
Computers & Security 137 (2024) 103639

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Secure software development and testing: A model-based methodology

Valentina Casola a, Alessandra De Benedictis a,∗, Carlo Mazzocca b, Vittorio Orbinato a

a Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Naples, Italy
b Department of Computer Science and Engineering, University of Bologna, Bologna, Italy

A R T I C L E I N F O A B S T R A C T

Keywords:

Secure software development
SecDevOps methodology
DevSecOps methodology
Model-based testing
Automated security testing plan generation
Secure containerized microservice applications

Modern industries widely rely upon software and IT services, in a context where cybercrime is rapidly spreading
in more and more sectors. Unfortunately, despite greater general awareness of security risks and the availability
of security tools that can help to cope with those risks, many organizations (especially medium/small-size ones)
still lag when it comes to building security into their services. This is mainly due to the limited security skills
of common developers/IT project managers and to the typically high costs of security procedures. In fact,
while automated tools exist to perform code analysis, vulnerability scanning, or security testing, the manual
intervention of security experts is still required not only for security analysis and design, but also to configure
and elaborate the output of the security testing tools.
In this paper, we propose a novel secure software development methodology aimed at supporting developers
from security design to security testing, suitable for integration within modern DevOps pipelines according
to a DevSecOps (or SecDevOps) approach. The proposed methodology leverages a model-based process that
enables identifying existing threats, selecting appropriate countermeasures to enforce, and verify their mitigation
effectiveness through both static assessment procedures and targeted security tests. To demonstrate our
approach’s feasibility and concretely illustrate the devised activities, we provide a step-by-step description of
the whole process concerning a containerized microservice-based application case study. In addition, we discuss
the application of the proposed methodology, in its threat modeling and security testing phases, to a well-known
vulnerable web application widely used for security training purposes, to illustrate that we can identify most of
the existing vulnerabilities and determine appropriate test plans to assess and mitigate such vulnerabilities.
1. Introduction

In recent years, information security has become increasingly cru-
cial, as demonstrated by the impressive number of security incidents
that periodically affect large companies and government agencies1 with
severe consequences in terms of data breaches and service compro-
mise. Most of the time, cyber-attacks exploit vulnerabilities of affected
information systems (Tomas et al.), which have not been properly iden-
tified and fixed during development. As a matter of fact, the testing
and coverage of security requirements is still an open issue and, despite
the availability of security guidelines and practices for secure devel-
opment, they are still too often neglected. This is particularly true in
the context of modern development methodologies based on Agile and
DevOps paradigms (Leite et al., 2019), which rely upon iterative de-
velopment processes and a high level of integration and automation
to significantly reduce the time-to-market. These methodologies, which

* Corresponding author.
E-mail address: alessandra.debenedictis@unina.it (A. De Benedictis).

are widely adopted nowadays in several contexts (Agrawal and Rawat,
2019; Govil et al., 2020; Waseem and Liang, 2017; Šćekić et al.), did
not originally devise the application of security practices during the de-
velopment cycle, while they typically include security testing activities
only at the end of development, with clear issues related to the timeli-
ness in the identification of possible security problems.

To bridge this gap, many companies already practicing DevOps have
started to change their approach by explicitly engaging security teams
in the development lifecycle, and by embracing the so-called SecDevOps
paradigm (Sánchez-Gordón and Colomo-Palacios, 2020), which entails
including security activities in all the stages of the DevOps workflow
by adopting security best practices related to threat modeling, secure
coding, dynamic security testing, vulnerability scanning, security mon-
itoring, etc.

The integration of security engineering practices in a DevOps work-
flow requires a high level of automation (Haindl and Plösch, 2019).
Available online 6 December 2023
0167-4048/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access

1 https://www .csis .org /programs /strategic -technologies -program /significant -cybe

https://doi.org/10.1016/j.cose.2023.103639
Received 30 August 2023; Received in revised form 15 November 2023; Accepted 3
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

r -incidents.

 December 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cose
mailto:alessandra.debenedictis@unina.it
https://www.csis.org/programs/strategic-technologies-program/significant-cyber-incidents
https://doi.org/10.1016/j.cose.2023.103639
https://doi.org/10.1016/j.cose.2023.103639
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2023.103639&domain=pdf
http://creativecommons.org/licenses/by/4.0/

V. Casola, A. De Benedictis, C. Mazzocca et al.

Unfortunately, the analysis activities devised during design and de-
velopment usually need substantial support from human experts and,
similarly, security assessment and testing (during the development and
after the final deployment) require deep security skills to be performed.
A significant level of security automation can be currently achieved to-
day thanks to the multitude of development and testing tools currently
available on the market (Kumar and Goyal, 2020). Nevertheless, avail-
able technological solutions require broad and advanced technological
skills, which are rarely owned by small/medium enterprises. For exam-
ple, static and dynamic testing tools (SAST and DAST), which are widely
employed while performing testing, even in SecDevOps processes, pro-
vide automation capabilities. Security experts are still required to han-
dle, for instance, the high number of false positives generated by SAST
tools or to write tests, and fine-tune DAST tools. Moreover, existing
security testing tools often do not help identify which assets present
security issues and which security controls should be improved.

In our previous work (Casola et al., 2020a), we presented a Se-
curity SLA-based Security-by-Design Development methodology (SSDE
methodology for short) aimed to support developers during the phases
of threat modeling, risk analysis, security design, and static security
assessment, through semi-automated techniques. The SSDE methodol-
ogy presents a major limitation, i.e., it is only focused on development
(from design to coding), not considering any dynamic security testing
activities. Security testing and its automation were the focus of another
previous work of ours (Casola et al., 2020b), where we made a first
attempt toward proposing a model-based testing approach to integrate
within a SecDevOps process. However, that approach did not foresee
an automatic security test plan generation, nor did it provide the set of
security tests to reproduce.

In this paper, we leverage and extend our previous work by propos-
ing a development methodology meant to support developers from the
early security analysis stages to security testing, by means of a model-
based process that enables them to partially automate the most critical
actions that typically require the intervention of experts. In particular,
our methodology relies upon a comprehensive reference security model
that includes and correlates information on system assets, threats, coun-
termeasures, vulnerabilities, attacks, and related testing strategies. The
model, aimed at codifying security experts’ knowledge, is leveraged
throughout the development lifecycle to identify existing security risks,
determine appropriate security controls to enforce, and build a targeted
security testing plan whose feedback can be directly used to identify
suitable mitigation strategies to be applied during the next design and
coding iterations.

Our contribution can be summarized as follows:
∙ we present a secure development methodology that enables partially au-

tomating the security design and security testing activities based on
a threat-centric approach by leveraging suitable system and security
models. In particular, we discuss a novel model-based testing strategy

that entails the identification of targeted test plans taking into ac-
count the existing security risks and the specific application features,
and that exploits popular and widely-used attack pattern catalogues;

∙ we release a complex knowledge base, implementing the security
model and leveraging a large set of information derived from stan-
dards, scientific papers, best practices, and guidelines related to a
wide range of software systems (e.g., IoT, cloud-based applications,
containerized services);

∙ we demonstrate the effectiveness of the proposed methodology by
means of a microservice-based application case study, discussed step-
by-step. We also discuss the application of the methodology, in its
threat modeling and security testing phases, to a well-known vul-
nerable web application typically used for security training, showing
how it is able to identify most of existing vulnerabilities and identify
appropriate test plans to exploit and assess such vulnerabilities.
The remainder of this paper is structured as follows. Section 2 pro-

vides the technical background from our previous work on secure devel-
2

opment, outlines related limitations, and clarifies the novel contribution
Computers & Security 137 (2024) 103639

Table 1

Acronyms.

Acronym Full Term

CIA Confidentiality, Integrity, Availability
CSP Cloud Service Provider
DAST Dynamic Application Security Testing
IaaS Infrastructure-as-a-Service
MACM Multi-purpose Application Composition Model
SaaS Software-as-a-Service
SAST Static Application Security Testing
SLA Service Level Agreement
SSDE Security SLA-based Security-by-Design Development
SSDLC Secure Software Development Life Cycle
VM Virtual Machine

presented in this paper. Section 3 presents an overview of the methodol-
ogy stages, focusing on those devoted to security design, while Section 4
presents the details of the model-based security testing stage, which is
one of the main contributions of this work. In Section 5, we demon-
strate the proposed approach by illustrating its adoption in the design,
implementation, and testing of a microservice-based application, and
provide some final discussion about the approach and its limitations.
Finally, Section 6 provides an overview of the most relevant related
work regarding secure development methodologies and security testing
techniques with a special focus on model-based testing. To conclude,
Section 7 draws our conclusions and presents future work. In order to
improve readability, frequently used abbreviations are summarized in
Table 1.

2. Technical background and contribution

Since the methodology presented in this paper stems from and ex-
tends our previous work on secure application development, in this
section we provide the required background and highlight current lim-
itations in order to clarify the novelty of the contribution.

As anticipated in the Introduction, to cope with the need for cost-
effective solutions to properly address security design and assessment
issues in modern development processes, in our previous work (Casola
et al., 2020a) we recently proposed the Security SLA-based Security-by-

Design Development (SSDE) methodology. The methodology, originally
focused on the secure development process of cloud-based applications,
was aimed at simplifying and automating as much as possible both
(i) the identification of existing risks and the selection of appropriate
mitigations to improve system design according to security-by-design
principles, and (ii) the (post-development) security assessment, aimed
at (statically) verifying the actual security capabilities offered by the ap-
plication, depending not only on the security controls enforced at each
component but also on the possible impact of components interconnec-
tions and deployment configurations.

As sketched in Fig. 1, the SSDE methodology consists of four
main steps, devoted respectively to system modeling, risk analysis, per-

component security assessment, and per-application security assessment.
System modeling leverages the MACM formalism introduced in (Rak,
2017), enabling to describe the high-level architecture of an application
in terms of a graph, whose nodes represent the main components of the
application, belonging to a set of pre-defined types with specific prop-
erties, and whose edges represent the interconnections of the compo-
nents. MACM nodes enable to represent both SW components/modules
belonging to the application business logic and infrastructural compo-
nents used for deployment. In particular, the formalism was originally
introduced to model cloud-based applications, hence MACM nodes in-
cluded Software-as-a-Service (SaaS), Infrastructure-as-a-Service (IaaS),
and CPS node types, as well as provide, host, use relationships (a simple
example is reported in Fig. 2).

In order to automate risk analysis and security assessment tasks,
the SSDE methodology relies upon a reference security data model
(Granata and Rak, 2021; Granata et al., 2022) (depicted in Fig. 3) that

V. Casola, A. De Benedictis, C. Mazzocca et al.

Fig. 1. The SSDE methodology (Casola et al., 2020a).

Fig. 2. A simple application modeled with MACM.

correlates threats to technical assets, intended as the components belong-
ing to the application architecture, and to security controls, which rep-
resent the countermeasures against existing threats. Each asset belongs
to a given component type, where component types basically correspond
to the node types modeled by the MACM formalism. The model is in-
stantiated by a complex knowledge base named Threat Catalogue, which
collects and correlates well-known threats, assets, security controls, and
other relevant security-related concepts. To date, the catalogue includes
more than 100 distinct threats related to different assets (e.g., web ap-
plications, storage services, cloud-based resources) that have been iden-
tified by analyzing relevant scientific literature and/or international
projects (e.g., the catalogue includes the current version of the OWASP
top 10 Threats for web-based software components, the Cloud Security
Alliance top threats for cloud applications, the ENISA threat taxon-
omy, etc.). All of the reported threats are classified according to the
STRIDE taxonomy (Microsoft, 2016). With regard to security controls,
the catalogue currently supports the NIST Security Control Framework
(National Institute of Standards and Technology, 2013), which counts
more than 900 security controls.

Based on the system model, built according to the MACM formalism,
and on the Threat Catalogue, the SSDE methodology enables automat-
ing the two steps of risk analysis, namely threat modeling and control
selection. Threat modeling consists of identifying the threats that af-
3

fect an application: this step can be completely automated since assets
Computers & Security 137 (2024) 103639

and component types are directly mapped onto applicable threats. Such
threats can be further refined by asking developers to reply to a simple
automatically generated questionnaire regarding the implementation
details of involved components.

The aim of the control selection step is to identify the countermea-
sures to adopt, in terms of security controls to enforce, in order to
mitigate the existing threats identified during the previous step. Our
methodology makes this task quite straightforward, as the Threat Cata-
logue directly maps threats to the related countermeasures. As said, the
catalogue currently supports the controls specified by the NIST Security
Control Framework, which refers to both organizational and technical
aspects. Since the number of security controls can be huge, our method-
ology also devises the possibility to refine the controls set based on the
results of a risk assessment activity, carried out according to the OWASP
Risk Rating Methodology (OWASP Foundation, 2016). This approach
evaluates risk based on likelihood and impact levels. In particular, like-
lihood parameters refer both to specific skills and motivations of threat
agents and to aspects related to existing vulnerabilities (e.g., ease of
discovery, ease of exploit, awareness, and intrusion detection). Impact
parameters take into account both technical factors (loss of confiden-
tiality, loss of integrity, loss of availability, and loss of accountability)
and business factors (related to financial damage, reputation damage,
non-compliance, and privacy violation). Each of the above parameters
is assigned a value in [0;9] and the overall likelihood and impact lev-
els are computed as the average of the values of respective parameters.
The final risk is obtained by suitably combining respective likelihood
and impact levels based on a predefined match table. While the busi-
ness factors are dependent on the specific application business model
and must be set necessarily by the system owner, the other param-
eters relate to technical aspects mainly depending on the considered
threats and the involved assets. Hence, the assignment of proper val-
ues to likelihood and technical impact parameters can be simplified
with the introduction of default values, suitably set by security experts
based on the knowledge of the specific asset. The results of this risk
assessment can be used by developers to prioritize the enforcement of
countermeasures for identified threats based on their severity. The in-
terested reader can refer to (Casola et al., 2020a), where the details
of these activities are presented. With regard to the subsequent two
steps of the SSDE methodology, they are devoted to performing a static
security assessment both at the component level (via a code review ap-
proach leveraging suitable checklists) and at the application level (via
a rule-based reasoning approach described in (Rak, 2017)).

2.1. Limitations of the SSDE methodology and contribution

The SSDE methodology was successfully validated in two real-world
applications in the context of the MUSA European Project2 and proved
to be effective in increasing the awareness of the involved DevOps
teams with respect to security issues while offering good results in terms
of efficiency, usability, and time. Despite this, it had a major limitation,
i.e., the lack of integration with dynamic security testing techniques.

In our previous work (Casola et al., 2020b), we presented an au-
tomated penetration testing approach that was a first attempt towards
building automated model-based testing within DevOps. The proposed
process, however, lacked the automatic generation of a security test
plan for the system under test. In that approach, the list of the collected
vulnerabilities and weaknesses was used, as a starting point, to build
tests that had to be implemented by the developers. Therefore, there
were no direct relationships between threats, attacks, and tests.

To bridge this gap, as discussed in detail in the following sections,
in this paper we extended the SSDE methodology introduced above by
devising a model-based security testing strategy aimed to generate and
execute targeted security tests in a semi-automated way. The security
2 http://musa -project .eu/.

http://musa-project.eu/

Computers & Security 137 (2024) 103639V. Casola, A. De Benedictis, C. Mazzocca et al.

Fig. 3. The reference security model used by the SSDE methodology.

Fig. 4. Main stages of the model-based secure development methodology. Yellow boxes represent activities that can be fully automated, while the remaining steps
require a limited and guided intervention from the development teams. (For interpretation of the colors in the figure(s), the reader is referred to the web version of
this article.)
test plan, as well as the suite of tests to execute in order to exploit identi-
fied vulnerabilities and weaknesses, are directly linked with the model
of the application under test and with the results of threat modeling.
As a further contribution, while the SSDE methodology was originally
oriented toward cloud-based applications, we extended the MACM for-
malism and the Threat Catalogue to allow the modeling and analysis of
containerized applications, which are recently becoming very popular
and are expected to witness a major boost in the next future (Gartner,
Inc., 2020).

3. A model-based secure development methodology: from design
to testing

As anticipated, this paper presents a secure development methodol-
ogy meant to support developers from the early security analysis stages
to post-development security testing. The methodology, whose steps
are sketched in Fig. 4, leverages automated and semi-automated pro-
cesses that enable to (i) identify the needed security controls based on
an analysis of existing threats, and to (ii) verify whether and how secu-
rity requirements are fulfilled, based on both static security assessment
and security testing activities. The achieved security automation level
of the proposed methodology makes it fit within a general SecDevOps
process, with particular reference to the development phase, which typ-
ically requires most of the security experts’ (manual) efforts.

In the remainder of this section, we will discuss each phase in detail,
by highlighting the main enhancements proposed with respect to the
SSDE methodology summarized in Section 2.

3.1. The planning stage

According to SecDevOps and, more in general, to security-by-design
principles, our development methodology takes security into account
from the planning stage, by providing support for threat modeling
and countermeasure selection. In particular, as discussed regarding the
4

SSDE methodology, we devise automated threat modeling and security
controls identification steps that leverage a suitable model of the appli-
cation under development, built during application modeling by using
the MACM formalism, and the Threat catalogue, both introduced in the
previous section.

As anticipated, the first extension made to the SSDE methodology
was to include support for container-based applications. Containers are
a lightweight solution for virtualization which has become very popular
in the last few years thanks to their flexibility, portability, scalabil-
ity, isolation, and security properties. They use Operating System (OS)
virtualization, unlike Virtual Machines (VMs), which are based on hard-
ware virtualization. Each VM has got its own OS, kernel, and hypervisor
employed to emulate hardware resources such as CPU, memory, I/O,
and network devices. On the other hand, a container runs on an OS
sharing the host kernel with other containers, enabling it to save re-
sources. Nowadays, containers are widely adopted for agile delivery
and microservices-based architectures. The most popular containeriza-
tion technology is currently represented by Docker,3 an open-source
platform that enables developing and executing applications using con-
tainers that run natively on Linux OS. Docker containers are built by
(possibly) customizing so-called Docker images, which include every-
thing needed to run an application - the code or binary, runtimes,
dependencies, and any other required filesystem object. Containers can
be created, started, stopped, moved, or deleted by using the Docker
API, which is implemented by a Docker Engine daemon. Due to their
popularity, tools responsible for their lifecycle management started to
become increasingly used. In particular, orchestration tools (RedHat
Inc., 2020) have been introduced for managing container configuration,
scheduling, scaling, load balancing, monitoring, and communication.
Docker has its own orchestration tool called Docker Swarm,4 however
third-party tools such as Kubernetes5 have also become very popular to

3 https://www .docker .com/.
4 https://docs .docker .com /engine /swarm/.

5 https://kubernetes .io/.

https://www.docker.com/
https://docs.docker.com/engine/swarm/
https://kubernetes.io/

V. Casola, A. De Benedictis, C. Mazzocca et al.

Table 2

MACM-CA node types. Entries with ** symbol represent extensions to the
MACM model.

Node Type Description

Container** Container object

ContainerRuntime** Runtime environment and engine to run and manage
container objects

ContainerOrchestrator** Orchestration platform

CSP Service Provider that offers infrastructure and soft-
ware services (possibly cloud-based)

IaaS Infrastructure resource, i.e., Virtual Machine (possi-
bly cloud-based)

SaaS Software service/component, either developed ad-
hoc or offered directly by an external provider,
which needs an infrastructure resource or a con-
tainer for deployment and execution. Currently,
two types of services are supported, namely web-

application and storage

achieve extended orchestration functionalities and to reduce the depen-
dency on the specific container technology.

In order to model the specific components of a containerized ap-
plication, we extended the MACM formalism and added nodes and
relationships specific to such technology. Table 2 reports a summary
of the node types devised by the MACM for container-based Applica-
tions (MACM-CA) extension, which was introduced to model a typical
application built by leveraging the container technology. They en-
able a developer to easily represent a complex application made of
several containerized components, possibly orchestrated by an orches-
tration platform like Kubernetes. In particular, the Container node
type enables to represent a container instance (e.g., a Docker con-
tainer object), the ContainerRuntime node type models the runtime
that enables containers execution (e.g., Docker Engine daemon), and
the ContainerOrchestrator node type represents the orchestration
platform (e.g., Kubernetes). The other components that belong to the
original MACM formalism, enabling to model cloud-based resources and
providers, have been introduced in Section 2. In our MACM-CA exten-
sion, in particular, SaaS and IaaS nodes are used with a wider scope
to model either cloud-based or on-premise VMs and generic software
services/components (either offered as-a-service according to the cloud
paradigm or developed ad-hoc). Table 3 reports the updated node rela-
tionships introduced with the MACM-CA extension.

The MACM formalism’ extension with container technology-related
nodes required also the extension of the Threat Catalogue, in order to
explicitly include and map, onto new component types, relevant threats
extracted from recent literature (Sultan et al., 2019) and projects6.7

Fig. 5 shows an example application modeled by means of the
MACM-CA formalism. The application is made of one main logic com-
ponent, represented by the service S, which is deployed in a Docker
container CS executed on the Docker runtime DockerEngine. The lat-
ter, hosted on a virtual machine VM2, is managed through Kubernetes
orchestrator K8S, which is deployed onto another virtual machine VM1.
Both VM1 and VM2 are provided by the same cloud provider, CSP1.

3.2. The coding stage

During the coding stage, developers should verify that the required
security controls, identified during the planning stage, have been prop-
erly implemented and configured in each component. In our methodol-
ogy, this is performed by a code review approach through the provision-

6 Robail Yasrab, 2018. Mitigating Docker Security Issues. https://arxiv .org /
abs /1804 .05039.

7 OWASP, Top 10 Kubernetes Risks - 2022. https://owasp .org /www -project -
5

kubernetes -top -ten/.
Computers & Security 137 (2024) 103639

Table 3

MACM-CA relationships. Entries with ** symbol represent extensions to the
MACM model.

Relationship Description

provides Links a node of type CSP to a node of type IaaS:Service or
SaaS:Service, and models the provisioning of infrastructure re-
sources or software services by a provider

hosts** Links a node of type IaaS:Service or Container to a node of type
SaaS:Service and models the execution environment for services.
Moreover, it can model the relationship between a IaaS:Service

and a Container when containers are hosted by VMs

use Links two nodes of type SaaS:Service and models a generic depen-
dency relationship among services

manages** Links a node of type ContainerOrchestrator to a node of type
ContainerRuntime

runs** Links a node of type ContainerRuntime to a node of type Con-

tainer

Fig. 5. An example of container-based application modeled with the MACM-CA
formalism.

ing of custom checklists. This activity corresponds to the per-component
security assessment step of the original SSDE methodology, which has
been introduced in Section 2 and that relies upon well-known assess-
ment questionnaires and best practices suitably codified within the
Threat Catalogue. As shown in Fig. 3, checklists are directly mapped to
security controls and component types in the reference security model,
hence they can be automatically retrieved and presented to developers
and the replies from developers can be directly employed to stati-
cally assess the current security implementation state of each control
for all components. Adopted checklists have been derived from well-
known assessment questionnaires and best practices (e.g., the Cloud
Security Alliance’s CAIQ (Cloud Security Alliance, 2011), the Security
Controls definition from NIST SP-800-53, the Code Review Guide by

OWASP (OWASP Foundation, 2017a), the Berkeley DB Best Practices,

https://arxiv.org/abs/1804.05039
https://arxiv.org/abs/1804.05039
https://owasp.org/www-project-kubernetes-top-ten/
https://owasp.org/www-project-kubernetes-top-ten/

V. Casola, A. De Benedictis, C. Mazzocca et al.

the OWASP Kubernetes Security Cheat Sheet8) and are directly linked
with component types, threats and controls in the catalogue.

It must be observed that, while some source code scanners exist that
may help automate this task and that are quite good at identifying inse-
cure code patterns and vulnerabilities, they have several limitations. In
fact, analyzers are often designed for specific frameworks or languages
and fail to address issues outside of this scope; moreover, they are not
able to spot design flaws, which are not specific to the code structure,
while these may most likely be identified by a human. Thanks to the
mapping between checklists, assets, threats, and controls, the relevant
checklists to present to developers are retrieved automatically depend-
ing on the results of the previous phases, making the analysis more
focused and effective.

3.3. The building stage

In the build stage, the code that has been committed to the shared
repository (typically by multiple developers) is built, and a series of end-
to-end, integration and unit tests are automatically run. Besides typical
activities done in this phase such as vulnerability scanning, which can
be automated thanks to available tools, our methodology devises a static
security assessment phase corresponding to the SSDE per-application se-
curity assessment step, which aims at verifying (statically) whether the
application correctly implements the security controls that have been
identified at the end of the planning stage, when taking into account
not only the local behavior and characteristics of each developed com-
ponent (as resulting from the code review performed in the previous
phase) but also the impact of the interrelationships among components
and of the deployment configuration. The application security assess-
ment is carried out by means of the adoption of automated reasoning
techniques based on the knowledge of the application model and of the
characterization of security controls, as extensively illustrated in (Rak,
2017) and (Casola et al., 2020a).

3.4. The testing stage

The security testing stage usually takes place after completing the
coding and building steps, and before deploying the application in the
production environment. During this stage, dynamic testing techniques
such as DAST and penetration testing are used. DAST alone is not able
to comprehensively test an application, on the other hand, penetration
testing is a very expensive and time-consuming activity performed by
security experts. Although penetration testing is conceived to be per-
formed in production, it is usually carried out in this stage too, to reduce
the financial impact in case of security faults. However, small/medium
enterprises may not have enough resources to hire penetration test-
ing teams to evaluate the security of their products. Therefore, testing
activities could be demanded from developers with limited security
backgrounds who tend to perform such activities without defining a
precise testing strategy, by “randomly” using the most popular penetra-
tion testing tools such as those offered by Kali Linux (OffSec Services
Limited, 2023), a Linux distribution designed for digital forensics and
penetration testing.

As discussed in detail in the next section, in order to provide stronger
support to developers in the security testing stage, we propose a model-
based security testing strategy that helps them define a specific security
test plan for the application under test, according to the knowledge
acquired about existing security risks during the design and analysis
phases.

8 OWASP, Kubernetes Security Cheat Sheet. https://cheatsheetseries .owasp .
6

org /cheatsheets /Kubernetes _Security _Cheat _Sheet .html.
Computers & Security 137 (2024) 103639

4. A model-based security testing strategy

According to our proposal, once the application has been modeled,
a developer will be automatically provisioned with a security test plan
that encompasses:

• a list of attacks associated with the assets that compose the applica-
tion model;

• the prerequisites under which these attacks can be performed and
their mitigation;

• the tests to replicate the retrieved attacks.

Our security testing strategy relies on two relevant open source
projects promoted by the MITRE Corporation9 and both aimed at orga-
nizing knowledge about adversary behavior, namely the Common Attack
Pattern Enumeration and Classification (CAPEC) (The MITRE Corpora-
tion, 2020) and the Adversarial Tactics, Techniques & Common Knowledge

(ATT&CK) framework.10 CAPEC provides a publicly available catalogue
of common attack patterns, in terms of attributes and techniques em-
ployed by adversaries to exploit known weaknesses in applications. It
is focused on application security and is meant to be used for applica-
tion threat modeling and penetration testing. The listed attack patterns
are not directly linked with specific attack tools and scripts, hence they
cannot be directly used for security testing automation. CAPEC attack
patterns belong to three different abstraction levels:

• Meta Attack Patterns: represent a very high-level characterization of
a specific methodology or technique adopted to perform an attack
(e.g., “Parameter Injection”). Conventionally, they do not refer to
any technology or implementation;

• Standard Attack Patterns: provide more information about the
methodology or technique used in an attack. They supply enough
details to understand a specific technique and how it allows for
achieving the final goal (e.g., the “Parameter Injection” meta-attack
pattern can be specialized in “Email Injection”);

• Detailed Attack Patterns: provide a detailed description of an attack.
They are characterized by techniques that target some specific tech-
nology (e.g., the “Email Injection” standard pattern can be further
specified in “Using Meta-characters in E-mail Headers to Inject Ma-
licious Payloads”). Typically, a detailed attack pattern also supplies
a complete execution flow. The higher level of detail of these attack
patterns results in more specific mechanisms to mitigate them.

On the other hand, the ATT&CK framework is focused on network
defense and describes how an adversary interacts with a system dur-
ing pre/post-exploit operations. In particular, the framework details the
specific tactics, techniques, and procedures used while targeting, com-
promising, and operating inside a network:

• Tactics: represent high-level tactical objectives of an adversary such
as persistence, information discovery, lateral movement, credential
access, and data exfiltration;

• Techniques: represent how an adversary achieves a tactical objective
by performing an action. Techniques may also represent “what” an
adversary gains by performing an action. There may be many tech-
niques associated with a tactical objective: for instance, to achieve
credential access, adversaries may attempt to position themselves
between two or more network devices using an adversary-in-the-
middle technique or a brute force approach;

• Sub-techniques: provide a more detailed description of how tech-
niques behave at a lower abstraction level. For example, a brute

9 https://www .mitre .org/.

10 https://attack .mitre .org/.

https://cheatsheetseries.owasp.org/cheatsheets/Kubernetes _Security_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Kubernetes _Security_Cheat_Sheet.html
https://www.mitre.org/
https://attack.mitre.org/

V. Casola, A. De Benedictis, C. Mazzocca et al.

force technique used to gain access credentials may be implemented
through password guessing, cracking, or spraying;

• Procedures: represent examples of how particular adversaries use
specific techniques and can be used for the replication of an inci-
dent with adversarial emulation or, from a different perspective, for
security testing to verify the effectiveness of the enforced security
measures.

The ATT&CK framework is currently used by many different organiza-
tions and industry sectors, including financial, healthcare, retail, and
technology, and is a fundamental standardized reference for adversary
emulation. In this regard, there are several initiatives aimed at sup-
porting adversary emulation based on the ATT&CK framework. The
most popular ones are Red Canary’s Atomic Red Team11 and MITRE’s
CALDERA.12

Atomic Red Team has the broadest coverage of ATT&CK techniques
so far, including more than 500 individual lightweight tests that refer
to roughly 160 ATT&CK techniques. On the other hand, CALDERA is a
browser-based application and requires an agent to be installed on all
the machines to test. While it can be used to identify and replicate ad-
versary behavior based on ATT&CK techniques, similarly to Atomic Red
Team, CALDERA represents a complex cyber security framework that
allows performing advanced adversary emulation actions and incident
response. In case an attack is not already implemented by CALDERA or
by the Atomic Red Team, the developer should implement the detailed
attack by himself, as discussed later.

The proposed approach, as opposed to other model-based testing
methodologies, does not force developers to learn any kind of formal-
ization of the threat model, build threat trees, or implement security
tests. In order to obtain a specific security test plan and correspond-
ing security test to reproduce, developers are only required to model
their application through the graph-based MACM formalism and pro-
vide some high-level information about each component.

4.1. The extended security data model

The aforementioned frameworks are tightly coupled: many attack
patterns enumerated by CAPEC are carried out by adversaries through
specific techniques described by ATT&CK. In such cases, CAPEC attack
patterns and the related ATT&CK techniques are cross-referenced. This
enables contextual understanding of the attack patterns within an ad-
versary’s operational lifecycle.

In our approach, we employ Atomic Red Team and CALDERA test
suites to execute tailored security tests aimed at verifying whether the
detailed attack patterns, bound to the threats identified during the
planning stage, can be executed despite the enforcement of counter-
measures. Security tests to execute are automatically identified based
on the relationships existing among the concepts of Threat, Attack Pat-

tern as proposed by CAPEC, ATT&CK Technique and Sub-Technique, and
corresponding atomic Test in Red Atomic and CALDERA.

Fig. 6 models these relationships by illustrating the extended secu-
rity data model. Due to their high level of abstraction, CAPEC Meta
Attack patterns may be included in the model and associated with the
threats provided by our Threat Catalogue. Moreover, a Detailed Attack

pattern, which is associated with a threat, is child of a Standard Attack

pattern, that in turn is child of a Meta Attack pattern. Note that the
model is technology independent and other tools may also be adopted.
We initially leveraged the cross-references defined by MITRE to directly
link the detailed attacks to the ATT&CK techniques that are, in turn, im-
plemented by a set of different atomic tests belonging to both Atomic
Red Team and CALDERA. Thanks to the above association, identifying

11 https://atomicredteam .io/.
12 https://www .mitre .org /research /technology -transfer /open -source -
7

software /caldera.
Computers & Security 137 (2024) 103639

the attacks to launch for each asset is immediate, as it depends on the
retrieved threats.

In Fig. 7 we illustrate the whole process that leads to the identifica-
tion of the security test plan. We consider automated operations (yellow
box) all the activities that do not require any kind of user interaction.
Semi-automated operations (white box) are the actions where the user
is partially involved such as Test Execution, where a developer has to
launch collected security tests also providing configuration parameters.
Firstly, for each asset, the set of applicable threats is obtained from
the catalogue and, then, the attack patterns associated with the threats
are identified. For each attack pattern, the related techniques are re-
trieved and the corresponding tests are selected. The selection is based
on the asset type and the execution platform (e.g., Windows or Linux
OS), which are easily obtained from the MACM model by means of the
hosts relationship. In case of test failures, developers are provided with
useful feedback that allows them to identify which security controls
have failed and fix them.

Most of the available tests can be launched by simply configuring
some parameters (e.g., platform or server URL). Furthermore, since
each technique may have more than one implementation, developers
should run all the tests that implement that technique, either belonging
to Atomic Red Team or CALDERA. Finally, developers will evaluate the
outcome of a test by verifying its post-conditions or through the user
interface when available. If a test fails, thanks to our reference model
that links threats to security controls, it is possible to identify the fail-
ing controls and provide feedback that will be applied in the planning
and/or coding stage.

At the time of this work, the CAPEC provides 559 attack patterns
of which 61 are classified as meta, 181 as standard, and 317 as de-
tailed. Currently, MITRE has cross-referenced 112 attack patterns with
53 ATT&CK techniques and 70 sub-techniques. In particular, 14 meta
attack patterns are mapped to 9 techniques and 5 sub-techniques, 47
standard attack patterns are matched with 26 techniques and 19 sub-
techniques, and, finally, 51 detailed attack patterns are associated with
24 techniques and 47 sub-techniques. However, coverage can be im-
proved by developing new tests from scratch or by integrating addi-
tional test suites belonging to different projects, such as the OWASP
ZAP tool (OWASP Foundation, 2021a) for web applications.

In this regard, the proposed approach is highly flexible, as it re-
lies upon a complex knowledge base that can be easily extended to
include new assets, threats, attack patterns, and testing tools/scripts. In
fact, as already mentioned in Section 3.1, we extended the Threat Cata-
logue with container-related threats and, furthermore, we conducted
some research based on vulnerabilities databases and current litera-
ture aiming at identifying container-related detailed attack patterns that
could be associated with the CAPEC meta attack patterns. In particular,
we were able to identify 9 specific threats related to containerization
technology, which were associated with a set of existing CAPEC meta
attack patterns. Then, we defined 5 detailed attack patterns along with
their execution flow, prerequisites, and mitigation. These detailed at-
tack patterns were matched to available ATT&CK techniques. Finally,
we implemented a security test for the detailed attack pattern Gaining
Full Access to The System, which will be discussed in Section 5.4.2.

As a final remark, our catalogues are available to the community in
a public repository.13

5. A case study

In this section, to better illustrate the proposed approach, we pro-
vide a complete example of the application of our secure development
methodology to a fairly complex microservice-based e-commerce store
application. We practically show how it helps identify potential soft-
ware security threats and the associated controls to mitigate them. We
13 https://github .com /ci -ma /MMSDT.

https://atomicredteam.io/
https://www.mitre.org/research/technology-transfer/open-source-software/caldera
https://www.mitre.org/research/technology-transfer/open-source-software/caldera
https://github.com/ci-ma/MMSDT

Computers & Security 137 (2024) 103639V. Casola, A. De Benedictis, C. Mazzocca et al.

Fig. 6. Extended security data model.
Fig. 7. Security testing process.

also show how the proposed security testing phase identifies a secu-
rity test plan and corresponding security tests, which are tailored to the
application under development.

5.1. Application description

Before illustrating all the steps of our methodology, we briefly in-
troduce the main components of the application under study and its
deployment configuration.

• API-gateway: single entry point for all clients. It receives all requests,
which are then routed to the appropriate microservice;

• Login: receives the credentials required for authentication and veri-
fies them through the interaction with the Vault service. In addition,
it also generates, sends, and verifies OTPs;

• Vault: is responsible for authentication, authorization, encryption,
and decryption. Two types of users are considered, i.e., standard

and administrator;
• Show: through the interaction with MySQL, it obtains personal data,

email, and product information. If a user has sufficient privileges, it
allows adding new items. Furthermore, it also interacts with Vault
to decrypt personal user data;
8

• MySQL: stores data related to users and products.
The application components have been deployed in a Kubernetes
cluster, illustrated in Fig. 8, that comprises two modules: the Kubernetes
Control Plane and the Worker with all nodes. The Control Plane is in
charge of managing the cluster and hosts. Specifically, it comprises:

• Kube-apiserver: exposes the Kubernetes API to interact with the clus-
ter itself;

• Controller Processes: a set of processes needed to manage the cluster
(e.g. keep the right number of replicas);

• etcd: key-value database used to store all cluster information.

On the other hand, the Worker hosts the pods, a collection of Docker
containers where each runs one of the aforementioned microservices
that implement the application’s business logic. Furthermore, it also
runs the following additional components: (i) a Kubelet, to make sure
that containers are running in a pod, (ii) a Kube-proxy to enforce net-
work policies on the nodes (these policies allow network communica-
tion to pods from inside and outside the cluster), and (iii) a Container
Runtime that is responsible for running containers. It is worth noting
that Kubernetes may support several container runtime environments.

In Fig. 8, two types of connections are highlighted: the traffic be-
tween users and microservices (dotted lines), and the traffic among the
microservices themselves. Although the API-gateway is the application
entry point, all the traffic from inside and outside the cluster is routed
through the Kube-proxy. All the requests sent by the administrator to
the API server will be authenticated through a client certificate issued
by a Certificate Authority.

In the following subsections, in compliance with the proposed
methodology, we will illustrate the application of the proposed ap-
proach from planning to testing.

5.2. The planning stage

5.2.1. Application modeling

The application has been modeled, as shown in Fig. 9, using the
MACM-CA formalism described in Section 3.1. The Kubernetes Con-

trol Plane and the Worker are two VMs, hence they were modeled by

Computers & Security 137 (2024) 103639V. Casola, A. De Benedictis, C. Mazzocca et al.

Fig. 8. Architecture of the case study.

Fig. 9. MACM-CA representation of the application under study.
means of the IaaS:Service node type. All the microservices men-
tioned in the previous section were modeled as SaaS:Service node
types belonging to the web application sub-type, except for MySQL which
belongs to the storage sub-type. Since etcd is a key-value store, it was
modeled as a storage service, too. Each microservice is hosted by a Con-
tainer node, which in turn is hosted by a VM. Containers run under the
control of the Docker Engine, represented by the ContainerRuntime
node type. Finally, we modeled the Kubernetes components belonging
to the Control Plane as ContainerOrchestrator nodes, responsible
9

for managing the Docker Engine.
5.2.2. Threat modeling

As discussed in Sections 3.1 and 4, we extended the Threat Cat-
alogue with additional information related to the new architectural
assets to protect. In Table 4, we report some of the threats specific for
the case study along with their descriptions. Table 5 provides some ex-
amples of association between threats and assets, highlighting also the
STRIDE category associated with that threat.

Given the application assets to protect, the threat modeling step led
to the identification of 194 threats that resulted in 41 unique threats,

due to the fact that a threat affects more than a single component. As

Computers & Security 137 (2024) 103639V. Casola, A. De Benedictis, C. Mazzocca et al.

Table 4

Examples of threats from the catalogue.

Threat Description

Injection Flaws The Injection Flaws occurs when data not validated are sent as part of a command or query to their interpreter. The data
can deceive the interpreter into running commands not provided or accessing data for which you have no authorization.

Online Guessing An attacker may try to guess valid username/password combinations

Unauthorized Entry An adversary may gain access to a server or account without authorization

Spoofing External IPv6 An attacker in a container can craft IPv6 router advertisements, and consequently, spoof external IPv6 hosts, obtain
sensitive information or cause a denial of service

Container Escape An attacker can perform full container escape, gaining control over the host system
Table 5

Extract of threats-assets associations for the case study application.

Threat Asset STRIDE

Injection Flaws MySQL Tampering
Online Guessing Vault Elevation of Privilege
Unauthorized Entry Login Elevation of Privilege
Spoofing External IPv6 ContainerAPI-gateway Spoofing
Container Escape Docker-Engine Elevation of Privilege

Table 6

Extract of final threats analysis with the associated security controls.

Threat Security Controls

Injection Flaws SI-10, SI-15
Online Guessing AC-7, AC-9, IA-5, IA-5(1, 2, 4, 6, 7, 11, 12, 13)
Unauthorized Entry AC-3, AC-5, AC-6(1, 3, 5, 9)
Spoofing External IPv6 AC-4(4, 5, 12, 19, 21), CM-7, SC-8(1, 3), SC-13
Container Escape AC-6(1, 5, 8, 9, 10), AU-2, AU-3, CM-7, SC-7, SC-39

anticipated, some of the retrieved threats may not be of interest to the
application under study and may be filtered out with the help of a ques-
tionnaire. We do not report this step here for the sake of brevity.

5.2.3. Security controls identification

Once all the applicable threats have been identified, developers are
automatically provided with the security controls deemed to mitigate
them. In the current implementation of the catalogue, the associations
between threats and security controls are accomplished taking into ac-
count all the NIST security controls and related control enhancements.
For the application under study, we selected proper security controls
to mitigate the threats highlighted by the threat modeling subphase. As
threats may affect multiple assets, security controls may be required to
protect more than one asset. For example, in Table 6, we report the se-
curity controls and the control enhancements (in brackets) required to
mitigate the threats outlined in Table 4. From there, we decided to pri-
oritize the most popular security control families: Access Control (AC),
Identification and Authentication (IA), Audit and Accountability (AU),
System and Communications Protection (SC), and System and Informa-
tion Integrity (SI).

For the sake of clarity, we discuss the more relevant security con-
trols that were added or enriched after this analysis. In particular, the
enforcement of the AC family security controls led to the introduction
of access control and network policies (AC-4) along with the limit of
consecutive unsuccessful login attempts per user (AC-7). The IA security
controls highlighted the need to introduce two-factor authentication for
the Administrator (IA-2). Moreover, mutual authentication between the
microservices was introduced using Istio14 (IA-9), a completely open-
source service mesh that allows connecting, securing, and controlling
microservices. As far as the AU controls are concerned, we enforced
audit policies to determine what happened in the cluster, when it hap-
10

14 https://istio .io.
pened, and who did it. The SC security controls implementation was
covered by the use of Kubernetes and Vault facilities, the former to
grant a minimum amount of resources to containers, namely resource
quotas and limit ranges (SC-6), and the latter to protect information at
rest using its transit secret engine (SC-28). Finally, the proper use of
input validation was added in order to enforce the SI controls (SI-10,
SI-15).

Fig. 10 shows the updated architecture of the application under
study, resulting from the enforcement of the security controls. The as-
sets affected by changes are highlighted in different colors and they
have been modified as follows:

• Kube-apiserver: the configuration of the Kube-apiserver was modi-
fied to set up audit policies and log files;

• Kube-proxy: we enforced network policies to manage internal/exter-
nal flows within the cluster;

• Docker-Engine: was configured with the live restore functionality
which allows containers to run even when the daemon becomes
unavailable;

• Istio sidecar/microservices: an additional Istio sidecar proxy mecha-
nism was enforced to grant mutual TLS authentication among all
the microservices.

5.3. The coding and building stages

As discussed in Section 3, the planning stage is followed by a coding
stage, where a checklist-based code review is performed, and a building
stage, where static security assessment activities are carried out. For
the sake of brevity, we do not report here the details of these activities
which have been extensively addressed in our previous work.

5.4. The security testing stage

In the testing stage, the application was deployed on a production-
like environment built on top of Proxmox Virtual Environment,15 a
virtualization platform that allows managing virtual machines and con-
tainers. In particular, we deployed the Kubernetes Control Plane and
Worker on two virtual machines both equipped with 4 CPU(s), 4.00
GiB of RAM, 20.00 GiB of boot disk, and Ubuntu 18.04 as the operat-
ing system. The Kubernetes cluster was created by means of kubeadm,16

which enables creating a minimum cluster compliant with best prac-
tices. Moreover, in order to perform penetration testing activities, we
locally set up a Kali Linux attacker machine and, by taking advantage
of a virtual proxy network, the traffic generated by the attacker was
suitably routed towards the target machines.

5.4.1. Security test plan identification

According to the security testing stage presented in Section 4, devel-
opers are provided with a specific security test plan for the application
under test that we built according to the following steps:

15 https://www .proxmox .com /en /proxmox -ve.

16 https://github .com /kubernetes /kubeadm.

https://istio.io
https://www.proxmox.com/en/proxmox-ve
https://github.com/kubernetes/kubeadm

Computers & Security 137 (2024) 103639V. Casola, A. De Benedictis, C. Mazzocca et al.

Fig. 10. Final architecture of the application under study.
1. Starting from the threats related to each asset, obtained as the re-
sult of the threat modeling, the corresponding CAPEC meta attack
patterns are determined;

2. For each meta attack pattern matched, the standard attack patterns
and then the corresponding detailed attack patterns are collected;

3. ATT&CK techniques associated with the identified detailed attack
patterns and applicable to the specific assets of interest are re-
trieved;

4. Atomic tests implementing the retrieved techniques are selected.

For the application under test, we retrieved 219 detailed attack pat-
terns, partitioned as follows:

• 83 provided with their detailed execution flow, prerequisites and
mitigation;

• 136 without any detailed execution flow, but at least provided with
a description of the attack. Some of them also present prerequisites,
and/or mitigation;

Starting from this partitioning, we filtered out the attacks by plat-
form and discarded Windows-based attacks and Android/iOS-based at-

tacks. Furthermore, the process of attack filtering led to the identifi-
cation of 30 detailed attack patterns which were not suitable to the
application under study, and so excluded from the security test plan. In
fact, we assumed having deployed our resources in a secure environ-
ment that cannot be accessed by unauthorized entities, besides discard-
ing attacks depending on platforms that have not been adopted, we also
filtered out attacks based on physical access to the machine/documen-
tation. Finally, the plan only includes the detailed attack patterns that
provide an execution flow, prerequisites, and mitigation. The resulting
security test plan foresees 53 detailed attack patterns. For the sake of
clarity, in Tables 7 and 8, we report an extract of the final plan with
meta and detailed attack patterns and corresponding threats.

Note that, as discussed in Section 3.1 and 4, the threats and the
detailed attack patterns associated with the assets introduced in the
MACM-CA extension have been retrieved thanks to our preliminary
work to enrich the catalogue and the methodology models. In this way,
11

security expert knowledge is properly codified so as to automatically
provide developers with the detailed attack patterns associated with
the threats collected from their MACM model.

5.4.2. Security tests execution

Besides automatically providing developers with a security test plan
specific to the application under test, our methodology also aims at au-
tomating test execution, as much as possible. As discussed in Section 4,
this automation relies upon the association between detailed attack
patterns and ATT&CK techniques, implemented by various adversarial
emulation tools. In this case study, we focused on the implementation
offered by CALDERA and Atomic Red Team. Of the 48 detailed attack
patterns that compose the security test plan, only 9 are already imple-
mented by at least one of the aforementioned tools. This implies that
according to the identified detailed attack, a developer must implement
all missing attacks.

Table 9 highlights the techniques retrieved from the ATT&CK frame-
work associated with the detailed attack patterns of our security test
plan. In particular, for each technique, we reported the number of avail-
able abilities/tests in both CALDERA and Atomic Red Team. When a
detailed attack pattern is implemented by more than one technique, the
number of tests that perform a technique is separated by a comma.
For example, considering the Log Injection-Tampering-Forging attack,
CALDERA provides 31 abilities to perform the attack, while Atomic Red
Team offers 39 tests. Since these tests are independent of each other, a
developer should execute all of them.

It is important to note that CALDERA and Atomic Red Team do not
provide any abilities/tests for the new assets related to the MACM-CA
introduced in Section 3.1. In this case, as already said, the developer
needs to implement some specific test to perform the detailed attacks,
to be included in the automatic test execution. For example, for the ap-
plication under test, we implemented an automated test for the Gaining
Full Access to the System with Docker attack shown in Table 8 in order to
include it in the automatic test execution.

Finally, in the following paragraphs, we report the results of test ex-
ecutions of two attacks: the Log Injection-Tampering-Forging attack (using
both CALDERA and Atomic Red Team) and the Gaining Full Access to the
System with Docker attack implemented by ourselves, by also provid-

ing specific feedback to developers. In both cases, we assumed that the

Computers & Security 137 (2024) 103639V. Casola, A. De Benedictis, C. Mazzocca et al.

Table 7

Extract of detailed attack patterns applicable to the application.

Threat Meta Attack Pattern Detailed Attack Pattern

Online Guessing Brute Force Password Spraying
Online Guessing Brute Force Try Common or Default Usernames and Passwords
Guessing Access Tokens based on acquired Knowledge Excavation Directory Indexing
Broken Authentication and Session Management Identity Spoofing Spear Phishing
Advanced Persistent Threats (APTs) Infrastructure Manipulation Log Injection-Tampering-Forging
Weak Identity, Credential & Access Management Reverse Engineering Retrieve Embedded Sensitive Data
Spoofing Action Spoofing Credential Prompt Impersonation
Spoofing Action Spoofing iFrame Overlay
Injection Flaws Exploitation of Trusted Identifiers Reusing Session IDs (Session Replay)

Table 8

Examples of detailed attack patterns associated with the container and container runtime threats.

Threat Meta Attack Pattern Detailed Attack Pattern

Container Escape Privilege Escalation Gaining Full Access to the System with Docker
Container Escape Privilege Escalation Container Breakout using runC
Container Escape Code Injection Full Container Escape using docker cp Command and libnss
Spoofing External IPv6 Identity Spoofing Obtain Sensitive Information or Cause a Denial Service using CAP_NET_RAW Capability
Denial of Service Denial of Service Denial of Service via Large Integer

Table 9

Number of abilities/tests associated with the detailed attack patterns from our security test plan.

Detailed Attack Pattern ATT&CK Technique(s) # CALDERA Abilities # Atomic Red Team Tests

Reusing Session IDs (Session Replay) T1134.001, T1134.002, T1550.004 0, 0, 0 2, 1, 0
Password Spraying T1110.003 4 4
Try Common or Default Usernames and Passwords T1078.001 0 2
Directory Indexing T1083 7 4
Spear Phishing T1534, T1566.001, T1566.002, T1566.003 0, 2, 0, 0 0, 2, 0, 0
Log Injection-Tampering-Forging T1070 31 39
iFrame Overlay T1021 18 12
Credential Prompt Impersonation T1021 18 12
Retrieve Embedded Sensitive Data T1552.004 8 7
attacker already has a foothold inside the application by having com-
promised a user account on the machine where our services have been
deployed.

Test 1: Log Injection-Tampering-Forging

Test description: Log Injection-Tampering-Forging is a tampering attack
that modifies or deletes the content of one or more log files. Adversaries
usually modify these files with the purpose of masking malicious behav-
ior.
Test execution and result: Due to the significant number of available
abilities/tests offered by CALDERA and Atomic Red Team, we consid-
ered the subset of such tests that belong to the Indicator Removal on
Host: Clear Command History sub-technique. To reproduce these sub-
techniques using CALDERA, we had to install its agent on the target
machine. After having configured it by simply choosing the abilities to
reproduce, the tests executed led to the discovery of some vulnerabil-
ities related to access control of the file containing the history of the
bash commands. In particular, the agent was able to tamper and delete
it. As far as the Atomic Red Team’s corresponding tests are concerned,
their execution led to the same outcomes.
Feedback to developers: The failed security control is AC-6 (Least Priv-

ilege) and involves all the machines where the application has been
deployed. Therefore, in order to mitigate the aforementioned vulnera-
bilities, proper authorization rules for machines must be applied, and
only authorized users should be allowed to access the bash_history

file.

Test 2: Gaining Full Access to the System with Docker

Test description: Gaining Full Access to the System is a privilege esca-
12

lation attack that enables a malicious user to gain full access to the
system. When an administrator allows an unprivileged user to access
the docker group, she/he will be also allowed to make use of the Docker
CLI to create containers. Since Docker runs with the SUID bit set, an at-
tacker may exploit it to abuse the file system and gain more privileges
on the target.
Test execution and result: Through our newly implemented test, a de-
veloper without particular security skills should be able to reproduce
this attack. In particular, our test is a bash script that foresees the fol-
lowing steps:

1. Verify access to the Docker group: in order to perform the attack, a
user should be already added to the Docker group. If the permission
check fails, the test will be stopped;

2. Try to run a container: upon verifying the capability to use the docker
CLI, the user will be able to run a container;

3. Pull an image from the Docker Hub: she/he will pull an image from
the Docker Hub;

4. Gaining full access to the system: exploiting the SUID bit of Docker,
a malicious user is able to mount the full file system directory into
the container previously launched and then, through the chroot

command, gain full privileges on the target machine.

For the application under test, the attack was successful. By executing
the script, we were able to gain full access to the system.
Feedback to developers: The involved assets are the Docker Engine
and the VM where the Kubernetes Control Plane is deployed. Also in
this case, the failed security control is AC-6 (Least Privilege), whose mit-
igation consists in properly configuring access control policies, too: only

privileged users should be allowed to access the Docker group.

V. Casola, A. De Benedictis, C. Mazzocca et al.

Fig. 11. Architecture of OWASP Juice Shop.

Table 10

Extract of threats-assets associations for OWASP Juice Shop.

Threat Asset STRIDE

Web User Account Hijacking Frontend Spoofing
Sensitive Data Exposure Frontend Information Disclosure
Sniffing Storage Traffic Storage Component Information Disclosure
Deletion of Data Storage Component Tampering
Web Session Hijacking Application Server Spoofing
Container Escape Container Elevation of Privilege

Table 11

Extract of security test plan for OWASP Juice Shop.

ATT&CK Technique Asset # Tests

Network Sniffing Storage Component 8

Impair Defenses: Impair Command
History Logging

Frontend 10

Valid Accounts Application Server 6

5.5. Assessing the effectiveness of our methodology with Juice Shop

To better illustrate the usefulness and effectiveness of the proposed
methodology, we demonstrate its application on a well-known software
project widely used for security training, awareness demos, capture-the-
flag events etc., namely the OWASP Juice Shop project.17 Juice Shop is
a vulnerable web application containing several hacking challenges of
varying difficulty, developed by OWASP for vulnerability detection and
security assessment purposes. OWASP provides information about the
vulnerabilities affecting Juice Shop, useful to evaluate our methodol-
ogy.

Since we are dealing with an already-developed application, we can
only assess the threat modeling and security testing stages.

In the threat modeling phase, we modeled the target application
using the MACM-CA formalism. This allowed us to identify the potential
threats affecting each application component: 44 threats related to the
three main components of Juice Shop, i.e., frontend, application server,
and storage component, depicted in Fig. 11. Table 10 reports an extract
of such findings. It is worth noting that Juice Shop is deployed as a
containerized application, making the newly defined container-specific
threats applicable.

Given the list of threats, we retrieved the corresponding ATT&CK
techniques to define a security test plan for the target application. The
security test plan encompassed 20 ATT&CK techniques in total, imple-
mented by 148 tests from Atomic Red Team. Since we deployed the
application in a Linux-based environment, 21 tests were not applicable
because they targeted Windows-based systems, resulting in 127 appli-
cable tests. Table 11 illustrates an extract of the security test plan for
Juice Shop.

The threats identified during the threat modeling phase cover most
vulnerabilities of Juice Shop, which can be identified leveraging the cor-
responding tests in the security test plan. Table 12 shows the coverage
of Juice Shop’s vulnerabilities for the proposed methodology. These vul-
nerabilities either match threats in our threat catalogue (e.g., Injection,
Sensitive Data Exposure, Unvalidated Redirects) or map onto threats
that further specify the vulnerability (in case the vulnerability has wide
13

17 https://owasp .org /www -project -juice -shop/.
Computers & Security 137 (2024) 103639

Table 12

Coverage of Juice Shop’s vulnerabilities for the proposed
methodology.

Vulnerability Type Juice Shop
Threat Model

Proposed
Methodology

Broken Access Control ✔ ✔

Broken Anti-Automation ✔

Broken Authentication ✔ ✔

Cross Site Scripting (XSS) ✔ ✔

Cryptographic Issues ✔ ✔

Improper Input Validation ✔ ✔

Injection ✔ ✔

Insecure Deserialization ✔ ✔

Security Misconfiguration ✔ ✔

Security through Obscurity ✔

Sensitive Data Exposure ✔ ✔

Unvalidated Redirects ✔ ✔

Vulnerable Components ✔ ✔

XML External Entities (XXE) ✔

scope, e.g., Broken Authentication, Security Misconfiguration, Vulnera-
ble Components).

For the sake of brevity, for the security tests execution step, we refer
to the tests associated with the Impair Defenses: Impair Command His-

tory Logging technique. As shown in Table 11, Atomic Red Team offers
8 tests to execute this technique, such as Disable history collection, Setting
the HISTFILE environment variable, Setting the HISTCONTROL environ-

ment variable, and Setting the HISTFILESIZE environment variable. These
tests aim to impair command history logging by modifying the HIST-

FILE, HISTCONTROL, and HISTFILESIZE environment variables. Editing
such variables results in clearing command history, not logging com-
mands already present in the history, or forcing the history size to zero
respectively. To execute them, we employed the scripts provided by
Atomic Red Team: all the tests succeeded in impairing logging history
and clearing log files since there is no need to escalate privileges to per-
form such operations. The feedback to developers is the following: these
tests violate the AU-2 (Event Logging) security control and affect all the
components of Juice Shop (since the security test plan identified these
tests for each of them). Consequently, all the machines hosting these
components must be configured to grant access to such resources only
to authorized users.

6. Related work

Several methodologies have been proposed in recent years to ad-
dress software security (Kudriavtseva and Gadyatskaya, 2022). Such
methodologies fall under the umbrella of Secure Software Development
Life Cycle (SSDLC) models, which involve integrating security practices
both at the organizational and technical levels into an existing devel-
opment process. Examples of organizational practices include security
role identification and security training, while main technical practices
are threat modeling, security review, and security testing, which are the
focus of this paper.

Microsoft Security Development Lifecycle (SDL)18 is one of the most
popular existing methodologies in industry. It embeds security prac-
tices in almost all development phases, including requirements defini-
tion and tracking, security quality metrics definition and monitoring,
threat modeling, security design and implementation (mostly in terms
of recommendations), static and dynamic testing and penetration test-
ing. Although SDL is presented and promoted as platform-agnostic, it
is mainly suited for Microsoft products and the underlying technologies
and resources are proprietary, therefore they are not straightforward
to understand (Kudriavtseva and Gadyatskaya, 2022). Similarly to our
proposal, SDL automates threat modeling by leveraging a suitable appli-
cation model and a threat knowledge base. While SDL adopts Data-Flow
18 https://www .microsoft .com /en -us /securityengineering /sdl.

https://owasp.org/www-project-juice-shop/
https://www.microsoft.com/en-us/securityengineering/sdl

V. Casola, A. De Benedictis, C. Mazzocca et al.

Diagrams (DFDs) to model the system to analyze, with plenty of compo-
nents and interconnection types (especially related to Microsoft prod-
ucts), we use a simpler graph-based model (MACM) with fewer (but ex-
tensible) components related to high-level software system architectural
paradigms (e.g., cloud-based applications, micro-services applications,
IoT applications), thus easier to build. Regarding the threat knowledge
base, the SDL Threat Modeling Tool uses a proprietary (yet extensible)
list of threats (some of which specifically related to Microsoft Azure
products), whereas our Threat Catalogue natively integrates several
open-source threat sources from industrial standards and best practices.
The biggest difference with our approach is that in SDL the results of
threat modeling are not linked to subsequent development phases re-
lated to countermeasure selection and testing. Concerning testing, apart
from traditional SAST and DAST analyses, SDL prescribes a penetra-
tion testing activity but, contrary to our approach, there is no specific
methodology/tool suggested for this activity.

Besides Microsoft, it is worth mentioning OWASP and its multiple
initiatives related to secure software development. Among these, it is
possible to cite CLASP (Comprehensive, Lightweight Application Secu-
rity Process),19 a process targeted to small organizations that formalizes
a set of security activities to carry out during the development lifecy-
cle, and assigns them to specific project roles. The scope of CLASP is
wider than that of SDL, but no supporting tools have been provided
and, besides, the project seems not to be supported anymore. More-
over, OWASP has recently introduced its DevSecOps Maturity Model
(DSOMM) (OWASP Foundation, 2017b), built upon the well-known
Software Assurance Maturity Model (OWASP SAMM) (OWASP Foun-
dation, 2021b), which provides an overview of almost 140 low-level
security practices applicable to a DevOps environment.

With regard to security automation, OWASP has released the Threat
Dragon20 open-source tool for threat modeling. The tool supports
STRIDE, LINDDUN (for privacy), and CIA threat taxonomies, but cur-
rently includes only a few high-level threats. Even in this case, threat
modeling results are not directly linked to design and testing activi-
ties. As for testing, OWASP Zed Attack Proxy (ZAP)21 is an easy-to-use
penetration testing tool for finding vulnerabilities in web applications,
designed to be used by developers and functional testers who are new
to penetration testing. Despite its efficacy, ZAP is not integrated into
a wider development methodology, therefore there is no direct con-
nection between the threats identified during threat modeling and the
actual tests that are launched during the assessment.

Among the scientific community, Kumar and Goyal (2020) proposed
the adoption of a framework to use open-source software in order to
simplify SecDevOps implementation. This framework extends the main
principles of DevOps by introducing a conceptual model, called ADOC,
which codifies security controls into an automated workflow that can
be applied to all DevOps phases to grant a specific level of security as-
surance. The security controls are then implemented using open-source
software, which enables the integration of continuous security in the
DevOps paradigm. Kumar and Goyal further extended their work by
defining a continuous security model for cloud applications (Kumar and
Goyal, 2021). Their model introduces new principles, practices, and
stages to be integrated into the DevOps application lifecycle and also
identifies the automation ecosystem to use. Although this work is very
relevant to the subject of security automation, again there is no connec-
tion between the different phases of the secure development process,
more specifically between threat modeling and testing.

As a general remark, it must be noted that existing security automa-
tion tools and methods, especially related to testing such as SAST, DAST
and penetration testing, often require significant security experience

19 OWASP, CLASP. https://owasp .org /www -pdf -archive /Us _owasp -clasp -v12 -
for -print -lulu .pdf.
20 https://www .threatdragon .com/.
14

21 https://www .zaproxy .org/.
Computers & Security 137 (2024) 103639

by operators, which is rarely available in small enterprises. Moreover,
human intervention is still heavily required in order to define and prior-
itize tests, configure the tools, and interpret results. Without careful test
planning, penetration testing risks losing both efficacy and efficiency.
In addition, regardless of the adopted testing strategy, most of the ex-
isting approaches do not support developers in identifying a targeted

test plan but rely upon the security expertise of developers to select (or
write from scratch) atomic tests to execute. These strategies often do
not help in the identification of the assets that expose security issues
and the security controls that should be improved.

Our proposal aims to overcome the aforementioned limits by lever-
aging model-based testing techniques (Felderer et al., 2016). In model-
based testing, suites of test cases are automatically generated from a set
of models of the system under test, created during the analysis and de-
sign phases. This approach focuses on the data model and architecture,
instead of hand-crafting individual tests (Dalal et al., 1999). Felderer
et al. (2011) argue that the use of security models raises the level of
abstraction of test design. This enables the reduction of the level of ex-
pertise required to design security tests, thus allowing more people to
perform this task. Moreover, the use of models helps to partially/fully
automate the generation of security tests. The adoption of model-based
security testing offers several benefits, as highlighted by the authors.
However, in order to leverage its advantages, a complete approach to
security modeling and testing is needed.

An example of model-based testing is provided by (Xu et al., 2012),
where an automated technique for software vulnerability detection was
introduced. The authors presented an approach based on the formal-
ization of threat models through Predicate/Transaction nets and on the
mapping between the individual elements of a threat model to their im-
plementation constructs. This method enables converting all the attack
paths, identified by the threat model, into executable code. Although
the effectiveness of this approach was supported by two case studies, its
main limitation lies in the need for a formal specification of the threat
model to automate security test code generation. Similarly, in (Marback
et al., 2013) the authors proposed a threat model-based security testing
approach that automatically generates security test cases from threat
trees. The proposed technique requires developers to build threat trees
and the accompanying tests, so its effectiveness heavily depends on the
developers’ skills.

Maciel et al. (2019) realized Robot, a framework capable of auto-
matically generating test cases derived from the Requirement Speci-
fication Language (RSL) (da Silva, 2017). Tests are generated thanks
to a mapping between the constructs of RSL and the Robot language.
Almubairik and Wills (2016) presented an algorithm to systematically
generate a penetration testing plan guided by a threat model. However,
the algorithm is not discussed in detail so it can not be reused. Further-
more, it does not cover all the threats reported by the threat model,
including common threats such as SQL injection and cross-site script-
ing. Another example of model-based penetration testing is provided
by Xiong and Peyton (2010): in their work, they define a methodology
that leverages the collaboration with developers to achieve quality pen-
etration test campaigns. They also define a grey-box, model-driven test
architecture to automate the main processes in penetration testing and
a structured representation of Web security knowledge to be processed
by test platform programs, to make test results more reliable, measur-
able, and assessable.

7. Conclusions

The integration of security activities in a DevOps pipeline requires
a high level of automation, which can be only partly achieved through
the multitude of development, deployment, and testing tools available
on the market. The poor adoption of such tools and the lack of security
models have been identified as the main open issues that hamper the

definition of a comprehensive SecDevOps methodology.

https://owasp.org/www-pdf-archive/Us_owasp-clasp-v12-for-print-lulu.pdf
https://owasp.org/www-pdf-archive/Us_owasp-clasp-v12-for-print-lulu.pdf
https://www.threatdragon.com/
https://www.zaproxy.org/

V. Casola, A. De Benedictis, C. Mazzocca et al.

In this paper, we proposed a methodology that aims to support
developers with limited security skills in the development of secure ap-
plications. In particular, we focused on enriching our previous develop-
ment methodology with a novel semi-automated security testing phase.
Our approach allows developers to automatically define a security test
plan for their applications and provide them with the corresponding set
of security tests to reproduce. This significantly reduces the amount of
time usually spent on penetration testing activities and on the identi-
fication of the assets and mitigation that failed during the tests. These
features make it particularly suited for securing modern development
methodologies since potential changes to the software will not affect
its delivery time. The proposed methodology relies upon a security data
model and catalogues that are able to codify the security expert’s knowl-
edge. Thanks to our approach, any developer will be capable of making
informed decisions about security design choices in each development
phase and improving her/his awareness of security issues and controls.
The catalogues leveraged by our methodology are publicly available at
the address https://github .com /ci -ma /MMSDT.

As a final remark, the validity of our approach heavily depends on
the completeness and correctness of the underlying knowledge base,
the Threat Catalogue. Completeness is hard to evaluate and impossible
to achieve in absolute terms, as the security landscape is dynamic by
nature (new threats and attacks emerge over time), but the approach is
extensible by design. On the flip side, correctness is partly pursued by
the adoption of well-established and renowned international standards
and projects from which all the key concepts and data are derived.

In future work, we plan to further enrich the catalogue by including
threats specific to software technologies and refine the countermeasure
selection step by considering more specific mitigation tailored to the
different assets instead of generic, technology-agnostic security control.
Moreover, we aim to involve industrial partners to validate our method-
ology.

CRediT authorship contribution statement

Valentina Casola: Conceptualization, Methodology, Project admin-
istration, Supervision, Writing – review & editing. Alessandra De Bene-

dictis: Conceptualization, Methodology, Project administration, Super-
vision, Validation, Writing – original draft, Writing – review & editing.
Carlo Mazzocca: Methodology, Software, Validation, Writing – origi-
nal draft, Writing – review & editing. Vittorio Orbinato: Methodology,
Software, Validation, Writing – original draft, Writing – review & edit-
ing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

Agrawal, P., Rawat, N., 2019. Devops, a new approach to cloud development testing.
In: 2019 International Conference on Issues and Challenges in Intelligent Computing
Techniques (ICICT), vol. 1, pp. 1–4.

Almubairik, N.A., Wills, G., 2016. Automated penetration testing based on a threat
model. In: 2016 11th International Conference for Internet Technology and Secured
Transactions (ICITST), pp. 413–414. https://ieeexplore .ieee .org /abstract /document /
7856742.

Casola, V., De Benedictis, A., Rak, M., Villano, U., 2020a. A novel security-by-design
methodology: modeling and assessing security by slas with a quantitative approach.
J. Syst. Softw. 163, 110537.

Casola, V., De Benedictis, A., Rak, M., Villano, U., 2020b. A methodology for automated
15

penetration testing of cloud applications. Int. J. Grid Util. Comput. 11 (2), 267–277.
Computers & Security 137 (2024) 103639

Cloud Security Alliance, 2011. Consensus Assessment Initiative Questionnaire. https://
cloudsecurityalliance .org /group /consensus -assessments/.

da Silva, A.R., 2017. Linguistic patterns and linguistic styles for requirements specifi-
cation (I): an application case with the rigorous RSL/business-level language. In:
Proceedings of the 22nd European Conference on Pattern Languages of Programs,
EuroPLoP ’17. Association for Computing Machinery, New York, NY, USA. https://
doi .org /10 .1145 /3147704 .3147728.

Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J., Lott, C.M., Patton, G.C., Horowitz, B.M.,
1999. Model-based testing in practice. In: Proceedings of the 21st International Con-
ference on Software Engineering, pp. 285–294.

Felderer, M., Agreiter, B., Zech, P., Breu, R., 2011. A classification for model-based secu-
rity testing. In: Advances in System Testing and Validation Lifecycle (VALID 2011),
pp. 109–114.

Felderer, M., Büchler, M., Johns, M., Brucker, A.D., Breu, R., Pretschner, A., 2016. Chap-
ter one - security testing: a survey. In: Advances in Computers, vol. 101. Elsevier,
pp. 1–51. https://www .sciencedirect .com /science /article /pii /S0065245815000649.

Gartner, Inc., 2020. Forecast Analysis: Container Management (Software and Services),
Worldwide. https://www .gartner .com /en /documents /3985796.

Govil, N., Saurakhia, M., Agnihotri, P., Shukla, S., Agarwal, S., 2020. Analyzing the be-
haviour of applying agile methodologies devops culture in e-commerce web applica-
tion. In: 2020 4th International Conference on Trends in Electronics and Informatics
(ICOEI)(48184), pp. 899–902.

Granata, D., Rak, M., 2021. Design and development of a technique for the automation
of the risk analysis process in IT security. In: Proceedings of the 11th International
Conference on Cloud Computing and Services Science - CLOSER. INSTICC, SciTePress,
pp. 87–98.

Granata, D., Rak, M., Salzillo, G., 2022. Risk analysis automation process in it security
for cloud applications. In: Ferguson, D., Helfert, M., Pahl, C. (Eds.), Cloud Computing
and Services Science. Springer International Publishing, Cham, pp. 47–68.

Haindl, P., Plösch, R., 2019. Towards continuous quality: measuring and evaluating
feature-dependent non-functional requirements in devops. In: 2019 IEEE Interna-
tional Conference on Software Architecture Companion (ICSA-C), pp. 91–94.

Kudriavtseva, A., Gadyatskaya, O., 2022. Secure software development methodologies: a
multivocal literature review. arXiv :2211 .16987.

Kumar, R., Goyal, R., 2021. When security meets velocity: modeling continuous security
for cloud applications using devsecops. In: Innovative Data Communication Tech-
nologies and Application. Springer, pp. 415–432.

Kumar, Rakesh, Goyal, Rinkaj, 2020. Modeling continuous security: a conceptual
model for automated DevSecOps using open-source software over cloud (ADOC).
Comput. Secur. 97 (6), 101967. https://www .sciencedirect .com /science /article /pii /
S0167404820302406.

Leite, L., Rocha, C., Kon, F., Milojicic, D., Meirelles, P., 2019. A survey of devops concepts
and challenges. ACM Comput. Surv. 52 (6). https://doi .org /10 .1145 /3359981.

Maciel, D., Paiva, A.C., Da Silva, A.R., 2019. From requirements to automated acceptance
tests of interactive apps: an integrated model-based testing approach. In: ENASE,
pp. 265–272.

Marback, A., Do, H., He, K., Kondamarri, S., Xu, D., 2013. A threat model-based ap-
proach to security testing. Softw. Pract. Exp. 43 (2), 241–258. https://doi .org /10 .
1002 /spe .2111. arXiv: https://onlinelibrary .wiley .com /doi /pdf /10 .1002 /spe .2111.
https://onlinelibrary .wiley .com /doi /abs /10 .1002 /spe .2111.

Microsoft, 2016. The STRIDE Threat Model. https://msdn .microsoft .com /en -us /library /
ee823878(v =cs .20).asp.

National Institute of Standards and Technology, 2013. SP 800-53 Rev 4: Recommended
Security and Privacy Controls for Federal Information Systems and Organizations.
Tech. rep. http://nvlpubs .nist .gov /nistpubs /SpecialPublications /NIST .SP .800 -53r4 .
pdf.

OffSec Services Limited, 2023. Kali Linux. https://www .kali .org/.
OWASP Foundation, 2016. The OWASP Risk Rating Methodology Wiki Page. https://

www .owasp .org /index .php /OWASP _Risk _Rating _Methodology.
OWASP Foundation, 2017a. Code review guide v2. https://owasp .org /www -project -code -

review -guide /assets /OWASP _Code _Review _Guide _v2 .pdf.
OWASP Foundation, 2017b. DevSecOps Maturity Model. https://dsomm .timo -pagel .de/.
OWASP Foundation, 2021a. OWASP Zed Attack Proxy (ZAP). https://owasp .org /www -

project -zap/.
OWASP Foundation, 2021b. Software Assurance Maturity Model (OpenSAMM). https://

owaspsamm .org/.
Rak, M., 2017. Security assurance of (multi-)cloud application with security SLA compo-

sition. Lect. Notes Comput. Sci. 10232, 786–799.
RedHat Inc., 2020. What is container orchestration? https://www .redhat .com /en /topics /

containers /what -is -container -orchestration.
Sánchez-Gordón, M., Colomo-Palacios, R., 2020. Security as culture: a systematic lit-

erature review of devsecops. In: Proceedings of the IEEE/ACM 42nd International
Conference on Software Engineering Workshops, ICSEW’20. Association for Comput-
ing Machinery, New York, NY, USA, pp. 266–269. https://doi .org /10 .1145 /3387940 .
3392233.

Šćekić, M., Gazivoda, M., Šćepanović, S., Nikolić, J. Application of devops approach in
developing business intelligence system in bank. In: 2018 7th Mediterranean Confer-
ence on Embedded Computing (MECO), pp. 1–4.

Sultan, S., Ahmad, I., Dimitriou, T., 2019. Container security: issues, challenges, and the
road ahead. IEEE Access 7, 52976–52996. https://doi .org /10 .1109 /ACCESS .2019 .

2911732.

https://github.com/ci-ma/MMSDT
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibEDA1B1849D49826F4EBF33E292BE8A69s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibEDA1B1849D49826F4EBF33E292BE8A69s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibEDA1B1849D49826F4EBF33E292BE8A69s1
https://ieeexplore.ieee.org/abstract/document/7856742
https://ieeexplore.ieee.org/abstract/document/7856742
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibB33A093CE219298864D68DB593C97ABAs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibB33A093CE219298864D68DB593C97ABAs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibB33A093CE219298864D68DB593C97ABAs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib2026BAD368CDB646617BC20B22B81D03s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib2026BAD368CDB646617BC20B22B81D03s1
https://cloudsecurityalliance.org/group/consensus-assessments/
https://cloudsecurityalliance.org/group/consensus-assessments/
https://doi.org/10.1145/3147704.3147728
https://doi.org/10.1145/3147704.3147728
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib06B41F4F4D2C18030D45344DE603051Es1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib06B41F4F4D2C18030D45344DE603051Es1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib06B41F4F4D2C18030D45344DE603051Es1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib7C59ACAE5A189DBFB1F8B3382D86779As1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib7C59ACAE5A189DBFB1F8B3382D86779As1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib7C59ACAE5A189DBFB1F8B3382D86779As1
https://www.sciencedirect.com/science/article/pii/S0065245815000649
https://www.gartner.com/en/documents/3985796
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibC59BDA8712CF0BDBAAC638D497D3F39Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibC59BDA8712CF0BDBAAC638D497D3F39Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibC59BDA8712CF0BDBAAC638D497D3F39Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibC59BDA8712CF0BDBAAC638D497D3F39Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib7D263652A76459543BD989ED9B48E31Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib7D263652A76459543BD989ED9B48E31Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib7D263652A76459543BD989ED9B48E31Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib7D263652A76459543BD989ED9B48E31Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib4A71AEBA298F3C7DEC32A65123A1F41Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib4A71AEBA298F3C7DEC32A65123A1F41Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib4A71AEBA298F3C7DEC32A65123A1F41Bs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibD66636B253CB346DBB6240E30DEF3618s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibD66636B253CB346DBB6240E30DEF3618s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibD66636B253CB346DBB6240E30DEF3618s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib04F9D56434B4B030E5D9345D1C42E8EBs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib04F9D56434B4B030E5D9345D1C42E8EBs1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib0D7B2606AB33ABB83F597D7A60B6ECF6s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib0D7B2606AB33ABB83F597D7A60B6ECF6s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib0D7B2606AB33ABB83F597D7A60B6ECF6s1
https://www.sciencedirect.com/science/article/pii/S0167404820302406
https://www.sciencedirect.com/science/article/pii/S0167404820302406
https://doi.org/10.1145/3359981
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib0C847DE1EF39551DD172080632392D3Ds1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib0C847DE1EF39551DD172080632392D3Ds1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib0C847DE1EF39551DD172080632392D3Ds1
https://doi.org/10.1002/spe.2111
https://doi.org/10.1002/spe.2111
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2111
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2111
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).asp
https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).asp
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-53r4.pdf
https://www.kali.org/
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://owasp.org/www-project-code-review-guide/assets/OWASP_Code_Review_Guide_v2.pdf
https://owasp.org/www-project-code-review-guide/assets/OWASP_Code_Review_Guide_v2.pdf
https://dsomm.timo-pagel.de/
https://owasp.org/www-project-zap/
https://owasp.org/www-project-zap/
https://owaspsamm.org/
https://owaspsamm.org/
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib6C55396DCAF6775412B8935B18919D64s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bib6C55396DCAF6775412B8935B18919D64s1
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://www.redhat.com/en/topics/containers/what-is-container-orchestration
https://doi.org/10.1145/3387940.3392233
https://doi.org/10.1145/3387940.3392233
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibEB45BD2725CB8AC50D0795432A918F86s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibEB45BD2725CB8AC50D0795432A918F86s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibEB45BD2725CB8AC50D0795432A918F86s1
https://doi.org/10.1109/ACCESS.2019.2911732
https://doi.org/10.1109/ACCESS.2019.2911732

V. Casola, A. De Benedictis, C. Mazzocca et al.

The MITRE Corporation, 2020. Common Attack Pattern Enumeration and Classification
(CAPEC). https://capec .mitre .org/.

Tomas, N., Li, J., Huang, H. An empirical study on culture, automation, measurement,
and sharing of devsecops. In: 2019 International Conference on Cyber Security and
Protection of Digital Services (Cyber Security), pp. 1–8.

Waseem, M., Liang, P., 2017. Microservices architecture in devops. In: 2017 24th Asia-
Pacific Software Engineering Conference Workshops (APSECW), pp. 13–14.

Xiong, P., Peyton, L., 2010. A model-driven penetration test framework for web appli-
cations. In: 2010 Eighth International Conference on Privacy, Security and Trust,
pp. 173–180.

Xu, D., Tu, M., Sanford, M., Thomas, L., Woodraska, D., Xu, W., 2012. Automated security
test generation with formal threat models. IEEE Trans. Dependable Secure Comput. 9
(4), 526. https://ieeexplore .ieee .org /document /6155723.

Valentina Casola, Dr. is an Associate Professor at the Department of Electrical En-
gineering and Information Technology of the University of Naples Federico II, Italy. She
got a Ph.D. in Computer Engineering from the Second University of Naples in 2004. She
has published more than 100 papers in journals, conference proceedings and books. Her
research activities are both theoretical and experimental and focus on security methodolo-
gies to design and evaluate distributed systems, including cyber physical infrastructures,
cloud systems and web services. These activities are led in cooperation with academic
institutions and industrial partners within national and international projects.
16
Computers & Security 137 (2024) 103639

Alessandra De Benedictis received her M.S. degree in Computer Engineering in
2009 and her Ph.D in Computer and Automation Engineering in 2013, both from the Uni-
versity of Naples Federico II, Naples, Italy. She is currently an assistant professor at the
Department of Electrical Engineering and Information Technology of the University of
Naples Federico II. Her research interests mainly involve the design and evaluation of
secure architectures for the protection of distributed systems. She is particularly inter-
ested in the definition of methodologies for the development of applications able to offer
well-defined security guarantees, both in the cloud environment and in presence of re-
source constraints. Other relevant research activities include the investigation on moving
target defense mechanisms and on embedded security solutions based on reconfigurable
hardware.

Carlo Mazzocca received his M.Sc. and B.Sc. degrees in Computer Engineering in
2018 and 2020, respectively, both from the University of Naples Federico II, Italy. He
is currently a Ph.D. student in Computer Science and Engineering at the University of
Bologna, Bologna, Italy. His research interests mainly include digital identity, security
mechanisms based on distributed ledger technologies, and authentication and authoriza-
tion solutions for the cloud-to-thing continuum.

Vittorio Orbinato is a PhD Student at Università degli Studi di Napoli Federico II,
Italy. He received his M.Sc. and B.Sc. degrees in Computer Engineering in 2018 and 2020,
respectively, both from the University of Naples Federico II, Italy. His research interests
include threat emulation based on AI techniques and software security.

https://capec.mitre.org/
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibD88DD57817799F557C6E90C043432AD2s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibD88DD57817799F557C6E90C043432AD2s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibD88DD57817799F557C6E90C043432AD2s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibC38D2554A47067DBA649709913530E2As1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibC38D2554A47067DBA649709913530E2As1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibA98F5D34A46C1FC5896646AA5B19FC88s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibA98F5D34A46C1FC5896646AA5B19FC88s1
http://refhub.elsevier.com/S0167-4048(23)00549-7/bibA98F5D34A46C1FC5896646AA5B19FC88s1
https://ieeexplore.ieee.org/document/6155723

	Secure software development and testing: A model-based methodology
	1 Introduction
	2 Technical background and contribution
	2.1 Limitations of the SSDE methodology and contribution

	3 A model-based secure development methodology: from design to testing
	3.1 The planning stage
	3.2 The coding stage
	3.3 The building stage
	3.4 The testing stage

	4 A model-based security testing strategy
	4.1 The extended security data model

	5 A case study
	5.1 Application description
	5.2 The planning stage
	5.2.1 Application modeling
	5.2.2 Threat modeling
	5.2.3 Security controls identification

	5.3 The coding and building stages
	5.4 The security testing stage
	5.4.1 Security test plan identification
	5.4.2 Security tests execution

	5.5 Assessing the effectiveness of our methodology with Juice Shop

	6 Related work
	7 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

