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Abstract. Compared with existing payment systems, Bitcoin’s throughput is low. Designed 
to address Bitcoin’s scalability challenge, the Lightning Network (LN) is a protocol allowing 
two parties to secure bitcoin payments and escrow holdings between them. In a lightning 
channel, each party commits collateral toward future payments to the counterparty and pay-
ments are cryptographically secured updates of collaterals. The network of channels increases 
transaction speed and reduces blockchain congestion. This paper (i) identifies conditions for 
two parties to optimally establish a channel, (ii) finds explicit formulas for channel costs, (iii) 
obtains the optimal collaterals and savings entailed, and (iv) derives the implied reduction in 
congestion of the blockchain. Unidirectional channels costs grow with the square-root of pay-
ment rates, while symmetric bidirectional channels with their cubic root. Asymmetric bidirec-
tional channels are akin to unidirectional when payment rates are significantly different, 
otherwise to symmetric bidirectional.
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1. Introduction
To economize on transaction costs, parties to frequent 
transactions often arrange to pay for them periodically 
rather than immediately after each transaction. For 
instance, credit card holders are billed monthly. Similar 
arrangements are emerging for payments in blockchain- 
based cryptocurrencies such as Bitcoin and Ethereum. In 
these arrangements, the parties deploy cryptographic 
tools to guarantee the payments. The guarantees are off- 
chain. Periodically, the parties settle their obligations 
on-chain. Consequently, (i) the parties economize on 
transaction costs, and (ii) the system’s throughput 
improves thanks to the shift of interactions off-chain, 
thereby also reducing the time it takes until a transaction 
is practically irreversible. “Layer-two solutions” is a label 
for protocols which cryptographically secure payments 
off-chain and settle on-chain when necessary.

Examples of layer-two payments are readily avail-
able: sovereign-issued money backed by gold; commer-
cial bank-issued money backed by deposits with the 
central bank; credit card-based payments backed by 

banks’ payment networks; gold and silver deposit certi-
ficates in the 17th and 18th century Bank of Amster-
dam, which were used to settle transactions (Frost et al. 
2020). (Due to their convenience, most of the time these 
certificates traded at 5% premium to the underlying 
metal.) In fact, the architecture of stablecoins is based 
on a similar idea: The issuer maintains a fund of fiat 
currency, which backs the stablecoin 1:1.

The protocol of the Bitcoin Payment System (Naka-
moto 2008) publishes all transactions on the blockchain. 
By design, the protocol can handle at most a few trans-
actions per second, which is orders of magnitude lower 
than most credit-card payments systems, often result-
ing in significant delays and transaction fees. The Light-
ning Network (henceforth, LN) is a layer-two payment 
solution which addresses these weaknesses (see Poon 
and Dryja (2015) and Wirdum (2016)). It is a crypto-
graphically secured protocol for escrow holdings of Bit-
coin and changes in the holdings (i.e., payments). The 
protocol also specifies the circumstances in which the 
parties’ balances settle on-chain.
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Channels are the basic building blocks of the LN. 
Functionally, a channel is a jointly held Bitcoin account 
which opens with the two holders’ balances reflecting 
their initial, on-chain contributions. Over time, the 
channel holders update the balances to reflect pay-
ments between them. Balance updating leaves the sum 
of the balances intact. Balance updating renders pay-
ments immediately irreversible. Payments can be rou-
ted through a chain of channels in the LN by updating 
balances accordingly. However, funds can be used to 
pay third parties that are not on the LN only after the 
transactions are recorded on-chain.

In general, where bitcoin is a common and frequently 
used medium of exchange, the LN is a good candidate 
to reduce the load on the bitcoin blockchain and in-
crease the system’s overall efficiency. In that case, the 
LN would be used for everyday transactions, such as 
grocery shopping, paying for transportation, and other 
routine payments. In such a world, a customer would 
open a single channel to a well-connected node, routing 
everyday payments over the LN.

Already today, the sending of remittances, especially 
cross-border remittances, appears to be a particularly 
cost-effective application of the LN. Moreover, using 
bitcoin for small amount remittances seems to be gain-
ing traction in less developed economies (Ibaba et al. 
2021, Tetek 2021, Graf von Luckner et al. 2023).

Another contemporary use case is e-sports, recrea-
tional and professional video game playing. This grow-
ing field brings together people from all over the world 
to watch and take part in video game competitions. The 
winners of these competitions are rewarded hand-
somely for their achievements. To make these awards 
available to people who are not easily connected to the 
western banking system, startups build infrastructure 
over the LN to allow for the prizes to be sent over the 
LN.1 Unlike in-game coins or other solutions, the prize 
sent over the LN can be used outside a specific game to 
shop online, and often can be exchanged to the local 
currency.

In the steady-state model studied here, as soon as a 
balance that started positive is exhausted, both holders 
record their balances on-chain, close the channel, and 
reopen another one immediately.2 The initial balance of 
each party is the same in each reopening of the channel. 
If user pairs expect payments to flow only from one of 
them to the other but not in reverse, then the channel is 
called unidirectional. If the users expect payments to 
flow in both directions (possibly at different rates), the 
channel is called bidirectional.

Parties who use a channel for multiple transactions 
secure the transactions immediately off-chain. They 
burden the blockchain only to open and close the chan-
nel, thereby avoiding multiple fee payments associated 
with on-chain transactions. However, using the chan-
nel is costly because it requires locking up funds inside 

the channel, thereby foregoing alternative usage. Intui-
tively, using a channel is a good idea when transactions 
are sufficiently frequent.

The costs of LN channels and their implications for 
the trade-off between on-chain and the LN payment 
alternative are the focus of this paper. Particular atten-
tion is given to cases in which each of the two parties is 
both a payer and a payee, and the traffic from one party 
to the other offsets the traffic in the opposite direction.

This paper’s approach may also be useful to the anal-
yses of other layer-two solutions for Bitcoin, for other 
cryptocurrencies such as Ethereum and perhaps other 
payment systems. A companion paper (Guasoni et al. 
2023) discusses implications of this paper’s analysis to 
the topology of the LN.

1.1. Model and Contribution
Two parties (or nodes) share a channel after they open 
an on-chain joint account funded by balances (or collat-
erals) the parties contribute. A payment of X units from 
node 1 (Alice) to node 2 (Bob) translates into a reduc-
tion of the balance of node Alice by X units, and a corre-
sponding increase in the balance of Bob. For the sake of 
tractability, the paper’s results are obtained assuming a 
unit transaction size, that is, X � 1. This convenient sim-
plification also offers a simple heuristic for the more 
general setting of random transaction sizes: a flow of 
IID transactions with arrival rate λ�and mean transac-
tion size ν�(independent of arrival times) is approxi-
mately equivalent to a flow of unit transactions with 
arrival rate λν. Put differently, the payment rate λ�in 
the paper should be thought of as the product of num-
ber of transactions per unit of time times the average 
transaction size. When thinking about the channel as a 
LN component, λ�represents the overall transaction 
flow through the channel in a given direction. That 
transaction flow aggregates: (i) flows originating from 
and destined to the two nodes of the channel; (ii) flows 
either originating from or destined to one of the chan-
nel’s nodes; and (iii) flows originating from and des-
tined to nodes outside the channel.

Demand for payments from node 1 to 2 (2 to 1) 
arrives at Poisson-governed rate λ1 (λ2). The continu-
ously compounded discount rate is r. The cost of reba-
lancing a channel is B, and the cost of an on-chain 
transaction is C.3 The analysis focuses on the channel 
cost, assuming (i) the nodes choose to deposit initial 
balances of l1 and l2; (ii) the residual balances are posted 
on-chain; (iii) the parties renew the process after a node 
depletes its balance. The channel is unidirectional if 
λ1�0 or λ2 � 0; it is symmetric if λ1 � λ2.

This paper contributes to the Lightning Network lit-
erature by: 

(i) offering a lean model of a channel in the LN. The 
model is close to but different from the well-known 
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Baumol (1952), Tobin (1956), and Miller and Orr (1966) 
models of demand for money and cash management;

(ii) solving for the channel cost as a function of the 
exogenously specified parameters and the parties’ cho-
sen initial balances (Theorem 1);

(iii) obtaining, in the realistic case of small interest rates, 
the cost minimizing initial balances (and the costs them-
selves) for unidirectional and symmetric channels,4 ex-
tending the results for the unidirectional (respectively, 
bidirectional) channel to the nearly unidirectional (respec-
tively, nearly symmetric bidirectional) case (Proposition 3);

(iv) showing that an asymmetric bidirectional chan-
nel is more akin to a unidirectional channel than to a 
symmetric channel (Proposition 4).

(v) establishing necessary lower bounds for the trans-
action frequencies to justify the existence of unidirec-
tional and bidirectional channels (Theorem 2).

(vi) calculating the probability that one node exhausts 
its balance before the other (Proposition 2).

(vii) calculating the long-run ratio between the num-
ber of channel transactions and the number of on-chain 
transactions (Proposition 1).

A necessary step in the design and application of a 
channel is the comparison of a channel’s cost with that 
of transacting on-chain. Such a comparison is particu-
larly helpful if accompanied by the calculation of the 

cost-minimizing initial balances of the channel. This paper 
provides all these quantities.

The analysis supports and quantifies the initial intui-
tion that a channel between two parties cuts on transac-
tion costs if the transaction frequency is high enough. 
The benefit is highest when the transaction frequency in 
both directions is the same or almost the same. The bene-
fit is more modest for unidirectional channels. More-
over, channels in which transaction frequency is not 
almost symmetric are akin to unidirectional channels.

Figure 1 illustrates some of the main findings: it dis-
plays the optimal (least costly) arrangement for two 
nodes, 1 and 2, who pay each other at rates λ1 and λ2. 
Five configurations can emerge: (i) all payments are 
on-chain; (ii) (respectively, (iii)) node 1 (resp. 2) pays 
on-chain when the channel cannot facilitate the transac-
tion whereas the other node pays through a channel at 
all times; (iv) each node pays the other through a sepa-
rate unidirectional channel; (v) both nodes use a single 
bidirectional channel. (By design, both panels are sym-
metric around the main diagonal.)

The left panel shows the four regions of the pairs 
(λ1,λ2). Relatively high transaction frequencies give rise 
to bidirectional channels. When transaction frequencies 
in both directions are low, no channel is used, as settle-
ment occurs on-chain. When transaction frequencies are 

Figure 1. (Color online) Optimal Payment Network (Left) and Its Cost (Right) if Alice Pays Bob at Rate λ1 (Horizontal Axis, 
from 0 to 0.2), and Bob Pays Alice at Rate λ2 (Vertical Axis, from 0 to 0.2 in Number of Annual Transactions) with Round-Trip 
Transaction Cost B � 1 and Interest Rate r � 1% 

Notes. If both payment rates are small (purple, bottom left), all transactions optimally take place on chain, without lightning channels, and the 
cost is proportional to the sum of such rates. If one rate is low but the other one is high (yellow and cyan, top left and bottom right), then the 
more frequent payer uses a unidirectional channel to pay the less frequent payer. The less frequent payer pays over the channel if his balance can 
support the payment and on-chain otherwise. If both rates are large enough (red, top right), then all payments take place through a bidirectional 
channel, and the cost is rather insensitive to an increase in the lower payment rate.
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low in one direction and high in the opposite direction, 
the parties use a unidirectional channel to accommodate 
the latter, settling reverse transactions on-chain.

One message of this figure is that, for a channel- 
resetting cost equal to the size of each transaction, a 
symmetric bidirectional channel is the most economical 
choice, even for very modest frequencies, such as once 
every five years (i.e., λ � 0:2). A party that does not pay 
even as sporadically should pay on-chain while receiv-
ing through a unidirectional channel. Only two parties 
that do not expect to transact in several years will shun 
lightning channels at all.

The right panel shows the equal-cost contours under 
the cost-minimizing behavior. The contours at the bot-
tom left correspond to the lines λ1 +λ2 � constant, 
reflecting the linearity in volume of on-chain settle-
ment. To interpret the other contours it is easiest to fol-
low the uppermost contour, which is also the rightmost 
contour, from left to right. At the top there is a small 
flat portion corresponding to node 1 paying on-chain 
and node 2 paying through a unidirectional channel. 
Moving right, there is a small and sharp drop, indicat-
ing the transition from on-chain transactions to a 
hybrid of on-chain and unidirectional channel transac-
tions. Moving right again—and this is the interesting 
part—the contour is approximately upward sloping for 
a while. In this part, payment frequency from node 1 to 
node 2 increases while reducing total cost, due to the 
benefits of netting. As λ1 increases, the frequency of 
on-chain transactions comes down, thereby reducing 
the channel’s total cost. This effect wears off as λ1 
comes closer to λ2, hence the curved downward slope 
near λ1 � λ2.

1.2. Previous Work
Baumol (1952), Tobin (1956), and earlier but less well- 
known Allais (1947) develop a model of transactions 
demand for money. The celebrated Baumol-Tobin 
work inspires the present paper’s analysis of the unidi-
rectional channel. Similarly, the seminal Miller and Orr 
(1966) model of a firm’s demand for money inspires the 
present paper’s analysis of the bidirectional channel. 
The inspiration of Baumol-Tobin and Miller-Orr not-
withstanding, it is noteworthy that in these models one 
must transact in cash, yet cash cannot be an exclusive 
store of value. In contrast, here there is always the pos-
sibility to execute transactions on-chain and use it to 
store value, thereby avoiding the LN and its channels.

Central to this paper is the tradeoff between the cost 
of capital and transaction fees. Huberman et al. (2019, 
2021) propose and analyze a model in which the 
throughput of the Bitcoin Payment System is fixed by 
its protocol and transaction fees emerge as the system’s 
response to congestion. Congestion requires the alloca-
tion of processing priority. This allocation is through 
transaction fees, which are higher when the system is 

more congested. An extension of the present work 
would be to the environment considered by Huberman 
et al. (2019, 2021).

A recent economic perspective of LN channels is 
offered by Brânzei et al. (2022). Assuming a cost func-
tion somewhat different from ours, they focus on sym-
metric bidirectional channels. The present paper 
develops theoretical results in the full generality of 
asymmetric channels of arbitrary size and transaction 
rates. It is also interesting to note another second-layer 
solution, similar to the LN, sketched in Narayanan et al. 
(2016).

2. An Overview of the Lightning Network
The Lightning Network (LN) consists of channels and 
nodes. A channel has two participating nodes. A chan-
nel supports a series of bitcoin balance updates, that 
is, payments between the channel’s two participants. 
These updates are accomplished off the blockchain.

For example, Alice and Bob can commit three bitcoin 
each to a channel. When Alice wants to pay Bob one bit-
coin she sends him a signed pending transaction that 
assigns her two bitcoin and assigns Bob four bitcoin 
(see Figure 2). This transaction will not be sent to the 
blockchain.

Alice and Bob continue to update the balances. They 
will need to close and reopen the channel when Alice 
(respectively, Bob) wants to pay an amount in excess of 
her (respectively, his) current balance in the channel. 
As the cost of opening and closing a channel exceeds 
that of an on-chain transaction, a channel’s goal is to 
support multiple transactions. A channel requires a 
commitment of funds, which cannot be used for other 
purposes while the channel is open.

The LN also supports payments between partici-
pants who do not have a channel in common, but are 
linked through a path of channels. A node along the 
path may charge a fee for enabling the payment to go 
through the channels it participates in. For example, 
consider channels [A,B] between Alice and Bob and 
[B,C] between Bob and Charlie, such that each partici-
pant in each channel has a balance of three units. For 
Alice to send one unit to Charlie, she reduces her bal-
ance in the [A,B] channel by one unit in favor of Bob, 
who reduces his balance by a unit in the [B,C] channel 
in favor of Charlie. See Figure 3 for an illustration.

In fact, a sequence of channel pairs can form a pay-
ment chain if each channel pair has a participant in 

Figure 2. An Example of Alice Sending Bob One Bitcoin 
Over Their Channel 
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common. For example, channels [A,B], [B,C], [C,D] can 
jointly support payments between A and D. Crypto-
graphic protocols guarantee that no party can be harmed 
by entering this arrangement. See Wirdum (2016) for an 
overview and Poon and Dryja (2015) for the full techni-
cal details.

In a normal course of events, for each channel there 
are only two on-chain transactions, namely, opening 
and closing the channel, that is, committing and releas-
ing funds, respectively. In addition, and off-chain, par-
ticipants update the balances as the need arises. If one 
of the parties in a channel tries to cheat, the other can 
punish it by taking all the funds in the channel. This 
feature is ensured by a cryptographic scheme detailed 
below.

2.1. Cryptographic Foundation
To open a lightning channel, each party: (i) deposits 
some bitcoin to a multiple signature (henceforth, multi-
sig) address, cosigned by both and recorded in the 
blockchain; (ii) creates a public-secret key pair and 
sends the public key to the other; (iii) creates a commit-
ment transaction, recognizing the ownership of the 
respective amounts. For example, Alice deposits 12 bit-
coin to the multisig address, while Bob deposits eight.5
By cosigning, Alice and Bob can claim their respective 
balances through the blockchain. Then Alice creates a 
public-secret key pair A∗public, A∗secret and sends A∗public to 
Bob. Likewise, Bob creates B∗public, B∗secret and sends B∗public 
to Alice. Alice creates a new public-secret key pair 
A0

public, A0
secret while Bob creates B0

public, B0
secret. They use 

these keys to set up their first commitment transaction. 
This transaction attributes the original bitcoin to them-
selves, as follows: Alice attributes 12 bitcoin to herself 
(the original amount she put in the channel), and the 
remaining eight bitcoin to a special multisig address. 
Then, she sends A0

public to Bob. Alice’s special multisig 
address works as follows: funds can be spent on-chain 
cooperatively or noncooperatively. A cooperative clo-
sure of the channel entails a new transaction, which 
gives each party its respective share, and is published 
in the blockchain.

If Bob does not cooperate, Alice can send the transac-
tion she created to the Blockchain. If she does this, Bob 
can claim his eight bitcoin immediately by using the 

secret B∗secret, while Alice needs to wait 1,000 blocks 
before she can move her funds. If Alice does not coop-
erate, Bob can do the same. In general, the funds of the 
party that withdraws unilaterally are delivered with a 
delay, enabling the other party to withdraw the rest of 
the funds sooner. The LN channel between Alice and 
Bob is open once (i) the opening transaction is on 
the Blockchain, (ii) public keys A∗public and B∗public are 
exchanged, and (iii) the commitment transactions are 
complete. Alice sends one bitcoin to Bob over the LN as 
follows. First, Alice and Bob create new public-secret 
key pairs, associated with these specific balances. Alice 
creates A1

public, A1
secret and Bob creates B1

public, B1
secret, then 

they exchange the public keys.
Alice creates a new transaction that attributes 11 bit-

coin to herself, and nine bitcoin to a special multisig 
address. She then sends the signature for this transac-
tion to Bob. Bob creates a similar transaction that gives 
him nine bitcoin and sends 11 bitcoin to a special multi-
sig address, and sends it to Alice. Neither transaction is 
broadcast to the Blockchain.

The payment is final once Bob has the guarantee that 
Alice will not attempt to broadcast the previous trans-
action, in which he receives only eight bitcoin. To pro-
vide such a guarantee, Alice gives Bob her previous 
secret key A0

secret. Now, if Alice tries to cheat, claiming 
the previous balance on-chain, Bob can take both his 8 
bitcoin and Alice’s 12 bitcoin . Likewise, Bob also sends 
Alice his previous secret key B0

secret. As Alice is the one 
benefiting from the old balance, she must send her 
secret key first. Alice and Bob can keep updating the 
state of the channel by creating new key pairs and 
transactions, sharing old secret keys. They do not need 
to trust each other because, at any point in time, if one 
of them tries to cheat, the other one can claim all the 
funds in the channel. Conversely, each party can unilat-
erally claim its current balance with some delay.

3. The Cost of a Lightning Channel
Consider two nodes, 1 and 2, which exchange pay-
ments at different rates: node 1 sends one unit of cur-
rency to node 2 at rate λ1, in that the cumulative 
number of payments from node 1 to node 2 by time t is 
described by a Poisson process Nλ1

t with rate λ1. Like-
wise, the payments from node 2 to node 1 are described 
by another Poisson process Nλ2

t . The two Poisson pro-
cesses are independent. To settle these two streams of 
payments, consider the following payment possibili-
ties, which can be implemented through a blockchain 
with a LN.6

The first and simplest option is to make all transac-
tions on-chain, without using lightning channels. The 
advantage of this choice is that it does not require 
the commitment of any capital locked inside a channel. 

Figure 3. An Example of Alice Sending Charlie a Single Bit-
coin Through Bob 
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The disadvantage is that each payment incurs the fixed 
cost C of an on-chain transaction. Intuitively, such an 
arrangement may be optimal only if the payment rates 
are very low.

Second, each paying node could establish a unidi-
rectional channel to settle each stream of payments. 
This arrangement is more attractive when payment 
rates are sufficiently high. In this case, costs are lower 
when payments are made through a unidirectional 
channel, in which payment commitments are made 
against the payer’s outstanding balance. When the bal-
ance is exhausted, the payments settle and the balance 
is replenished on-chain. The channel size (i.e., the 
amount committed by the paying node) is chosen to 
minimize cost. The drawback of two unidirectional 
channels is that they forego any savings from offsetting 
payments, which can be substantial if both payment rates 
are large enough. As shown shortly, savings are higher 
as transaction rates approach each other. Having a unidi-
rectional channel to support payments in one direction 
and making on-chain payments in the opposite direction 
when the channel cannot support them could be cost 
minimizing for highly asymmetrical payment rates.

Third, both nodes could agree to establish a bidirec-
tional channel, with each of them possibly committing 
different amounts. This option is the most flexible, in 
that the contributions of each node can be optimized 
in relation to both incoming and outgoing rates of pay-
ment, and the number of on-chain transactions is 
reduced by offsetting payments. The disadvantage is 
that such savings may not materialize if at least one of 
the two payment rates is small enough.

The allocation of the costs to the two nodes is a sepa-
rate issue, which this paper does not address. For the 
sake of concreteness, the presentation below assumes 
that each party contributes its committed balance.

3.1. Exact Costs
To examine quantitatively these tradeoffs, it is conve-
nient to start by considering the cost of settling a stream 
of payments with rate λ�simply through on-chain trans-
actions, that is, without any lightning channels. In addi-
tion to payment rates, the critical quantities necessary 
to perform the analysis are C, the cost of an on-chain 
transaction, B, the cost of resetting a channel, and r, the 
continuously compounded interest rate, which repre-
sents the opportunity cost per unit of time of using a 
unit of capital for another purpose (including another 
channel).7

Lemma 1 (On-chain Cost). The on-chain cost for a trans-
action stream with rate λ�is Cλ=r.

The next step is to evaluate the cost of unidirectional 
and bidirectional channels.

Theorem 1 (Exact Channel Costs). Let λ1 be the payment 
rate from node 1 to node 2 and λ2 the payment rate from 
node 2 to node 1, and assume that λ1 ≤ λ2. If node 1 com-
mits an amount l1 to the channel and node 2 commits an 
amount l2, then: 

(i) A unidirectional channel costs

c0, l2(0,λ2) � l2 + B r + λ2

λ2

� �l2
� 1

 !�1

: (1) 

Its minimal cost, setting k � Blog(1+ r=λ2), is

copt(0,λ)

�
B
2k �k+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k+ 4)

p
+ 2 log 1

2

�
k+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k+ 4)

p
+ 2
�� �� �

(2) 

and is achieved for l2 � B
k log 1

2

�
k+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k(k+ 4)

p
+ 2
�� �

.
(ii) A bidirectional channel costs

cl1, l2(λ1,λ2)

� l1 + l2 � B αl1
�(1� α

l1+l2
+ )� α

l1
+(1� αl1+l2

� )

αl1
�(1� α

l1+l2
+ )� α

l1
+(1� αl1+l2

� ) + α
l1+l2
+ � αl1+l2

�

,

(3) 

where

α6 �
λ1 + λ2 + r 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(λ2 � λ1)
2
+ r2 + 2r(λ2 + λ1)

q

2λ2
:

(4) 

Remark. The unidirectional Equation (1) follows from 
the bidirectional Equation (3) by substituting λ1 �
l1 � 0. However, it is convenient to consider it sepa-
rately, in view of its different asymptotic properties, 
as explained below.

This theorem offers a closed-form expression for a 
channel’s cost, given the nodes’ commitments l1, l2. 
The optimal values of such commitments are not avail-
able explicitly for a bidirectional channel, hence more 
sophisticated arguments are required to understand 
the conditions under which different types of channels 
are optimal.8

The next result demonstrates that when payment 
rates are low enough, neither unidirectional nor bidi-
rectional channels should be used.

Theorem 2 (Bounds on Payment Rates). 
(i) If a unidirectional channel with rate λ�costs less than 

on-chain transactions, then

C > log 1 + Blog 1 + r
λ

� �� �
�

Br
λ
+ o(r): (5) 
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(ii) If a bidirectional symmetric channel with rates λ�costs 
less than on-chain transactions, then

C > 3 Bκ4

4

� �1=3

�
B
12κ

2 � 3 Br2

4λ2

� �1=3

�
Br

12λ + o(r)

(6) 

where κ � log r+2λ+
ffiffiffiffiffiffiffiffiffiffiffi
r(4λ+r)
√

2λ .

The main message of Theorem 2 reflects the intuition 
that both unidirectional and bidirectional channels are 
optimal only when on-chain costs are high, channel- 
reset costs are low, payment rates are high, or interest 
rates are low. For this reason, Theorem 2 supports the 
asymptotic analysis in the limit of r near zero, as this is 
the relevant regime for the channels’ existence.9

3.2. Asymptotic Costs for Small Discount Rates
The next proposition obtains closed-form formulas for 
the minimal costs of a unidirectional channel and a 
symmetric bidirectional channel. The general, asym-
metric bidirectional channel is discussed separately.

Theorem 3 (Asymptotic Channel Costs). In the limit of r 
near zero: 

(i) The minimal cost of a unidirectional channel with rate 
λ�is

copt(0,λ) � 2 Bλ
r

� �1=2
�

B
2 +O(r1=2) (7) 

and is achieved for the channel size l2 � Bλ
r
� �1=2

+O(r1=2).
(ii) The minimal cost of a symmetric bidirectional channel 

with equal rates λ�is

copt(λ,λ) � 3 2Bλ
r

� �1=3
�

B
6 +O(r1=3) (8) 

and is achieved for channel sizes l1 � l2 � 2Bλ
r

� �1=3
+O(r1=3).

(iii) A nearly-symmetric bidirectional channel with λ2�

λ1 �O(r1=3) has minimal cost

copt(λ1,λ2) � 3+ 1
2
λ2�λ1

λ1

� �
2Bλ1

r

� �1=3
�

B
6 +O(r1=3)

(9) 

with the minimal channel sizes

l1 �
2Bλ1

r

� �1=3
�
λ2�λ1

6λ1

2Bλ1

r

� �2=3
+O(r1=3), (10) 

l2 �
2Bλ1

r

� �1=3
+
λ2�λ1

6λ1

2Bλ1

r

� �2=3
+O(r1=3): (11) 

The main message of the above proposition is that both 
the minimal cost of a unidirectional channel and its 
required capital are of the order of r�1=2. By contrast, 

for a symmetric bidirectional channel both the minimal 
cost and required capitals are of the order of r�1=3. Note 
that, while in a unidirectional channel only the paying 
party commits collateral, a symmetric bidirectional 
channel requires both parties to commit collateral, but 
such collateral increases more slowly as r approaches 
zero.

For the general case of an asymmetric bidirectional 
channel with significantly different λ1 < λ2, the situa-
tion is more complex. The following result is obtained 
under the assumption that the balances l1 and l2 satisfy 
specific asymptotic properties in r, which are motivated 
by numerical calculations of the optimal l1(r), l2(r) for 
smaller and smaller values of r, suggesting that the 
commitment of the average payer should be l2 �
O(r�1=2), while the commitment of the average payee 
should be l1 �O(log(r�1)).

Theorem 4 (Asymmetric Bidirectional Cost). If l2 �O(r�1=2)
and l1 �O(log(r�1)), then the minimal cost is

2 B(λ2�λ1)

r

� �1=2

+

1+ log 1+ B(λ2�λ1)
r

� �1=2
logλ2
λ1

� �

logλ2
λ1

+O(1) (12) 

and the corresponding optimal channel sizes are

l1 �
log 1+ B(λ2�λ1)

r

� �1=2
logλ2
λ1

� �

logλ2
λ1

+O(1), (13) 

l2 �
B(λ2�λ1)

r

� �1=2
+O(1): (14) 

The main message of this result is that, for r small 
enough, an asymmetric bidirectional channel is more 
akin to a unidirectional channel than to a symmetric 
bidirectional channel: both its minimal cost and the total 
required capital are of the order of r�1=2, as in the unidi-
rectional case, rather than of order r�1=3, as in the sym-
metric bidirectional case. At the leading order, an 
asymmetric bidirectional channel is equivalent to a uni-
directional channel with size λ2�λ1, thereby consider-
ing only the overall net flow of transactions. Likewise, 
the amount of capital l2 that the average payer (node 2) 
has to commit is the same as for a unidirectional channel 
of size λ2�λ1.

Note that such approximate equivalence hinges on a 
rather delicate choice of the capital committed by the 
average payee (node 1), which is neither of order r�1=2 

or r�1=3, but of the much lower order log(r�1). Thus, 
while the average payer benefits from the bidirectional 
channel only through the netting effect, the average 
payee is the main beneficiary of the arrangement, by 

Guasoni, Huberman, and Shikhelman: Lightning Network Economics: Channels 
Management Science, Articles in Advance, pp. 1–14, © 2023 The Author(s) 7 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
6.

20
6.

87
.2

20
] 

on
 0

6 
N

ov
em

be
r 

20
23

, a
t 0

3:
19

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



committing an amount that is logarithmic in the capital 
committed by the average payer. For example, if one 
node pays the other monthly (λ1 � 12), while the other 
pays weekly (λ2 � 52), with a reset cost of B � 0.1 and a 
discount rate r � 1%, the average payer commits l2 ≈ 20 
to the channel, while the average payee commits only 
l1 ≈ 3. Reducing the interest rate to r � 0:1%, the differ-
ence becomes even starker, with l2 exceeding 63 while 
l1 barely increasing to 3.8.

The asymptotic formulas in Proposition 3 (iii) and 
Proposition 4 offer different approximations of the opti-
mal l1 and l2 for given λ1,λ2, B, r. Both approximations 
become increasingly accurate as r ↓ 0, with (10) becom-
ing superior to (13) when (λ2�λ1)=r1=3 is relatively 
small, and vice versa when (λ2�λ1)=r1=3 is relatively 
large, which corresponds to λ1,λ2 fixed as r ↓ 0.

The asymptotic approximations are very accurate for 
the typical range of the interest rate: as shown by Figure 
4, exact formulas are virtually indistinguishable from 
their asymptotic approximations for rates below 20%, 
with minor deviations arising only in the unidirectional 
approximation, and for rates close to 20%.

3.3. Balance Exhaustion and Congestion Reduction
The next result calculates the probability that either 
node exhausts the balance before the other. This prob-
lem is trivial for unidirectional and symmetric chan-
nels, but the general case is more delicate: in the nearly 
symmetric regime the probabilities of exhaustion are 

different and nontrivial, while in the asymmetric regime 
the probability that the average payee exhausts the bal-
ance before the average payer is negligible.

Proposition 1 (Probability of Balance Exhaustion). Let 
q � λ2=λ1 ≥ 1. 

(i) In a channel with sizes l1, l2 and rates λ1,λ2, the prob-
ability that node 2 exhausts the channel before node 1 is (a) 

1�q�l1

1�q�l1�l2 
if λ2 > λ1 > 0, (b) 1/2 if λ2 � λ1 > 0, and (c) 1 if 

λ2 > λ1 � 0.
(ii) Thus, under the optimal choice of l1 and l2, such 

probability is identically one for a unidirectional channel 
(Theorem 3(i)) and equals to 1/2 for a symmetric channel 
(Theorem 3(ii)).

(iii) As r→ 0 and under the optimal choice of l1 and 
l2, such probability converges to one for a bidirectional chan-
nel as in Proposition 4. For a nearly symmetric channel 

(Theorem 3(iii)), it converges to z�z
1
24logz+1

2
z�1 , where z � exp 

24=3B1=3(λ2�λ1)

λ2=3
1 r1=3

� �

.

Channel deployment reduces the frequency of on- 
chain transactions, thereby reducing the congestion of 
the queue to transact on-chain. The next theorem pro-
vides an asymptotic formula for the on-chain rate, that is, 
the number of average channel transactions for which an 
on-chain transaction is required. Such a ratio obviously 
depends on the channel sizes l1, l2. It also depends on the 
transaction rates λ1,λ2, but only through their ratio.

Figure 4. (Color online) Exact (Solid) and Asymptotic (Dashed) Cost (Vertical) of Unidirectional (Red or Light Grey, (2) vs. (7)), 
Bidirectional Symmetric (Green or Medium Grey, Minimum of (3) vs. (8)), and Bidirectional Asymmetric (Blue or Dark Grey, 
Minimum of (3) vs. (13)) Channels Against the Interest Rate (Horizontal), for B � 1,λ1 � 1, and (for the Blue Plot) λ2 � 5 

0.001 0.002 0.005 0.01 0.02 0.05 0.1 0.2

5
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Note. Both axes are in logarithmic scale.
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Proposition 2 (Congestion Reduction). In a bidirectional 
channel with sizes l1, l2 and rates λ1,λ2, the long-term ratio 
between the number of channel transactions and the num-
ber of on-chain transactions equals

(q+ 1)((l2(ql1 � 1)� l1)ql2 + l1)
(q� 1)(ql1+l2 � 1)

where q � λ2=λ1. In particular: 
(i) In a unidirectional channel (q ↓ 0) the ratio simplifies 

to l1.
(ii) In a symmetric bidirectional channel (q→ 1) the ratio 

simplifies to l1l2.

The above proposition shows that, while a unidirec-
tional channel reduces on-chain traffic in proportion to 
its size, for a symmetric bidirectional channel the reduc-
tion is proportional to the product of the two sizes, hence 
much more significant for a total committed amount. In 
particular, when the balances committed are set opti-
mally, (i) the reduction is higher for those nodes from 
which incoming payments exceed outgoing payments, 
and (ii) the reduction is highest for symmetric channels.

As the numerical results in Figure 1 show, if both 
payment rates are large enough, the single bidirectional 
channel becomes optimal and absorbs both payment 
flows. In particular, it is never optimal to use two sepa-
rate unidirectional channels. This conclusion, however, 
does not mean that two unidirectional channels are 
always more costly than the corresponding bidirec-
tional channel, and a close inspection reveals that there 
are cases in which they may be cheaper. But the point is 
that, in such cases, it is even cheaper for one payment 
flow to take place on chain, thereby excluding two uni-
directional channels from the optimal configurations.

4. Discussion
This paper formulates and analyzes a parsimonious 
model of bitcoin transactions that can be shifted to a bidi-
rectional LN channel. The present analysis covers their 
costs, benefits and circumstances in which they are use-
ful. The model analyzed here takes the on-chain channel 
reopening transaction fee B as fixed and exogenous to 
the model. Earlier work (Huberman et al. 2019, 2021) 
argues that Bitcoin payment system users pay these fees 
when the system is congested. When users’ delay costs 
vary, so will the fees they offer. The fees do not affect the 
protocol-determined throughput of the Bitcoin payment 
system but they induce the miners to assign processing 
priority to the transactions associated with higher fees.

The present paper shows that each channel reduces 
the number of on-chain transactions. Thereby the LN 
as a whole reduces on-chain congestion and the fee C. 
Future work will model the interaction between the 
level of the transaction fee, the level of congestion and 
the throughput improvement due to the availability of 
a layer-two solution such as the LN.

The more transactions are shifted from the block-
chain to the LN, the more beneficial the LN. In a unidi-
rectional channel to which l units are committed, there 
are l on-channel transactions for each on-chain transac-
tion. In a symmetric bidirectional channel to which l 
units are committed (l=2 on each side), there are l2=4 
on-channel transactions for each on-chain transaction. 
In general, the closer a bidirectional channel is to sym-
metric, the more economically beneficial it is.

Successful layer-two solutions are practical, conve-
nient, often render low transaction size economically 
feasible, support higher transaction throughput than 
the first layer, and have the potential to gradually 
diminish the role of the underlying first layer.

Famously, the Bitcoin payment network has low 
throughput and high latency. The LN is a payment solu-
tion built on top of the Bitcoin payment network 
designed to address these weaknesses. If Bitcoin becomes 
popular, it is likely that so will be the LN or a future ver-
sion of it. Moreover, the LN and its relation to Bitcoin 
serve as prototypes and proofs of concepts for future 
payment systems and therefore are study-worthy.

The level of on-chain transaction fees is also critical 
to the competitiveness of layer-two solutions. The cost 
of a transaction to set up or close a LN channel 
depends on multiple factors, most notably network 
congestion and the dollar price of Bitcoin. The fee for 
such a transaction can be as little as $0.05 when conges-
tion is low.10 However, consider the possibility that Bit-
coin’s popularity is much higher than it currently is 
and therefore either Bitcoin’s dollar price or the net-
work’s congestion (or both) are much higher, to the 
extent that setting up or closing a channel were to cost 
$50—implying a roundtrip cost of $100.11 Then, the 
channel would have to process at least 100=3% ≈
$3, 334 to be more economical than a credit-card net-
work with 3% interchange fee. Such an environment 
might either hinder the adoption of the LN, or limit 
consumers to have few channels with intermediaries 
rather than vendors, or both.

5. Proofs
Proof of Lemma 1 Denote by τ1 the arrival time of the 
next transaction, which is an exponential random vari-
able with rate λ�(likewise, the future arrival times are 
denoted by τn for n ≥ 1). As the interarrival times of 
future transactions are independent of previous 
arrival times, the expected cost µ � E[

P∞
n�1 e�rτn C] of 

the entire stream satisfies, in view of the Markov 
property of the Poisson process,

µ � E e�rτ1 C+E
X∞

n�1
e�r(τn�τ1)C

�
�
�
�
�
τ1

" # !" #

� E[e�rτ1(C+µ)]
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and hence µ � λ
λ+r (C+µ) which in turn implies that 

µ � λC
r . w

Proof of Theorem 1 Let Xt denote the net cumulative 
balance at time t of node 1, from both stream of trans-
actions, that is,

Xt � Nλ2
t �Nλ1

t :

Thus, an increase in X represents money flowing to 
node 1, a decrease money flowing to node 2. The cash 
balance starts at zero, and varies over time according 
the dynamics of the Poisson processes. Node 1 commits 
l1 to the channel and node 2 commits l2.

Denote by J(n) the expected total future cost when 
the balance at time t is equal to n, with �l1 < n < l2, and 
by τ�the time that elapses from t until the next transac-
tion. Because τ � τλ2 ∧ τλ1 is the minimum between two 
independent exponential random variables τλ2 and τλ1 

with rates λ2 and λ1, respectively, it is also an exponen-
tial variable with rate λ2 +λ1. When τ�arrives, τ � τλ2 

with probability λ2=(λ2 +λ1), in which case Xt+τ �

Xt + 1. Otherwise, τ � τλ1 with probability λ1=(λ2 +λ1), 
and hence Xt+τ � Xt� 1. Thus, the expected cost J(n) 
satisfies the equation

J(n) � E
Z τ

0
e�rsr(l1 + l2)ds

� �

+E[e�rτJ(Xt+τ) |Xt � n], 

where the first term represents the opportunity cost in 
the time interval [t, t+ τ] and the second term the resid-
ual expected cost from τ�onwards. Note that E[e�rτ] �

(λ2 +λ1)=(λ2 +λ1 + r) because τ�is exponentially dis-
tributed with rate λ2 +λ1. Thus, the first term equals

E[
Z τ

0
e�rsr(l1 + l2)ds] � (l1 + l2)E[(1� e�rτ)]

� (l1 + l2)(1�E[e�rτ]) � (l1 + l2) 1� λ2 +λ1

r+λ2 +λ1

� �

� (l1 + l2)
r

r+λ2 +λ1 

while the last term equals

E[e�rτJ(Xt+τ) |Xt � n]
� E[e�rτJ(Xt+τ) |Xt � n,τ� τλ2]P(τ� τλ2)

+E[e�rτJ(Xt+τ) |Xt � n,τ� τλ1]P(τ� τλ1)

� J(n+ 1)E[e�rτ]
λ2

λ2 +λ1
+ J(n� 1)E[e�rτ]

λ1

λ2 +λ1

� J(n+ 1) λ2 +λ1

r+λ2 +λ1

λ2

λ2 +λ1
+ J(n� 1) λ2 +λ1

r+λ2 +λ1

λ1

λ2 +λ1

� J(n+ 1) λ2

r+λ2 +λ1
+ J(n� 1) λ1

r+λ2 +λ1 

In short, the expected cost function satisfies the differ-
ence equation

J(n) � (l1 + l2)
r

r + λ2 + λ1
+ J(n + 1) λ2

r + λ2 + λ1

+ J(n� 1) λ1

r + λ2 + λ1
: (15) 

5.1. Bidirectional Channel
In a bidirectional channel, such difference equation is 
combined with the boundary conditions

J(�l1) � J(0) + B J(+l2) � J(0) + B, 

which require that, once a liquidation point is reached, 
the residual expected cost equals the expected reset 
cost B plus future costs starting from the reset state 0. 
The general solution to (15) is

J(n) � l1 + l2 + k1α
n
� + k2α

n
+

where α6 are as in (4). Substituting the general form of 
J(n) into the boundary conditions, one obtains two lin-
ear equations for k1 and k2, which yield the cost func-
tion:

J(n) � l1 + l2�B (αl1+l2
� � 1)αl+n

+ � (α
l1+l2
+ � 1)αl+n

�

αl1
� � α

l1
+ + (α

l1
+ � 1)αl1+l2

� � (αl1
� � 1)αl1+l2

+

from which in turn the initial cost J(0) in (3) follows.

5.2. Unidirectional Channel
The cost of a unidirectional channel follows from a sim-
ilar argument: as only one node pays the other (sup-
pose that only 1 is paid, whence λ1 � 0), it follows that 
the other party needs not to commit capital (l1 � 0), 
whence

J(n) � l2
r

r+λ2
+ J(n+ 1) λ2

r+λ2 

which has the general solution

J(n) � l2 + k r+λ2

λ2

� �n 

where the constant k is determined by the boundary 
condition

J(l2) � J(0) +B:

Thus, the cost function is

J(n) � l2 + B r + λ2

λ2

� �l2
� 1

 !�1
r + λ2

λ2

� �n 

whence the initial cost in (1). The minimal formula fol-
lows by differentiating the above formula with respect 
to l2, solving for the value of l2 for which the derivative 
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is null, and replacing the resulting value in the formula 
itself. w

Proof of Theorem 2(i) By Theorem 1 (i), the cost of a 
unidirectional channel of size m is

m + B 1 + r
λ

� �m
� 1

� ��1
:

To ascertain whether it is worth to establish such a 
channel, one needs to compare such cost with the 
alternative of establishing no channel at all, which is 
λC=r by Lemma 1. Thus, a one-directional channel is 
suboptimal if and only if

inf
m>0

m+B 1+ r
λ

� �m
� 1

� ��1
�
λC
r

� �

> 0:

To find such an infimum, denote by λ=r � (eκ� 1)�1, 
which allows to rewrite the function to minimize as

F(m) � C
1� eκ +

B
eκm� 1+m:

It is immediate to see that such a function (i) is convex, 
and (ii) diverges to +∞ as m approaches 0 or ∞. Thus, 
the function admits a unique minimum for m̂ ∈ (0,∞), 
and such minimum satisfies the first-order condition 
F′(m̂) � 0, that is,

Bκ
2� 2cosh(κm)

+ 1 � 0 

which yields

m̂ �
cosh�1 Bκ

2 + 1
� �

κ
and

F(m̂) � C
1� eκ +

2B
Bκ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bκ(Bκ+ 4)

p +
cosh�1 Bκ

2 + 1
� �

κ
:

Hence, the channel is suboptimal if and only if F(m̂) > 0. 
Thus, to obtain a sufficient condition for this property, it 
is enough to find a lower bound for F(m̂) and require 
that it is positive. For this purpose, note first that the 
elementary estimate ex > 1+ x for x > 0 implies that C=
(1� eκ) >�C=κ�for all κ > 0. Note also that

2B
Bκ+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bκ(Bκ+ 4)

p ≥
α

κ
for κ ≥ α2

B(1� α) , 0 < α < 1,

(16) 

whence the lower bound

F(m̂)>� C
κ
+
α

κ
+

cosh�1 Bκ
2 +1
� �

κ
for κ≥ α2

B(1�α) : (17) 

The lower bound is in turn positive for κ ≥ 2
B (cosh 

(C� α)� 1), whence

F(m̂) > 0 for κ ≥ 1
B max α2

1� α , 2(cosh(C� α)� 1)
� �

(18) 

Recall now that cosh(x) � (ex + e�x)=2 ≤ (e |x | + 1)=2, 
whence

2(cosh(C� α)� 1) ≤ e |C�α | � 1 (19) 

Thus, if κ ≥ (eC� 1)=B, then κ ≥ 2
B (cosh(C� α)� 1)

and, choosing α ≤ C
C+1,

κ ≥
eC� 1

B
≥

C
B
≥

α2

B(1� α) (20) 

whence F(m̂) ≥ 0 by (17). Because κ � log(1+ r=λ), 
the condition κ ≥ (eC� 1)=B is equivalent to r=λ ≥
e(eC�1)=B � 1. As this condition is sufficient for on-chain 
transactions to be cheaper than a unidirectional chan-
nel, it follows that a necessary condition for this chan-
nel’s optimal existence is that λ > r(e(eC�1)=B � 1)�1, 
which is equivalent to the claim. w

Proof of Theorem 2(ii) Setting λ2 � λ1 � λ�in Theorem 1
(ii), it follows that the cost of a symmetric bidirectional 
channel is

l1 + l2 +
B(αl1 +αl2)

(αl1 � 1)(αl2 � 1)

where α :� α+ �
r+2λ+

ffiffiffiffiffiffiffiffiffiffiffi
r(4λ+r)
√

2λ > 1. Subtracting from such 
cost the cost of on-chain transactions instead, which is 
2Cλ=r, and rewriting λ=r in terms of α, the difference is

l1 + l2 +
B(αl1 +αl2)

(αl1 � 1)(αl2 � 1)�
2Cα
(α� 1)2 

It is easy to check that this function is strictly convex, 
as the trace and the determinant of its Hessian are 
both positive. Thus, its minimizer must be unique. 
Because the function is symmetric in l1 and l2, the min-
imum must be achieved for l1 � l2, otherwise it would 
not be unique (if (l1, l2) were a minimizer, then (l2, l1) 
would be another minimizer). Thus, it suffices to min-
imize the above function for l1 � l2 �m, that is,

2m+ 2Bαm

(αm� 1)2
�

2Cα
(α� 1)2

(21) 

Setting α � eκ, the function reduces to

2m+B
2 csch2 κm

2

� �
�

C
2 csch2 κ

2

� �

Minimizing this function is cumbersome, in that the 
minimum does not have a simple explicit solution. To 
find a tractable lower bound, recall the inequalities

1
x2 �

1
3 < csch2x < 1

x2 , x > 0, (22) 

whereby (21) is bounded from below by

2m + B 2
κ2m2 �

1
6

� �

�
2C
κ2 : (23) 
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For m̂ � (2B=κ2)
1=3, this function reaches its minimum, 

which is

3 2B
κ2

� �1=3
�

B
6�

2C
κ2 : (24) 

Thus, this quantity is positive if and only if C ≤

3 Bκ4

4

� �1=3
� B

12κ
2, which is thus a sufficient condition 

for the stream of transactions to be cheaper on-chain 
than over the channel. The reverse inequality is there-
fore a necessary condition for the channel to be 
cheaper. w

Proof of Theorem 3(i) For small values of r, the cost in 
(1) simplifies to

J(0) � Bλ
rl2
+ l2 �

B(l2 � 1)
2l2

� �

+O(r)

which is maximized by

l2 �
Bλ
r

� �1=2
+O(r1=2):

Plugging this formula into (5) in turn yields the mini-
mal cost (7).

(ii) For a symmetric channel and a small interest 
rate (r ↓ 0), the values of α6 in (4) simplify to

α6 � 1+ r 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 + 4rλ
√

2λ ≈ 1 6

ffiffiffi
r
λ

r

+
r

2λ+O(r3=2)

and the value function becomes in turn, at order zero,

J(0) � 2Bλ
l1l2r
+

B(l21� 3l1l2 + l22 + 1)
6l1l2

+ l1 + l2 +O(r1=2):

The advantage of this expression is that its minimizers 
l1 and l2 can be found explicitly. Indeed, the first order 
conditions for l1 and l2 are respectively

1�
B
�

12λ + r(�l21 + l22 + 1)
�

6l21l2r
� 0

1�
B
�

12λ + r(l21 � l22 + 1)
�

6l1l22r
� 0 

And the (real) solution to this system is, at the leading 
order,

l1 � l2 �
2Bλ

r

� �1=3
+O(r1=3)

Substituting this expression into the objective function 
yields the minimal cost in (8).

(iii) Up to a subsequence, assume that λ2(r) ~ 
λ1 + kr1=3 for some constant k > 0. Then the asymptotic 
expansion of the value function, at the first order in k 

and at the zero-order in r, is

J(0) �2Bλ1

l1l2r
+

2Bk(l1� l2 + 3)
6l1l2r2=3 +

+
l21(B+ 6l2) + 3l2l1(2l2�B) +Bl22 +B

6l1l2
+O(k2r1=3) (25) 

Maximizing this objective with respect to l1 and l2 
yields the first-order conditions

Bk(l2 � 3)r1=3

3l21l2
�

2Bλ1

l21l2
+ r �Bl2

6l21
�

B
6l21l2
+

B
6l2
+ 1

� �

� 0

�
Bk(l1 + 3)r1=3

3l1l22
�

2Bλ1

l1l22
+ r B

6l1
�

Bl1
6l22
�

B
6l1l22
+ 1

� �

� 0 

whose solutions are, at the same order:

l1 �
2Bλ1

r

� �1=3
�

B2=3k
3(2λ1r)1=3 ,

l2 �
2Bλ1

r

� �1=3
+

B2=3k
3(2λ1r)1=3 

and replacing k � (λ2�λ1)=r1=3 in the above expres-
sions and in (25), the formulas in (9) follow. w

Proof of Theorem 4 If l2(r) �O(r�1=2) and l1(r) �
O(logr�1), then there exists ζ1,ζ2 ∈ R and a sequence 
(rk)k≥1, decreasing to zero, such that limk→∞ l1(rk)=

log rk � ζ1 and limk→∞l2(rk)=r1=2
k � ζ2. Along such a 

sequence, from (3) and (4) it follows that:

lim
k→∞
(cl1(rk), l2(rk)(λ1(rk),λ2(rk))� l1(rk)� l2(rk))r1=2

k

� Bλ2�λ1

ζ2
:

Therefore, for such subsequence the cost equals:

Bλ2 � λ1

ζ2
+ ζ2

� �

r�1=2
k :

Thus, the only value of ζ2 for which l2(r) can be optimal 
must be the minimizer of this expression. Minimizing it 
with respect to ζ2 yields the minimizer ζ̂2 � (B(λ2 �
λ1))

1=2 and the minimum 2(B(λ2� λ1)=r)1=2. In particu-
lar, such ζ̂2 is optimal for any subsequence, and there-
fore limr→0l2(r)=r1=2 � ζ̂2. Likewise, to calculate the 
second-order term, it suffices to calculate the expan-
sion of

cl1(r), l2(r)(λ1(r),λ2(r))� l1(r)� l2(r)

for l2(r) � B(λ2�λ1)
r

� �1=2
+O(1) and, on the subsequence 

considered, such an expansion equals

�
1� (λ2=λ1)

�ζ1
��1 B(λ2�λ1)

r

� �1=2 
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which entails that the second-order term of the total 
cost is

ζ1logr+
�

1� (λ2=λ1)
�ζ1
��1 B(λ2�λ1)

r

� �1=2
+O(1)

(26) 

Minimizing this expression over ζ1, one obtains the 
minimizer

ζ̂1 �

log log λ2
λ1

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B(λ2�λ1)

r

q

+ 1
� �

log λ2
λ1

� � +O(1)

which must hold for any subsequence, and substituting 
it into (26) yields (12).

Proof of Proposition 1 If λ2 > λ1 � 0, then Xt is increas-
ing, therefore the claim is trivial. If λ2 � λ1 > 0, then 
the balance Xt is a martingale, and its probability of 
reaching l2 before reaching �l1 is l1=(l1 + l2), which is 
1/2 for l1 � l2.

If λ2 > λ1 > 0, denote by p(n) the probability that 
node 2 liquidates before node 1, if the current balance 
is n. Thus, by definition, p(l2) � 1 and p(�l1) � 0. 
Because the balance moves from n to n + 1 with prob-
ability λ2=(λ1 +λ2) and to n � 1 with probability 
λ1=(λ1 +λ2), p(n) satisfies

p(n) � λ1

λ1 +λ2
p(n� 1) + λ2

λ1 +λ2
p(n+ 1)

and the general solution of this difference equation is 
p(n) � a+ bq�n, where q � λ2=λ1. The constants a and b 
are identified by the conditions p(l2) � 1, p(�l1) � 0, 
whence

p(n) � 1� q�n�l1

1� q�l1�l2 

which reduces to the claim for n � 0.
As r→ 0, note that in the setting of Proposition 4 

both λ1,λ2 remain fixed, while l1(r), l2(r) diverge to 
infinity, therefore p(0) converges to 1. Vice versa, in 
the nearly symmetric case (Theorem 3(iii)), λ1(r),λ2(r)
converge to 1, while l1(r), l2(r) diverge to infinity, and 
the corresponding probability follows by taking the 
limit of the resulting expression as r→ 0. w

Proof of Proposition 2 Let m(n) be the fraction of trans-
actions that the balance X spends in state �l1 ≤ n ≤ l2. 
Consider first n positive: for 0 < n < l2, m(n) satisfies

m(n) � λ2

λ1 +λ2
m(n� 1) + λ1

λ1 +λ2
m(n+ 1) (27) 

because state n can only be reached from either n � 1 
through an up-move, which has probability λ2=(λ1+
λ2), or from n + 1 through a down-move, which has 
probability λ1=(λ1 +λ2). By construction, once the state 
l2 is reached, the state is immediately reset to 0, hence 

m(l2) � 0 and

m(n) �m(0)q
l2 � qn

ql2 � 1
0 ≤ n ≤ l2: (28) 

Likewise, note that (27) is also valid for �l1 < n < 0 
and that m(�l1) � 0 by construction, whence

m(n) �m(0)q
l1+n� 1
ql1 � 1

� l1 ≤ n ≤ 0: (29) 

Then, the condition 
Pl2

n��l1 m(n) � 1 yields a linear 
equation that identifies

m(0) � (ql1 � 1)(ql2 � 1)
�

l2(ql1 � 1)� l1
�

ql2 + l1
: (30) 

Finally, note that the channel transactions that lead to 
an on-chain transaction are the up-moves from l2� 1 
and the down-moves from �l1 + 1. Thus, the fraction 
of such transactions is

m(l2� 1) λ2

λ1 +λ2
+m(�l1 + 1) λ1

λ1 +λ2 

and its value is obtained from (28), (29), and (30). The 
reciprocal of such value is precisely the long-term aver-
age of number of channel transactions per on-chain 
transaction in (2).
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Endnotes
1 See, for example, Zebedee.
2 There are other solutions to rebalancing channels, yet if there are 
no funds in the LN these solutions include on-chain transactions 
and entail similar fees. After a channel’s closure, one could try to 
save on committed capital by delaying reopening until the next 
transaction. However, this choice would sacrifice the immediacy of 
the next transaction, therefore it is ruled out to ensure that all trans-
actions are treated equally.
3 Huberman et al. (2021, 2019) argue that the transaction fee 
depends on user type and congestion level, which may vary with 
time. The present paper abstracts from these considerations for the 
sake of tractability and to focus on the tradeoff between transaction 
costs and capital opportunity costs.
4 Recall that the secular average of real short-term rates is less than 
1%.
5 Channel opening is transitioning from supporting only unilateral 
funding to supporting bilateral funding, which is discussed in this 
paper.
6 Some implementations of payment channels entail limits on the 
number of payments or the number of times that payment flows 
can switch. The present analysis abstracts from some limitations, 
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assuming that a channel remains viable as long as the balance of 
both parties is above zero.
7 In the bitcoin network, one can reset a channel through two 
on-chain transactions, but we allow for the existence of cheaper 
alternatives within the lightning network, by keeping the costs B 
and C independent.
8 Note that the expression for α6 is ostensibly asymmetric in λ2,λ1 
but the expression for the cost cλ2,λ1 (l1, l2) is in fact symmetric, that 
is, invariant to swapping (λ1, l1) and (λ2, l2).
9 Note also that the conditions in Theorem 2 are necessary for opti-
mally establishing a channel, but not sufficient. Nevertheless, neces-
sity is all that is required to infer that r needs to be small relative to 
payment rates for all channels that should not be closed to reduce 
costs.
10 The typical LN transaction uses 154 vbytes. The estimate follows 
from the assumption of a Bitcoin price of $30,000 and a fee of 1.01 
satoshi per vbyte, characteristic of low-congestion periods (i.e., 
when the mempool clears frequently). 30,000 × 10�8 × 154 × 1:01 �
$0:0466 ≈ $0:05. (One Bitcoin equals 108 satoshis.)
11 While low-priority transactions in low-congestion times require as 
little as 1.01 satoshis/vbyte, high-priority transactions in high- 
congestion times may require 1,000 satoshis/vbyte. See https://www. 
blockchain.com and https://mempool.space for fee ranges by block.
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