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Abstract

Depth prediction is at the core of several computer vision
applications, such as autonomous driving and robotics. It
is often formulated as a regression task in which depth val-
ues are estimated through network layers. Unfortunately,
the distribution of values on depth maps is seldom explored.
Therefore, this paper proposes a novel framework combin-
ing contrastive learning and depth prediction, allowing us
to pay more attention to depth distribution and consequently
enabling improvements to the overall estimation process.
Purposely, we propose a window-based contrastive learn-
ing module, which partitions the feature maps into non-
overlapping windows and constructs contrastive loss within
each one. Forming and sorting positive and negative pairs,
then enlarging the gap between the two in the representa-
tion space, constraints depth distribution to fit the feature
of the depth map. Experiments on KITTI and NYU datasets
demonstrate the effectiveness of our framework.

1. Introduction
Depth prediction aims at recovering the 3D structure of a

scene and is a crucial task at the core of various computer vi-
sion applications, such as robot/vehicle navigation and aug-
mented reality, to name a few. Methods for dense depth
prediction can be divided into two main classes: active and
passive techniques. Representatives of the former are Li-
DAR, structured light, and time-of-flight sensors. They per-
turb the sensed environment with a signal, according to dif-
ferent technologies, and measure its behavior or appearance
to infer the depth of the sensed scene. For instance, LiDAR
and Time-of-flight measure the traveling time a signal needs
from the emitter to the receiver, both located in the sensing
device. However, due to their intrinsic limitations, they gen-
erally generate sparse/low-resolution measurements. Thus,
various approaches to densify such data have been pro-
posed, typically in setups coupling such sensors with high-
resolution RGB images [11, 18, 27, 29, 38, 47, 77, 81]. On
the other hand, deep learning enabled pure passive sensing

Figure 1. Imaging system and depth prediction process. The
depth changes smoothly within adjacent pixels belonging to the
same portion of the object, while this is not always the case for
depth predicted by neural networks. Best viewed in color.

techniques to rely on single images [17, 21, 36] without any
auxiliary aid to achieve the outlined goal despite being very
challenging due to its ill-posed nature [52].

Regardless of the adopted setup, little effort in the lit-
erature focuses on analyzing the distribution of depth data
in a statistical manner, as we propose in this paper. In the
real world, the depth changes smoothly within adjacent pix-
els belonging to the same object’s surface. However, when
depth prediction models infer the depth, they may output
different results, as shown in Fig. 1. These models for-
mulate depth prediction as a regression task, and the out-
put value within an extremely small region changes slowly.
When a weak model predicts the depth, it is common to find
that the result is represented by peaks in a narrow range of
depth values, which can be observed from depth predictions
and depth histograms in Fig. 2.

A depth histogram is a graphical representation of the
value distribution in a depth map. By focusing on the depth
distribution analysis in Fig. 2, we can notice how his-
tograms change considerably: indeed, in poor-quality depth
maps, depth histogram is usually concentrated in limited
intensity values, whereas high-quality depth maps have a
more regularized distribution spread into a broader interval.

To further confirm this observation, we synthesize three
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(a) (b) (c) (d) (e) (f)
Figure 2. Illustration of different quality depth maps. From left to right, rows 1 and 2: (a) the color image (first row) and one region in
the next two rows corresponding to the red box in the original image. Columns (b, c, d, e, f) show depth maps of different quality, from
worse to better. Row 3 reports depth histograms for the depth maps corresponding to the area within the red box. We took (b-e) from four
training stages of CDCNet [18] on the KITTI depth completion task [20].

ideal depth maps for two smooth surfaces and one disconti-
nuity – i.e. common structures in the real world – and con-
struct their depth histogram, as shown in Fig. 3. We can ob-
serve that the distributions of depth values in the histograms
are much more regular. Therefore, we argue that regulariz-
ing such distributions can yield higher-quality depth maps.
Accordingly, by focusing on the structure of objects from
a microscopic perspective, any object can be seen as the
composition of several small, smooth surfaces interleaved
by depth discontinuities, whose depth distributions can be
regularized.

Thus, we inquire whether a learning method can regular-
ize the distribution of the depth predictions by a deep net-
work. The recent contrastive learning approaches [4, 9, 24]
proposed to contrast positive pairs – i.e., elements shar-
ing the same label – against negative pairs – elements
with different labels – in the representations space, which
looks suitable for our purpose. Therefore, we introduce a
contrastive learning framework tailored for depth predic-
tion. Specifically, we propose a Window-based Contrastive
Learning module (WCL) which segments the depth feature
maps into non-overlapping windows and computes a con-
trastive loss only within each one, similarly to how recent
Vision Transformers [44] compute self-attention on local
windows. It allows us, in a more tractable manner rather
than acting on the whole depth features, to contrast the
depth values in small regions and expand their distribution
locally by constructing positive and negative pairs in the
depth representation and enlarging the gap between them.
To the best of our knowledge, we are the first to apply con-
trastive learning for depth prediction, focusing on expand-
ing depth distribution.

Our main contributions can be summarized as follows:

• We propose a novel method combining contrastive
learning with depth prediction, contrasting depth dis-
tribution to improve accuracy.

• We propose a Window-based Contrastive Learning
(WCL) module for depth prediction by learning sim-
ilarity, forming positive and negative pairs of features,
and computing contrastive loss within a window.

• Experimental results and a detailed ablation study with
different depth prediction models demonstrate the ef-
fectiveness of our proposal.

2. Related Work
2.1. Depth prediction

Depth prediction is a challenging computer vision task,
faced according to different methodologies and setups such
as depth completion, depth estimation, and self-supervised
depth estimation with stereo pairs and videos. Depth com-
pletion recovers dense depth maps from sparse measure-
ments and a high-resolution image. Uhrig et al. [62] pro-
pose a sparsity-invariant convolution layer to consider the
location of missing data while addressing data sparsity
within deep networks. Ma et al. [45, 46] utilize early fu-
sion to combine sparse depth with a color image and feed
them into an encoder-decoder CNN, which boosts the per-
formance of depth completion. Multi-branch network ar-
chitecture is an effective approach to fuse multi-modal data
as reported in [18, 32, 38, 55, 63]. Spatial propagation net-
works (SPN) [43] is another popular depth-refinement ap-
proach [10–12, 42, 48]. DeepLiDAR [55] introduces pixel-
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(a) (b) (c)
Figure 3. Three synthetic depth maps and corresponding his-
tograms. (a), (b) are two smooth surfaces and (c) is a depth dis-
continuity.

wise surface normals as geometric constraints and proposes
multiple branches to generate dense depth maps jointly.
GuideFormer [56] and CompletionFormer [78] introduce
transformers in this task as well. In [7, 73, 81], graph repre-
sentation is utilized to model more helpful information from
sparse and irregular point clouds.

Regarding depth estimation, supervised monocular ap-
proaches gained much interest in the literature in recent
years. Eigen et al. [16, 17] proposed a multi-stage, coarse-
to-fine network to estimate depth from a single image, and
Laina et al. [35] a fully convolutional architecture for depth
estimation. Some works introduce attention mechanisms to
achieve significant performance improvements [1,2,37,39].
Other works estimate depth by predicting probability dis-
tributions and discrete bins [5, 40, 59]. A high-order geo-
metric constraint is also employed to reconstruct depth pre-
diction in [36, 74]. Some multi-task works predict depth
maps by jointly learning with other vision tasks [41,54,79].
DANet [59] proposes to utilize depth distribution as super-
vision for the prediction.

Self-supervised monocular depth estimation consists of
two principal training methodologies using stereo images
or monocular videos [52]. Garg et al. [19] propose the
first self-supervised depth estimation, using an image recon-
struction loss in stereo images to train a monocular depth
model. Zhou et al. [82] employ a depth and a pose network
to employ a photometric loss in monocular videos. Many
following researchers follow these paths improving self-
supervised depth estimation [21,22,30,34,49–51,53,60,80].
ViP-DeepLab [54] proposes a multi-task network for jointly
learning self-supervised depth estimation and panoptic seg-
mentation from videos, while PackNet [22] leverages 3D
convolutions to learn geometric representations.

2.2. Contrastive learning

Contrastive learning has achieved remarkable progress
employing discriminative learning by contrasting positive
pairs against negative pairs in representations space [23]

Figure 4. Example of different points in the scene. A and B
are two points on the same, front-parallel surface, while C and D
are points on two distinct cars. Although both A-B and C-D pairs
of points belong to similar objects, A-B expose stronger similarity
for the depth prediction task – i.e., they are very close, while C-D
points are at very different distances.

and some works target visual representation learning [9,15,
24, 33, 69]. SimCLR [9] implements contrastive learning in
a simple network framework, where positive pairs are from
data augmentation of the same image, while negative ones
are from different images. MoCo [24] maintains a queue
of negative samples and turns one branch of a Siamese net-
work into a momentum encoder to improve the queue con-
sistency. Some recent works [6,68,72] have introduced con-
trastive learning for dense prediction. ReSim [71] learns
regional representations from a pair of views originating
by sliding windows from the same image. DenseCL [68]
optimizes a pairwise contrastive loss at the pixel level be-
tween two different image views. Ke et al. [31] propose a
weakly supervised segmentation method that utilizes con-
trastive relationships between pixels and segments in the
feature space. Alonso et al. [3] utilize a memory bank to
contrast the features from labeled and unlabeled data em-
ploying end-to-end training. Some works [70, 76] use a
contrastive loss to generate high-frequency details for im-
age super-resolution tasks. Shen et al. [58] propose con-
trastive differential learning in image translation and use it
for depth-to-depth synthesis.

2.3. Window-based Approaches

Long-range dependency is a notable cue and Trans-
formers [64], Markov Random Fields (MRFs) [57] and
Conditional Random Fields (CRFs) [8, 67] use it to boost
their learning ability. However, these methods have a se-
vere drawback in the computational complexity, increas-
ing quadratically with image size. Purposely, some works
aim at addressing this issue. Dosovitskiy et al. [14] ap-
ply a transformer on sequences of image patches for im-
age classification tasks. Pyramid ViT [65] uses a progres-
sive shrinking pyramid and spatial-reduction attention to
reduce computations of the transformer on large feature
maps. Swin Transformer [44] proposes a novel architec-

3228



ture that computes attention within a patch-based window
and uses a shifting window approach to capture attention
in non-overlapping regions. Yuan et al. [75] employ a
window-based CRFs approach for monocular depth estima-
tion. CSWin [13] proposes a self-attention within a cross-
shaped window in different directions, which yields strong
representation learning with limited computation cost.

3. Contrastive learning for Depth Prediction
In this section, we first present the motivation for our

work and how WCL can improve depth prediction.

3.1. Motivation

In the imaging system, the image is a perspective pro-
jection of a 3D scene, and the corresponding depth map
reflects the distance between each point in the scene and
the viewpoint. Almost all surfaces of observed objects have
discrete depth values and adjacent pixels, even within small
regions, have similar but different depth values. As shown
in Fig. 2, the histograms of different depth images with
different accuracy change dramatically, and high-quality
depth maps have a more regular depth distribution than
low-quality ones. Hence, an intuitive idea to model this
assumption consists in regularizing such distribution. For
this purpose, applying contrastive learning by clustering the
different pixels in the representation space seems a promis-
ing strategy for possibly regularizing the depth distribution.
Moreover, it has been recently applied in an unsupervised
manner [6,9,24,68,72], thus not making use of labels. Some
recent works [6,26,31,66] focus on dense predictions, such
as semantic segmentation, and use similarity or affinity be-
tween pixels, images, or features to construct contrastive
loss for the pixels with the same label that share similar
low-level features (color, texture) or high-level represen-
tation. Specifically, [26, 66] propose to use the semantic
similarities among labeled pixels to contrast representation.
Ke et al. [31] explore different types of contrastive relation-
ships, such as low-level image similarity and feature affin-
ity in weakly supervised segmentation. Chaitanya et al. [6]
use contrastive learning at the level of local and global fea-
tures. All these methods assume that pixels belonging to the
same object share the same representation and label since
the target task is semantic segmentation. However, this as-
sumption does not hold when facing depth prediction tasks,
since even pixels from the same object category may have
different representations and depth labels. Indeed, distin-
guishing the positive and negative pairs in the depth map is
challenging, and some of the main issues about deploying a
contrastive loss in depth prediction tasks are:

• Discriminating between positive and negative exam-
ples for all pixels is challenging. For example, in Fig.
4, we can easily define the set (A, B) as a positive pair

since the two are close in distance and representation
and the set (A, D) as a negative pair being far in dis-
tance and representation. However, for the set (B, C),
it is hard to define whether they are positive or nega-
tive pairs since they are close in distance but belong to
different objects.

• Constructing and computing a global relationship
graph for all pixels is highly resource-consuming. For
instance, if we consider an H × W image, its rela-
tionship map results in size HW × HW, thus forming
positive and negative pairs and contrasting them yields
massive memory footprints, computation, and time.

• It is hard to contrast further the long-range sets, such
as set (A, D), even in low-quality maps since there is
already a significant distance between the two points.

For the reasons outlined, employing contrastive learning
on the whole image is challenging. Purposely, we introduce
the concept of local similarity in our method. As already
pointed out, the output depth of a deep network changes
smoothly within a small region. Therefore, a pixel has more
similarities with its surrounding pixels. The closer the two
pixels are, the stronger the similarity. For instance, The
similarity between A and B is stronger than the similarity
between A and others in Fig. 4. To deal with these is-
sues, inspired by some works [13, 44, 75], we propose for
depth prediction a cost-effective window-based approach
for contrastive learning. We limit the similarity calculation
and construct the positive and negative pairs within small
regions rather than on the entire feature map, which is a
more reasonable and resource-saving strategy. Thus, we set
pairs with strong similarity as positive pairs and ones with
weak similarity as negative pairs. Enlarging the gap be-
tween them also makes depth distribution better regularized
and yields more accurate results.

3.2. Window-based Contrastive Learning (WCL)

Fig. 5 depicts the architecture of the proposed WCL
module. It segments one H×W×C feature map into multi-
ple tiles of the same size, each containing N × N elements.
In our approach, these windows are the domain where con-
trastive learning comes into play.

Given a generic features map F ∈ RH×W×C , for in-
stance, the output of a convolutional layer, we partition it
into windows X ∈ RN×N×C . For each, we extract query
Q ∈ RN×N×C

2 and key K ∈ RN×N×C
2 features by linear

projections of the input X as

Q = XWQ

K = XWK

(1)

The similarity map T ∈ RN2×N2

between each element
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Figure 5. Illustration of WCL module. Our module segments one H × W × C feature map into multiple tiles of the same size, each
containing N×N elements. Then, it computes a similarity map and constructs positive and negative pairs within the window. By enlarging
the gap between positive and negative pairs, the features representation becomes more meaningful of the depth distribution in the scene.

in the window is computed by means of dot product and
normalization as

T =
QT

∥Q∥
K

∥K∥
(2)

We employ the exponential function exp() to make the sim-
ilarity map non-negative. Then, we sort T in descending
order:

T
′
= sort(T ) (3)

and use contrastive learning to enlarge the gap between pos-
itive and negative pairs in the representation space. We sam-
ple the first N1 of T

′
as positive pairs PT , and the last N1

negative pairs as NT to compute the contrastive loss Lcloss

as

Lcloss =
1

Nw

∑Nw

i=1 − log

∑N1

j=1 PT /N1∑N1

j=1 PN/N1

+ a (4)

with a being a constant set to 1; N1 being set to the 20% of
the total N2; Nw being the number of windows. Accord-
ingly, the total loss function of a depth prediction network
employing window-based contrastive learning is defined as:

Ltotal = Ldepth + w ∗ Lcloss (5)

with Ldepth the original depth loss from the depth predic-
tion network, and w a weighting term for the contrastive
loss.

Our WCL module is specifically designed for depth pre-
diction tasks and can be seamlessly integrated into many
networks. As shown in Fig. 6, the WCL block works on
feature maps between two layers. This way, the module en-
ables the contrast between the positive and negative pairs in
the representation space.

4. Experiments
In this section, we evaluate our method on three main

depth prediction tasks, i.e., depth completion, monocular

Figure 6. WCL positioning. Illustration of a network with a WCL
module embedded in between two conventional layers.

depth estimation, and self-supervised monocular depth esti-
mation. We start from existing networks, assumed as base-
lines over which we want to improve. We retrain them both
with and without our module, allowing for a fair comparison
under the same experimental setting (i.e., data, hardware
support). This comes with little effort since our WCL mod-
ule is a plug-and-play component easily embeddable in any
depth prediction architecture. All the experiments are con-
ducted using the PyTorch framework, on a single NVIDIA
RTX 3090 GPU.

4.1. Dataset

KITTI dataset. KITTI [20, 62] is a popular outdoor
dataset providing sparse depth maps captured by Velodyne
LiDAR HDL-64e, color images and corresponding semi-
dense ground truth. The sparse depth maps provide 5.9%
valid depth values on all pixels, while the ground truth maps
contain 16% valid depth values over the whole image. The
dataset contains 85 895 training frames, with 1000 more se-
lected validation frames, as well as 1000 and 500 test sam-
ples for which ground truth is withheld, respectively, for
depth completion and depth prediction tasks.

The Eigen split [17] is the standard portion of KITTI
used for evaluating self-supervised monocular depth predic-
tion, after being filtered [21, 82] of static frames, which are
unsuited for training from videos [82]. In this split, 39 910
images and 4 424 images are used for training and valida-
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Method
RMSE
(mm)

MAE
(mm)

iRMSE
(1/km)

iMAE
(1/km)

MSG-CHN 820.145 223.987 2.425 0.979
MSG-CHN+WCL 810.273 222.719 2.428 0.973

Table 1. Quantitative results on KITTI [62] – Depth Comple-
tion . Comparison between MSG-CHN and its WCL counterpart.

Method
RMSE

(mm) REL δ1.251 δ1.252 δ1.253

Sparse-to-Dense [45] 0.1097 0.0185 99.39 99.91 99.98
Sparse-to-Dense [45]+WCL 0.1038 0.0149 99.41 99.92 99.99

Table 2. Quantitative results on NYUv2 [61] – Depth Comple-
tion . Comparison between Sparse-to-Dense and its WCL coun-
terpart.

tion, respectively, with 697 further images used for testing.
NYUv2 dataset. The NYU Depth v2 dataset [61]

(NYUv2) consists of 120K RGB images and depth maps
at 480×640 resolution from 464 indoor scenes captured by
a Microsoft Kinect sensor. For training, we use a subset of
50K images from the official training split.

4.2. Evaluation Metrics

Following [21,36,38,48], we use common metrics in the
field: Mean absolute error (MAE, mm), Root Mean Squared
Error (RMSE, mm), Mean Absolute Error of the inverse
depth (iMAE, 1/km), Root Mean Squared Error of the in-
verse depth (iRMSE, 1/km), Mean Absolute Relative Error
(REL), Absolute relative difference (Abs Rel), Square rela-
tive difference (Sq Rel) and percentage of predicted pixels
where the relative error is within a threshold (δi).

4.3. Experimental Results

We select a set of models representative of the three spe-
cific tasks, to which we apply our method to improve their
accuracy consistently. Any model and its WCL variant are
trained using the standard hyper-parameters reported in the
original papers.

4.3.1 Depth completion

We consider two depth completion methods [38, 45], re-
spectively MSG-CHN and Sparse-to-Dense. MSG-CHN
[38] is a multi-branch guided cascade hourglass network
for depth completion. Sparse-to-Dense [45] is built with an
early-fusion network for multi-modal data. We insert our
module between the last two layers of each branch in MSG-
CHN and train it on the KITTI dataset [62]. In Sparse-to-
Dense, we use ResNet18 [25] as the backbone to extract
features, we insert our module between the last two layers
of the decoder and train it on NYU Depth v2 [61]. We use
the same training parameters, except for the batch size, for

(a)

(b)
Figure 7. Qualitative comparison on the KITTI depth comple-
tion dataset [20]. In (a), from top to bottom: RGB image, results
of MSG-CHN [38], and MSG-CHN [38]+WCL, respectively. We
zoom within the red line regions at the right; WCL achieves more
precise object boundaries where the red arrow points. In (b), We
show a depth slice from the results in (a). Dashed lines in the plot
refer to blue and red lines in crops from (a). With WCL, the pre-
diction results in more reasonable boundaries.

both networks. The batch size is set to 8 and 12, respec-
tively. For the two networks, we set w = 0.2, N = 7 and
w = 0.1, N = 7 respectively. Tab. 1 and Tab. 2 show
that both MSG-CHN and Sparse-to-Dense can benefit from
our WCL module. Fig. 7 shows a qualitative comparison
between MSG-CHN and its counterpart using WCL on a
sample from the KITTI dataset. We can notice how our
module allows for more precise boundaries at depth discon-
tinuities. Fig. 8 instead compares Sparse-to-Dense models
on the NYUv2 dataset, highlighting the same behavior ob-
served for MSG-CHN.

4.3.2 Monocular Depth estimation

For this task, we select BTS [36] as a baseline. It is a state-
of-the-art method using local planar guidance layers as geo-
metric constraints to guide the features to depth upsampling
in the decoding phase. We use BTS variants with different
backbones, i.e., ResNet50 [25] and DenseNet-121 [28], on
NYUv2 for the monocular depth estimation task. We use
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Figure 8. Qualitative comparison on the NYUv2 depth completion dataset [61]. From left to right, top to bottom, RGB image, ground
truth, results of Sparse-to-Dense [45] and Sparse-to-Dense [45]+WCL. On the right of each image, we zoom into the red rectangle. With
WCL, predicted depth maps expose more precise structures and boundaries.

Methods higher is better lower is better
δ1.25 δ1.252 δ1.253 AbsRel Sq Rel RMSE RMSE log log10

BTS-ResNet50 0.865 0.975 0.993 0.119 0.075 0.419 0.152 0.051
BTS-ResNet50+WCL 0.871 0.977 0.994 0.117 0.072 0.409 0.149 0.050
BTS-DenseNet-121 0.865 0.976 0.995 0.120 0.075 0.421 0.152 0.051
BTS-DenseNet-121+WCL 0.869 0.977 0.994 0.117 0.072 0.413 0.149 0.050

Table 3. Quantitative results on NYUv2 [61] – Monocular Depth estimation. Comparison between BTS variants and their WCL
counterparts.

the same training parameters suggested by the authors [36],
except for the batch size that is set to 10. For this task, we
set w = 0.1, N = 7 for both the backbones. Tab. 3 shows
that our WCL module allows consistent improvements over
both BTS variants.

4.3.3 Self-Supervised Monocular Depth Estimation

Self-supervised monocular depth estimation eliminates the
need for ground truth depth labels, which are usually hard to
source. Supervision can be obtained in the form of monoc-
ular videos or stereo images. We select MonoDepth2 [21]
as a state-of-the-art baseline for this task, simultaneously
learning for depth and relative poses between consecutive
frames in a video to implement the aforementioned self-
supervised training scheme. We test it on the KITTI dataset
[20] using the Eigen split [17]. Its training is realized by
minimizing the photometric re-projection errors, either be-
tween temporally adjacent frames or stereo images. We use
ResNet18 [25] as the backbone, process images resized to
192 × 640, and keep the same training parameters detailed
by the authors [21]. In both cases, we evaluate our module
setting w = 0.01, N = 7. Tab. 4 confirms that our method
can also boost the accuracy of self-supervised depth estima-
tion frameworks.

4.4. Ablation Study

In this section, we conduct an ablation study to verify
the impact of the different hyper-parameters of our WCL
module. For the experiments in this section, we focus on the
depth completion task; we use a subset of 10000 samples
from the KITTI depth completion dataset for training and
evaluate the performance on the validation split. Images
are center cropped to 1216×256, to focus on regions with
available LiDAR points. We use Sparse-to-Dense [45] as
the baseline network and adopt ResNet-18 as the backbone.
All the parameters are optimized using Adam (β1 = 0.9, β2

= 0.99) and the weight decay factor is set to 0.0001. The
learning rate is initialized to 0.001, decayed by {0.5, 0.2,
0.1, 0.01} at epoch {10, 15, 20, 25}. The network is trained
for 30 epochs using a batch size of 10 samples. RMSE,
MAE, and iMAE are used as the evaluation metrics.

Window size. We measure how the window size over
which the contrastive loss is applied impacts the final re-
sults. Tab. 5 collects the outcome of this experiment. We
evaluate our module with window sizes, 3, 5, 7, 9, 11, 13,
15. w is fixed instead, to 0.1. We can observe that win-
dow with N = 7 outperforms others according to the main
evaluation metric, RMSE. In contrast, bigger window sizes
cannot improve further while increasing the computational
requirements. A small window size (N = 3) yields negli-
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Methods Train higher is better lower is better
δ1.25 δ1.252 δ1.253 AbsRel Sq Rel RMSE RMSE log

Monodepth2 M 0.871 0.957 0.980 0.118 0.912 4.911 0.196
Monodepth2 + WCL M 0.873 0.959 0.981 0.116 0.852 4.837 0.194
Monodepth2 S 0.865 0.949 0.975 0.109 0.909 5.015 0.208
Monodepth2 + WCL S 0.867 0.951 0.975 0.109 0.892 4.961 0.207

Table 4. Quantitative results on KITTI Eigen split [17] – Self-Supervised Monocular depth estimation. All methods are trained and
tested with 192×640 images. The best results in each category are in bold; M: Monocular supervision; S: Stereo supervision.

Window size
(N)

RMSE
(M)

MAE
(mm)

iMAE
(1/km)

baseline 930.326 269.866 2.575
3 927.818 266.248 2.536
5 925.169 267.290 2.813
7 922.512 264.044 2.030
9 925.358 267.614 2.045

11 926.511 263.053 2.639
13 925.072 265.628 2.429
15 925.074 264.810 2.022

Table 5. Ablation results on the different window sizes on
KITTI depth completion validation set.

Shift number
(N)

RMSE
(M)

MAE
(mm)

iMAE
(1/km)

baseline 930.326 269.866 2.575
0 922.512 264.044 2.030
1 923.461 266.447 2.692
2 926.473 265.348 2.228
3 929.037 266.340 2.083
4 927.404 264.493 2.324

Table 6. Ablation results on the shift number on KITTI depth
completion validation set.

gible improvements, probably because most 3 × 3 regions
are not significant enough for applying contrastive learning
effectively.

Shifted windows When using WCL, all windows are
non-overlapped. Thus, distribution optimization occurs lo-
cally. Previous works exploiting windows processing as
well [44,75] use effective shifted window partitioning to in-
troduce connections between neighboring non-overlapping
windows. We ran an ablation study about whether shifted
window partitioning can bring improvement in our method
or not. Following [44,75], we shift the windows by (N2 ,

N
2 )

pixels in the feature map and calculate the contrastive loss
after computing the loss of the previous windows. We set
w = 0.1 and N = 7. We shift the windows 1, 2, 3, 4 times.
From the results in Tab. 6, we can conclude that shifting
the windows does not bring improvement while increasing
computational cost.

Embedded module Location Our WCL module can be
easily embedded in between network layers, allowing to

Location RMSE
(M)

MAE
(mm)

iMAE
(1/km)

baseline 930.326 269.866 2.575
-1 922.512 264.044 2.030
-2 928.279 267.821 2.150
-3 929.924 264.688 2.594
-4 932.127 270.720 1.992
-5 940.022 270.118 2.120

-1 & -2 912.286 263.886 6.604
Table 7. Ablation results on the the different locations on
KITTI depth completion validation set. -1 denotes between
layer1 and layer0; -2 denotes between layer2 and layer1; -3 de-
notes between layer3 and layer2; -4 denotes between layer4 and
layer3; -5 denotes between layer5 and layer4.

contrast pixels in the representation space. The baseline
network has six layers in the decoder stage. We define them
as layer5, layer4, layer3, layer2, layer1, and layer0 from
bottleneck to final layer. We performed an ablation study
to determine how much improvement our module can bring
when placed at different locations within the network. We
set w = 0.1 and N = 7 in all the experiments except the
last one. In the last one, we set w1 = 0.1 for the contrastive
loss between layer1 and layer0 and w2 = 0.0001 between
layer2 and layer1. From the results in Tab. 7, we can find
that the closer to the final layer, the better the results. The
outputs from the layers near the final layer present features
strongly related to final depth maps, while the outputs near
the bottleneck show higher-level, semantical information.
Partitioning and contrasting the outputs near the bottleneck
break semantic information and cause degradation.

5. Conclusion

We presented a Window-based Contrastive Learning
(WCL) module for depth prediction. Our approach parti-
tions the image into windows, and the contrastive loss is im-
plemented within each. Accordingly, it constructs and sorts
positive and negative pairs, then enlarges the gap between
the two in feature space, which makes depth distribution
more meaningful of the real depth in the scene. We eval-
uate our method on multiple depth prediction tasks, such
as depth completion, depth estimation, and self-supervised
depth estimation, reporting consistent improvements.
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