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Moebius syndrome (MBS) is characterized by the congenital absence or

underdevelopment of cranial nerves VII and VI, leading to facial palsy and

impaired lateral eye movements. As a result, MBS individuals cannot produce

facial expressions and did not develop motor programs for facial expressions.

In the latest model of sensorimotor simulation, an iterative communication

between somatosensory, motor/premotor cortices, and visual regions has been

proposed, which should allow more efficient discriminations among subtle

facial expressions. Accordingly, individuals with congenital facial motor disability,

specifically with MBS, should exhibit atypical communication within this network.

Here, we aimed to test this facet of the sensorimotor simulation models.

We estimated the functional connectivity between the visual cortices for face

processing and the sensorimotor cortices in healthy and MBS individuals. To

this aim, we studied the strength of beta band functional connectivity between

these two systems using high-density EEG, combined with a change detection

task with facial expressions (and a control condition involving non-face stimuli).

The results supported our hypothesis such that when discriminating subtle facial

expressions, participants affected by congenital facial palsy (compared to healthy

controls) showed reduced connectivity strength between sensorimotor regions

and visual regions for face processing. This effect was absent for the condition

with non-face stimuli. These findings support sensorimotor simulation models

and the communication between sensorimotor and visual areas during subtle

facial expression processing.
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Introduction

Moebius Syndrome (MBS; Moebius, 1888) is a rare congenital
neurological disorder characterized by the affection of cranial
nerves VI and VII (Briegel, 2006), leading to impaired lateral eye
movements and complete or nearly complete–usually bilateral–
facial paralysis. In addition, other congenital conditions are
sometimes present, such as limb anomalies (e.g., clubfoot and
missing/underdeveloped fingers or hands; Richards, 1953; Verzijl
et al., 2003). On the psychological side, individuals with MBS show
difficulties in social interactions with different degrees of severity,
mostly because they cannot express their emotions to others
through their faces (Bogart and Matsumoto, 2010). Therefore, per
the definition, MBS individuals are characterized by a deficit in the
production of facial expressions.

A prominent theoretical model supports the existence of a
close relationship between production (e.g., of gestures and facial
expressions) and perception (e.g., of gestures and facial expressions)
(Preston and de Waal, 2002; Rizzolatti and Sinigaglia, 2016). Several
studies provided evidence in favor of shared neural representations
of emotional facial expressions between production and perception
in different brain regions. These include the inferior, middle, and
superior frontal gyri, the amygdala, and the insula (Molenberghs
et al., 2012), suggesting that these shared representations could
hinge on mirror mechanisms (Van Overwalle and Baetens, 2009).
Overall, this “shared representational system” is thought to
subserve others’ social understanding and emotion perception by
motor simulation (Goldman and Sripada, 2005; Bastiaansen et al.,
2009; Likowski et al., 2012). It has recently been hypothesized that
the primary mechanism through which motor simulation supports
emotion perception is that of an iterative communication between
motor, premotor, somatosensory cortices (overall the sensorimotor
system), and the visual cortices (Wood et al., 2016a,b). Specifically,
iterative communication would increase the quality/precision of
the visual percept, allowing for more efficient discriminations
of facial expressions (Wood et al., 2016a,b). In this context,
facial mimicry, the visible or invisible contraction of the facial
muscles congruent with the observed expression, is conceived as
a peripheral manifestation of the central sensorimotor simulation.
Sensorimotor simulation models (Goldman and Sripada, 2005;
Bastiaansen et al., 2009; Likowski et al., 2012; Wood et al., 2016a,b)
assume that facial mimicry contributes to the motor simulation
through the feedback provided to motor areas.

Within this theoretical framework, MBS individuals should
be characterized by altered facial feedback to the central nervous
system (especially to the motor cortex) because of facial palsy,
and, as a consequence of the congenital condition, they should
not have (at least complete) facial motor programs for facial
expressions. In short, MBS individuals could not efficiently
exert the hypothesized sensorimotor simulation mechanism in
recognizing/discriminating facial expressions. Nevertheless, it is
possible that by mechanisms of plasticity and compensation,
individuals with MBS can achieve normotypical performances
(Vannuscorps et al., 2020) and have developed alternative and
efficient neural pathways for the recognition/discrimination of
facial expressions (Sessa et al., 2022). Therefore investigations using
neuroimaging techniques are necessary to explore the neural bases
of the emotional expression processing in MBS individuals beyond

their behavioral performance (in terms of accuracy and/or reaction
times) that could be normotypical.

Due to the absence of a shared representational system/motor
simulation, one might expect that the neurological population of
MBS is characterized by: (a) impaired recognition/discrimination
of emotional facial expressions (in the case of lack of compensation)
and (b) lower degree of connectivity (compared to healthy
individuals) between sensorimotor and visual systems during subtle
discrimination of emotional facial expressions.

In a previous investigation, our findings corroborated the
hypothesis of compensatory mechanisms, which, in terms of neural
pathways, might hinge on the recruitment of different brain
regions in MBS compared to healthy individuals during emotional
expression discrimination tasks (Sessa et al., 2022). The specific
aim of the present study, instead, is precisely to test the predicted
reduced connectivity between sensorimotor and visual systems in
MBS, compared to healthy controls.

To this aim, we administered our participants, healthy and
MBS, an emotional expression discrimination task. Cortical activity
was recorded with high-density electroencephalography (hd-EEG)
to investigate functional connectivity, i.e., the strength to which
activity between a pair of brain regions covaries or correlates
over time (Lachaux et al., 1999). In the case of EEG signals,
phase synchronization is one of the most widely used indexes
to investigate functional connectivity under the assumption that
the phase of two oscillations of different brain regions should be
correlated if the two regions are functionally connected (Lachaux
et al., 1999; López et al., 2014). We computed the phase locking
value (corrected imaginary phase locking value; ciPLV; see section
“Materials and methods”) of the beta oscillatory activity according
to the previous and convincing evidence that links the processing
of stimuli with affective value to long-distance EEG connectivity in
the beta band (Aftanas et al., 2002; Miskovic and Schmidt, 2010;
Zhang et al., 2013; Wang et al., 2014; Kheirkhah et al., 2020; Kim
et al., 2021).

Although not made explicit by the motor simulation models
(Wood et al., 2016a,b), the visual cortices involved in the iterative
communication must primarily entail regions delegated to the
visual analysis of faces. The most accredited neural model of
face processing, i.e., the distributed model of face processing by
Haxby et al. (2000) and Haxby and Gobbini (2011), encompasses,
indeed, a core system for faces’ visual processing (comprising the
fusiform face area, the occipital face area, and the posterior superior
temporal sulcus; Haxby et al., 2000; Grill-Spector et al., 2004;
Winston et al., 2004; Yovel and Kanwisher, 2004; Ishai et al.,
2005; Rotshtein et al., 2005; Lee et al., 2010; Gobbini et al., 2011),
and an extended system for additional non-visual processing steps,
including the attribution of meaning to facial expressions in terms
of emotion (comprising the sensorimotor cortices; Haxby and
Gobbini, 2011).

Based on this knowledge, we expected phase synchronization
(i.e., the connectivity index) between the sensorimotor system and
the core system to be significantly greater in healthy participants
than in MBS participants. As preliminary evidence to circumscribe
and characterize this effect as face-sensitive, we included an
identical task but involving non-face stimuli (i.e., animal shapes).
We did not expect to observe any difference between healthy
participants and MBS participants with regard to the strength of
the connectivity index for non-face stimuli.
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Materials and methods

Participants and task

In this research we enrolled 14 adults, seven MBS participants
(MBS group: MBS 4 females and 3 males, mean age = 40, 43 years;
s.d. = 11,03) and seven healthy control participants. Controls were
matched for age, gender and level of education. Participants in the
MBS group had a diagnosis of unilateral or bilateral facial paralysis
(Terzis and Noah, 2003). See Table 1 for demographic data and
clinical information for MBS participants. All the participants did
not report any psychiatric or physical illness.

Participants performed a simple change detection task in which
they had to judge if a test image was different or not compared to
a target image. This task has been successfully used to investigate
changes in neural activity, as well as connectivity, during face
processing (Wood et al., 2016a; Lomoriello et al., 2021; Maffei
and Sessa, 2021a). In each trial the target image was presented
on a screen for 750 ms, masked with noise for 350 ms and
then followed by the test image which lasted on screen until
response (Figure 1).

The stimuli were 11 digital images of faces and animals.
For each category, we created the morphing continuum as

follows: for the face stimuli we had two continua, one ranging
between the expression of anger and the expression of sadness,
and one ranging between the expression of happiness and the
expression of disgust (Figure 2 shows stimuli of one of the
morphing continuum); for the animal stimuli the continuum
ranged between the image of a horse and the image of a cow,
both presented in the same posture. Each continuum started
with an expression/animal shape consisting in 100% of one

TABLE 1 Demographic data and clinical information for MBS participants.

Participant Age Gender Cranial nerves
involved

Disfunction

MBS1 54 Male Abducens Nerve
(VI)

No lateral eye
movements

Facial Nerve (VII) Facial palsy

MBS2 57 Males Abducens Nerve
(VI)

No lateral eye
movements

Facial Nerve (VII) Facial palsy

MBS3 38 Male Abducens Nerve
(VI)

No lateral eye
movements

Facial Nerve (VII) Facial palsy

MBS4 25 Female Abducens Nerve
(VI)

No lateral eye
movements

Facial Nerve (VII) Facial palsy

MBS5 65 Female Facial Nerve (VII) Facial palsy

MBS6 39 Female Abducens Nerve
(VI)

No lateral eye
movements

Facial Nerve (VII) Facial palsy

MBS7 34 Female Abducens Nerve
(VI)

No lateral eye
movements

Facial Nerve (VII) Facial palsy

expression/animal shape and 0% of the other (i.e., 100% anger–
0% sadness or 100% happiness–0% disgust; 100% horse–0% cow),
and then changed in 20% increments/decrements until reaching the
opposite end (e.g., 0% sadness–100% anger, 0% horse–100% cow).
The stimuli are available at the following link of the Open Science
Framework repository: osf.io/krpfb.

On each trial, the target stimulus was randomly selected from
one of the continua, then it was followed by the mask, and finally
the test stimulus was presented. This latter test stimulus was
selected from the same continuum of the target pseudorandomly,
such that it was maximum 40% apart on the morph continuum, to
control for discrimination difficulty across participants.

EEG acquisition and pre-processing

Electroencephalography activity was recorded from 128
channels using an HydroCel Geodesic Sensor Net (HCGSN-128)
connected to a Geodesic EEG System (EGI GES 300). Data were
collected continuously with a sampling rate of 500 Hz using the
vertex as online reference. Channel impedance was kept under
60 k�. For the purpose of the present research we analyzed the
preprocessed data used in Sessa et al. (2022). Briefly, pre-processing
consisted in downsampling the data to 250 Hz and band pass
filtering (0.1–45 Hz), epoching between −500 to 1500 ms relative
to target onset, rejection of artifactual components after ICA using
the ICLabel algorithm (Pion-Tonachini et al., 2019), bad channel
interpolation and referencing to the average of all channels. Further
details regarding the pre-processing can be found in Sessa et al.
(2022). The preprocessed data as well as the pre-processing script
can be accessed at https://osf.io/krpfb/.

In order to estimate brain activity from the preprocessed
scalp recordings, we first created a forward model using the
three-layer boundary element method (BEM) from OpenMEEG,
implemented in Brainstorm, and then estimated an inverse solution
with the weighted Minimum Norm Estimation (wMNE) with
default parameter. Finally, the estimated distributed source activity
was downsampled to the 148 cortical parcels of the Destrieux et al.
(2010), averaging the activity of all the vertices included in each
parcel.

Functional connectivity analysis

Functional connectivity was estimated using the phase locking
value, which is a widely used statistic able to quantify the degree of
phase synchronization in a given frequency band (Lachaux et al.,
1999; Maffei and Sessa, 2021a,b). Specifically, we employed an
updated version of the original PLV statistics, recently introduced
by Bruña et al. (2018): the corrected imaginary part of PLV (ciPLV).
As with the original PLV, ciPLV analysis first requires a time-
frequency decomposition of the signals, which can be obtained
either through wavelets or applying the Hilbert transform on
narrow-band filtered signals. Then, for each pair of signals, ciPLV
is estimated as the imaginary part of the phase difference between
the two signals. Contrary to the classic PLV, taking only the
imaginary part of the phase difference allows to discard any zero-
lag interactions, making ciPLV robust to volume conduction and/or
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FIGURE 1

Schematic depiction of the experimental paradigm [on the left: for the facial expression discrimination task (morphing continua happiness-disgust);
on the right: for the animal shape discrimination task]. The dashed line highlights the time window considered for the connectivity analysis, starting
at target stimulus onset and ending before test stimulus onset. Adapted from Sessa et al. (2022).

source leakage which are known to inflate classic PLV (Bruña et al.,
2018).

In this research, we first band-pass filtered the source estimated
activity in the beta range (13–30 Hz), then applied the Hilbert
transform to derive the analytical representation of the signals, and
finally computed ciPLV for each pair of ROI of the Destrieux atlas
in the time range between the onset of the target image and the
onset of the test image (0–1100 ms). This workflow resulted in
a 148 × 148 symmetric matrix M, where each entry represents
the connectivity strength between each pair of regions. Then we
subsampled this matrix, in order to extract a new rectangular
matrix R, where the columns identify the regions belonging to
the core system of the face processing network (Haxby and
Gobbini, 2011; Maffei and Sessa, 2021a) and the rows identify
the primary and secondary motor and somatosensory cortices (see
Supplementarymaterial). Each entry of this matrix thus represents
the value of connectivity between a ROI belonging to the core
system and a ROI belonging to the sensorimotor system. Finally, we
computed the connectivity strength between the two systems as the
sum of the matrix, w =

∑
i,j Ri,j see Figure 3.

Statistical analysis

The main goal of this research was to test if participants
with MBS are characterized by an impaired connectivity between
visual and somatomotor regions during the processing of facial
expressions. To test this hypothesis we performed an independent
samples t-test on the connectivity strength estimated from trials
in which participants were presented with facial expressions. The
null hypothesis was that the two groups, MBS and controls,
should not differ in the degree of functional connectivity between
visual and sensorimotor regions. We also performed an additional
analysis on the connectivity strength estimated from trials in
which participants were presented with images of animals as a

preliminary assessment to test the face-sensitivity of this effect.
We present this analysis with caution as we are aware of the
limitations of the statistical approach due to the extreme rarity of
the MBS condition.

For the readers interested instead in analysis of the behavioral
performance we refer to Sessa et al. (2022).

Results

Before running the statistical comparisons, we used the
Shapiro-Wilk statistics to check for the normality of the
data, and the test suggests that there is no violation of
normality (Wface_Moebius = 0.92, p = 0.52; Wface_Controls = 0.96,
p = 0.83;Wanimal_Moebius = 0.93, p = 0.61; Wanimal_Controls = 0.97,
p = 0.93). The analysis performed for the Face condition revealed
a significant difference [t(12) = −1.91, p < 0.05, d = −1.2] between
the two groups, showing that participants affected by facial palsy,
compared to healthy controls, were characterized by a reduced
connectivity strength between sensorimotor regions and visual
regions comprised in the core system of the face processing network
(MMBS = 0.7, MCTRL = 1.2; see Figure 4). Conversely, the analysis
performed for the Animal condition did not reveal any significant
difference between the two groups [t(12) =−1.36, p = 0.1].

Discussion

Over the last 20 years, various models of (sensori)motor
simulation (Goldman and Sripada, 2005; Bastiaansen et al.,
2009; Likowski et al., 2012; Wood et al., 2016a,b) have been
proposed, all sharing the central theoretical hypothesis that facial
expressions’ recognition and fine discrimination are supported by
the recruitment–in the observer–of motor programs congruent
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FIGURE 2

Example of stimuli of one of the morphing continua. Adapted from Sessa et al. (2022).

FIGURE 3

Schematic depiction of the analytical pipeline. Source activity was reconstructed from EEG recordings, then connectivity was estimated using the
ciPLV in the beta band (13–30 Hz). Finally, the connectivity strength between the core and the sensorimotor systems was extracted from the full
adjacency matrices.

FIGURE 4

Individual connectivity strengths during facial expressions
processing in the beta band (13–30 Hz) for each group.

with the facial expression observed, positing a relationship between
production and recognition abilities. Therefore, it follows that
individuals affected by clinical conditions limiting the production
abilities, should also show recognition deficits. Although the
congenital disorder in MBS subjects could trigger plastic cerebral
modifications leading to alternative and efficient neural pathways
to recognize emotional expressions, the deficiency of the simulation
mechanism–if true–should necessarily translate into reduced

functional connectivity between sensorimotor and visual systems,
which is a central tenet of the most recent sensorimotor simulation
models (see Wood et al., 2016b).

Here, we wanted to test this hypothesis by comparing the
functional connectivity between the core system and the primary
and secondary motor and somatosensory cortices in MBS and
healthy individuals. We implemented a change detection task
of facial expressions and animal shapes, and studied brain
connectivity in terms of phase locking (corrected imaginary phase
locking value; ciPLV; see section “Materials and method”). We
restricted our analysis to beta oscillatory activity as the best
approach to capture putative long-distance EEG connectivity
involved in processing stimuli with affective value (Aftanas et al.,
2002; Miskovic and Schmidt, 2010; Wang et al., 2014; Zhang et al.,
2013; Kheirkhah et al., 2020; Kim et al., 2021).

The results supported our hypothesis. Indeed, as expected, for
the facial expressions discrimination, reduced connectivity strength
between sensorimotor regions and visual regions comprised in
the core system of the face processing network was found
in participants affected by facial palsy when compared to the
matched healthy controls. Such a difference in the connectivity
strength between the two groups was not observed for the animal
shape condition. We are aware that the rarity of the syndrome
and, consequently, the magnitude of the sample size cannot
allow us to (statistically) conclude that the effect is selective for
facial expressions.
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Nevertheless, this reduction in the connectivity index for facial
expressions was significant and, as such, it might indicate that
the simulation mechanism is (at least) deficient in individuals
with MBS. This result perfectly aligns with our hypothesis, since
the alteration or absence of cranial nerves VI and VII as a
consequence of the congenital condition restricts facial feedback
to the central nervous system, and, more importantly, impairs the
development (at least complete) of facial motor programs for facial
expressions. Consequently, MBS individuals should not exhibit
connectivity between the sensorimotor and the visual systems in
the absence of a simulation mechanism (or, in the case of residual
muscular functioning, they should exhibit reduced connectivity
when compared to healthy individuals).

If the functional significance of this connectivity, as predicted
in the model by Wood et al. (2016b), is to favor the fine processing
of emotional facial expressions, one might expect that subjects
with MBS should be less efficient in those tasks that require this
type of processing. To note, however, studies that have investigated
the ability to recognize emotional expressions in MBS individuals
have produced conflicting results (e.g., De Stefani et al., 2019
for a review), although the most convincing evidence seems to
indicate that the individuals with the syndrome may exhibit
normotypical performance, at least in terms of correctness (i.e.,
accuracy) when recognizing/discriminating emotional faces (Rives
Bogart and Matsumoto, 2010; Vannuscorps et al., 2020; Sessa et al.,
2022). These last results, on the other hand, are in line with
compensatory/plasticity mechanisms, plausibly starting from birth,
as recently supported by a recent study by Sessa et al. (2022). This
last study, indeed, provided evidence in favor of the recruitment
of an alternative neural pathway in Moebius individuals (vs.
healthy controls), which does not seem to involve the motor and
somatosensory regions, but rather more ventral areas (from the
occipital face area/fusiform face area to the anterior temporal
lobe; compatible with the proposals by Duchaine and Yovel,
2015; Pitcher and Ungerleider, 2021) that in healthy individuals
contribute to the processing of emotional expressions although
preferentially involved in the processing of form information,
for instance, for face identity processing (Vuilleumier et al.,
2001; Ishai et al., 2004; Ganel et al., 2005; Xu and Biederman,
2010).

The present study has some limitations which
should be mentioned.

First, the level and extension of the nerves alteration in MBS
are different from one patient to another patient. From this point of
view and due to the extreme rarity of the syndrome, it is not always
possible recruiting a homogeneous group, so that one patient out
of seven patients had a deficit of the facial/VII nerve alone in the
absence of a concomitant impairment of the abducens/VI nerve
(see Table 1).

Second, another potential limitation regards the smile
surgery that allows MBS individuals to produce smile-like
facial movements. Crucially, after smile surgery, MBS could
develop smile-like motor programs and the associated motor
representation, which could be also potentially dysfunctional for
simulation. In the present study, the experimental procedure also
envisaged the fine discrimination of facial expressions of happiness.
However, the behavioral and connectivity analyses were not carried
out on each category of emotional expression separately. As a

consequence we cannot examine whether the processing (at the
behavioral and neural level) of the expressions of happiness in
patients who received smile surgery (all but one in our sample)
differ from other emotional expressions.

Third, in the present study, we have used static facial
expressions to investigate the impact of congenital facial palsy
on the connectivity between the sensorimotor and visual systems.
However, it is important to note that the dorsal pathway, which is
involved in the processing of facial expressions, is more sensitive
and more strongly recruited when dynamic rather than static
facial expressions are processed (Duchaine and Yovel, 2015). This
suggests that the sensorimotor simulation mechanism is more
strongly triggered by dynamic facial expressions. Therefore, in
the present study, we might have underestimated the impact
of congenital facial palsy on the connectivity between the
sensorimotor and visual systems. Future studies should consider
using dynamic facial expressions to provide a more accurate
understanding of the impact of congenital facial palsy on the
sensorimotor and visual systems.

To conclude, our results support sensorimotor simulation
models and the communication between sensorimotor
and visual regions of the core system during subtle facial
expression discrimination. Furthermore, they indicate that
this communication is atypical in MBS individuals for facial
expression processing.
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