for ¢, or
(2) 3s € RO[~q, ] such that

(2.1) s is applicable for ~¢, and
(2.2) Vt e Ro[q, k], either ¢ is discarded for g or ¢ # s.

Notice that, given the intended correspondence between O/ and 49! (see Definition 5) we will
refer to ‘the derivation of O’ when, strictly speaking, we should use ‘the derivation of +dg/’;
similarly for when we say that O/ has been refuted.

EXAMPLE 3
Let D = (F, R, >) be a defeasible theory, where F' = {f1,/>,22,/3,/7}, R is the set of rules given in
Example 2, and > = {(r6,72)}. D allows us to draw the following derivation:

(1) +9f; fact
(5) +af7 fact
(6) +dd from 7 and RE[—f] = 0
(7) —dpa from r4 applicable and 7] # r4
(8) +dpb from r, applicable and r7 discarded
(9) +9-b from (7) r5 applicable —dpa € P(1..8)
(10) +9oc from (8) and (9) , applicable for ¢ and (7) r¢ discarded

Steps P(1) ... P(5): According to clause (1) of Definition 8 every fact is defeasible provable.
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For P(6) we have to satisfy the conditions given in Definition 8: We have that rule »7 is applicable
for d (clause 2.2), and R[—d] = @ satisfying clause (2.3) vacuously.

Step P(7) follows from clauses (2.1) and (2.2) of Definition 11: Given that we have +9d at step
P(6), rule r4 is (body)-applicable, and the only (prescriptive) rule for @, rule | is not stronger than r4.

The conclusion in step P(8) is entailed by Definition 10: rule »; is body-applicable, but not
applicable for b at index 2, since we have « at index 1, and —dpa at P(7); thus r; is discarded.
However, r, is applicable for b at index 1 (the rule is clearly body-applicable given A(r;) C F
and all facts are defeasibly provable). Thus, clause (1) holds. For clause (2), r7 is (body)-discarded,
Oa € A(ry7), we have —0ga at P(7), and there are no other rules in RO[—|b].

The justification for step P(9) follows from P(7) where we proved —dpa; thus rs is
(body-)applicable (see item 2 of Definition 5); in addition R€[b] = ¥.

Finally, for P(10), as we have already argued r, is body-applicable, and we can use P(8) and
P(9) to establish that the rule is applicable for ¢ at index 2. In addition, P(7) allows us to determine
that 7¢ is (body-)discarded since Oa € A(rg), but the step proves —dpa (item 2 of Definition 5,
body-discarded part).

We are now ready to provide the proof condition under which a conjunctive obligation can be
derived. The condition essentially combines two requirements. First, a conjunction holds only when
all the conjuncts hold (individually). Second, the derivation of one of the individual obligations does
not depend on the violation of the other conjunct. To achieve this, we determine the line of the
proof when the obligation appears. Then we check that the negation of the other elements of the
conjunction does not occur in the previous derivation steps.

DEFINITION 12
The proof condition of defeasible provability for a conjunctive obligation is

If Pn+ 1) =+40doc1 A--- A cp, then
Vei, 1 <i<m,
(1) +0¢oc; € P(1..n) and
(2) if P(k) = +dgci, k < n, then
Vej, 1 <j <mandc; # c;, +0~c; ¢ P(1.k).

Again, the proof condition to refute a conjunctive obligation is obtained by strong negation from
the condition to derive a conjunctive obligation defeasibly.

DEFINITION 13
The proof condition of defeasible refutability for a conjunctive obligation is

IfP(n+1) = —0dgci A--- Acp, then
d¢;, 1 < i < m, such that either
(1) —9pc; € P(1..n) or
(2) if P(k) = 4+90ci, k < n, then
dcj, 1 <j < msuch that ¢; # ¢; and +-9~c; € P(1..k).

In case of a binary conjunctive obligation, the positive proof condition boils down to

+don: If P(n+ 1) = 4+0dpgp A g then
(1) +0op € P(1..n) and
(2) +90q € P(1..n) and
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() if P(k) = +dop (k < n), then +d~q ¢ P(1..k) and
(@) if P(k) = +0q (k < n), then +d~p ¢ P(1..k).

Similarly, for the condition for —dg .
Consider a derivation where we have the following steps

P(x) +0pa
P(y) +0—a
P(w) +00b

withx <y < w < n. Can we add +3dpa A b at step P(n + 1)? Condition (1) of Definition 12 holds,
but condition (2) does not, since we have P(w) = +dgb and P(y) = +0—a, with y < w. On the
contrary, if the derivation is

P(x) +0dpa
P(y) +00b
Pw) 40—a

both conditions hold and we can append +dpa A b to the derivation. In the second case, having
+0d—a after the step where we concluded +0dpb ensures that the obligation of b does not depend
on the violation of the obligation of a. Notice that in the first case, the order does not necessarily
mean that Ob depends on —a, but that the form of the derivation does not allow us to establish the
independence of Ob from —a.

Before proving some theoretical results about the logic, we give some examples to illustrate its
behaviour.

4 Examples of Pragmatic Oddity scenarios

The scenarios in this section display some patterns of instances of Pragmatic Oddity and how they
are dealt with based on the proof theory defined in the previous section. Moreover, as we will see,
we use them to show a limitation of the proof theory: it introduces some non-determinism given that,
in general, several derivations are possible and the order of the conclusion in a proof can affect what
we can prove with specific orders.

In what follows, we use --- = ¢ to refer to an applicable rule for ¢ where we assume that the
elements are not related (directly or indirectly) to the other literals used in the examples.

Compensatory Obligations The first case we want to discuss is when the conjunctive obligation
corresponding to the Pragmatic Oddity has as conjuncts an obligation and its compensation. This
scenario is illustrated by the rule:

- =>0a®b.
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710  Avoiding Pragmatic Oddity

In this case, when the rule is applicable, we derive +dga. Also, if +9—a holds (signalling that the
obligation of @ has been violated), the rule is applicable for b at index 2 (condition 2 of Definition 6),
and we can derive +3dgb (corresponding to Ob). Thus, we have the two individual obligations Oa
and Ob, but we cannot derive the conjunctive obligation of a and b, since the proof condition that
allows us to derive +dgb explicitly requires that 4+9—a has been already derived. Accordingly, it
is impossible to have the obligation of o without the violation of the obligation of a. Hence, we
conclude —dga A b.

Contrary-to-duty The second case is when we have a CTD. The following two rules provide the
classical representation of a CTD:

e=0a —a=0b

In this case, it is possible to have situations when the obligation of 4 is in force without violating the
obligation of a, namely, when a is not obligatory. However, as soon as we have Oa, we need to derive
—aq to trigger the derivation of Ob (Definition 5). Similarly to the previous case, we have +dga and
+30b, but we cannot conclude +dga A b; instead —dga A b holds.

Pragmatic Oddity via Intermediate Concepts The situations in the previous two cases can be
easily detected by a simple inspection of the rules involved; nevertheless, there could be more
complicated cases. Specifically, when the second conjunct does not immediately depend on the
first conjunct, but it depends on a reasoning chain. The following three rules illustrate the simplest
structure for this case:

—a=b
b=oec

Here to derive Oc, we need first to prove b. To prove b, we require that —a has already been proved.
Again, it is possible to conclude Oa and Oc, but not O(a A ¢).

Negative Support In the previous case, the support was through an intermediate concept. However,
given the non-monotonic nature of Defeasible Deontic Logic, we can have cases where the support
is not to derive the other obligation directly from the violation. The violation prevents the derivation
of the prohibition (or the permission of the opposite) of the other conjunct. Consider the following
set of rules” :

Y
"':>Ob
c=po b
e
—-a ~» ¢

To derive Ob, we have to ensure that the rule for O—b is discarded. This means that ¢ should be
rejected (i.e. —dc). We have two options: the rule for ¢ is discarded, or the rule for —c¢ is applicable.

31t is worth noting that, in the theory below, the rules for =5 and —c can be either defeasible rules or defeaters producing
the same result as far as the derivation of O(a A b) is concerned.
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This latter implies that to prove +9dgb we have to prove first +d—a. Thus, one of the two elements
of the conjunctive obligation O(a A b) depends on the violation of the other.

Iterated Conjunctive Obligations The two previous examples show that the dependency of one of
the conjuncts from the violation can be negative and indirect. Now, the logic allows for conjunctive
obligations in the body of rules, so the intermediate concept could be a conjunctive obligation
itself (and we have to use the mechanism to determine the independence iteratively). Consider the
following theory:

S =o0a
r:--=0b
O(anb)=0c
=od
O(cnd) = e

Here, to prove e, we have to determine if the conjunctive obligation O(c A d) holds. Accordingly,
we have to show that Oc and Od are derivable (and neither depends on the violation of the other).
For Oc, the problem reduces to determining whether the conjunctive obligation O(a A b) obtains
or not, where we have to repeat the procedure for Oa and Ob. Given the theory above, there are no
dependencies on violations so that we can conclude e. Suppose that we replace r, with

’/2: —d =0 b.

In this situation, we are still able to derive the four individual obligations, and the conjunctive
obligation O(a A b); however, we are no longer able to conclude O(c A d) because Oc depends
(indirectly) on the violation of Od.

Multiple Conjuncts In the previous scenario, we consider only cases of binary conjunctions. In
this example, and in the next one, we are going to examine the situation of pragmatic oddity with
conjunctions involving more than two conjuncts. The first set of rules to analyse is

"':>Ob
—a,—b =0 c.

Clearly, to derive Oc we need both —a and —b; thus, we derive —dgaAbAc, —dgac and —dgbAc.
Finally, as far as conjunctive obligations are concerned we can conclude +dga A b, noticing that
O(a A b) is not a Pragmatic Oddity instance.

Multiple Dependencies In contrast to the example we just examined where Oc depended on the
conjunction of the two violations, what if it depends on them disjunctively? Thus, we have the
following theory.

rl: =>oa
r:---=0b
r3. "a=qQcC

r4: b =q c.
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Let us consider the derivation below:

(1) +9—a fact

(2) +9pa from rq

(3) +dpb from ry

(4) +0oc from (1) and r3

(5) —dpaAnbAc from (1)—(4), —a € P(1..4)

(6) +0—b fact

(7) +90b A c from (3) and (4), —b ¢ P(1..4)
(8) —dpa A c from (1) and (4), —a € P(1..4).

We can carry out a similar proof by swapping the positions of —a and —b, using r4 in step (4)—
yielding —dpa A b A ¢, and —dgb A c—but proving O(a A ¢). Hence, we have a situation where
it is impossible to prove O(a A b A ¢), but we can prove both O(a A b) and O(b A ¢), though it is
impossible to have both of them in a single derivation.

Pragmatic Un-pragmatic Oddity What about when there are multiple norms both prescribing the
CTD obligation and at least one of the norms is not related to the violation of the primary norm?

ri: - =>0a®b
r: ---=0b
—a

In this situation, you can have a derivation:

(1) +9—a fact
(2) +0pa from r|
(2) +09pb from r; and (1) and (2),

where the derivation of Ob (+dpgb) depends on the violation of the primary obligation of ri. In
this case, we cannot derive the conjunctive obligation of a and b. However, there is an alternative
derivation, namely:

(1) +0pa from 7

(2) +00b from r

(3) +0—a fact

(4) +doa A b from (1) and (2).

The proof demonstrates the independence of Ob from —a, given that the derivation of —a occurs in
a line after the line where +0dqgb is derived.

Iterated Un-pragmatic Pragmatic Oddity We have seen cases where multiple derivations are
possible, leading to opposite results about the derivability of instances of conjunctive obligations
(irrespective of whether they are pragmatic oddity instances). Furthermore, a conjunctive obligation
can depend on a pragmatic oddity instance. For example, the following set of rules illustrates a
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situation where we have a derivation refuting an instance of pragmatic oddity, and a second one where
the same instance is derivable. In turn, this instance can make a conjunctive obligation derivable or

not.

L. =0a®b
r:---=>0a
r3: ---=>0b
rg. - = Ta

rs5: O(a A b) =g —c

re: -=>oc®d

r7i oo =0d.

The key point of this example is that we have a conjunctive obligation, O(a A b), in the antecedent
of a prescriptive rule, 5, and there is a second rule, rg, for the opposite of the conclusion of rs.

(1) +0—a

(2) +0pa

(3) +90b

(4) —dpa A b
(5) —dp—c
(6) +doc

(7) +00d

(8) +doc A d

from r4

from ry or r;

from r or r3

from (1), +9—a € P(1..3)
from (4) and 75

from rg

from r7

from (6) and (7), +0—c, +3—d ¢ P(1..7).

This proof blocks the derivation of O(aAb), since +3d—a occurs in P before +9gb. Consequently, we
can derive the conjunctive obligation O(c A d), since rule rs is discarded. However, if we postpone
the use of r4, namely, doing the proof with the sequence

(1) +0pa
(2) +00b
(3) +d0a A b
(4) —doc
(5) —docnd

from rjor r;

from r3

from (1) and (2), +9—a, +0—b ¢ P(1..2)
from (3) and 75

from (4)

we are allowed to derive +dga A b, making r5 applicable, preventing the derivation of Oc. Suppose
that rs, instead of being a prescriptive rule, is a constitutive rule, namely

rs: O(a A b) = —c,

enabling us to prove or refute the violation of the first element of rg. Using the first derivation in
step (5), we conclude +9d—c. Now, we have two ways to derive Od: using r¢ (leading to an instance
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of pragmatic oddity), or using r7, and we can postpone the derivation of —c, allowing us to assert

O(c A d).

Mix and Match In all the previous cases the focus was on conjunctions where one of the conjuncts
somehow depended on one of the other conjuncts. In other terms, the conjunction contains a
primary obligation and a secondary obligation (an obligation in force after the violation of another
obligation). Consider the rules

ry: - =0a®b
rm:---=>o0c®d
r3: cee = (g

rg4: .- = TC.

Here, from r{, we obtain Oa (+dga); similarly from r, we get Oc. r3 and r4 allow us to derive the
literals corresponding to the violations of the two obligations, namely +9—a and +9d—c. Now,
and r; applicable for their element at index 2. Hence, we conclude Ob (+09gb) and Od (+3dpd); can
we derive their conjunctive obligation? The answer is positive. Ob does not depend on the violation
of Od (there is no way to derive —d from the rules above) and the other way around. O(b A d) is a
conjunctive obligation of two secondary obligations, what about other conjunctions, e.g. O(a A d)
and O(c A b)? Again the answer is positive: there is no need to derive +d—a for the derivation of
+0dod; the argument for the second is the same.

5 A bottom-up characterization

The examples in the previous section illustrate cases where multiple derivations are possible and
whether a conjunctive obligation is derivable or not depends on the specific derivation. Furthermore,
the non-monotonicity of the logic presents other complications. Whether some conclusions are
derivable depends on other elements being derivable, and these depend on specific derivations.
Hence, we need to devise a mechanism that does not rely on a particular order in which a derivation
sequence is laid out. The idea of the proof conditions for conjunctive obligations is to see that in
the derivation of an obligation, the derivation of the violation of the other conjunct does not appear.
Alternatively, we can say that an obligation is independent of the violation if we can push down in
the proof the derivation of the violation. If the derivation is independent, then the rules to derive the
violation do not contribute to the derivation of the obligation. Consequently, we could remove such
rules without affecting the derivability of the obligation. Given that the derivations of the obligations
of the conjuncts in a conjunctive obligation must be independent of the derivation of violations of
those obligations and that when they are independent, we can run the derivations in parallel (using
separate subsets of the rules), then we can inquire whether it is possible to carry out these derivations
in a single construction. The answer is positive, and we can adapt the bottom-up construction of
Mabher and Governatori [18]. The idea of the bottom-up construction is that instead of working in
a goal-directed fashion, we work in stages. For each stage, we determine all the conclusions that
can be ‘derived’ at that stage, assuming that whatever was in a previous stage is already provable.
Accordingly, we start from the empty set, and in the first stage, we determine what is provable from
the empty set; then, for stage n + 1, we see what is provable from stage n. Before defining the
extension of a defeasible theory, we need to provide a mechanism that guarantees that the derivation
of an obligation does not depend on the violation of another obligation. To this end, we introduce a
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construction, called reduction, that removes all rules for a particular element from a theory. In what
follows, we are going to use the reduct to remove all rules for the violation of an obligation, and
we are going to examine whether the other obligation is still derivable from the reduced theory. If it
does, then the obligation does not depend on the violation.

DEFINITION 14

Given a defeasible theory D = (F, R, >) and a set of (plain) literals L = {I, », ...}, the reduct of
D based on L, noted as red(D, L) is the defeasible theory D' = (F',R’, >) satisfying the following
conditions:

l. FF=F\L;

2. R =R\ UleLR[l];
3. > =>\{(r,s):r¢ R vs¢ R

The idea of the transformation is to create a theory similar to the original theory, as we said,
without the literals in L. The condition on F is obvious. The second condition ensures that for each
literal / € L the rules that can derive the literal are removed. Then the literal is no longer derivable
since the resulting theory does not contain rules for the literal anymore. Given that R'[I] = @, the
following result is immediate.

Observation 1.

Given a Defeasible Theory D, and a set L of literals, —d/ is derivable in red(D, L) for l € L.

It is worth noting that we do not have to remove rules where the literals in L appear in the
antecedent of the rule. Such rules are immediately discarded. Similarly, for prescriptive rules where
the complement of the removed literals appears in the head of the rules. Such rules are no longer
applicable for elements appearing after one of the removed literals. Thus, if you have a rule with the
®-chainc] ® -+- ®@ ¢y—1 ® = @ cpy1 - - -, the rule is in Ro[c, m], but it is not applicable for any
m > n + 1. Remember that to derive +9dgc,+1 we have to prove both +dp—/ and +91/.

EXAMPLE 4

Consider a theory D whose set of rules R consists of the rules presented in the Iterated Un-
pragmatic Pragmatic Oddity scenario described in the previous section including the additional rule
rs: O(a A b) = —c. The reduct of D based on L = {—a}, red(D, {—a}) has the following set of
rules {r1,72,73,7s,7%5,r¢,77}. For red(D,{—g}), R = {r1,r2,73,74,75,76,77}. Finally, for the reduct
based on L = {—a, —c}, the resulting set of rules is {r{,r,73,rs, re,r7}. Given that we removed
rules for the elements in L, those literals cannot be derived positively; indeed, we derive —d—a in
red(D, {—a}), —0—c in red(D, {—c}), and both of them in red(D, {—a, —c});

We can now specify when a (deontic) literal is independent of a set of plain literals in Defeasible
Deontic Logic

DEFINITION 15
Given a defeasible theory D, a set L of plain literals and a literal m, m is independent from L iff m is
defeasibly provable in D and in red(D, L).

We can now show that condition (2) in the proof conditions for a conjunctive obligation ensures
the independence of the obligations from the violations. However, before proving this result, we
have to recall a general property about Defeasible (Deontic) Logic: first of all, a defeasible theory
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is consistent if F' does not contain a literal / and its complement —/. Second, given a logical
formula expressing a proof condition of the strong negation of the formula/conditions is obtained
by replacing every occurrence of a positive proof tag with the corresponding negative proof tag,
replacing conjunctions with disjunctions, disjunctions with conjunctions, existential with universal
and universal with existential. Is it immediate to observe that each negative proof condition given in
Section 2 is the strong negation of the corresponding positive one (and the other way around).

If corresponding proof conditions are defined using the principle of strong negation outlined
above, then, given a derivation, it is impossible to have that the literal (conjunctive obligation) is
both derivable and refutable in the same derivation.

PROPOSITION 1
[12] Given a consistent defeasible theory D, a derivation P, a literal / and proof tag # € {9, dp}, it is
not possible that +#/, —#/ € P.

PROOF. The proof is an extension of the proof given in [12]. [12] proves that if the proof conditions
for a pair of proof tags +# and — # are defined as the strong negation of each other, there is no
theory D such that +#/ and —#/ both hold. The proof conditions for literals are the same as those
in [11] and the result applies to them; and if the property holds for theories, it holds for individual
proofs as well. The proof conditions for conjunctive obligations extend the constraints in [12] since
they require that some elements are not in a derivation (clause (2)). Let us consider the case of the
proof conditions for conjunctive obligations (Definitions 12 and 13). Suppose we have a derivation
where we have both +0dgc1, .. .,c, at step n and —dpcy, . . ., ¢, at step m. Let us assume that m < n
(the case n < m is analogous). Thus, by clause (1) of Definition 12 we have that for all ¢;, +dgc; €
P(1..n) (if an element is in P(1..m) and m < n, the element is also in P(1..n)); if clause (1) of
Definition 13 holds, then there is a ¢; such that —dgc; € P(1..n), contradicting the results for the
other proof conditions. Thus clause (2) of Definition 12 must hold. Let £ be the step where we
derived +dgc;. Now, k < m < n, and we have +0~c; € P(1..k), while for clause (2) of Definition
12, it should be +d~c; ¢ P(1..k), thus even in this case we obtain a contradiction. Accordingly, in
any case, we have a contradiction; thus, it is impossible to derive and refute a conjunctive obligation
in the same derivation. O

Armed with this result, we can prove the result linking independence and the proof conditions for
conjunctive obligations.

PROPOSITION 2
Given a consistent defeasible theory D, a deontic literal m and a set L of plain literals, m is
independent from L iff there is a derivation P in D such that

1. P(n) = 4+0dom and

2. VleL,+dl ¢ P(1.n).

PROOF. By the definition of independence (Definition 15), there is a derivation P’ in red(D, L) for
+3dom. By construction of red(D, L), for [ € L R[] = @, thus, we can add —d! to any derivation in
red(D, L); by Proposition 1 +9/ is not derivable, and no derivation in red(D, L) can contain it. What
we have to do, is to show how to ensure that the derivation in red(D, L) guarantees that there is a
derivation in D. More specifically, we are going to give a (constructive) procedure to transform P’
into a proof in D. The procedure removes all steps that do not contribute to the derivation of m. Let
us assume that P’ (k) = +03gm. We now consider the conclusion in P’ (k—1). If it is a justification for
step P'(k), we keep it; otherwise, we delete it. A conclusion (tagged literal or tagged conjunction) is
a justification for a step of a derivation P(n) if it makes discarded a rule attacking the conclusion in
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P(n) (see Definition 7), or it contributes to making applicable a rule for the conclusion in P(n) (see
Definition 6). We repeat step by step backward the procedure for all step P'(k — z) to determine if
they justify the step P’ (w), k —z < w < k that have not been deleted in the previous iterations of the
procedure. It is clear that the resulting sequence is still a proof for +0dgm in red(D, L), and thus does
not contain any step of the form 49/ for / € L. Finally, since the rules used to check if the remaining
steps are a subset of the rules in D, and again, if it does not involve any step with 49/, then the proof
is also a proof for +dgm in D.

For the other direction, a proof in D for +9dgm that does not contain any step of the form 49/ is
trivially a proof in D. The rules missing in red(D, L) are the rules in R[/]; these rules would be used
to justify steps of the form 49/ (which are not present in P anyway); thus, the proof P is also a proof
inred(D, L). (I

EXAMPLE 5

Consider again a theory D containing the rules for the Iterated Unpragmatic Pragmatic Oddity
scenario. Notice that the second derivation provided in that section is effectively a derivation in
red(D, {—a}), and we can use it to show that we can derive +0dgb in red(D, {—a}). At the same time,
the derivation is also a derivation in D, and thus it shows the independence of Oa from —a. Hence,
we can conclude O(a A b).

Suppose we replace r5 with its constitutive version, i.e. r5: O(4 A b) = —c. Since we no longer
have a prescriptive rule for O—c, rule r¢ is unopposed and we can derive +dgc¢ from it. Also, +d—c
and +9dpd are derivable, and we can ask if the instance of the pragmatic oddity O(c A d) is derivable.
To this end, we compute the reduct red(D, {—c}). In this theory we do not have 75, and it is easy
to check that we can derive both Oc and Od. Accordingly, Od does not depend on —c, and we can
conclude +dgc A d.

Notice that we can combine the two independence results, and we are still able to conclude +dgd
when we remove the rules for —a and —c. Finally, strictly speaking, to prove the two conjunctive
obligations O(a A b) and O(c A d), we have to show that Oa and Oc are independent of, respectively,
—b and —d. However, since there are no constitutive rules for —b and —d, the theory D itself is its
reduct, i.e. red(D, {—b}) = red(D, {—d}) = red(D,{—b,—d}) = D.

We are now ready to introduce the notion of extension. Typically in Defeasible Logic, the
extension of a theory is the set of all the literals that can be derived from the theory. However,
in Defeasible Deontic Logic, the order of the elements in a derivation does not matter. On the
contrary, as we have seen, the order matters if we want to capture the pragmatic oddity phenomenon
properly, and different derivations are possible. In the definition below, we continue to speak of
derivable/refutable literals/conjunctions. The fixed point construction will give the precise notion of
derivation/refutation in Definition 21. Formally, the extension is a 6-tuple of sets, where every set
contains the derivable/rejected literals/conjunctive obligations.

DEFINITION 16
Given a defeasible theory D the extension (E(D)) of the theory is the tuple:

E(D) = (37(D), 0™ (D), %), 30 (D), a " (D), =" (D)),

where

— 0T(D) is the set of literals appearing in D that are defeasible provable as institutional
statements;
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718  Avoiding Pragmatic Oddity

— 97 (D) is the set of literals appearing in D that are defeasible refutable as institutional
statements;

— 91O(D) is the set of literals appearing in D that are defeasible provable as obligations;

— 379(D) is the set of literals appearing in D that are defeasible refutable as obligations;

— 3*(D) is the set of conjunctive obligations defeasibly provable in D whose conjuncts are
literals appearing in D;

— 97(D) is the set of conjunctive obligations defeasibly refutable in D whose conjuncts are
literals appearing in D.

Before we move to the procedure to construct the extension of a given defeasible theory, we need
some auxiliary definitions (these definitions are the counterpart of Definitions 5— 7 for extensions
instead of derivations). First of all, we introduce some notation to identify the types of literal
occurring in the body of rules.

DEFINITION 17

Given a rule r, we identify the following sets of literals (and conjunctions of literals).
- F={lelit:le AW}
— O ={lelLit: Ol € A(r)};

- P ={leLit: =0l € A(")};

— ={c=h A---Al;: Oc) € A)).

EXAMPLE 6
Consider the rule

r:a,—b,0—¢,—0a,0(c A —d) =0 e®f. (7)
Here, * = {a, b}, 10 = {—c}, P = {a} and " = {c A —d}.

Given a conjunction c; A - - - A ¢y, We use C to denote the set of complements of the literals in the
conjunction, namely: C = {~cy,...,~cp}.

The next three definitions just mimic the definitions of when rules are applicable or rejected,
instead of applying to steps of a derivation, they apply to elements of an extension. In the construction
we are going to use to compute the extension of a theory, the reference is to the previous stage of the
construction of the extension.

DEFINITION 18
A rule r € R[q,j] is body-applicable in an extension E(D) iff
1. # 9+ (D) and
2. 9 C9t9(D) and
3. P c979D) and
4. ¥ CITND).
A rule r € R[q,j] is body-discarded in an extension E(D) iff
1. #No~(D) #Wor
2.9N99D) £Por
3. P NatOMD) £ Wor
4. ¥*No~"(D) # .
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DEFINITION 19
Arule r € RO [¢./] such that C(r) = ¢1 ® - - - ® ¢, 1s applicable in an extension E(D) for literal g at
index j, with 1 <j < n, in the condition for a=0 iff

1. ris body-applicable in E(D); and

2. foralley € C(r), 1 <k <, cx € 91O(D) and ~c € 3T (D).

DEFINITION 20
A rule r € R[q,j] suchthat C(r) = c1 ® - -+ ® ¢, is discarded in an extension E(D) for literal ¢ at
index j, with 1 < j < n in the condition for =0 iff

1. ris body-discarded in E(D); or

2. there exists ¢; € C(r), 1 < k < [, such that either ¢; € B’O(D) or ~cr € 3~ (D).

According to Definition 5 a rule 7 is (body-)applicable if all the elements in the antecedent of
the rule A(r) have been proved in previous steps of the derivation. Similarly, 7 is (body-)discarded
if there is an element in the antecedent that has been refuted. The idea behind the construction of
the extension of a theory is to start from the set of facts and derive all conclusions (positive and
negative) that can be obtained directly from the facts. Then, the procedure works as follows: at every
iteration, we compute all the conclusions that follow directly from the elements calculated in the
previous extension. A key aspect is determining what rules are applicable or discarded at a particular
iteration.

EXAMPLE 7

When we consider again the rule  in (7), then 7 is applicable in an extension E(D), if {a,—b} C
at (D), {—c} € 39(D), {a} € 8P (D) and {c A —d} € 3" (D). In addition, to check if it is applicable
for f at index 2, we have to see if e € 39(D) and —e € 9~ (D). The rule is discarded if one of the
given sets has a non-empty intersection with the corresponding negative sub-part of the extension,
indicating, in this case, that one of the elements has been refuted.

We are now ready to give the definition providing the procedure to compute the extension of a
defeasible theory.

DEFINITION 21 (Extension construction).
Given a defeasible theory D = (F, R, >), the extension of D is built by the following construction:

Ep1(D) =(3%

(D), 8, (D), 88 (D), 8,8 (D), 8} (D), 8, (D))

n+1 n+1 n+1 n+1
=(T (@} (D)), T (3, (D)), T(3;°Dy),
T@;°0(D)), T3 (D)), T3, (D)),

where

Eo(D) = (F,9,9,9,9,9)
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and

T, (D)) =3, U{g: ~q ¢ Fand
3r € Rylq]r is applicable in £, (D) and
Vs € R[~q]s is either discarded in E,(D) or
3t € R[q] ¢ is applicable in E,(D) and ¢ > s}
T@®@, (D) =09, U{g: ~q € For
Vr € Ry[q] either r is discarded in E, (D) or
ds € R[~q]s is applicable in E,(D) and
Vt € R[q] either ¢ is discarded in E, (D) ort # s}

T30 D)) = 3% U {q: 3r € RO[q, /] r is applicable in E,(D) and
Vs € RO[Nq, k] s is either discarded in E,, (D) or
dt e Ro[q, m] tis applicable in E,(D)and ¢ > s}
T(3;9D) =39 U{q: Vr € R°[q,]] either ris discarded in E, (D) or
Is e Ro[Nq, k] s1is applicable in E,(D) and
Vt € Ro[q, m] either ¢ is discarded in E,, (D) or t # s}
T@ D) =" Ufer A+ Acm: Ve, ci € 30 and
ci € 070 (red(D, C \ {~c;}))}
T@O;ND)) =0, Uler A+ Acw: Tei,¢; € 8, 9(D) or
ci ¢ 070 (red(D, C \ {~ci}))}.

In the construction above, the first four sets replicate the proof conditions for the corresponding
proof tags where we proceed in terms of stages instead of derivation steps. For conjunctive
obligations, we first determine if the individual obligations are derivable at the current stage. At
the same time, for each individual obligation, we check if it is in the extension of the reduct of the
theory obtained by removing the literals corresponding to the violations of the other obligations in
the conjunctive obligation. If it is, then the individual obligation is independent of the violation of
the other obligations. Notice that for this last step, we are not looking if they are in the extension in
a particular stage but in the extension at the end of the construction for the extension of the reduct.
Also, further reducts (for other conjunctions) may be computed in the computation for a reduct.
However, given that a reduct is a subset of a given theory, the process is guaranteed to terminate
(provided that the initial theory has finitely many rules).

The set of extensions forms a complete lattice under the pointwise containment ordering, with Ey
as its least element. The least upper bound operation is the pointwise union. It is easy to see that 7
is monotonic, and the Kleene sequence from Ej is increasing. Thus the limit

L = (3] (D), d; (D), 3;°(D), ;% (D), 8, (D), 8, (D)),
of all finite elements in the sequence exists, and it has a least fixpoint
F = (3£(D), 85 (D), 3:°(D), 37° (D), 35" (D), 87" (D)).

When D is a finite propositional defeasible deontic theory F = L. Accordingly, we take F as the
extension of D, E(D) = F. Furthermore, F being the least upper bound is unique and captures the
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conditions that determine whether a conjunctive obligation is independent of the violations of its
conjuncts.
We can revisit some of the scenarios presented in Section 4 using the bottom-up construction.

EXAMPLE 8
Let us consider again the theory D = (F,R,#) we used to illustrate the Iterated Pragmatic Non
Pragmatic Oddity scenario, where F' = {f1, /2,3, /4, /6, /7}, and R consists of the following rules:

r:fi=oa®b r:fh=pa r:f3=0b r4: fa = —a
rs: O(a A b) =0 —¢ re:fe >0c®d r7:f1 =od.

According to Definition 16
EO(D) = ({fi 9fi’ﬁ’ﬁﬂfé’ﬁ}9 @’ Q) QD @, Q)'

We can now compute £1(D). All rules but rs5 are applicable since their antecedent is a subset of
83‘ (D). Moreover, for rq, 12, 13, r4 and r7, there are no rules for the complement of their conclusion,
thus, vacuously, the condition that all rules for the opposite are either defeated or discarded is
satisfied. Hence we add —a to 81+ (D), and 319 = {a, b, d}. Given that there are no constitutive rules
for a, b, —b,c, —c,d, —d, these literals are all in 8, (D). For the same reason, 970 = {—a,—b,—d}.
Notice that, even if we have an applicable prescriptive rule for ¢ (r¢), there is a prescriptive rule for
—c (rs5), but we are not able to assess, yet, whether it is applicable or discarded. We are not in the
position to populate 81+ " since 8(? O For 0, O we can compute the reduct for all individual literals
and determine what literals are not in 91© (red(D, {1})). In the theory, the only constitutive rule is 74,
and we can repeat the argument for 9, O(D). Accordingly, 8;A(D) contains all conjunctions where
at least one element belongs to -9 (D), e.g.~aAb,aA—bAcandsoon.

We proceed to the computation of E», specifically 82+ (D). We have a,b,d € 81+ O(D). Thus, we
have to consider what combinations result in conjunctive obligations that are not pragmatic oddity
instances. To this end, we compute red(D, {—a}), red(D, {—b}) and red(D,{—c}). Since there are
no constitutive rules for —b and —c, red(D,{—b}) = red(D,{—b}) = D, and we have seen that
a,b,d € 37° (D). Removing —a results in —a € 9~ (red(D, {—a})) making r not applicable for b at
index 2. However, we still have rule 3 to include b in 9+0 (red(D,{—a})). Hence,a A b € 32+ ND),
andsoareand,bAdandaAbAd.

For E5(D), we have two applicable prescriptive rules for complementary literals: rs for —¢ and r¢
for c. However, we do not have instances of the superiority relation for them. Thus, ¢ and —c are not
provable as obligations, and we include them in 95 O(D). This, in turn, allows us to establish that
cnded, (D). After this step, we no longer add elements to the extension, meaning that we have
reached the fixed point.

EXAMPLE 9
Let us turn our attention to the theory D for the multiple dependencies scenarios, where the rules are

r: =oa r: =ob
r3:—a=qc rq: —b =g c

where F' = {—a, —b}. It is easy to verify that a,b,c € 81+O. Let us consider the reducts for {—a},
{—b} and {—a, —b}. For the first F = {—b}; therefore, ma € 0~ (red(D, {—a}) and r3 is discarded.
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722 Avoiding Pragmatic Oddity

However, we can still use r4 to conclude Ob (b € 31O (red(D, {—a}). Accordingly, a A c € 82+ D).
We can repeat a similar argument for red(D, {—b}) to determine that b A ¢ € 82+ (D). Finally, for
a A b A ¢, we notice that when we remove both —a and —b from the set of facts in the computation
of red(D, {—a, —b}), rules r3 and r4 are both discarded, and there are no remaining prescriptive rules
for ¢; ergo, ¢ € 90 (red(D, {—a, —b})), which implies a A b A ¢ € 3~ (D).

DEFINITION 22
An extension

(97(D), = (D), 30 (D), 8~ (D), 3" (D), =" (D))

is coherent it 9t N9~ =0,8T0 N3 % =gand 3t N d~" = 0.
An extension is consistent if for every set 0%, it is not the case that p and ~p are both in 9*.

Intuitively, coherence says that no literal is simultaneously provable and unprovable. Consistency
says that a literal and its negation are not both defeasibly provable.

PROPOSITION 3
Given a theory D, E(D) is coherent. If F does not contain a pair of complementary literals, and the
transitive closure of > is acyclic, then E(D) is consistent.

PROOF. Notice that the conditions to establish that a literal/conjunction is a member of one of the
positive sets of an extension at a given stage are de facto the strong negation of the condition to add
the literal to the corresponding negative set. We have to replace a(r) € 8% for Va € A(r),+da €
P(1..n),and a(r) N 3~ for da € A(r), —da € P(1..n). Hence, we can use the results of [12], see also
Proposition 1. Here we show the key cases for coherence. For the cases of consistency, see the proof
in [12].

We prove the proposition for coherence by induction on the extension’s construction stage. The
inductive base, the case for Ey(D), is trivial by the definition of Ej.

For the inductive base, let us assume that coherence holds up to the n-th extension, E,(D). By
the monotonicity of the construction, if a rule is applicable at a step m < n, then the rule remains
applicable at step 7 (similarly for discarded). For 9 and 9, the argument is as follows: for a literal
[tobe in 3"n + 1, there must be a rule 7 that is applicable at £, (D): by the inductive hypothesis, and
Definitions 18, 19 and 20 no rule is at the same time applicable and discarded for one and the same
literal at the same time. This means that, for the condition for d~, there is a rule s that is applicable
in E, (D), but then there is a rule ¢ applicable for / at E,,(D) and ¢ > ¢, but for 0~ ¢ should either be
discarded or not stronger than s. Contradiction. Thus 8: 41 and 9, | are disjoint.

For 970 N 970 = ¢, we remark in addition to what we have just proved, we have to consider
conditions 2 of Definitions 19 and 20 to realize by the inductive hypothesis that no rule can satisfy
the conditions in the two definitions.

Finally, for 9" N 9" = @, by the inductive hypothesis 9;7° N 9.0 = ¢, in addition, the
extension of any theory is unique (being the least upper bound of a finite monotonically increasing
construction), and the reducts we consider are subsets of the given theory (thus, the coherence
property holds for them as well). g

An inconsistency is possible only when the theory we started with was inconsistent (either
because the facts are inconsistent or because the superiority relation induces a cycle in the
superiority relations, meaning that a rule is at the same time stronger and weaker than another
rule). Accordingly, defeasible inference for defeasible deontic logic for pragmatic oddity does not
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introduce inconsistency. A logic is coherent (consistent) if the meaning of each theory of the logic,
when expressed as an extension, is coherent (consistent).

6 Complexity

In this section, we study the computational complexity of the problem of computing whether a
conjunctive obligation is derivable from a given defeasible theory. To this end, we adapt the algorithm
proposed in [11] to compute the extension of a defeasible theory, where the computation of the
extension is linear in the size of the theory. The algorithm is based on a series of transformations that
reduce the complexity of the theory by either removing elements from rules when some elements are
provable, or removing rules when they become discarded (and so no longer able to produce positive
conclusions).

The paper aims to determine when conjunctive obligations are either provable or discarded.
Accordingly, we have to extend the definition to account for conjunctive obligations. However, if
we want to maintain a feasible computational complexity, we have to limit the conjunctions we
consider: given a set of n literals, the set of all possible non-logically equivalent conjunctions that
the » literals can form contains 2” conjunctions; hence, we cannot compute in polynomial time for
such a set if any element is derivable or refuted by the theory. However, we are going to show that for
each individual conjunction, we can compute in polynomial-time whether it is derivable or refuted.

DEFINITION 23
Given a defeasible theory D, the conjunctive extension of the theory is the tuple:

(9F (D), (D), 3 (D), 05 (D), 3 (D), 3 (D)),

where 07 (D), 8~ (D), 88 (D) and 9 (D) are as in Definition 16 and

— 91(D) is the set of conjunctive obligations appearing in D (i.e. ¢ = O(ci A --- A ¢,) and
Jr € R such that ¢ € A(r)) that are defeasibly provable in D;
— 3, (D) is the set of conjunctive obligations appearing in D that are defeasibly refutable in D.

The algorithm to determine the conjunctive extension of a theory is based on the following data
structure (for the full details, we refer the reader to [11]). We create a list of the atoms appearing in
the theory. Every entry in the list of atoms has an array associated to it. The array has ten cells, where
every cell contains pointers to rules depending on whether and how the atom appears in the rule. The
first cell is where the atom appears in the head of a constitutive rule, the second where the negation
of the atom appears in the head of a constitutive rule, the third where the atom appears in the head
of a prescriptive rule, the fourth where the negation of atom appears in the head of a prescriptive
rule, the fifth where the atom appears in the body of a rule, the sixth where the negation of the atom
appears in the body of a rule, the seventh where the atom appears as an obligation in the body of a
rule, the eighth where the negation of the atom appears as an obligation in the body of a rule, the
ninth where the atom appears as a negative obligation in the body of a rule and the tenth where the
negation of the atom appears as a negative obligation in the body of a rule. In addition, we maintain
a list of conjunctive obligations occurring in the theory, and for every conjunction, we associate it to
the rules where it appears in the body.

The algorithm works as follows: at every round, we scan the list of atoms. For every atom
(excluding the entries for the conjunctions), we look if the atom appears in the head of some rules. If
it does not appear in any of the cells for the heads, we can set the corresponding literals as refuted;
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and we can remove rules from corresponding cells. So, for example, given an atom p, if there are
no prescriptive rules for —p; then we can conclude that the theory proves —dp—p; accordingly, all
rules where ~O—p occurs in the body are (body)-discarded, and we can remove them from the data
structure. Similarly, if there are no constitutive rules for —p, then we can prove —d—p, and then (i)
all the rules where it appears in the body are body-discarded, but also (ii) for each rule » in whose
head p appears as an obligation, no elements following p in » can any longer be derived using r,
and such elements are removed from the appropriate cells. If an atom appears in the head of a rule,
we determine (i) if the body of the rule is empty and (ii) for prescriptive rules, if the atom is the
first element of the head. If this is the case, then the rule is applicable, and we check if there are
rules for the negation. If there are no rules for the negation, or the rules are weaker than applicable
rules, then the atom/literal is provable with the suitable proof tag. Then we remove the atom/literal
from the appropriate rules. We repeat the above steps until we can no longer obtain new conclusions.
When we are not able to derive new conclusions, we turn our attention to the list of the conjunctive
obligations, where we invoke the following (sub)algorithm for every conjunction ¢ = (¢ A--- A ¢y)
in the list (where C = {~c¢;, 1 <i <n})

Algorithm 1 Evaluate Conjunctive Obligation c =cj A --- A ¢y

1: for iel.n do
2: if ¢; € 95(D) then

3 c € 0, (D) remove all rules » where ¢ € A(R)
4: Exit

5: endif

6: if ¢; € 0 (D) then

7 if VCj—'Ci,’\'C_’j (S 8+(D) then

8: if ¢; € 495 (red(D,C \ {~c;})) then

9: i=i+1

10: else c € 9, (D) remove all rules » where ¢ € A(R)
11: Exit

12: end if

13: if 3¢; # ¢;,~c; € 97 (D) then

14: i=i+1

15: end if

16: end if

17:  endif

18:  Exit

19: end for

20: ¢ €3 (D), remove ¢ from all rules » where ¢ € A(r)

For every conjunction, the algorithm iterates over the conjuncts. The conjunction is not provable if
a conjunct is not provable as an obligation (lines 2—4). If the conjunct is provable as an obligation, it
checks whether the violations of the other obligations are provable; if so, it has to check whether the
obligation of the conjunct is independent of the violations. To determine this, we can repeat the whole
algorithm with the sub-theory obtained by the transformation red(D, C \ {c;}). If it is independent,
we continue with the next element of the conjunction; otherwise, the conjunction is not derivable.
Similarly, if some of the violations are not derivable, we continue with the iteration. The conjunction
is provable when the iteration is successful for all the conjunction elements.
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At the end of the sub-routine, we return to the main algorithm; if there are changes in the rules,
we repeat the process; otherwise, the process terminates.

PROPOSITION 4
The algorithm to compute the conjunctive extension of a theory D computes the extension E(D)
when the language is restricted to the conjunctive obligations that occur in D.

PROOF. The algorithm consists of two parts. The first part is the algorithm presented in [11] to
compute the extension of a Defeasible Deontic Logic. The proof conditions presented in this paper
are restrictions of those in [11], and they are equivalent as far as the language in this paper is
concerned. The language (and algorithm) in [11] does not allow for conjunctive obligations. Thus,
we can consider each conjunctive obligation with a new literal. [11] proves that their algorithm is
sound and complete to compute the extension (corresponding to (31 (D), ™ (D), 85 (D), 95 (D))).
The second part of the computation presented in this paper is Algorithm 1, that effectively acts as
an external oracle to determine whether the conjunctive obligations (the new literal) hold or not
(based on the reduct construction). If a conjunctive obligation holds, then it can be added to 3, (D),
otherwise to d,, (D), and we can resolve the corresponding new literal. Thus, the correctness depends
on the correctness of Algorithm 1 against the construction in Definition 21. The explanation of the
algorithm above shows that the steps in the algorithm correspond to the steps to compute ’T(B,T (D))
and 7(3, (D). O

Concerning the computational complexity, [11] proves that the complexity of computing the
extension of a defeasible theory without conjunctive obligations is linear in the size of the theory,
where the size of the theory is determined by the number of symbols in the theory, and hence if # and
r stand for, respectively, the number of atoms and the number of rules in the theory, the complexity
is in O(n * r). For the complexity of computing the conjunctive extension of a defeasible theory, we
have to take into account the complexity of the Evaluate Conjunctive Obligation algorithm and the
number of times we have to compute it. This can be determined as follows: let m be the number
of conjunctive obligations in the theory, and & the number of conjuncts in the longest conjunctive
obligation. For each of them, we have to compute the extension of red(D, C), thus we have to perform
O(m * k x O(n % r)) computations on top of the calculation of the extension (i.e. O((m + n) * r)).

PROPOSITION 5
The conjunctive extension of a theory can be computed in polynomial time.

Notice that the algorithm Evaluate Conjunctive Obligation can be used to evaluate any conjunctive
obligation, not only the conjunctive obligations occurring in a theory. All we have to do is to compute
the conjunctive extension of the theory and then evaluate the single conjunctive obligation, and as
we have just seen, this can be calculated in polynomial time.

7 Summary and discussion

We have proposed an extension of Defeasible Deontic Logic that prevents the so-called Pragmatic
Oddity paradox from occurring. The mechanism we used to achieve this result was to provide a
schema that allows us to give a guard to the derivation of conjunctive obligations ensuring that each
individual obligation does not depend on the violation of the other obligation. The proof theory of
defeasible logic gives the mechanism; in addition, we presented a bottom-up characterization of the
logic that avoids the problem of non-deterministically selected derivations. Furthermore, the bottom-
up construction is the foundation of the algorithm presented in [11] to compute the extension of a
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defeasible deontic theory (without conjunctive obligations) in linear time. This allows us to give
a polynomial upper bound to the problem of computing the extension of a defeasible theory with
pragmatic oddity (limiting to the conjunctive obligations appearing explicitly in the theory). First,
we treat the conjunctive obligations in a theory as new literals, and then for each of them, we spin
out the computation of the extensions for the relevant reducts. While the upper bound complexity
of the logic is polynomial and hence feasible, the algorithm we just outlined is not optimal. Most
practical real-life examples are likely to involve only a few conjunctive obligations, and ones with
few conjuncts, so modest inefficiency of the algorithm for implementation is often not a serious
practical problem. Nonetheless, it is desirable, as a next step, to devise an optimal algorithm to
implement these novel proof conditions and the bottom-up procedure.
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