
Future Generation Computer Systems 152 (2024) 17–29

A
0

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Enabling Federated Learning at the Edge through the IOTA Tangle
Carlo Mazzocca ∗, Nicolò Romandini, Rebecca Montanari, Paolo Bellavista
Department of Computer Science and Engineering, University of Bologna, Bologna, Italy

A R T I C L E I N F O

Keywords:
Federated Learning
Edge computing
Blockchain
DAG
Tangle
IOTA

A B S T R A C T

The proliferation of Internet of Things (IoT) devices, generating massive amounts of heterogeneous distributed
data, has pushed toward edge cloud computing as a promising paradigm to bring cloud capabilities closer to
data sources. In many cases of practical interest, centralized Machine Learning (ML) approaches can hardly be
employed due to high communication costs, low reliability, legal restrictions, and scalability issues. Therefore,
Federated Learning (FL) is emerging as a promising distributed ML approach that enables models to be trained
on remote devices using their local data. However, ‘‘traditional’’ FL solutions still present open technical
challenges, such as single points of failure and lack of trustworthiness among participants. To address these
open challenges, some researchers have started to propose leveraging blockchain technologies. However, the
adoption of blockchain for FL at the edge is limited by several factors nowadays, such as long waiting times
for transaction confirmation and high energy consumption.

In this work, we conduct an original and comprehensive analysis of the key design challenges to address
towards an efficient implementation of FL at the edge, and analyze how Distributed Ledger Technologies
(DLTs) can be employed to overcome them. Then, we present a novel architecture that enables FL at the edge
by leveraging the IOTA Tangle, a next-generation DLT whose data structure is a Directed Acyclic Graph (DAG),
and the InterPlanetary File System (IPFS) to store and share partial models. Experimental results demonstrate
the feasibility and efficiency of our proposed solution in real-world deployment scenarios.
1. Introduction

Traditional cloud-based infrastructures cannot manage the massive,
heterogeneous, and distributed data generated by billions of Internet of
Things (IoT) devices spread all over the world. Edge cloud computing
has been proposed as a promising paradigm to bring cloud capabilities
closer to data sources, thus reducing latency and requested bandwidth,
while improving the resilience and availability of the network [1]. Due
to its ability to process the proliferation of IoT data and leverage het-
erogeneous computing resources, the integration of Machine Learning
(ML) and IoT at the edge is a rapidly growing research field.

Traditionally, data storage and model training are performed on
resource-rich cloud servers. However, it is becoming widely recognized
that transmitting all data collected from edge devices to a geographi-
cally distant data center where model training is entirely performed
is not feasible. Centralized ML approaches are hindered by high com-
munication costs, low reliability, and legal restrictions In this context,
Federated Learning (FL) [2] is a promising distributed ML approach:
models are directly trained (at least partly) on remote devices using
their local data; a central server, usually referred to as the parameter
server, is used to periodically collect partial models from clients and
to aggregate them into a new global one by exploiting a predefined

∗ Corresponding author.
E-mail address: carlo.mazzocca@unibo.it (C. Mazzocca).

strategy. The global model is then returned to the edge devices for the
next round of training.

Despite the numerous benefits of FL, using a central parameter
server still raises some non-negligible challenges [3], including the lack
of trust among unknown participants and the risk of malicious clients
intentionally submitting incorrect models. Additionally, a central server
is vulnerable to single points of failure, low scalability, and may lead
to the possibility of bias in the training process since it may favor a
model over the others. These issues are particularly relevant in edge
computing scenarios where a large number of participants, who are
typically unknown to each other, are involved.

To address these challenges, researchers have recently started to
propose to leverage the immutable and transparent nature of the
blockchain to build more robust FL architectures [4]. On the one
hand, traditional blockchains that rely on third parties (i.e., miners
and validators) to validate blocks have the potential to improve the
security of FL approaches. For example, through a consensus protocol,
they could assure the correctness of a global model, which will be
generated without bias. On the other hand, their long waiting time for
transaction confirmation and their high energy consumption are among
vailable online 25 October 2023
167-739X/© 2023 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.future.2023.10.014
Received 31 March 2023; Received in revised form 24 July 2023; Accepted 20 Oct
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ober 2023

https://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:carlo.mazzocca@unibo.it
https://doi.org/10.1016/j.future.2023.10.014
https://doi.org/10.1016/j.future.2023.10.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2023.10.014&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.

l
T
I
k
a
b
p

2

t
o
a
c
d
t
a
d
s
a
p
c
c
r

c
r
a
c

2

g
h
c
s

F
e

2

t
t
n
o
d

2

s -
s
u
a
i
m
d
g

e
e
u
b

the most relevant factors that limit their adoption in edge deployment
environments, which still remain largely unexplored.

We believe that Directed Acyclic Graph (DAG)-oriented Distributed
Ledger Technologies (DLTs), indicated as DAG for briefness, have the
potential to guarantee the needed security features as the blockchain,
while providing improved performance in terms of latency and energy
consumption, thus well meeting the requirements of IoT and edge
computing. Therefore, in this work, we first conduct a comprehensive
analysis of the main factors to keep into careful account while designing
and developing FL at the edge for IoT application scenarios. In addition,
we propose a novel architecture called FL at the Edge through the IOTA
TAngle (FETA), which leverages the IOTA Tangle [5], a next-generation
DAG engineered for the IoT, and the InterPlanetary File System (IPFS),
which is commonly used in the literature [6] to overcome scalability
issues related to the size of data shared in DLT environments. The
reported experimental results show that our original FETA proposal is
feasible and efficient in real-world deployment scenarios of practical
interest. More in detail, we believe that this paper contributes to the
advancement of the state-of-the-art in the field because:

• we review the main factors to consider when efficiently designing
and implementing FL for edge-enabled IoT scenarios;

• we originally analyze how DLTs can be employed to address the
related design challenges;

• we propose the novel FETA solution that enables FL at the edge
by leveraging IOTA and IPFS.

The remainder of the paper is structured as follows. Section 2 high-
ights the key design challenges to address for FL support at the edge.
hen, Section 3 delves into how DAG can be used to overcome them.
n Section 4, we present our original FETA proposal, by outlining its
ey components and the key guidelines for its efficient implementation
t the edge. Section 7 reviews the existing literature on the use of
lockchain and DAG for implementing FL, while Section 8 ends the
aper with conclusive remarks.

. Federated Learning at the Edge

FL is a decentralized ML technique that decouples the process of
raining a model from directly accessing raw data. It enables collab-
ration among different data source owners with similar goals while
ddressing privacy concerns. Instead of transferring raw data to a
entralized cloud data center, FL allows model training to be performed
irectly on end devices. During each FL round, participating clients
rain a local model using their on-premises data and then send such
partial model to a server for aggregation. The ML models are trained
irectly on remote clients, such as edge nodes and devices, while the
erver is only responsible for combining the updates from all clients. FL
nd edge computing are key technologies that allow ML approaches to
rocess the vast amount of data generated from various distributed lo-
ations. However, deploying model training on mobile edge networks,
loser to where data is produced, introduces many challenges that
equire to be carefully addressed [7].

In this section, we aim to highlight the novel considerations and
hallenges in designing and developing FL solutions at the edge. We
eview and discuss the main design choices that must be carefully
ddressed to ensure efficient and effective FL operations in such a
ontext.

.1. Scalability

FL typically involves a large number of mobile devices that are
eographically distributed and have limited connectivity [8]. With a
igh number of clients participating in model training, several technical
hallenges arise. For instance, participants may lose connection to the
erver (i.e., device dropout) due to weak signals or low battery levels.
18
Another FL challenge relates to the proliferation of data generated by
participating devices, which makes it difficult to employ traditional
methods based on centralized servers. A single server may experience
low communication latency and may not be able to aggregate all the
updates offloaded from millions of devices.

2.2. Portability

Portability is crucial for enabling FL at the edge. The ability to
run ML models on a wide range of devices, such as smartphones,
laptops, and IoT devices, is essential for the widespread adoption of FL.
The varying processing power, memory, and storage capacity of these
devices necessitate portable and adaptable FL algorithms. Ensuring that
FL algorithms can be executed on heterogeneous devices paves the
way for the training of models on large datasets collected from diverse
sources. This is especially important for edge computing, where devices
may have limited resources and battery life.

Due to the above considerations, it essential to keep operating as
lightweight as possible. In this direction, containerization is envisioned
as a valuable approach to simplify the deployment and management of
FL models on edge devices with heterogeneous hardware and software
configurations [9]. Containerization involves packaging the model and
its dependencies into a single unit that can be consistently executed on
different devices, eliminating compatibility concerns. Moreover, con-
tainers provide a secure execution environment for ML models, which
is particularly relevant since these models often handle sensitive data,
exposing end-users to potential data breaches. Finally, containerization
facilitates the monitoring and updating of the models deployed on
edge devices, simplifying maintenance and improvement over time.
Although technology is not mature yet, the industry has been en-
couraging progress in this direction. WeBank’s KubeFate,1 TensorFlow
ederated,2 PySyft,3 and PaddleFL4 are examples of framework that
nables executing FL tasks across multiple containers.

.3. Security and privacy

Security and privacy are critical concerns while implementing FL at
he edge. On the one hand, malicious participants of FL may attempt
o disrupt collaborative training. On the other hand, honest nodes may
ot fully trust the server, which could have biases to prefer a model
ver the others. In addition, curios nodes may seek to extract personal
ata from ongoing updates.

.3.1. Security
As participants are highly distributed and unknown to each other,

ome may act maliciously, such as by using Byzantine attacks (e.g., Gaus
ian attack, Omniscient attack, and Flip bit attack) [10] to intentionally
pload incorrect weights and leading the whole training process to
n incorrect phase. Furthermore, malicious nodes may inject attacks
nto the FL process by leveraging poisoning attacks: data poisoning and
odel poisoning. The former affects the training by modifying the input
ata, while the latter crafts local models to inject backdoors into the
lobal model.

To address these security issues, it is necessary to differentiate hon-
st from malicious participants. Defense mechanisms involve scoring
ach uploaded weight and aggregating the ones with the highest scores,
sing the geometric median and its modification, and removing outliers
ased on the Euclidean distance.

1 https://github.com/FederatedAI/FATE
2 https://github.com/tensorflow/federated
3 https://github.com/OpenMined/PySyft
4
 https://github.com/PaddlePaddle/PaddleFL

https://github.com/FederatedAI/FATE
https://github.com/tensorflow/federated
https://github.com/OpenMined/PySyft
https://github.com/PaddlePaddle/PaddleFL


Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.
2.3.2. Privacy
FL was proposed to address the issues related to data privacy, own-

ership, and legalization. Local updates are computed by participants
using their private and local data. However, the sharing of models,
parameters, and global models among clients exposes FL at the edge
to several risks and vulnerabilities [11]. Curios servers or nodes may
attempt to infer information about the dataset from uploaded weights
or infer knowledge from the aggregated weights. Privacy attacks in
FL can be classified into membership inference (determining if a data
record belongs to a node’s training dataset) or data inference (collecting
training data or a class using the information provided by nodes).

Given the huge amount of sensitive data involved and the aforemen-
tioned threats, preserving privacy is a primary concern in FL. In this
direction, common techniques include differential privacy [12] (adding
noise while maintaining a certain level of utility) and encryption-based
solutions (e.g., secure multi-party computation).

2.4. Authentication and authorization

Clients need to interact with each other transparently and securely.
However, the distributed nature of edge computing can make it chal-
lenging to adopt centralized identities to identify participants and
regulate their participation in FL training. With centralized approaches,
clients’ data is owned and controlled by a central entity, which can
share with other services without clients’ awareness or consent. This
can be especially concerning when sensitive information is stored in a
single server, as it increases the risk of data leakage.

To address these concerns, FL at the edge requires decentralized
authentication and authorization mechanisms. Decentralized identities
are only under the control of the data owner, who can decide with
whom to share their information. This provides greater security and
control over sensitive data, as clients can ensure that their information
is only shared with trusted parties.

2.5. Synchronous and asynchronous communication

The generation of the final global model involves several commu-
nication rounds. Thus, the communication method, either synchronous
or asynchronous, is a crucial design choice, especially when updat-
ing models across heterogeneous networks. Most existing solutions
(e.g., FedAVG [13] and FedSGD [14]) use synchronous communi-
cation, which is relatively simple but can lead to stragglers among
devices. The assumptions made by such algorithms are not realis-
tic due to the heterogeneous capabilities of edge devices. Therefore,
asynchronous training has been envisioned as a valuable approach to
enhance efficiency in FL at the edge.

In asynchronous training, the parameter server does not need to
wait for all participants to complete their local training before comput-
ing the global model. As a result, each node can take its time to train
on its private local data, even with limited computational resources and
network delay [9]. However, to avoid loss of updates that may arrive
late, partial models can be combined through temporarily weighted
aggregation [15].

2.6. Resource allocation

Devices heterogeneity remarkably affects the speed of the training
resulting and has led to novel solutions referring to levels [9]. In this
section, we analyze the main directions that contribute to boosting the
19

training speed of an FL process.
2.6.1. Participant selection
In traditional FL, participants in the training are randomly selected

to perform computation. However, this random selection may lead
to imbalances in resource availability among the participating nodes.
Some nodes may have sufficient resources, while others may have lim-
ited capabilities. As a result, the slowest participant the total training
time for that iteration. To address such a concern, smarter strategies
should be employed for node selection.

FedCS [16] is an example of a protocol that selects clients based
on their resource conditions. By leveraging the resource information,
FedCS determines which clients are capable of participating in a spe-
cific training round and meeting necessary requirements (i.e., upload-
ing model updates within a designated deadline). Similarly, Hybrid-
FL [17] requests resource information and a small portion of clients
upload their data, addressing non-IID concerns and improving per-
formance. Reputation is another important factor to consider when
selecting clients in FL. Since participants are often unknown to each
other, previous performance can be used to determine which partici-
pants to include [18,19]. Furthermore, by selecting participants based
on their performance in previous rounds, it is possible to remove
malicious or unhelpful contributions and enhance the overall reliability
of the FL system.

2.6.2. Resource optimization
Resource allocation approaches in FL involve transforming the chal-

lenge into an optimization problem. The objective is to find the most
efficient way to implement FL at the edge while considering con-
straints such as the computation resources and network limitations
of edge nodes. There are two broad categories of resource optimiza-
tion approaches: black-box and white-box approaches [20]. Black box
techniques focus on arranging network entities and system resources
based on the observation of the external properties of the involved ML
learning models. The following are the main examples of black box
techniques:

• Training Tricks: empirical hyperparameter tuning to minimize the
number of communication rounds [14] and data augmentation for
improved inference accuracy.

• Data Compensation: sharing a small subset of local data from
each client globally to alleviate non-IID challenges and potentially
boost the model accuracy [21].

• Hierarchical Aggregation: implemented through a client-edge-
cloud multi-stage procedure [22], where early model aggrega-
tions at the network edge have lower communication cost and
can efficiently alleviate the uncertainty of model updates due to
the randomness of local data.

In contrast, white-box approaches try to understand the internal
structure as well as module functionality of ML learning models. Some
common white-box techniques comprise:

• Model Compression: reducing the model size using techniques
such as quantization and low-rank approximation [23], making
it suitable for resource-constrained environments.

• Knowledge Distillation: using a portion of the activation of a well-
trained ML model as an additional regularizer to teach a new
model [24].

• Feature Fusion: merging global and local feature extractors and
passing the result to the classifier for loss evaluation [25]. This
helps balance non-IID data and reduces communication rounds.

• Asynchronous Training: the parameter server does not need to
wait for all participants to complete their local training before
computing the global model. Each node can train on its private
local data at its own pace, even with limited computational

resources and network delay.



Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.
2.7. Incentive mechanisms

FL faces the challenge of ensuring active and reliable participation
from clients. To address this challenge, it is necessary to introduce
incentive mechanisms. Incentives can be categorized as positive or
negative. Positive incentives offer rewards to motivate participants,
while negative incentives seek to deter harmful behaviors by punishing
individuals [26].

The rewards often depend on the quality of data used for model
training. So it is crucial to assess the right value of the data. Shapley’s
value is a commonly employed concept in the literature to determine
the value of data [27]. Additionally, since the size of training samples is
connected to the accuracy of the learning model, the amount of training
data is frequently used as an indicator of the contribution. Another
way to measure contribution is to calculate each client its reputation.
Clients with high reputations are more likely to send reliable and high-
quality models. Reputation-based systems can prevent attacks on the
FL process by disqualifying clients with low reputations [28]. Incentive
mechanisms can also be driven by clients’ resource allocation. For
example, the budget can be distributed among clients to motivate them
to contribute their CPU power [29].

2.8. Energy

Energy consumption is a crucial factor to consider in FL at the
edge, as many edge devices have limited energy resources and cannot
afford to waste energy on computationally intensive tasks [30]. The
energy consumption in FL is influenced by both the frequency of
communication between devices and the processing of data on the
devices [7]. Communication of model updates between participants and
the parameter server can be computationally expensive and energy-
consuming. To mitigate this, techniques such as model compression,
quantization, and pruning can be used to reduce the size of the models
and the amount of data that needs to be transmitted. Another key factor
to consider is the processing of data on the devices. In FL at the edge,
devices often need to perform computationally intensive tasks such as
model training, which can consume significant energy. Techniques to
reduce energy consumption include reducing the number of training
iterations, using lighter models, or using energy-efficient hardware.

2.9. Hardware requirements

ML algorithms can address a wide range of tasks (e.g., image classi-
fication and audio recognition) that require substantial computational
and storage resources. However, edge devices are often limited by their
available resources, memory footprints, and power consumption. When
it comes to implementing FL at the edge, the required hardware de-
pends on several factors, such as the size and complexity of the models
being trained, the amount of processed data, and the computational
resources available on each edge device. Thus, it is recommended to
carefully assess the specific needs of the use case scenario before choos-
ing the hardware. Abreha et al. [11] investigated the edge computing
hardware requirements for implementing FL. The results are reported
in Table 1.

Generally, edge devices for FL should have enough computational
power that can support the training of partial models, store and com-
municate model updates. In addition, the hardware should provide
reliable network connectivity to enable efficient and low-latency com-
munication among the participants of the FL training. Finally, edge
devices should be designed to be energy-efficient, as they may be
running for extended periods and have limited battery life.
20
Fig. 1. Blockchain and DAG data structure.

3. Integrating DLTs and FL

DLTs are often employed to enhance the robustness of FL platforms.
While some existing works [4,31] analyze how blockchain can fulfill
the design requirements of FL in edge computing, they often overlook
alternative DLTs such as DAG and fail to provide a comprehensive
analysis of all the essential design factors for FL at the edge. Recently,
Ko et al. [32] identified design aspects for asynchronous FL with
DAG in edge computing. However, similar to other works, they do
not thoroughly explore additional factors like energy consumption and
hardware requirements. Therefore, in this section, we aim to present
a detailed analysis of how blockchain and a specific DAG implemen-
tation, the IOTA Tangle, can address the challenges outlined in the
previous section.

3.1. Blockchain and DAG

Blockchain is a widely recognized type of distributed ledger charac-
terized by a series of blocks, connected through cryptographic hashes.
Each block contains a reference to the previous block’s hash, creating
a secure chain. Tampering with any block would result in a change in
the hash, and thus, can be easily detected. The decentralized nature
of blockchain is maintained through a peer-to-peer network, provid-
ing enhanced fault tolerance and resilience against cyber-attacks. The
network uses consensus mechanisms, such as proof-of-work (PoW) or
proof-of-stake (PoS), to ensure secure synchronization and discourage
malicious behavior. The choice of consensus protocol can significantly
impact energy and power consumption, which are crucial in edge com-
puting environments, where devices are often resource-constrained and
battery-powered. In addition, such consensus protocols (in particular
PoW) require a long confirmation time that obstacles asynchronous
communications, which should be preferred due to the huge number
of heterogeneous devices.

A DAG is a novel type of DLT that features, as illustrated in Fig. 1, a
distinct data structure compared to the traditional blockchain. On the
other hand, in a DAG transactions are connected in a non-linear, tree-
like structure. DAG shows unique properties that make it a promising
alternative to overcome the well-known limitations of blockchain. The
key advantage of this structure is that it enables parallel processing of
multiple transactions, resulting in increased throughput and faster con-
firmation times. This makes DAG-based ledgers particularly well-suited
for applications that require real-time transactions and low latency. An-
other significant difference between DAGs and blockchains lies in their
consensus protocols. Contrary to blockchains that rely on mechanisms
based on blocks confirming transactions performed by third parties,
DAG-based ledgers confirm transactions through a protocol in which
transactions confirm each other. Beyond enhancing throughput, the
lack of middlemen in the validation process also enables feeless transac-
tions that are fundamental in edge environments where the number of
transactions remarkably scales up with the number of involved devices.



Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.
Table 1
Comparison of hardware accelerators for implementing FL at the edge.

Name Owner Pros Cons

CPU/GPU NVIDIA
and
Radeon

High memory, bandwidth, and throughput Consumes a large amount of power

FPGA Intel High power efficiency with optimized
performance per watt of consumption,
cost-effective solution for large-scale
operations, ideal for battery-powered devices,
and well-suited for large applications
on cloud servers.

It demands substantial storage capacity,
an ample amount of external memory
and bandwidth, and requires computational
resources with billions of operations per second

ASIC Intel Reduces memory transfer to a minimum,
boasts the highest energy efficiency compared
to FPGAs and GPUs, and boasts the fastest
computational speed in comparison
to FPGAs and GPUs

Prolonged development cycle
and inflexibility to accommodate
diverse deep learning network designs
3.2. Scalability and portability

Blockchain and Tangle enable addressing single points of fail-
ure and improve the scalability of ML centralized approaches. How-
ever, blockchain employs consensus protocols that require a significant
amount of time to validate transactions (i.e., model updates). Contrary,
the Tangle adopts a lightweight probabilistic consensus protocol that
enables parallel validation of transactions without requiring total or-
dering. Therefore, it is more adequate for scenarios where there are
several transactions to process, which is the case of FL at the edge.

3.3. Security and privacy

The integration of DLTs and FL has the potential to address many
of the security and privacy challenges, enabling the building of more
secure platforms. One of the key advantages of DLTs is that they enable
decentralized control of the collaboration process in FL. Each party has
more control over its data, which reduces the risk of a single entity
having complete control of the whole process. With DLTs, participants
can work together to train an ML model without sacrificing their
data privacy or security. Moreover, the transparent and immutable
nature of DLTs, combined with smart contracts, can significantly boost
the level of trustworthiness among participants. The immutability of
records ensures that any changes to data and models can be tracked
and audited, making it difficult for any party to maliciously alter the
data or model. Smart contracts automate the collaboration process by
enforcing specific rules and conditions that guarantee the correctness
of the generated model.

However, it is important to note that using DLTs to share par-
tial models still exposes the privacy of participants, which demands
further privacy-preserving techniques. Therefore, advanced encryption
and other privacy-preserving technologies should be used to ensure that
the privacy of participants is maintained while also enabling effective
collaboration.

3.4. Authentication and authorization

FL requires a way to regulate participation that is both secure and
transparent. Decentralized identifiers (DIDs) and Verifiable Credentials
(VCs) have emerged as promising solutions for this challenge [33]. DIDs
are a new type of identifier that enable verifiable, decentralized digital
identity [34]. Unlike traditional identifiers, which rely on a central
authority to validate identity, DIDs use public-key cryptography to
establish trust between parties. With DIDs, individuals can control their
own identity and share only the information they choose, providing
a more secure and privacy-preserving approach to authentication and
authorization. In FL, DIDs can be used to authenticate participants and
ensure that only authorized entities are able to access and participate
21

in the FL process. This helps to ensure that the data being used in the
FL process is coming from trusted sources and is not being manipulated
or corrupted. On the other hand, VCs are claims made by an issuer that
state something about a subject [35]. These claims can be cryptographi-
cally signed and shared with third parties, allowing for easy verification
of the subject’s credentials. VCs are also used to protect the privacy of
participants by allowing them to share only the minimum amount of
personal information needed for the FL process. Together, DIDs and VCs
enable a claim-based identity system, which provides a more flexible
and adaptable approach to authentication and authorization.

By using DLTs, DIDs, and VCs can be stored and managed in
a decentralized and trustless manner, providing a more secure and
transparent way to manage identity and credentials [36]. For exam-
ple, blockchain can be used to store DIDs and associated VCs in a
decentralized and tamper-proof manner. This can help to ensure that
only authorized parties can access and verify the credentials of FL
participants. Additionally, by leveraging smart contracts, blockchain
can enable automatic verification of VCs, eliminating the need for
manual verification by a central authority.

3.5. Synchronous and asynchronous communication

Efficient communication is crucial in FL training involving multiple
participants. Blockchain technologies rely on a middleman to verify
transactions, resulting in long verification and confirmation times,
which can take several minutes, that hinder the adoption of asyn-
chronous approaches that are more adequate IOTA, on the other hand,
offers feeless transactions that can be immediately attached to the Tan-
gle and verified within seconds. In addition, zero-value transactions can
also be used, allowing FL platforms to share information without the
added management concerns related to cryptocurrencies. This makes
IOTA an ideal technology for implementing efficient communication
in FL platforms. Furthermore, the use of IOTA can help reduce com-
munication overhead and costs, enabling FL platforms to operate more
efficiently and cost-effectively.

3.6. Resource allocation

Participant selection strategies can easily be adopted when using
DLTs. For example, DLTs can be used to account for the reputation
of involved nodes or track previous performance. However, contrary
to the blockchain, IOTA enables indexing transactions, reducing the
time needed to retrieve them and improving the whole efficiency of
the FL process. Such a property is beneficial to all the operations
that need to share knowledge on the tangle, involving model updates.
Concerning resource optimization, most of the existing approaches
can be used independently of the technology adopted for aggregating

partial models.



Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.
3.7. Incentive mechanisms

FL platforms based on blockchain or Tangle can leverage cryptocur-
rencies and tokens to implement incentive mechanisms that reward
clients economically. These incentives can be tied to the amount or
quality of resources provided by the clients, such as the data or training
services they contribute to the FL network. The use of cryptocurrencies
and tokens can enable a fair and transparent system for incentivizing
the clients, as their contributions can be easily tracked and quantified.
Furthermore, these incentives can attract more participants to the FL
network and improve the overall performance of the model. However,
it is crucial to design the incentive mechanism carefully to ensure that it
aligns with the objectives of the FL network and avoids potential issues
such as unfairness or manipulation.

3.8. Energy and hardware requirements

The widespread of blockchain is inhibited by its energy consump-
tion, which is one of the significant concerns also due to the cur-
rent discussions on climate change and sustainability [37]. Deploying
blockchain networks on edge nodes may be unfeasible due to the
limited resources. For example, PoW consensus requires a large ex-
tent of electrical energy, and the miners compete to validate blocks,
resulting in a huge waste of electricity [38]. In contrast, the IOTA
tangle is lightweight and energy-efficient, with experiments showing
successful deployment on Raspberry Pi 3 and 4, often employed in edge
computing environments, with very low energy consumption, ranging
from 2 J to 6 J approximately [39].

4. FETA: Federated Learning at the Edge through the IOTA Tangle

In this section, we present FETA5 a decentralized framework that
leverages the IOTA Tangle to enable FL at the edge while addressing
the challenges discussed in Section 2. The proposed solution offers
both scalability and portability. The Tangle, which is the underlying
structure of the network, enables fast and feeless transactions on a large
scale. Portability is ensured by allowing each component to execute
within a container. This enables the deployment and management of
FL models on edge devices independently from the underlying hard-
ware and software configurations, by providing flexibility and ease
of use. Furthermore, the Tangle guarantees the same features as the
blockchain, such as decentralized control and immutability. However,
partial models are not directly shared on it due to their large size,
which makes it hard to embed them within transactions. To tackle this
problem, they are shared through the decentralized storage of IPFS,
while we propose to store only their Content IDentifier (CID) on the
Tangle.

In addition, authentication and authorization are implemented
through the IOTA Identity framework,6 which offers DID and VC
functionalities. Asynchronous communication, which is fundamental in
edge scenarios, is enabled by the consensus protocol: this allows paral-
lel transaction processing in FETA and speeds up the sharing of partial
models. Partial models are shared through zero-value transactions that
do not require any transfer of value from one entity to another, thus
not requiring to provide cryptocurrencies or tokens to FL participants.
Although resource allocation algorithms and incentive mechanisms are
out of the scope of our FETA proposal, at least at this stage of evolution,
they can be easily integrated. Finally, as discussed above, the proposed
architecture can be effectively deployed on real-edge devices.

5 https://github.com/MMw-Unibo/FETA
6 https://github.com/iotaledger/identity.rs
22
Fig. 2. FETA architecture.

4.1. The FETA architecture

As shown in Fig. 2, to enable FL at the edge our proposed solution
consists of multiple edge nodes that receive data from IoT devices and
train local models. The edge nodes host the following components:

• FL Client: it trains a local model using data received from IoT
devices.

• IPFS Node: it is responsible for storing and distributing the up-
dated models across the network.

• IOTA Node: it belongs to the IOTA Network and cooperates with
other nodes to maintain the unified view of the Tangle. It shares
references of partial models among participants, by enabling their
retrieval via IPFS nodes.

In addition to these components, our architecture includes an Au-
thorization Service (AS) that generates VCs for clients willing to par-
ticipate in the FL process. Only partial models with valid VC will be
included in the aggregation process. The AS is managed by the FETA
participants that can establish whether participants are allowed to join.

4.1.1. Authorization service
The AS is a critical component responsible for regulating participa-

tion in an FL process. Its primary function is to issue VCs that validate
the eligibility of FL clients to contribute to FL training. To ensure the
authenticity and prevent VC tampering of the VCs, they are signed by
the AS using the private key associated with its DID. As DIDs are public,
FL clients can automatically retrieve the corresponding public key of
the AS and verify whether a partial model has been published by an
authorized participant or not. Therefore, this approach allows AS to
be involved only in the initial issuance of VCs. Subsequent verification
operations can be performed by the participating clients themselves,
promoting decentralization and improving scalability.

4.1.2. FL client
The FL clients receive data from IoT devices to locally train their

models, by using any desired ML algorithm. To contribute to FL train-
ing, each client must first obtain a valid VC from the AS that allows
participating in FL training. The client signs the VC using the private
key associated with its DID, obtaining a VP that proves its eligibility.
Before including a partial model in the aggregation, each client also
verifies that the model has been published by an authorized participant.

4.1.3. IOTA node
An IOTA network consists of multiple IOTA nodes, which store a

copy of the Tangle: these nodes are vital to ensuring the integrity
and reliability of the IOTA network by participating in the consensus
process and validating transactions before adding them to the Tangle.
Besides, IOTA nodes can perform other functions, such as acting as

https://github.com/MMw-Unibo/FETA
https://github.com/iotaledger/identity.rs


Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.
Fig. 3. Publishing partial models.
Fig. 4. Authorization workflow.

gateways for communication between users and the IOTA network, par-
ticipating in transaction routing, and providing access to the distributed
ledger for applications and other network participants.

In our architecture, each edge node includes an IOTA node that
attaches the partial models provided by the FL client and retrieves
other participants’ contributions, which are used to generate the global
model. This approach ensures that the FL training process is transpar-
ent and secure, as all participants’ contributions are recorded on the
Tangle, which is immutable and tamper-proof. Additionally, the IOTA
node capabilities contribute to the overall FL scalability and reliability,
by allowing for a large number of participants to contribute to model
training simultaneously.

4.1.4. IPFS node
IPFS participants, or simply IPFS nodes, are programs that can be

executed on a local computer to store files and establish connections
with the IPFS network. In IPFS, files are stored and shared using a
peer-to-peer (P2P) network. This means that rather than depending on
centralized servers to store and retrieve files, IPFS nodes communicate
with each other directly to transfer files. In FETA, each edge node
includes an IPFS node that is responsible for storing the partial models.
FETA exploits efficient integration with IPFS because transactions on
IOTA have space limitations, i.e., not allowing the direct publication
of ML models in it. Models published on IPFS are signed to ensure the
origin of the data can be verified.

4.2. FETA protocol

This subsection describes the authorization and FL training stages,
which are the main phases that compose the FETA protocol.
23
4.2.1. Authorization
The authorization phase ensures that only authorized FL clients can

contribute to the FL training process. In the following, we detail the
authorization workflow depicted in Fig. 4:

1. Each FL client requests a valid VC to the AS, providing its DID.
2. The AS verifies the eligibility of the FL client associated with the

provided DID.
3. Upon successful verification, the AS issues a valid VC associated

with the client’s DID and signed through its private key.
4. The FL client receives the issued VC from the AS.
5. The FL client generates a VP by signing the collected VC with its

own private key, thus proving its eligibility.
6. The FL client attaches the VP to the transaction that contains the

necessary information to retrieve its partial model.
7. Before downloading partial models submitted by other partic-

ipants, each FL client verifies the validity of the VP using the
public keys associated with the AS and other FL clients, which
are linked to their respective DIDs.

4.2.2. FL training
The FL training phase consists of two sub-phases: publishing partial

models and aggregating partial models. Each sub-phase contributes to the
collaborative training process in FL.

Publishing Partial Models. After the issuance of VCs, FL clients can
train their models using local data and share the trained partial models
with other participants. The protocol for publishing partial models, as
depicted in Fig. 3, is described below:

1. Each FL client trains a partial model using its on-premises data.
Once the training is complete, the hash of the local model is
signed with the private key associated with its DID.

2. The signed hash, along with the model, is sent to the IPFS node,
which forwards the data to the IPFS network, which returns a
CID to the FL client.

3. The FL client signs the received CID, ensuring the integrity of
the model.

4. Using the VC and its associated DID, the FL client generates a
VP that serves as proof of eligibility for FL training.

5. Finally, the VP and the signed CID are bundled in a message and
sent to an IOTA node. The IOTA node attaches this data to the
Tangle and indexes it using a tag corresponding to the FL round
for easy retrieval.



Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.
Fig. 5. Aggregating partial models.
Aggregating Partial Models. An FL client that has completed its train-
ing, listens for transactions associated with the tag for that specific FL
round to retrieve the partial models of other participants. Specifically,
the steps needed to perform the aggregation of partial models, whose
workflow is sketched in Fig. 5, are reported below:

1. Using the tag of the FL round, the FL client sends a request to
the IOTA node to retrieve all the transactions associated with
that tag.

2. The IOTA node collects the transactions indexed with the tag and
returns them to the FL client.

3. For each transaction, the FL client first verifies the validity of
the included VP using the public key of the AS. Upon successful
verification, it checks that the CID has been signed by the FL
client linked with that VP.

4. Given the CID, the FL client requests the corresponding partial
model to the IPFS node.

5. The IPFS interacts with the IPFS network and responds to the
FL client with the requested partial model and its signed hash
associated with that CID.

6. The FL client verifies the hash has been signed by the FL client
associated with that VP and checks that the hash of the retrieved
partial model matches the signed one.

7. Finally, partial models are aggregated to generate the global
model, which will be used for the following FL round.

Alg. 1 presents the algorithm implemented by the FL client, which
comprises both the publication and aggregation of partial models.

5. Performance results from in-the-field experimental evaluation

The purpose of this section is to demonstrate the practical feasibility
of deploying our FETA solution in real-world scenarios. Our proposed
architecture is designed to be highly adaptable and flexible, making it
possible to integrate a wide range of FL algorithms and strategies. Our
experiments are focused on showcasing the practical applicability of
FETA, with particular emphasis on the respect of challenging require-
ments in terms of latency and power consumption, which are central
to the most original aspects of our proposal for FL at the edge.

We deployed FETA on a real cluster by scaling the number of edge
nodes involved in the training phase. Each edge node is equipped with
an Intel(R) Core(TM) i5-3470 CPU running at 3.20 GHz and 12 GB
of RAM, while each component executed at the edge is run within a
Docker container.
24
Algorithm 1 FL Client - k FL round

Input: 𝑑𝑖𝑑𝐴𝑆 , 𝑑𝑖𝑑, 𝑉 𝐶, 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑘−1, 𝑡𝑎𝑔𝑘, 𝑠𝑡𝑜𝑝𝐶𝑜𝑛𝑑
Output: 𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑘

𝑙𝑜𝑐𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑘 ← 𝑡𝑟𝑎𝑖𝑛𝑀𝑜𝑑𝑒𝑙(𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑘−1)
𝑚𝑜𝑑𝑒𝑙𝐻𝑎𝑠ℎ𝑘 ← ℎ𝑎𝑠ℎ(𝑙𝑜𝑐𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑘)
𝑠𝑖𝑔𝑛𝑒𝑑𝐻𝑎𝑠ℎ𝑘 ← 𝑠𝑖𝑔𝑛(𝑑𝑖𝑑, 𝑚𝑜𝑑𝑒𝑙𝐻𝑎𝑠ℎ𝑘)
𝑐𝑖𝑑𝑘 ← 𝑠𝑒𝑛𝑑𝑇 𝑜𝐼𝑃𝐹𝑆(𝑠𝑖𝑔𝑛𝑒𝑑𝐻𝑎𝑠ℎ𝑘, 𝑙𝑜𝑐𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑘)
𝑠𝑖𝑔𝑛𝑒𝑑𝐶𝑖𝑑𝑘 ← 𝑠𝑖𝑔𝑛(𝑑𝑖𝑑, 𝑐𝑖𝑑𝑘)
𝑉 𝑃 ← 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑉 𝑃 (𝑑𝑖𝑑, 𝑉 𝐶)
𝑠𝑒𝑛𝑑𝑇 𝑜𝐼𝑂𝑇𝐴(𝑉 𝑃 , 𝑠𝑖𝑔𝑛𝑒𝑑𝐶𝑖𝑑𝑘, 𝑡𝑎𝑔𝑘)
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑠𝑘 ← []
while not stopCond do

𝑉 𝑃𝑖, 𝑠𝑖𝑔𝑛𝑒𝑑𝐶𝑖𝑑𝑘𝑖 ← 𝑔𝑒𝑡𝐹 𝑟𝑜𝑚𝐼𝑂𝑇𝐴(𝑡𝑎𝑔𝑘)
if 𝑣𝑒𝑟𝑖𝑓𝑦(𝑉 𝑃𝑖, 𝑑𝑖𝑑𝐴𝑆 ) and 𝑣𝑒𝑟𝑖𝑓𝑦(𝑠𝑖𝑔𝑛𝑒𝑑𝐶𝑖𝑑𝑘𝑖 , 𝑉 𝑃𝑖) then

𝑠𝑖𝑔𝑛𝑒𝑑𝐻𝑎𝑠ℎ𝑘𝑖 , 𝑚𝑜𝑑𝑒𝑙
𝑘
𝑖 ← 𝑔𝑒𝑡𝐹 𝑟𝑜𝑚𝐼𝑃𝐹𝑆(𝑐𝑖𝑑𝑘𝑖 )

if 𝑣𝑒𝑟𝑖𝑓𝑦(𝑠𝑖𝑔𝑛𝑒𝑑𝐻𝑎𝑠ℎ𝑘𝑖 , 𝑉 𝑃𝑖) and 𝑐ℎ𝑒𝑐𝑘(𝑠𝑖𝑔𝑛𝑒𝑑𝐻𝑎𝑠ℎ𝑘𝑖 , 𝑚𝑜𝑑𝑒𝑙
𝑘
𝑖 )

then
𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑠𝑘.𝑝𝑢𝑠ℎ(𝑚𝑜𝑑𝑒𝑙𝑘𝑖 )

end if
end if

end while
𝑔𝑙𝑜𝑏𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑘 ← 𝑎𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑀𝑜𝑑𝑒𝑙𝑠(𝑝𝑎𝑟𝑡𝑖𝑎𝑙𝑀𝑜𝑑𝑒𝑙𝑠𝑘)

5.1. Experiments

Guaranteeing efficient communication and assessing energy con-
sumption are two critical concerns to successfully enable FL in edge
computing scenarios. Therefore, our analysis primarily aims to evaluate
the latency and power consumption of FETA during an FL process. Since
each component is executed within a Docker container, we obtained re-
source usage using docker-activity,7 a tool that provides accurate power
consumption, memory and CPU usage. To provide a comprehensive
estimation, we conducted a series of experiments by scaling the number
of FL clients from 2 to 8, while also varying the complexity of ML
models and datasets. To ensure accuracy, each experiment was repeated
10 times, and the results were aggregated.

For the first experiment, we utilized the widely used MNIST dataset,
which includes 60,000 training examples and 10,000 test examples.
Each example consists of a 28 × 28 grayscale image of a handwritten

7 https://github.com/jdrouet/docker-activity

https://github.com/jdrouet/docker-activity


Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.

d
n
t

6
t
n
n
c
f
e
a
a
t
f
s

5

e
o

5

c
s
a
b
o
t
a
d
o
H
1
8
t
S

Fig. 6. Accuracy comparison with 2, 4, and 8 edge nodes for the first experiment.

igit (0 to 9) along with its corresponding label. Our ML model was a
eural network with three layers: a Flatten input layer that transformed
he 28 × 28 image into a vector of 224 elements, a Dense layer with

128 neurons using the ReLU activation function, and an output layer
with 10 neurons, one for each digit class. We employed the Adam
optimization algorithm with a learning rate of 0.001 and used the
sparse categorical cross-entropy loss function. For the second experi-
ment, we aimed to increase the complexity by employing the CIFAR-10
dataset and a Deep Convolutional Neural Network (DCNN). The CIFAR-
10 dataset consists of 60,000 32 × 32 color images in 10 classes, with
,000 images per class. It contains 50,000 training images and 10,000
est images. On the other hand, the model is a more complex neural
etwork with 2,626,634 parameters, about 20 times more than the
etwork used for the first experiment. The network comprises multiple
onvolutional and fully connected layers, interspersed with activation
unctions, batch normalization, max pooling, and dropout layers to
nhance performance and prevent overfitting. This setup allowed us to
ssess the performance of the framework on a more intricate dataset
nd a larger neural network. In both cases, the neural network was
rained locally for 5 epochs, and a total of 10 FL rounds were per-
ormed. To ensure fairness and comparability, the datasets were fairly
plit among all the FL clients.

.2. Performance results

In this section, we present the results of our experiments, which
valuated the accuracy, latency, power, and resource consumption of
ur proposal.

.2.1. Accuracy
Our experiments prioritize the evaluation of latency and energy

onsumption. However, we recognize that achieving high accuracy is
till a crucial aspect of any FL platform. An FL platform that sacrifices
ccuracy for the sake of low latency and energy consumption may not
e widely adopted. Thus, while ML metrics are not the primary focus
f our proposal, we understand their importance and have taken steps
o ensure that our platform can deliver satisfactory results in terms of
ccuracy. Fig. 6 reports the training results obtained using the MNIST
ataset, showcasing the high accuracy achieved by FETA. For the sake
f brevity, we only depicted the results from the first experiment.
owever, it is worth noting that the training performed with the CIFAR-
0 dataset also demonstrates notable accuracy, reaching approximately
0%. Notably, these results are independent of the FETA architec-
ure and are solely determined by the adopted aggregation strategy.
25

pecifically, in these experiments, we employed FedAVG.
Fig. 7. Latency comparison with 2, 4, and 8 edge nodes in first (a) and second (b)
experiments.

Table 2
Latency for authorization procedures and FL training.

Operation No. of
Nodes

Mean
Exp 1

Mean
Exp 2

DID Creation 2 90.10 s 94.87 s
4 96.94 s 72.51 s
8 94.35 s 104.48 s

VC Creation 2 5.41 ms 5.49 ms
4 5.38 ms 5.32 ms
8 5.82 ms 6.88 ms

VP Creation 2 1.76 ms 1.87 ms
4 1.72 ms 1.87 ms
8 1.92 ms 2.00 ms

FL Rounds 2 112.80 s 6951.02 s
4 212.19 s 9258.29 s
8 675.52 s 12918.49 s

5.2.2. Latency
In Fig. 7, we present the results of our experiments on the mean

latency of the FL training as we scale up the number of edge nodes
involved. The reported latency includes both the FL training and the
authorization procedure. The higher latency of the second experiment
is due to the complexity of the CIFAR-10 dataset and the employed
ML model that demands a longer training phase. Indeed, the overhead
related to FETA operations is minimal compared to the time needed
to perform the training. For a detailed breakdown of the latency,
please refer to Table 2. The table highlights a sublinear relationship
between the number of edge nodes and the latency of the training. Our
observations indicate that a smaller number of participants results in
lower latency. This can be attributed to the fact that FL clients have
to wait for a smaller number of contributions before aggregating them.
The creation of DIDs, VCs, and VPs is an occasional process that is not
affected by the number of nodes, as well as the ML model and dataset.
On the other hand, the latency of their verification depends on the
number of participants and it is included in the whole FL process.

5.2.3. Power consumption
Fig. 8 depicts, for both experiments, the results of the mean power

consumption of each component deployed on an edge node, while Ta-
ble 4 presents their respective mean and maximum power consumption.
The power consumption of the IPFS node cannot be directly observed
in Fig. 8 since its contribution is lower than 0.02 W and it can be



Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.

F
s

n
d
c

t
t
a
t
w
w
w
c
p

5

T
e
r
I
a
n
a
t

r
c

Table 3
Comparison of memory and CPU usage for each component.

Component No. of
Nodes

Exp 1 Exp 2

Memory (MB) CPU (%) Memory (MB) CPU (%)

Mean Max Mean Max Mean Max Mean Max

IOTA
Node

2 76.88 112.39 15.06 75.88 93.24 133.95 14.95 67.75
4 74.57 115.68 15.46 76.38 87.95 134.96 15.64 75.53
8 76.51 117.96 16.18 97.97 91.65 141.65 15.13 73.54

IPFS
Node

2 18.89 94.23 0.13 3.81 219.78 1487.89 0.11 7.70
4 25.89 156.55 0.16 4.80 392.86 2780.80 0.15 8.43
8 47.79 282.28 0.19 6.65 528.13 3265.12 0.24 15.34

FL
Client

2 134.37 728.02 16.46 100.0 1239.20 2264.21 43.33 96.43
4 151.62 622.24 12.83 99.0 1117.36 2280.95 21.57 95.29
8 184.45 458.30 10.24 90.0 1107.95 3010.91 12.28 96.90
T
C

T
P

ig. 8. Power consumption comparison with 2, 4, and 8 edge nodes in first (a) and
econd (b) experiments.

eglected. Concerning the IOTA node, it does not show remarkable
ifferences when scaling the number of edge nodes or increasing the
omplexity of the ML model.

Interestingly, we observe that a smaller number of participants leads
o higher medium power consumption. This can be attributed to the fact
hat with a lower number of FL clients, the latency related to waiting for
ll participants is reduced. However, this also means that the waiting
ime is very low, causing FL clients to continuously perform operations,
hich increases the mean power consumption per unit of time. It is
orth outlining that the whole energy consumption of the FL training
ith 4 and 8 nodes will be higher since it demands more time. The

ollected metrics for the second experiment show a slight increase in
ower consumption due to the longer training time.

.2.4. Resource consumption
To provide a comprehensive analysis of our proposal, we included

ables 3 and 5 which details the memory, CPU, and power usage for
ach component. We found that increasing the number of participants
esults in higher memory consumption for the FL client, AS, and
PFS Node, as they have to store more data. The IOTA node is not
ffected since it does not directly manage the partial models. It is worth
oting that the AS exclusively handles information pertaining to the
uthorization phase, making its resource consumption independent of
he complexity of ML models.

Regarding CPU usage, we observed that only the FL clients show
emarkable differences. Specifically, we found that CPU usage de-
reases when scaling the number of nodes. This trend is due to the
26
able 4
omparison of the power consumption (W) for each component.
Component No of

Nodes
Exp 1 Exp 2

Mean Max Mean Max

IOTANode 2 6.87 44.43 6.81 33.65
4 7.12 43.61 7.34 44.33
8 7.69 58.25 6.95 38.17

IPFS
Node

2 0.007 0.32 0.009 1.87
4 0.01 0.49 0.01 3.64
8 0.013 1.00 0.03 6.44

FL
Client

2 8.83 64.32 29.74 74.29
4 7.42 63.33 14.51 69.72
8 6.31 54.16 8.88 86.70

able 5
ower consumption, memory, and CPU usage of the authorization server.
No. of
Nodes

Power
Consumption
(W)

Memory (MB) CPU (%)

Mean Max Mean Max Mean Max

2 0.0004 0.05 5.42 6.73 0.008 1.03
4 0.0003 0.05 6.32 8.35 0.007 1.03
8 0.0003 0.09 9.35 11.34 0.005 1.80

fact that when clients have low latency, they consume more resources
during that period since they are continuously involved in performing
operations such as training local models. As expected, the resource
consumption of the FL clients is notably impacted by both the com-
plexity of the dataset and the ML model. Employing a more complex ML
model and larger dataset results in longer training times consequently
increasing the overall usage of the CPU and memory.

6. Discussion

Our experimental results demonstrate that the introduced overhead
by our architecture is minimal, while the numerous advantages it
brings far outweigh any potential drawbacks. FETA offers an efficient
and promising implementation of FL at the edge. One of the key
benefits is the use of the Tangle, which ensures the same level of
security and scalability as traditional blockchains used in FL integration
(e.g. Ethereum), but with a more lightweight consensus protocol. This
design choice translates to lower latency and power consumption, as
validated by various studies in the field [40]. These features make
the Tangle the ideal DLT for enhancing the robustness of FL in edge
computing scenarios. Additionally, our architecture leverages DIDs and
VCs to facilitate the decentralized management of FL participants and
reduce reliance on central authorities. Furthermore, the advantages of
using the Tangle extend to transaction confirmation times. Transactions
are confirmed in seconds, compared to traditional blockchains that



Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.

d

typically take minutes to confirm a block. This faster transaction confir-
mation significantly enhances the overall efficiency of the FL process,
enabling quicker updates and more responsive training.

As is widely known, the time required for ML training depends on
the dataset size and model complexity. In FETA, the latency primarily
arises from the training phase itself, which is independent of our
framework. For example, in the second experiment, the latency of FETA
operations and waiting for clients’ contributions constitute only about
5%–10% of the total training time. However, the relationship between
the number of edge nodes and the training latency shows a sublinear
pattern. On the other hand, the authorization and publishing of partial
model phases remain unaffected by the complexity of ML models. The
resource and power consumption of the AS and IOTA nodes exhibit neg-
ligible changes between the two experiments. Additionally, procedures
involving the AS, such as DID and VC creation, occur only once, having
an extremely limited impact on performance that can be safely ignored.

7. Related work

Recent years have seen an increasing number of researchers explor-
ing the potential of integrating FL with DLTs. In this section, we review
some notable works that leverage blockchain and DAGs to enable FL at
the edge.

However, it is worth noting that most existing solutions tend to
focus solely on the algorithms presented within their architecture,
with a missing analysis of the critical metrics of latency and energy
consumption, which are essential factors in assessing the feasibility of
a platform that enables FL at the edge.

7.1. Blockchain-based FL

Blockchain is considered an appealing solution to address FL cen-
tralized challenges [31]. Most of the existing proposals present
blockchain-based platforms to perform FL that replace the centralized
server with a network of peers that, through a consensus protocol,
aggregate partial models and generate a global one. In this way, partic-
ipants are assured that the shared model is properly generated without
bias to prefer a model over the others, increasing the trustworthiness
among unknown participants that join an FL process [41].

Liu et al. [42] proposed BD-FL an FL platform that leverages
blockchain and edge computing techniques. The authors introduced
an incentive mechanism to encourage local devices to actively par-
ticipate in model training, increasing the number of samples, and
improving model accuracy. Furthermore, to improve the utilization of
edge resources and reduce the transmission delay, BD-FL employs a
preference-based stable matching algorithm that binds local devices to
appropriate edge servers. Liu et al. [43] presented a novel approach
named FedAC, which incorporates a staleness coefficient and exploits
blockchain for automated aggregation of partial models. The proposed
framework is designed to be robust against various security threats,
such as poisoning attacks and single-point failures. In addition, the
asynchronous aggregation makes the framework efficient for edge
scenarios. Lu et al. [44] combined FL with blockchain to enable IoT
users to collaborate on training neural networks and share training
parameters with edge servers. The authors aimed to solve a data-
relaying optimization problem. However, in these works, the authors
have mainly focused on the proposed algorithms. Experiments have
been conducted in simulated environments, but the lack of attention
to implementation hinders our understanding of how these approaches
can be effectively applied in practice. Additionally, existing metrics
for evaluation, such as accuracy and latency, do not fully capture the
energy consumption, which is a crucial concern in edge environments
27

due to the heterogeneity of devices involved.
7.2. DAG-based FL

The constrained capabilities of IoT and edge devices hinder the
use of blockchain-based architectures to perform FL. Therefore, novel
approaches leveraging DAGs have been recently emerging. Schmid
et al. [45] are among the first to propose a Tangle for decentralized
learning, where transaction represents a full set of parameters of the
shared ML model. To achieve consensus, each transaction validates the
parent transactions by embedding their contributions in the training
results. The obtained model is published only if it achieves higher
performance than the reference model on the local dataset. However,
the authors do not explain how an ML model can be embedded within a
transaction given its potentially huge size, while the transaction size in
the Tangle is about 64 KB. Similarly, Cao et al. [46] proposed DAG-
FL, a framework that empowers asynchronous FL using DAGs. The
authors also introduced two algorithms that regulate the consensus
mechanism and use a smart contract for scheduling ML tasks through
external agents. The paper lacks satisfactory implementation details
about the DAG and smart contracts, which are crucial components of
their proposal.

Recently, hybrid approaches have also been developed. Jiang et al.
[47] exploit the Tangle and a consortium blockchain for enabling
cooperative FL. In particular, they exploit the Tangle to secure shar-
ing of local and global model updates. Lee et al. [48] presented a
hierarchical blockchain system for robust FL that comprises a public
blockchain (e.g., Ethereum) for global aggregation and local shards
based on DAGs. Each shard is autonomously established by participants
according to their data distribution. Thus, DAGs are used to compute
partial models of nodes having a small entropy, whose contributions
are then aggregated on the public blockchain. Such an approach brings
a significant overhead of computational resources, which do not suit
constrained environments.

The reviewed solutions are evaluated in terms of accuracy, neglect-
ing relevant metrics such as latency and energy that are fundamental
to assessing their feasibility in edge computing scenarios. Further-
more, they lack implementation details that could be beneficial to fully
understand their proposal.

8. Conclusive remarks

Implementing FL in edge computing scenarios raises several chal-
lenges that need to be carefully addressed. Many researchers have
proposed to enrich FL with DLT to improve scalability and build
more robust platforms. However, traditional blockchain technologies
still present some concerns such as long waiting times to confirm
transactions and remarkable energy consumption.

In this paper, we originally provide a detailed discussion of the
main design challenges for enabling efficient FL at the edge. With
practical solution guidelines and examples, we discuss how most of
them can be solved through the proper adoption of DAG. Furthermore,
we propose FETA, a novel architecture that leverages the IOTA Tangle
and addresses the concerns related to the implementation of FL at
the edge. The reported in-the-field experimental results show that our
FETA approach is effective in implementing FL at the edge and can
be successfully used to support IoT applications of practical interest in
real-world deployment environments.

CRediT authorship contribution statement

Carlo Mazzocca: Conceptualization, Methodology, Software, Vali-
ation, Writing – original draft, Writing – review & editing. Nicolò Ro-
mandini: Conceptualization, Methodology, Software, Validation, Writ-
ing – original draft, Writing – review & editing. Rebecca Montanari:
Conceptualization, Writing – review & editing, Visualization, Supervi-
sion. Paolo Bellavista: Conceptualization, Writing – review & editing,

Visualization, Supervision.



Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

We shared our code.

Acknowledgments

This work was partially supported by the project SERICS (PE00000
014) under the MUR National Recovery and Resilience Plan program
funded by the European Union - NextGenerationEU. All authors have
read and agreed to the published version of the manuscript.

References

[1] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, D.S. Nikolopoulos, Challenges
and opportunities in edge computing, in: 2016 IEEE International Conference
on Smart Cloud, SmartCloud, 2016, pp. 20–26, http://dx.doi.org/10.1109/
SmartCloud.2016.18.

[2] P. Bellavista, L. Foschini, A. Mora, Decentralised learning in federated de-
ployment environments: A system-level survey, ACM Comput. Surv. 54 (1)
(2021).

[3] L.U. Khan, W. Saad, Z. Han, E. Hossain, C.S. Hong, Federated learning for
internet of things: Recent advances, taxonomy, and open challenges, IEEE
Commun. Surv. Tutor. 23 (3) (2021) 1759–1799.

[4] D.C. Nguyen, M. Ding, Q.-V. Pham, P.N. Pathirana, L.B. Le, A. Seneviratne,
J. Li, D. Niyato, H.V. Poor, Federated learning meets blockchain in edge
computing: Opportunities and challenges, IEEE Internet Things J. 8 (16) (2021)
12806–12825.

[5] S. Popov, The tangle, White Paper 1 (3) (2018) 30.
[6] H.R. Hasan, K. Salah, I. Yaqoob, R. Jayaraman, S. Pesic, M. Omar, Trustwor-

thy IoT data streaming using blockchain and IPFS, IEEE Access 10 (2022)
17707–17721.

[7] W.Y.B. Lim, N.C. Luong, D.T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang, D. Niyato,
C. Miao, Federated learning in mobile edge networks: A comprehensive survey,
IEEE Commun. Surv. Tutor. 22 (3) (2020) 2031–2063.

[8] M. Zhang, E. Wei, R. Berry, Faithful edge federated learning: Scalability and
privacy, IEEE J. Sel. Areas Commun. 39 (12) (2021) 3790–3804.

[9] Q. Xia, W. Ye, Z. Tao, J. Wu, Q. Li, A survey of federated learning for edge
computing: Research problems and solutions, High-Confidence Comput. 1 (1)
(2021) 100008.

[10] M. Fang, X. Cao, J. Jia, N. Gong, Local model poisoning attacks to Byzantine-
robust federated learning, in: 29th USENIX Security Symposium, USENIX Security
20, USENIX Association, 2020, pp. 1605–1622, URL https://www.usenix.org/
conference/usenixsecurity20/presentation/fang.

[11] H.G. Abreha, M. Hayajneh, M.A. Serhani, Federated learning in edge computing:
A systematic survey, Sensors 22 (2) (2022).

[12] K. Wei, J. Li, M. Ding, C. Ma, H.H. Yang, F. Farokhi, S. Jin, T.Q.S. Quek,
H. Vincent Poor, Federated learning with differential privacy: Algorithms and
performance analysis, IEEE Trans. Inf. Forensics Secur. 15 (2020) 3454–3469.

[13] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A.y. Arcas, Communication-
efficient learning of deep networks from decentralized data, in: A. Singh,
J. Zhu (Eds.), Proceedings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, in: Proceedings of Machine Learning Research,
vol. 54, PMLR, 2017, pp. 1273–1282, URL https://proceedings.mlr.press/v54/
mcmahan17a.html.

[14] H.B. McMahan, E. Moore, D. Ramage, S. Hampson, B.A. y Arcas, Communication-
efficient learning of deep networks from decentralized data, in: AISTATS,
2017.

[15] Y. Chen, X. Sun, Y. Jin, Communication-efficient federated deep learning with
layerwise asynchronous model update and temporally weighted aggregation,
IEEE Trans. Neural Netw. Learn. Syst. 31 (10) (2020) 4229–4238.

[16] T. Nishio, R. Yonetani, Client selection for federated learning with heterogeneous
resources in mobile edge, in: ICC 2019 - 2019 IEEE International Conference
on Communications, ICC, 2019, pp. 1–7, http://dx.doi.org/10.1109/ICC.2019.
8761315.

[17] N. Yoshida, T. Nishio, M. Morikura, K. Yamamoto, R. Yonetani, Hybrid-FL for
wireless networks: Cooperative learning mechanism using non-IID data, in: ICC
2020 - 2020 IEEE International Conference on Communications, ICC, 2020, pp.
28

1–7, http://dx.doi.org/10.1109/ICC40277.2020.9149323.
[18] M.H.u. Rehman, A.M. Dirir, K. Salah, E. Damiani, D. Svetinovic, TrustFed: A
framework for fair and trustworthy cross-device federated learning in IIoT, IEEE
Trans. Ind. Inform. 17 (12) (2021) 8485–8494.

[19] J. Kang, Z. Xiong, D. Niyato, Y. Zou, Y. Zhang, M. Guizani, Reliable federated
learning for mobile networks, IEEE Wirel. Commun. 27 (2) (2020) 72–80.

[20] R. Yu, P. Li, Toward resource-efficient federated learning in mobile edge
computing, IEEE Network 35 (1) (2021) 148–155.

[21] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, V. Chandra, Federated learning with
non-IID data, 2018.

[22] L. Liu, J. Zhang, S. Song, K.B. Letaief, Client-edge-cloud hierarchical federated
learning, in: ICC 2020 - 2020 IEEE International Conference on Communications,
ICC, 2020, pp. 1–6, http://dx.doi.org/10.1109/ICC40277.2020.9148862.

[23] S.M. Shah, V.K.N. Lau, Model compression for communication efficient federated
learning, IEEE Trans. Neural Netw. Learn. Syst. (2021) 1–15.

[24] D. Li, J. Wang, FedMD: Heterogenous federated learning via model distillation,
2019, CoRR abs/1910.03581.

[25] X. Yao, T. Huang, C. Wu, R. Zhang, L. Sun, Towards faster and better federated
learning: A feature fusion approach, in: 2019 IEEE International Conference
on Image Processing, ICIP, 2019, pp. 175–179, http://dx.doi.org/10.1109/ICIP.
2019.8803001.

[26] Y. Zhan, J. Zhang, Z. Hong, L. Wu, P. Li, S. Guo, A survey of incentive mechanism
design for federated learning, IEEE Trans. Emerg. Top. Comput. 10 (2) (2022)
1035–1044.

[27] T. Song, Y. Tong, S. Wei, Profit allocation for federated learning, in: 2019
IEEE international conference on big data, Big Data, 2019, pp. 2577–2586,
http://dx.doi.org/10.1109/BigData47090.2019.9006327.

[28] V. Mothukuri, R.M. Parizi, S. Pouriyeh, Y. Huang, A. Dehghantanha, G. Sri-
vastava, A survey on security and privacy of federated learning, Future Gener.
Comput. Syst. 115 (2021) 619–640.

[29] Y. Sarikaya, O. Ercetin, Motivating workers in federated learning: A Stackelberg
game perspective, IEEE Network. Lett. 2 (1) (2020) 23–27.

[30] J. Konečný, H.B. McMahan, F.X. Yu, P. Richtarik, A.T. Suresh, D. Bacon,
Federated learning: Strategies for improving communication efficiency, in: NIPS
Workshop on Private Multi-Party Machine Learning, 2016.

[31] W. Issa, N. Moustafa, B. Turnbull, N. Sohrabi, Z. Tari, Blockchain-based federated
learning for securing internet of things: A comprehensive survey, ACM Comput.
Surv. 55 (9) (2023).

[32] S. Ko, K. Lee, H. Cho, Y. Hwang, H. Jang, Asynchronous federated learning with
directed acyclic graph-based blockchain in edge computing: Overview, design,
and challenges, Expert Syst. Appl. 223 (2023) 119896.

[33] J. Geng, N. Kanwal, M.G. Jaatun, C. Rong, DID-EFed: Facilitating federated
learning as a service with decentralized identities, in: Evaluation and Assessment
in Software Engineering, in: EASE 2021, Association for Computing Machinery,
New York, NY, USA, 2021, pp. 329–335, http://dx.doi.org/10.1145/3463274.
3463352.

[34] W3 Recommendation, Decentralized identifiers (DIDs) v1.0, 2022.
[35] W3 Recommendation, Verifiable Credentials Data Model v1.1, 2022.
[36] B.G. Kim, Y.-S. Cho, S.-H. Kim, H. Kim, S.S. Woo, A security analysis of

blockchain-based did services, IEEE Access 9 (2021) 22894–22913.
[37] N. Romandini, C. Mazzocca, R. Montanari, Federated learning meets blockchain:

A power consumption case study, in: 2023 31st Euromicro International Con-
ference on Parallel, Distributed and Network-Based Processing, PDP, 2023, pp.
206–211, http://dx.doi.org/10.1109/PDP59025.2023.00040.

[38] W. Wang, D.T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wang, Y. Wen, D.I. Kim, A
survey on consensus mechanisms and mining strategy management in blockchain
networks, IEEE Access 7 (2019) 22328–22370.

[39] IOTA Wiki, Energy Efficiency, 2022, https://wiki.iota.org/learn/about-iota/
energy-efficiency/.

[40] Q. Wang, J. Yu, S. Chen, Y. Xiang, SoK: DAG-based blockchain systems, ACM
Comput. Surv. 55 (12) (2023).

[41] C. Mazzocca, N. Romandini, M. Mendula, R. Montanari, P. Bellavista, TruFLaaS:
Trustworthy federated learning as a service, IEEE Internet Things J. (2023) 1.

[42] S. Liu, X. Wang, L. Hui, W. Wu, Blockchain-based decentralized federated
learning method in edge computing environment, Appl. Sci. 13 (3) (2023).

[43] Y. Liu, Y. Qu, C. Xu, Z. Hao, B. Gu, Blockchain-enabled asynchronous federated
learning in edge computing, Sensors 21 (10) (2021).

[44] Y. Lu, X. Huang, K. Zhang, S. Maharjan, Y. Zhang, Low-latency federated learning
and blockchain for edge association in digital twin empowered 6G networks, IEEE
Trans. Ind. Inform. 17 (7) (2021) 5098–5107.

[45] R. Schmid, B. Pfitzner, J. Beilharz, B. Arnrich, A. Polze, Tangle ledger for
decentralized learning, in: 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops, IPDPSW, 2020, pp. 852–859, http://dx.doi.
org/10.1109/IPDPSW50202.2020.00144.

[46] M. Cao, L. Zhang, B. Cao, Toward on-device federated learning: A direct acyclic
graph-based blockchain approach, IEEE Trans. Neural Netw. Learn. Syst. (2021)
1–15.

http://dx.doi.org/10.1109/SmartCloud.2016.18
http://dx.doi.org/10.1109/SmartCloud.2016.18
http://dx.doi.org/10.1109/SmartCloud.2016.18
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb2
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb2
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb2
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb2
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb2
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb3
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb3
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb3
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb3
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb3
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb4
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb4
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb4
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb4
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb4
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb4
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb4
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb5
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb6
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb6
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb6
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb6
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb6
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb7
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb7
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb7
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb7
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb7
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb8
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb8
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb8
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb9
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb9
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb9
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb9
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb9
https://www.usenix.org/conference/usenixsecurity20/presentation/fang
https://www.usenix.org/conference/usenixsecurity20/presentation/fang
https://www.usenix.org/conference/usenixsecurity20/presentation/fang
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb11
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb11
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb11
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb12
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb12
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb12
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb12
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb12
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
https://proceedings.mlr.press/v54/mcmahan17a.html
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb14
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb14
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb14
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb14
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb14
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb15
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb15
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb15
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb15
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb15
http://dx.doi.org/10.1109/ICC.2019.8761315
http://dx.doi.org/10.1109/ICC.2019.8761315
http://dx.doi.org/10.1109/ICC.2019.8761315
http://dx.doi.org/10.1109/ICC40277.2020.9149323
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb18
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb18
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb18
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb18
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb18
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb19
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb19
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb19
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb20
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb20
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb20
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb21
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb21
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb21
http://dx.doi.org/10.1109/ICC40277.2020.9148862
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb23
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb23
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb23
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb24
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb24
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb24
http://dx.doi.org/10.1109/ICIP.2019.8803001
http://dx.doi.org/10.1109/ICIP.2019.8803001
http://dx.doi.org/10.1109/ICIP.2019.8803001
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb26
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb26
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb26
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb26
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb26
http://dx.doi.org/10.1109/BigData47090.2019.9006327
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb28
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb28
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb28
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb28
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb28
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb29
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb29
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb29
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb30
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb30
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb30
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb30
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb30
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb31
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb31
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb31
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb31
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb31
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb32
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb32
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb32
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb32
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb32
http://dx.doi.org/10.1145/3463274.3463352
http://dx.doi.org/10.1145/3463274.3463352
http://dx.doi.org/10.1145/3463274.3463352
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb34
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb35
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb36
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb36
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb36
http://dx.doi.org/10.1109/PDP59025.2023.00040
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb38
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb38
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb38
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb38
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb38
https://wiki.iota.org/learn/about-iota/energy-efficiency/
https://wiki.iota.org/learn/about-iota/energy-efficiency/
https://wiki.iota.org/learn/about-iota/energy-efficiency/
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb40
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb40
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb40
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb41
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb41
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb41
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb42
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb42
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb42
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb43
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb43
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb43
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb44
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb44
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb44
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb44
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb44
http://dx.doi.org/10.1109/IPDPSW50202.2020.00144
http://dx.doi.org/10.1109/IPDPSW50202.2020.00144
http://dx.doi.org/10.1109/IPDPSW50202.2020.00144
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb46
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb46
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb46
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb46
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb46


Future Generation Computer Systems 152 (2024) 17–29C. Mazzocca et al.
[47] L. Jiang, H. Zheng, H. Tian, S. Xie, Y. Zhang, Cooperative federated learning and
model update verification in blockchain-empowered digital twin edge networks,
IEEE Internet Things J. 9 (13) (2022) 11154–11167.

[48] J. Lee, W. Kim, DAG-Based blockchain sharding for secure federated learning
with non-IID data, Sensors 22 (21) (2022).

Carlo Mazzocca received his M.Sc. and B.Sc. degrees in
Computer Engineering in 2018 and 2020, respectively,
both from the University of Naples Federico II, Italy. He
is currently a Ph.D. student in Computer Science and
Engineering at the University of Bologna, Bologna, Italy.
His research interests mainly include security mechanisms
based on distributed ledger technologies, authentication and
authorization solutions for the cloud-to-thing continuum.

Nicolò Romandini graduated from the University of
Bologna, Italy, where he received M.Sc. degree in computer
science engineering. He is currently a Ph.D. student at
the Department of Computer Science and Engineering at
the University of Bologna. His research focuses mainly on
blockchain, cybersecurity and machine learning, and how to
integrate them into IoT domains.
29
Rebecca Montanari full professor at the University of
Bologna since 2020 carries out her research in the area of
information security and of the design/development of mid-
dleware solutions for the provision of services in mobile and
IoT systems. Her research is currently focused on blockchain
technologies to support various supply chains, including
agrifood, manufacturing and fashion and on security systems
for Industry 4.0.

Paolo Bellavista received the Ph.D. degree in computer
science engineering from the University of Bologna, Italy, in
2001. He is currently a Full Professor with the University of
Bologna. His research interests include middleware for mo-
bile computing, QoS management in the cloud continuum,
infrastructures for big data processing in industrial envi-
ronments, and performance optimization in wide-scale and
latency-sensitive deployment environments. He serves on
the Editorial Boards of IEEE COMMUNICATIONS SURVEYS
AND TUTORIALS, IEEE TRANSACTIONS ON NETWORK
AND SERVICE MANAGEMENT, IEEE TRANSACTIONS ON
SERVICES COMPUTING, ACM CSUR, ACM TIOT, and PMC
(Elsevier). He is the Scientific Coordinator of the H2020
IoTwins Project (https://www.iotwins.eu).

http://refhub.elsevier.com/S0167-739X(23)00384-9/sb47
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb47
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb47
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb47
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb47
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb48
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb48
http://refhub.elsevier.com/S0167-739X(23)00384-9/sb48
https://www.iotwins.eu

	Enabling Federated Learning at the Edge through the IOTA Tangle
	Introduction
	Federated Learning at the Edge
	Scalability
	Portability
	Security and Privacy
	Security
	Privacy

	Authentication and Authorization
	Synchronous and Asynchronous Communication
	Resource Allocation
	Participant Selection
	Resource Optimization

	Incentive Mechanisms
	Energy
	Hardware Requirements

	Integrating DLTs and FL
	Blockchain and DAG
	Scalability and Portability
	Security and Privacy
	Authentication and Authorization
	Synchronous and Asynchronous Communication
	Resource Allocation
	Incentive Mechanisms
	Energy and Hardware Requirements

	FETA: Federated Learning at the Edge through the IOTA Tangle
	The FETA Architecture
	Authorization Service
	FL Client
	IOTA Node
	IPFS Node

	FETA Protocol
	Authorization
	FL Training


	Performance Results from In-the-field Experimental Evaluation
	Experiments
	Performance Results
	Accuracy
	Latency
	Power Consumption
	Resource Consumption


	Discussion
	Related Work
	Blockchain-based FL
	DAG-based FL

	Conclusive Remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


