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Abstract—Conservation of the natural ecosystem is a hot topic
that is receiving increasing attention not only from the scientific
community, but from the entire world population. Forests and
woodlands are major contributors to climate change mitigation,
able to absorb significant amounts of carbon dioxide. This
paper proposes a novel real-time fire monitoring and detection
system based on Digital Mobile Radio (DMR) nodes and a
Social Internet of Things (SIoT) platform on which fire detection
decision making algorithms have been implemented. The results
obtained by employing a K-Nearest Neighbors (KNN) algorithm
and a Recurrent Neural Network (RNN) show the ability
to detect the slightest variation in the observed parameters,
determining the direction and speed of fire propagation with
an accuracy of more than 98%.

Index Terms—IoT networks, Ambient intelligence, IoT archi-
tectures.

I. INTRODUCTION

Over the past few decades, climate change has become
a defining factor, leading to unpredictable shifts between
abundant rainfall within a short span and prolonged peri-
ods of drought, along with other climatic events deviating
from seasonal norms. At the same time, there is a growing
emphasis on policies aimed at mitigating pollution through
proactive and reactive measures. Within the literature, nu-
merous preventive policies have emerged, leveraging the
Internet of Things (IoT) in specific application scenarios,
such as industry [1], smart cities [2], and mobility [3]. These
IoT-based approaches offer potential solutions to address
environmental challenges caused by climate change.
Hurricanes, floods, snowstorms, low temperatures, cyclones,
and typhoons are highly destructive weather elements that
remain difficult to control, except through intelligent urban
development policies aimed at minimizing their impact on the
hydrological system. Additionally, extreme weather events,
droughts, and climate change contribute significantly to fires,
which increasingly threaten regions at high risk of desertifi-
cation. These interconnected factors form the basis of global
desertification processes, affecting a quarter of the world’s
population. The European Forest Fire Information System
(EFFIS) [4] utilizes satellite imagery from the European
Copernicus project to analyze and monitor fire incidents.
Since the start of 2022, over 600,000 hectares of forests
have been consumed by fires in the European Union, with
arson fires posing a significant threat to ecosystems, human

life, and causing immense economic and social damages.
Furthermore, fires disrupt the natural balance, elevating risks
of landslides and avalanches. To address these challenges,
a reactive approach is required in the short and medium
term, involving forest monitoring to enable early interven-
tion. Presently, fire risk prevention and mitigation practices
are insufficient, highlighting the crucial role of early fire
detection. Currently, ”lookout” operators stationed at strate-
gic points observe specific areas, but such human-centric
practices have limitations. Information and communication
technologies (ICT) offer a promising solution, supplementing
or replacing human sensory practices over vast territories,
thus enhancing fire management capabilities.
Recent advancements have given rise to monitoring systems
employing strategically placed cameras, which are remotely
operated from monitoring centers. Although the introduction
of cameras has the potential to facilitate human monitoring
and control activities, the presence of an operator remains
indispensable for correctly interpreting the gathered data [5].
A progressive step in the evolution of firefighting systems
involves partially replacing human operators with artificial
intelligence (AI) tools. This transformation is made feasible
by the development of high-performance digital cameras,
coupled with advanced image processing techniques and
the utilization of machine learning (ML) algorithms. Conse-
quently, firefighting systems can now rely entirely on image
recognition. Through ML techniques, it becomes possible
to identify potential risk situations with a certain level of
accuracy [6]. However, it is important to consider that ML-
based models introduce additional factors that influence the
system’s accuracy and may lead to false alarms. Moreover,
these models demand substantial computational capabilities
from the involved devices. Additionally, setting up cameras
necessitates a suitable infrastructure for power supply, image
transmission, and processing. The objective of this study
is to address the aforementioned limitations by proposing
an innovative real-time fire detection system using a Social
Internet of Things (SIoT) approach. The system processes
data from a network of interconnected sensors to achieve this
goal. These sensors, spread across various network nodes,
continuously monitor and transmit real-time data related
to temperature, humidity, atmospheric pressure, CO2, CO,



ethanol, ammonia, and other relevant gases. By correlating
this data appropriately, the system can effectively identify the
presence or occurrence of a forest fire outbreak. To facilitate
seamless communication, the wireless sensor network (WSN)
nodes and gateways utilize the Digital Mobile Radio (DMR)
standard. The acquired information from DMR nodes is
relayed to a DMR gateway, which further transmits it to an
SIoT platform called Lysis [7]. The system ensures that DMR
nodes can directly communicate through multicast/broadcast
with civil defense and forest rangers’ equipment. This direct
communication enables the provision of real-time informa-
tion, thereby enhancing emergency response time in critical
situations.

The rest of the paper is organized as follows: in section
II, an overview of state of the art is presented. The system
architecture and design of the proposed fire-fighting system
are described in section III. The system implementation,
scenario and results are discussed in section IV. Finally,
conclusions are drown in section V.

II. RELATED WORKS

There are a number of works in the literature that have
inspired the search for an intelligent and innovative solution
that has a low environmental and infrastructural impact and,
most importantly, can reduce the response time by response
authorities. Specifically, the works analyzed can be divided
into two broad categories: those using ML and image pro-
cessing and those using sensors to analyze environmental
parameters. ML and image processing techniques are funda-
mental tools for information extraction, pattern recognition,
classification and recognition of objects/patterns in images,
and understanding contextual information. T. Divya et al., [8]
process satellite images based on intensity levels to identify
fire-affected regions (hot spots). Agglomerative hierarchical
clustering algorithms are used to identify these regions and
fire propagation directions.Fire identification by image anal-
ysis is based on the analysis of RGB pixel values.

E.E. Maeda et al. [9], process multi-temporal satellite
images acquired from MODIS sensors and employ artificial
neural networks (ANNs) to identify areas of high forest fire
risk. In this work, samples of areas where forest fires have
been detected were selected to train, validate and test the
ANNs, yielding promising results in terms of fire prediction
speed and accuracy.

On the analysis of image acquisitions, a system based on
devices placed locally in the scenario of interest is proposed
by N. Ya’acob et al., [10]. The proposed acquisition system
essentially consists of two devices: a raspberry Pi Zero
W and a Pi Camera V2 module. The produced images
are processed and analyzed using Matlab. R. D. Aachal
Ramteke et al., [11] developed an IoT platform based on a
Raspberry Pi microcontroller equipped with a smoke sensor
and camera is proposed. The detection system relies on color
and motion information to minimize false detections. This
information is processed together with that of the smoke
sensor. When a fire is detected, the device sends an SMS to
the monitoring station via GSM. With recent developments
in unmanned aerial vehicles (UAVs), real-time monitoring for
military and civilian applications employing these devices is
gaining in popularity. A forest fire monitoring and detection

system has been designed using UAVs equipped with sensors
and cameras [12]. Algorithms based on image comparison,
infrared detection, and correlation of acquired data (e.g.,
temperature) are used to monitor forest fires. In [13], an early
fire detection system based on the use of drones is presented.
The work refers to networks of UAVs through which to
acquire thermal images, RGB, and positioning and distance
data, useful in the fire mitigation phase. To process data
from multiple sources, both traditional and deep learning-
based computer vision algorithms have been developed and
employed. In general, systems that rely on image processing
have advantages in terms of fire detection accuracy, but at
the same time they have several disadvantages: hardware
system implementation and maintenance costs and high com-
putational capacity requirements. The limitations encountered
in the ML-image processing pair were partially overcome
by using different approaches based on the use of sensors
that analyze environmental parameters. P. R. Reddy et al.,
[14] propose a method that can improve the accuracy of
forest fire detection performance of evergreen and temperate
forests by detecting temperature and atmospheric carbon
dioxide level. B. Montrucchio et al., [15] deal with dense
air quality monitoring networks based on low-cost sensing
strategies. These experiments include analysis of vehicular
traffic, investigation of pollution using different means of
transportation, and analysis of pollution during special events.
The automatic fire detection system proposed by U. Dampag
et al. in [16] includes two sensors: smoke sensor MQ-2
with very high sensitivity toward propane, methane, LPG,
smoke, alcohol, carbon monoxide and hydrogen; fire sensor.
Sensors are mounted on the slave nodes which acquire the
environmental values of the area where they are located
and then send this information to the leader nodes via
RF. Once received, the leader node analyzes the data and
communicates the presence of fire to the control station
via GSM. Despite the many proposals from the scientific
world, we are very far from implementing real preventive
policies causing immediate repercussions on green areas with
particular interest on forest fires. A SIoT-based system for
real-time detection of forest fires is proposed. The system
is scalable, the sensor network is self-configuring based
on the positioning of DMR nodes, and can be deployed
without the need for 4G/5G network coverage. To cope with
the high influence and uncertainty of some parameters in
order to detect limit/cancel false positive fire cases, two
decision-making processes were tested within the SIoT Lysis
platform: the K-Nearest Neighbors (KNN) algorithm and a
Recurrent Neural Network (RNN). The proposed work has
the following strengths summarized as follows:

1) the system is easily implemented and installed;
2) the cost of the proposed system is lower than camera-

based solutions;
3) the DMR node system is energy self-sufficient;
4) it exploits the DMR network at long range, freeing

itself from the limitations of the Wi-Fi network or the
4G LTE network, which does not have 100% coverage
especially in mountainous areas;

5) the network is highly scalable and through the imple-
mented multi-hop, the gateway can receive data from



Fig. 1: DMR System

Fig. 2: DMR Node - bidirectional Tx/Rx at 144 MHz

DMR nodes that cannot reach it directly;
6) the network is self-configuring because nodes are ge-

olocated, so the social relationships between nodes
implemented in the SIoT Lysis platform take into
account the physical distance between DMR nodes;

III. SYSTEM ARCHITECTURE AND DESIGN

The complete system shown in Fig. 1 consists of a
hardware entity, a data transmission system, and a software
system based on the SIoT Lysis platform for data storage and
real-time fire danger detection. The system shown in Fig. 1
is designed to work completely autonomously without any
special human intervention, restarting all processes in case
of temporary power source failure.

A. The DMR hardware system

The DMR node consists of a board to which sensors, a
charge controller, rechargeable batteries and a small solar
panel are connected, making the individual node totally
energy autonomous. The transmission standard is DMR op-
erating on 144 MHz and 430 MHz, and is compatible with
the standard currently used by civil defense. In detail, the
modules used are summarized below:

• the 4FM YSF NXDN DSTAR P25 DMR module
shown in Fig. 2 represents the core of the fire detection
node. The node manages the main smoke detection sen-
sors and sends them in VHF/UHF to the DMR gateway.
In addition, the node is powered through rechargeable

batteries connected to a charge controller and a suitably
sized solar panel. This node is based on a Raspberry Pi
Zero 2W+ and a transmission module compatible with
the DMR standard;

• the BME688 4-in-1 Air Quality Breakout (Gas, Temper-
ature, Pressure, Humidity) sensor has updated features
as a gas scanner that can react to volatile organic
compounds (VOCs), volatile sulfur compounds (VSCs)
and the presence of carbon monoxide and hydrogen to
give a general measure of indoor or outdoor air quality;

• the MQ-x sensors family integrate air parameters col-
lected using the BME688 sensor, with smoke gas sensor
(MQ-2), carbon monoxide sensor (MQ-7), and carbon
monoxide combustible gas sensor (MQ-9), respectively;

• a solar panel (10W 6V 1700mA 260x140x2.5mm)
equipped with USB Charge for Outdoor Working sup-
port was appropriately sized to support the energy needs
of the node throughout the day, charging the 3500mAh
- 10A 18650 batteries;

• the DMR gateway is based on a Bewinner Hotspot
Duplex MMDVM module, 32 Bit High Performance
Arm processor MMDVM Hotspot Module Supports
DMR, P-25, D-Star and System Fusion for Raspberry Pi
with SMA Antenna. This shield houses on a Raspberry
Pi 4 connected to the cloud through 4G LTE network.

From an energy standpoint, the system has been designed
to achieve complete self-sufficiency and effectively compen-
sate for the most critical days of the year with minimal

TABLE I: DMR node energy conditions.

State Energy consumption Operating timeline

State ON 220 mAh 0-150 sec
Data acquisition 246 mAh 151 - 170 sec

Data sending 266 mAh 171 - 180 sec
Deep sleep mode 600 uAh 181 - 720 sec

Daily energy consumption 0.25 Wh H24
Solar panel Energy generation Operating timeline

Max current = 2 Ah Average current 40 mAh H24
Daily average 19.2 Wh H24

Power bank Energy Storage Operating timeline
Output (max): 5V 3A Capacity = 100.000 mAh H24

Capacity = 500 Wh



reliance on the charging contribution from the storage system.
The DMR acquisition system underwent analysis in four
distinct time phases. The initial 150 seconds following power-
up were dedicated to configuring certain sensors requiring
calibration to their optimal settings. During this stage, the
sensors were not actively acquiring data, and the current
draw was measured. Subsequently, a period of 20 seconds
was allocated for data acquisition, followed by an additional
10 seconds for data packing and transmission through the
DMR standard. After 180 seconds, the system entered deep
sleep mode and remained in this state for 9 minutes. This
timing was programmed to ensure that the system sampled
5 readings every hour, one every 12 minutes, while keeping
power consumption within manageable limits. The measured
power consumption during this phase amounted to 0.25 Wh.
Concurrently, measurements and calculations were performed
on the energy supply of a solar panel measuring 10x20
cm, with a stated power output of 10 W and 5V. These
calculations took into account average weather conditions,
seasonality, and geographical location. The reference data
relied on an average annual solar irradiation of 4.8 kWh/m2

per day. Based on these data and assuming a panel efficiency
of 20%, the average daily energy output was determined to
be 19.2 Wh. As evident from the data presented in the table,
the solar panel’s contribution proved sufficient to offset the
entirety of the DMR system’s energy consumption. Finally,
the storage system demonstrated its capacity to withstand
adverse weather conditions, as it possesses sufficient capacity
to allow for energy input even when there is minimal or
negligible input from the solar panel.

B. Lysis-compliant modules

The DMR gateway collects information from all DMR
nodes and transmits the data to the SIoT Lysis platform, using
the 4G Long Term Evolution (LTE) network. The SIoT Lysis
platform is built for distributed IoT applications involving
socially connected objects. The objects are able to establish
social relationships independently of their owners, with the
advantage of improving network scalability and information
discovery efficiency. The overall architecture of the SIoT
Lysis platform consists of four functional levels:

• the lower level is made up of the “things” in the real
world;

• the virtualization level, which interfaces directly with
the real world and is made up of Social Virtual Objects
(SVOs);

• the level of aggregation is responsible for composing
different SVOs to set up entities with augmented func-
tionalities called micro engines (MEs);

• the last level is the application level in which user-
oriented macro services are deployed.

In order to exploit the Lysis architecture advantages, the
virtualization layer elements (SVOs) were designed and im-
plemented, representing DMR nodes. Each DMR node has
its own SVO with which it communicates to send and record
information relating to GPS position, air quality parameters
and smoke levels (DMR-SVO).

The data from the SVOs represent inputs to the fire
detection decision making tools. DMR sensors data are essen-
tially raw data that depending on humidity and temperature

Fig. 3: The scenario employed for preliminary testing with 7
DMR nodes and DMR gateway within an area of 2 kmq.

conditions are subject to variation that can generate false
positives. In the top SIoT platform Lysis, a KNN and an
RNN were implemented and tested. The KNN is one of the
simplest machine learning algorithms based on the supervised
learning technique, it assumes the similarity between the new
cases/data and the available ones and places the new case in
the most similar category to the available ones, and stores
all the available data and classifies a new data point based
on the similarity. The KNN algorithm has been working on
the dataset and when it receives additional new data from the
DMR-SVOs, it classifies them into a category very similar
to the previous data.

RNNs have the advantage of having neurons that can also
admit loops and/or can also be interconnected to neurons of
a previous level. DMR-SVOs can provide information that is
subject to measurement error or altered by particular weather
conditions. The SIoT Lysis platform handles dynamic in-
formation over time and thus learns to build and instruct a
network with memory (RNN) so that it can observe changes
and recognize different actions. Output feedback will enable
the network to base its decisions on past history.

IV. SYSTEM IMPLEMENTATION

A. Scenario

The proposed basic system consists of 7 DMR nodes
working independently of each other. Each node is equipped
with sensors for detecting forest fire smoke, as well as other
useful parameters for studying dynamics such as temperature,
humidity, atmospheric pressure, and UV index. DMR nodes
are equipped with on-board GPS geolocation, are synchro-
nized with each other, and every 5 minutes make a data
transmission. The real scenario employed for the tests is
depicted in Fig. 3.

The node arrangement allows the detection of fire smoke
from any direction and direction. The tests were conducted
during several days of ”mistral” type wind, typical of the
Sardinia region, with west/northwest (WNW) direction. The
tests were conducted in compliance with current regulations
and according to the authorization of state authorities. The



Fig. 4: Trend of temperatures (a), and CO (b) detected by the
DMR nodes due to the presence of a fire with WNW origin.

Fig. 5: KNN based on values of DMR-SVOs and the three
main cases verified in the decision making process.

smoke source was positioned WNW with respect to the
proposed scenario, so that nodes 1 and 2 were the first
to respond to smoke stresses. Thereafter, detections were
reported by nodes 3, 4 and 5, and finally by nodes 6 and
7. The timing of detection plays a very important role in
determining the direction of origin of the fire front. Typically,
the first nodes to detect smoke are also the ones closest
to the fire, so they are critical in identifying the direction
of the fire and implementing appropriate countermeasures.
Smoke propagation situations were artificially created from
burning of organic material of the brushwood type. The DMR
nodes’ synchronized transmission is received by the DMR
gateway, which forwards the data in real time to be processed
by the SIoT Lysis platform. The DMR nodes detected an
increase in temperatures and a surge in CO and CO2 values
simultaneously with the acquisition of the values.

B. Data acquisition and results

The BME688 and MQ-x sensors were tested in the lab-
oratory in a controlled environment before being placed in
an outdoor environment, showing no significant deviations
other than those stated by the manufacturer. As can be seen
in Fig. 4, the trend of the detections of the 7 DMR nodes
shows an overlap in the first part of the graph, in the time
interval from about 10:00 to 13:10. At 1:00 p.m., the smoke
source positioned WNW relative to the system of the 7
DMR nodes positioned as in Fig. 4(a) was activated. The
tests were conducted on a mistral wind day to simulate the
same conditions as a high fire risk day. This was critical in
assessing the worst-case scenario in which responders would
face the emergency. The system promptly responded to the
stresses by detecting not only an increase in temperatures
due to the presence of hot air caused by the fire, but also
differences in the temperatures detected by the various DMR
nodes. In fact, the nodes closest to the source (i.e., 1 and 2)
were the first to detect the temperature increase. Similarly,
the other nodes farthest from the source also ”noticed” the
presence of an external heat source affecting the normal daily
temperature trend. The greater the distance of the nodes, the
smaller the temperature increase, as shown for DMR nodes
3, 4, 5 compared to DMR nodes 1 and 2, similarly for DMR
nodes 6 and 7 compared to DMR nodes 3, 5 and 4. The
second consideration that needs to be discussed concerns
the peaks of the individual curves. The shorter the distance
between the DMR nodes and the fire front, the shorter the
time in which the curve reaches the maximum temperature
peak. More distant nodes will arrive at the peak with some
delay. Therefore, the greater the distance between the fire
front and DMR nodes, the longer the response time and the
smaller the modulus of the peak temperature detected by
fire. At 2:20 p.m., the source representing the fire was cut
off, and the curves dropped and asymptotically overlapped
due to natural conditions, and without an additional external
source to influence the trends. The trend of CO detected
by individual DMR sensors is shown in Fig. 4(b). The
characterizing aspects from these curves mainly concern the
amplitude modulus and the delay of detection of the change
in CO concentration. Regarding the first aspect, the greater
the distance between the fire source and the DMR node,
the lower the concentration detected by the DMR nodes



TABLE II: RNN confusion matrix

Real
Data

Predicted Data
Fire detection Fire absence

Fire detection 98.27 2.13
Fire absence 1.73 97.87

Sum 100 100

due to the greater dispersion of the smoke being detected.
Due to the greater distance from the smoke source, nodes
6 and 7 measure lower concentrations than nodes 1 and 2.
Similarly, the DMR nodes furthest from the smoke source
detect concentrations with a time delay compared to the
nearest nodes. In the figure, the rightward shift of the nodes
moving away from the fire source can be seen. Concomitantly
with the temperature readings and other parameters, CO data
were processed to make a prompt detection of fire criticality
by determining its propagation speed, and direction. These as-
pects allow the SIoT Lysis platform substantial time savings
in initiating the rescue machine and all policies necessary to
fight and extinguish forest fires in the shortest possible time.

In Fig. 5 there are two categories characterized by the
purple and blue dots. The purple category represents the
temperature/CO value pairs with which the KNN was used
to identify fire-free configurations. Since from the best of our
knowledge, no classified datasets exist, 100 tests were done
which generated the point cloud shown in Fig. Similarly,
the blue category represents the clouds of temperature/CO
pairs employed to test KNN, generating smoke from burning
organic material such as brushwood and small branches. The
three subfigures indicate the evolution as the transition from
no fire situation to fire situation occurs, passing through a
region of uncertainty. The SIoT Lysis platform can monitor
the evolution of the ”new data point” and provide real-time
alert as soon as it is associated with the fire category. Finally,
Table II summarizes the confusion matrix of the collected
data, which highlights the high accuracy (i.e., over 98%)
of the RNN in correctly detecting forest fire with very low
values of false positives and false negatives. The recursive
structure of the RNN jointly with the work done by the DMR-
SVOs allow limiting the cases of uncertainty by applying
oversampling of the acquired data through queries made by
the SIoT Lysis platform to the DMR nodes.

V. CONLCUSIONS

This paper presents a new system based on the SIoT
Lysis platform for real-time forest fire detection, based on a
network of sensors attested on DMR nodes. The proposed
system models environmental data streams by constantly
monitoring air quality through dedicated prototype ”elec-
tronic noses,” which the authors have fabricated. Acquisition
of raw data is typically affected by environmental conditions,
requiring refined processing in order to determine whether a
fire condition has occurred or not. DMR-SVOs were devel-
oped to manage social relationships between nodes, and two
fire detection decision making techniques were employed.
The KNN was adopted during a preliminary phase of tests
conducted to evaluate sensor behavior. However, in some
cases the KNN may show uncertainty depending on the
values associated with the ”new data point.” The limitations
encountered with the KNN were largely overcome using an

RNN, with more than 98% correct detection of the presence
of forest fire smoke and nearly 98% correct detection of the
absence of fire. The design architecture proved to be highly
scalable and responsive to the stimuli it was subjected to in
a real mountain scenario.
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