
nature plants

https://doi.org/10.1038/s41477-023-01543-5Letter

The global biogeography of tree leaf form 
and habit

In the format provided by the 
authors and unedited

https://doi.org/10.1038/s41477-023-01543-5


Supplementary Information 1 

Table S1. Information on the 58 selected covariate layers used to model forest 2 
leaf type proportions. Asterisks indicate variables that were used to analyze the 3 
importance of environmental variables on spatial variation of forest leaf types. 4 
Hashtags indicate variables that were replaced with future climate features for 5 
predicting changes in leaf type climate envelopes. 6 

Variable Variable 
group 

Original spatial 
resolution Units Source 

Annual Mean Temperature*# 

 ≈1km 

ºC * 10  

Karger et al. 1 

Annual Precipitation* mm 
Isothermality*# − 

Max Temperature of Warmest Month# °C 
Mean Diurnal Range* °C 

Mean Temperature of Coldest Quarter*# °C 
Mean Temperature of Driest Quarter# °C 

Mean Temperature of Warmest 
Quarter*# °C 

Mean Temperature of Wettest Quarter# °C 
Min Temperature of Coldest Month# °C 

Precipitation of Coldest Quarter# mm 
Precipitation of Driest Month# mm 

Precipitation of Driest Quarter*# mm 
Precipitation of Wettest Month# mm 

Precipitation of Wettest Quarter*# mm 
Precipitation Seasonality*# mm 

Temperature Annual Range*# °C 
Temperature Seasonality# °C 
Annual mean wind speed m/s Fick et al.2 

Canopy height* 
Vegetation 

≈1km m Simard et al.3 
Tree stem density* ≈1km Stems/ha Crowther et al.4 

Forest age* ≈1km Years Besnard et al.5 
Elevation (in meters)* 

Topography ≈1km 

m 

Amatulli et al.6 

Aspect Cosine* - 
Aspect Sine* - 

Eastness* - 
Northness* - 

Profile curvature* - 
Tangential curvature - 

Terrain roughness index - 
Vector roughness messure - 
Topographic position index - 

Roughness* − 
Slope* − 

Human footprint in 2009 
Human 

≈1km - Venter et al.7 
Human development percentage ≈1km % Tuanmu & Jetz8 



Pixel area covered by cultivated and 
managed vegetation ≈1km % 

Pixel area covered by urban areas ≈1km % 
Irrigated rice area ≈1km km2 

Goldewijk9 

Irrigated other crops area ≈1km km2 
Rainfed rice area ≈1km km2 

Rainfed other crops area ≈1km km2 
Total actual irrigated area ≈1km km2 

Total rainfed area ≈1km km2 
Total rice area ≈1km km2 

Mean annual depth of the water table 
on the terrestrial land surface (in m 

below land surface) 
Geological ≈1km m Fan et al.10 

Absolute depth to bedrock* 

Soil 
≈250m 

cm 

Hengl et al.11 

Soil clay content (0–2 micrometer) at 0-
100cm* % 

Soil coarse fragments volumetric at 0-
100cm* % 

Soil sand content (50–2000 
micrometer) at 0-100cm* % 

Soil silt content (2–50 micro meter) at 
0-100cm* % 

Soil pH in H2O at 0-100cm* pH*10 
Soil nitrogen density* cg/kg 

Soil C:N ratio* ≈1km − Batjes et al.12 
Rangeland percentage per pixel 

Process ≈10km 

% 

Goldewijk et al.13 
Grazing percentage per pixel % 

Cropland percentage per pixel % 
pasture percentage per pixel % 
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11 
Fig. S1. Spatially-buffered leave-one-out cross validation (LOO-CV) results as 12 
semi-variograms (A-D) and model performance for varying buffer radii (E). A-D, 13 
Semi-variograms indicating the extent of spatial autocorrelation of model residuals 14 
for predictions of broadleaved evergreen (A), broadleaved deciduous (B), needle-15 
leaved evergreen (C) and needle-leaved deciduous (D) proportions. E, 𝑅𝑅𝐵𝐵𝐵𝐵2  for buffer 16 
radii of data exclusion from 10m to 500 km. Dashed lines indicate spatial buffer radii 17 
distances selected for reporting model performances. 18 

 19 



20 
Fig. S2. Standard errors of the observed (purple) and predicted (yellow) mean 21 
values of proportions of broadleaved evergreen (A), broadleaved deciduous 22 
(B), needle-leaved evergreen (C) and needle-leaved deciduous (D) trees 23 
decrease with increasing sample size. The operation was repeated with 1,000 24 
random seeds for the observed and predicted mean values, and the calculated 25 
standard errors of the mean are shown. 26 



 27 

Fig. S3. Uncertainties of model predictions from random forest models for the 28 
proportions of broadleaved evergreen (A), broadleaved deciduous (B) needle-29 
leaved evergreen (C) and needle-leaved deciduous (D) trees. For each pixel, we 30 
used the output of 100 models (differing in the sampling of individuals within plots) to 31 
calculate 95% confidence intervals as a proxy of prediction uncertainty. To calculate 32 
the relative proportion of each leaf type per plot, individuals were weighted by their 33 
basal area (area-based leaf type). 34 



 35 

Fig. S4. Relationship between model uncertainty and model predictions for 36 
broadleaved evergreen (A), broadleaved deciduous (B), needle-leaved 37 
evergreen (C) and needle-leaved deciduous (D) forests. Modelling uncertainties 38 
(see also Fig. S3）are shown across predicted leaf-type gradients. Blue lines show 39 

the smoothed trend based on generalized additive models (GAMs). To calculate the 40 
relative proportion of each leaf type per plot, individuals were weighted by their basal 41 
area (area-based leaf type). 42 

43 



 44 

Fig. S5. The global distribution of forest leaf types (same as Fig. 2, but using 45 
individual-based leaf-type proportions instead of area-based leaf type data). A, 46 
Ternary map showing the global distribution of tree leaf type as predicted by a random 47 
forest model built from individual-based leaf-type proportions within plots (see 48 
Methods). Note that needle-leaved evergreen and needle-leaved deciduous forests 49 
are combined due to the low global coverage of needle-leaved deciduous trees. Red 50 
pixels represent broadleaved evergreen-dominated forests, green represents 51 
broadleaved deciduous forests and blue represents needle-leaved forests. B-E, 52 
Relative proportion of each leaf type within pixels. B, Broadleaved evergreen 53 
proportion. C, Broadleaved deciduous proportion. D, Needle-leaved evergreen 54 
proportion. E, Needle-leaved deciduous proportion. 55 



 56 
Fig. S6. The global distribution of broadleaved evergreen (A), broadleaved 57 
deciduous (B), needle-leaved evergreen (C) and needle-leaved deciduous (D) 58 
tree densities. Densities in stems per hectare. 59 



 60 
Fig. S7. The global biomass stored in broadleaved evergreen, broadleaved 61 
deciduous, needle-leaved evergreen and needle-leaved deciduous forests.  62 



 63 

Fig. S8. Global distribution of forest types as defined by leaf-type proportions. 64 
Pixels in which >60% (A) or >80% (B) of the forest area was covered by a single leaf 65 
type were assigned to that respective leaf type. Pixels in which none of the leaf types 66 
covered more than 60% (A) or 80% (B) of the forest area were categorized as mixed 67 
forest, whereby the two main types of mixed forest (broadleaved evergreen / 68 
broadleaved deciduous and broadleaved deciduous / needle-leaved evergreen) are 69 
shown with separate colors. To calculate the relative proportion of each leaf type per 70 
plot, individuals were weighted by their basal area (area-based leaf type).  71 



 72 

Fig. S9. Forested areas where future climates may no longer support prevailing 73 
leaf types. (same as Fig. 5 but using 80% as classification threshold of single 74 
forest types). To classify pixels into specific forest types, we established that if more 75 
than 80% of a pixel's forest area was covered by a single leaf type, it would be 76 
classified as that leaf type. Pixels where no leaf type covered more than 80% of the 77 
forest area were classified as mixed forest. To determine the relative proportion of 78 
each leaf type per plot, we considered the basal area of individual trees (area-based 79 
leaf type). Colored pixels on the map indicate areas that, by the end of the century 80 
(2071-2100), will face climate conditions that currently support a different forest type. 81 
The future climate conditions were represented using three climate change scenarios: 82 
low-emission (SSP1-RCP2.6; A, B), business-as-usual (SSP3-RCP7; C, D), and high-83 
emission (SSP5-RCP8.5; E, F) for the period 2071–2100. Panels A, C and E show the 84 
present forest types, while B, D and F show which forest type currently exists under 85 
the future climate expected in each pixel. 86 



 87 
 88 
Fig. S10. Expected change in leaf-habit climate envelopes at a global scale. 89 
Climatic threat to forest leaf-type suitability, calculated as the expected climate-driven 90 
change in leaf habit (% of evergreen). To represent future climate conditions, we used 91 
low-emission (SSP1-RCP2.6; A), business-as-usual emission (SSP3-RCP7; C) and 92 
rising-emission (SSP5-RCP8.5; E) climate scenarios for the period 2071–2100. B, D, 93 
F, Latitudinal variation in the expected proportion of leaf habit under current and future 94 
(2071-2100) climate conditions in abovementioned climate change scenarios (low-95 
emission, B; business-as-usual, D & rising-emission, F). Lines show mean values 96 
(solid lines) ± 1 standard error (shaded areas). 97 



 98 
Fig. S11. Expected change in leaf form climate envelopes at a global scale. 99 
Climatic threat to forest leaf-form suitability, calculated as the expected climate-driven 100 
change in leaf form (% increase or decrease in broadleaved versus needle-leaved tree 101 
proportions). To represent future climate conditions, we used low-emission (SSP1-102 
RCP2.6; A, B), business-as-usual (SSP3-RCP7; C, D), and high-emission (SSP5-103 
RCP8.5; E, F) climate change scenarios for the period 2071–2100. B, D & F, 104 
Latitudinal variation in the expected change in broadleaved proportions. To calculate 105 
the relative proportion of each leaf type per plot, individuals were weighted by their 106 
basal area (area-based leaf type). Lines show mean values (solid lines) ± 1 standard 107 
error (shaded areas). 108 



 109 
Fig. S12. Expected changes in leaf-type climate envelopes at a global scale. 110 
Climatic threat to forest leaf-type suitability, calculated as the expected climate-driven 111 
decrease in the leaf-type with the strongest decrease per pixel. To represent future 112 
climate conditions, we used low-emission (SSP1-RCP2.6; A), business-as-usual 113 
(SSP3-RCP7; C), and high-emission (SSP5-RCP8.5; E) climate change scenarios for 114 
the period 2071–2100. To calculate the relative proportion of each leaf type per plot, 115 
individuals were weighted by their basal area (area-based leaf type). B, D and F, 116 
Associated latitudinal variation in the expected leaf type changes. Lines show mean 117 
values (solid lines) ± 1 standard error (shaded areas). 118 



 119 
Fig. S13. Scatter plots showing the correlations of soil variables from the Soil 120 
Grids maps and the point-level WOSIS dataset. The correlations were evaluated 121 
for four variables, which were also used for forest leaf type modelling: soil clay content 122 
(A, mass fraction in %), soil silt content (B, mass fraction in %), soil pH (C) and sand 123 
content (D, mass fraction in %). 124 



 125 
Fig. S14. Spatial distribution of sample data (A) and variable importance of 126 
environmental features on leaf type variation using gridded (Soil Grids, B & C) 127 
and point-level (WOSIS, D & E) data of soil features. Blue points in panel (A) 128 
represent the 1,893 locations with a match between the point-level WOSIS data and 129 
a forest inventory plot (see Method Section 2.2). Cumulative importance of the first six 130 
principal components of climate, soil and topographic covariates in the variation of leaf 131 
habit (B, D) and leaf form (C, E) with soil information coming from Soil Grids (B, C) or 132 
WOSIS (D, E).  133 



 134 
Fig. S15. The global distribution of forest leaf types (same as Fig. 2, but using a 135 
CART model instead of a random forest model). A, Ternary map showing the global 136 
distribution of tree leaf type as predicted by a CART model built from area-based leaf-137 
type data (see Methods). Note that needle-leaved evergreen and needle-leaved 138 
deciduous forests are combined due to the low global coverage of needle-leaved 139 
deciduous trees. Red pixels represent broadleaved evergreen-dominated forests, 140 
green represents broadleaved deciduous forests and blue represents needle-leaved 141 
forests. B-E, Relative coverage of each leaf type within pixels. B, Broadleaved 142 
evergreen coverage. C, Broadleaved deciduous coverage. D, Needle-leaved 143 
evergreen coverage. E, Needle-leaved deciduous coverage. 144 



 145 
Fig. S16. Correlations between climatic principal components and soil 146 
characteristics derived from Soil Grids layers and WOSIS dataset. Colors 147 
represent magnitude and directions of correlation coefficients. Blank blocks indicate 148 
insignificant correlative relationships.  149 



 150 
Fig. S17. The extent of interpolation and extrapolation across all forest pixels 151 
across the globe. Values represent the percentage of interpolation based on principal 152 
component analysis, that is, the percentage of bands that fall into the convex hull 153 
space.  154 

155 
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