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Abstract A microscopic understanding of (anti)deuteron
production in hadron–hadron collisions is the subject of many
experimental and theoretical efforts in nuclear physics. This
topic is also very relevant for astrophysics, since the rare
production of antinuclei in our Universe could be a door-
way to discover new physics. In this work, we describe
a new coalescence afterburner for event generators based
on the Wigner function formalism and we apply it to the
(anti)deuteron case, taking into account a realistic particle
emitting source. The model performance is validated using
the EPOS and PYTHIA event generators applied to proton–
proton collisions at the centre-of-mass energy

√
s = 13 TeV,

triggered for high multiplicity events, and the experimental
data measured by ALICE in the same collision system. The
model relies on the direct measurement of the particle emit-
ting source carried out by means of nucleon–nucleon femto-
scopic correlations in the same collision system and energy.
The resulting model is used to predict deuteron differential
spectra assuming different deuteron wavefunctions within
the Wigner function formalism. The predicted deuteron spec-
tra show a clear sensitivity to the choice of the deuteron wave-
function. The Argonne v18 wavefunction provides the best
description of the experimental data. This model can now be
used to study the production of (anti)deuterons over a wide
range of collision energies and be extended to heavier nuclei.

1 Introduction

The microscopic understanding of the formation of light
nuclei in high-energy collisions is a fundamental open prob-

a e-mail: maximilian.horst@tum.de (corresponding author)

lem that is being addressed since several decades both experi-
mentally and theoretically. The main question is how nuclear
bound states are formed and their structure emerges from the
properties of the strong interaction and the laws of Quantum
Chromodynamics. This problem is also relevant in astroparti-
cle physics, where insights on the production mechanism are
necessary to interpret future measurements of antinuclei in
cosmic rays by space-borne experiments searching for dark
matter [1–5]. Indeed, it has been suggested that, among the
products of dark matter particle annihilation and decay, light
antinuclei could be a promising signal to search for, since the
only known background source are cosmic rays interactions
with the interstellar medium. As cosmic rays and the inter-
stellar medium mostly consist of hydrogen (90%) and helium
(8%), and only in small percentage of heavier nuclei, most
of the relevant interactions for the production of antinuclei
in the Galaxy are proton–proton (pp) and proton-helium col-
lisions. Studying these processes in the laboratory provides
a unique opportunity to emulate under controlled conditions
the production of antinuclei in the Galaxy.

The production of light nuclei has been measured at fixed-
target and collider experiments using pp and nuclear colli-
sions up to Pb–Pb over a broad range of beam energies, rang-
ing from the AGS [6–9], to the SPS [10], RHIC [11–16],
and the LHC [17–24], where the maximum centre-of-mass
energy of

√
s = 13 TeV is reached.

From the theory side, the production of light (anti)nuclei is
mainly described by the statistical hadronisation or the coa-
lescence approach. Statistical hadronisation models (SHMs)
assume that nuclei are emitted from a source at hadron-
chemical and thermal equilibrium and their abundances are
fixed at the so-called chemical freeze-out [25–30]. Yields
depend on the hadron mass, on the temperature and the vol-
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ume of the system at freeze-out, and on the conservation of
quantum numbers, which is imposed to hold on average if the
volume of the produced system is large (e.g. in Pb–Pb colli-
sions), or exactly if the volume is small (e.g. in pp collisions).
The SHM is a macroscopic model: it predicts hadron yields
requiring the equilibrium conditions, without any control on
the microscopic production mechanism. Also, no detailed
information on the structure of bound objects is contained in
the model [31] and the predicted yields are integrated over
transverse momentum.

On the contrary, coalescence aims at a microscopic
description of the formation of (anti)nuclei, being the
result of final state interactions between (anti)protons and
(anti)neutrons. Coalescence was first introduced in the 1960s
to explain the production of deuterons in proton-nucleus col-
lisions at the CERN SPS [32,33] and has been employed
since then to describe the production of light nuclei in rela-
tivistic heavy–ion as well as pp collisions [2,34–39]. In this
approach, nucleons that are close to each other in space and
momentum can coalesce to form a nucleus [32,33] when the
system produced in high-energy hadronic or nuclear interac-
tions undergoes freeze-out. The early works of Pearson and
Butler [32], and Kapusta [33] emphasized the momentum
dependence of the coalescence probability, by identifying
the coalescence momentum p0 as the main parameter gov-
erning the probability of cluster formation. Sato and Yazaki
[34] introduced the density matrix formalism to calculate
the nucleus formation probability, given by the integral over
coordinate space of the projection of the proton and neu-
tron wavefunctions over the deuteron one. They assumed
no correlation between spatial and momentum distributions,
nor any dynamical correlation between the proton and the
neutron emitted from the particle source created after the
hadron–hadron collision.

Following works [35,36] drew attention to the constraint
in coordinate space to be considered in heavy-ion collisions,
where the source is a spatially-extended and collectively-
expanding system. In their seminal work, Scheibl and Heinz
[36] included a detailed modelling of the system and pointed
out that the source could be identified with the volume out
of which particles are emitted with similar momenta, the
size of which can be extracted by measuring two-particle
momentum correlations with femtoscopy techniques [40–
42]. In recent years, a similar approach was employed to
explain the production of (anti)nuclei in pp and p–Pb colli-
sions [2,37], where the final-state particles are expected to
occupy a small volume, of the order of the size of the pro-
ton (rp ≈ 1 fm) and even smaller than the typical size of
a light nucleus (for deuteron, rd ≈ 2 fm). A key aspect of
these works is having identified that the coalescence process
depends on the size of the hadron emission region and more
specifically, on the size of the nucleus relative to the size of

the source. This relation provides the relevant length scale
for the process [2,39,43].

Using a Wigner function representation of nucleons and
nuclei, Blum et al. [37,39] and Mrowczynski et al. [38]
obtained a relation between femtoscopic correlations and
coalescence, being the continuum and discrete result of final
state interactions among nucleons, respectively. Notably,
they employed a Gaussian wavefunction for the deuteron,
which allows for a fully analytic calculation of the coales-
cence parameter. All the mentioned models are based on the
Wigner formalism and differ by the details of their imple-
mentation, including how the source size is accounted for.
However, they have in common that they provide an analyt-
ical or numerical solution for the coalescence probability to
be directly compared with experimental data.

Motivated by the need to model the production of light
antinuclei in cosmic ray interactions for the estimate of
their flux near Earth, recent developments of the coalescence
model focus on pp collisions, where small particle sources are
expected. In particular, the work by Kachelriess et al. [44,45]
provides a solution to apply coalescence as an afterburner to
particle production. In their approach, Monte Carlo (MC)
event generators are used to obtain two-nucleon momen-
tum correlations from the simulated pp collision events. To
form a deuteron, the Wigner function-based coalescence is
employed on an event-by-event basis in the WiFunC frame-
work [45]. The size of the formation region, a free parameter
of the model, is taken as collision process-dependent. This
parameter is fitted to ALICE data in [44], whereas it is pre-
dicted in [45] within WiFunC from two-particle momentum
correlations, thus being limited to the accuracy of the descrip-
tion of the two-nucleon correlations native to the generators.
It is shown that the predicted size parameter is consistent
with ALICE femtoscopy data for the baryon emitting source
[46] and is close to 1 fm, from e+e− to pp collisions.

In our work, inspired by [45], we provide a coales-
cence afterburner that takes into account realistic particle
emission and correlation, to be used to simulate event-by-
event deuteron and antideuteron1 production in high-energy
hadronic collisions. We focus on pp collisions due to their
relevance for the searches for antinuclei in cosmic rays as
potential signatures for dark matter particles. We chose to test
and validate our model by simulating deuteron production in
high multiplicity pp collisions at

√
s = 13 TeV because this

corresponds to the only data sample for which simultaneous
measurements of deuteron yields and baryon source radius
are available [24,46]. As it will be evident later, the size of

1 We assume that the formation mechanism of antinuclei and nuclei in
high-energy collisions is the same. This is justified by the present evi-
dence that the force responsible for the nuclear binding, a residual of the
strong force among partons, acts in the same way among antinucleons
inside antinuclei as it does among nucleons inside matter nuclei [47].
In the following, we omit the prefix “anti” for brevity.
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the emitting source is a key ingredient of our implementa-
tion, allowing us to provide a realistic model for deuteron
production.

First, we generate pp collision events using two distinct
MC generators, EPOS 3 [48,49] and PYTHIA 8.3 [50], cho-
sen for their known capability to reproduce most features of
the LHC pp data. Then, the momentum distributions of the
final state nucleons are tuned to data and are used as inputs for
the afterburner. The latter is implemented based on a state-
of-the-art Wigner-function coalescence approach, described
in Sect. 2. Compared to previous approaches, we improve the
generator-borne description of the nucleon-emitting source,
as described in Sect. 3, by including (a) a realistic account
of its size derived from the measurement of two-baryon cor-
relations, and (b) a modelling of the cocktail of short-lived
hadron resonances, which lead to a delayed nucleon emis-
sion. Using this improved framework, we predict the differ-
ential deuteron spectra with the Hulthén [41], Argonne v18

[51] and Chiral Effective Field Theory (N4LO) [52] wave-
functions, moving past the traditional Gaussian wavefunction
approach, and compare the results to the measured spectra.
We discuss our results for the deuteron pT distributions as
well as for the coalescence parameter B2 in comparison to
ALICE data in Sect. 4.

2 Wigner function formalism

As mentioned in Sect. 1, with the use of Wigner functions,
it is possible to describe the production of nuclei via coales-
cence. In the process of deuteron formation via coalescence,
the interactions of the nucleons of the pair with the rest of
the particles are assumed to be subdominant due to the low
particle density [42]. Hence, the Lorentz-invariant yield of
deuterons with momentum �P can be written as2

γ
dNd

d3P
= Sd

(2π)4

∫
d4x1

∫
d4x2

∫
d4x ′

1

∫
d4x ′

2

×Ψ ∗
d,P

(
x ′

1, x
′
2

)
Ψd,P (x1, x2)

×ρ1,2
(
x1, x2; x ′

1, x
′
2

)
, (1)

where Ψd,P (x1, x2) is the bound-state Bethe–Salpeter ampli-
tude describing the deuteron, ρ1,2 is the density matrix of the
two nucleons, and Sd = 3/8 is a factor that takes into account
spin-isospin statistics.

We assume that the two-nucleon density matrix can be
factorised into single-nucleon densities

ρ1,2
(
x1, x2; x ′

1, x
′
2

) = ρ1
(
x ′

1; x1
)
ρ1
(
x ′

2; x2
)
. (2)

2 In this derivation, three vectors and four vectors are represented with
an arrow (�a) and in italic (a), respectively.

The single nucleon density ρ1 can be written in terms of the
single particle Wigner function f W1 [37]

ρ1
(
x, x ′) =

∫
d4k

(2π)4 eik(x
′−x) f W1

(
k,

x + x ′

2

)
. (3)

Moreover, following the procedure described in [39], the
deuteron Bethe–Salpeter amplitude can be written factoring
out the motion of the deuteron

Ψd (x1, x2) = e−i P·rd ϕd(r), (4)

where rd is the space-time position of the deuteron, P its
four-momentum, and ϕd(r) is the deuteron spatio-temporal
wavefunction.

Hence, the deuteron spectrum takes the form

γ
dNd

d3P
= Sd

(2π)4

∫
d4rd

∫
d4q

(2π)4

∫
d4r D̃(q, r)

× f W1

(
P/2+q, rd+ r

2

)
f W1

(
P/2−q, rd− r

2

)
,

(5)

where we define the relativistic internal Wigner density as

D̃(q, r) =
∫

d4ξ eiqξ ϕd

(
r + ξ

2

)
ϕ∗

d

(
r − ξ

2

)
. (6)

Adapting the Wigner approach used in [45] to a four-
dimensional space leads to

γ
dNd

d3P
= Sd

(2π)4

∫
d4r

∫
d4rd

∫
d4q

(2π)4 D̃(q, r)

×Wnp (P/2 + q, P/2 − q, r, rd) , (7)

where we defined

Wnp (P/2 + q, P/2 − q, r, rd)

= f W1

(
P/2 + q, rd + r

2

)
f W1

(
P/2 − q, rd − r

2

)
.

(8)

Using the smoothness and equal-time approximations, as
done in [39], in the pair rest frame (PRF) we obtain P =
(M, �0), q = (0, �q) and r = (t∗, �r∗), and the Bethe–
Salpeter amplitude becomes independent of time in the non-
relativistic limit

Ψ (q, r) → Ψ
(�q, �r∗) . (9)

Defining t∗1 and t∗2 the emission time of the two nucleons
in the PRF, in Eq. 7 one can write the relative distance of
the nucleons as r = (t∗1 − t∗2 , �r ) and the center-of-mass
coordinate of the nucleons as rd = (r0

d , �rd). Therefore, the
integral over the four-momentum q becomes an integral over
the momentum �q

γ
dNd

d3P
= Sd

(2π)7

∫
d4r

∫
d4rd

∫
d3q D(�q, �r)

×Wnp

( �P/2 + �k, �P/2 − �q, r, rd

)
, (10)
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where D(�q, �r) is the Wigner density in a three-dimensional
space. The time of kinetic freeze-out, r0

d = t f , represents
the moment in which the momentum of the final-state parti-
cles is fixed. Separating the space- and time-integrals, Eq. 10
becomes

γ
dNd

d3P
= Sd

(2π)7

∫
d3r

∫
d3rd

×
∫

dt∗
∫

dt f

∫
d3q D(�q, �r)

×Wnp

( �P/2 + �q, �P/2 − �q, �r , �rd, t
∗, t f

)
. (11)

Assuming that t f is fixed and is the same for all particles, and
considering that the particle yield is fixed at a common time
(chemical freeze-out), the integral over t f can be omitted. In
addition, due to the time equalisation in the PRF 2πδ(t∗ −
teq), choosing arbitrarily teq = 0 one obtains t∗ = 0. Hence,
the integration over t∗ in Eq. 11 removes the dependence on
t∗, giving, as a result, a genuine three-dimensional equation3

γ
dNd

d3P
= Sd

(2π)6

∫
d3r

∫
d3rd

∫
d3q

×D(�q, �r)Wnp

( �P/2 + �q, �P/2 − �q, �r , �rd

)
. (12)

The three-dimensional Wigner function of the deuteron
D(�q, �r) is defined as

D(�q, �r) =
∫

d3ξ e−i �q·�ξ ϕd(�r + �ξ/2) ϕ∗
d (�r − �ξ/2). (13)

Notably, the choice of the deuteron wavefunction ϕd affects
only the term D(�q, �r) in Eq. 12, while the other terms remain
the same.

The starting point in this theoretical derivation are the
single free nucleon momentum distributions. In principle,
there is no overlap between the deuteron Wigner function
(D(�q, �r)) and the free nucleon one (Wnp). This problem arises
from the conservation of energy and it can be resolved by
introducing a third particle (usually a pion), see e.g. Ref. [36].
However, as done in previous works [3,36,45], we make a
semi-classical approximation where we assume the binding
energy to be only a negligible correction, as it is much smaller
than the mass scale of the nucleons (2.2 MeV ∼ EB 	 mp =
0.938 GeV).

In [45] a factorisation of space and momentum depen-
dence of the proton–neutron Wigner function is assumed

Wnp = Hnp(�rn, �rp)Gnp( �Pd/2 + �q, �Pd/2 − �q), (14)

where Gnp is the two-particle momentum distribution, taken
from MC generators, containing the nucleon single-particle
momentum distributions and their initial-state correlation.

3 From here on, the theoretical framework is constructed in a three-
dimensional space. All the vector quantities and their norms are repre-
sented with an arrow (�a) and in italic (a), respectively, unless specified
otherwise.

Furthermore, for the space term Hnp, the spatial correlation
is neglected,

Hnp(�rp, �rn) = h(�rp) h(�rn), (15)

and the spatial single-particle distributions h(�rp,n) are
assumed to be Gaussian, hence

Hnp(�r , �rd; r0) = 1(
2π r2

0

)3 exp

(
−r2 + r2

d

4 r2
0

)
. (16)

Here, �rd ≡ �rp + �rn, r0 is the size of the two-particle emitting
source, and �r ≡ �rp − �rn as before. In our work, possible
space-momentum correlations and two-particle correlations
in momentum and space coordinates at the hadron produc-
tion point are considered in the source model discussed in
Sect. 3. Finally, the coalescence probability4 P(r0, q) can be
obtained by folding the spatial distribution of nucleons with
the deuteron Wigner function

P(r0, q) =
∫

d3rd

∫
d3r Hpn(�r , �rd; r0) D(�q, �r). (17)

Equations 16 and 17 are based on the assumption of a Gaus-
sian source, for which the mean value (rμ) of the two-particle
distance distribution is related to the source size r0 through
rμ = (4/

√
π) r0. However, in particle generators the source

has a shape that is generally not Gaussian [46]. For this rea-
son, we evaluate rμ from a fit to the distribution and then
we obtain the source size r0 through their relation. After this
derivation, the deuteron momentum distribution in Eq. 12
assumes the final form

d3Nd

dP3
d

= Sd

∫
d3q P(r0, q)

Gnp( �Pd/2 + �q, �Pd/2 − �q)

(2π)6 .

(18)

3 Source

To account for realistic particle emission and correlation, in
our implementation of the coalescence afterburner we rely
on the ALICE measurement of the nucleon-emitting source
[46], which has been performed differentially in transverse
mass only in pp collisions at

√
s = 13 TeV. As mentioned

before, a measurement of the deuteron production spectra
[24], which we use to validate our model, is available in the
same system as discussed in Sect. 4.

To simulate pp events we employ two different MC gener-
ators, EPOS 3.117 and PYTHIA 8.3 with the Monash 2013
tune configuration. EPOS 3 [49] is a hybrid Monte-Carlo
event generator in which the reaction volume is divided into

4 Formally, this is not a probability, as P(r0, q) ∈ [0, 8]. This is due to
the quantum-mechanical nature of the process and to the definition of the
Wigner function. Indeed, D(�0, �0) = 8, regardless of the wavefunction.
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“core” and “corona”, depending on the local density and
transverse momentum of the string segments. The core rep-
resents a thermalised bulk of matter evolving according to
3+1D viscous hydrodynamics and hadronises according to a
Cooper-Frye mechanism [53,54]. The particles in the corona
originate from string fragmentation. As a function of final-
state particle multiplicity, the relative fraction of core and
corona evolves dynamically. On the other hand, PYTHIA 8.3
[50] is a parton-based microscopic event generator, where the
primary process of a pp collision is represented with hard par-
ton scatterings via 2 → 2 matrix elements defined at leading
order. It is complemented by parton showers that include
initial- and final-state radiation via the leading-logarithm
approximation. The hadronisation from partons is performed
using the Lund string fragmentation model [55]. The Monash
2013 tune [56] is chosen because it improves the descrip-
tion of minimum-bias and underlying-event observables in
pp collisions at LHC energies and it includes a multi-parton
interaction-based color-reconnection scheme. The underly-
ing event in the model consists of particles originating from
multi-parton interactions as well as from beam remnants. In
the color reconnection picture, the strings between partons
can be rearranged in a way that the total string length is
reduced.

A proper modelling of the nucleon-emitting source, needs
to take into account (a) the overall final-state particle mul-
tiplicity, (b) the possible contribution of feed-down from
strongly-decaying resonances, and (c) the phase-space cor-
relations among the particles of interest.

Starting from point (a), the MC simulations are required to
reproduce the average charged-particle multiplicity density
at midrapidity as measured. The considered ALICE data were
collected with a high-multiplicity trigger, that corresponds to
0–0.01% of the total inelastic pp cross section. Following the
nomenclature used in [24], this multiplicity class is referred
to as HM I . In these events, the average multiplicity den-
sity is 〈dNch/dη〉|η|<0.5 = 35.8 ± 0.5 [24]. Therefore, the
simulated events of interest are selected (triggered) based on
the number of charged particles produced at backward and
forward rapidity, mimicking the selection method of ALICE
[24]. The trigger acceptance factors are 10−2 for EPOS 3 and
2 × 10−5 for PYTHIA 8.3.

Regarding (b), as described in detail in [46], short-lived
resonances that decay into protons and neutrons, the parti-
cles of interest, play a crucial role in the determination of
the source size. Indeed, the emitting source can be modeled
as the convolution of a Gaussian core, which is the same for
all baryons [46], and an exponential tail related to the decay
of resonances. This means that a wrong resonance cocktail
will influence the overall source size. For this reason, the
relative fractions of the resonance cocktail of the MC sim-
ulations are tuned using a statistical hadronisation model,
namely ThermalFIST [57]. As input to the model, the mea-

Fig. 1 Scheme of the determination of the proton-neutron distance in
MC simulations dnative

pn in the case of a proton coming from the decay
of a 
+ resonance. See text for more details

sured temperature of chemical freeze-out and the correlation
volume [58] corresponding to the HM I class are provided.

The source size r0 obtained directly from the event genera-
tors after the tuning of the resonance cocktail does not match
the ALICE measurement [46] and hence it needs to be cal-
ibrated event-by-event. We reproduce the measured source
size by acting at the particle-propagation level in the event
generators, allowing for the conservation of the phase-space
correlations provided by the event generator. In this regard,
our approach differs from that used in [45], which employs an
analytical form for r0, fitted to the radii measured by ALICE.

The starting point of our source model are the space-time
coordinates of the nucleons produced by the event generator.
Figure 1 illustrates an example of the implementation for a
primordial neutron paired with a proton stemming from a 
+
resonance. To take into account that the particles in this pair
are not necessarily created at the same time, the particle cre-
ated earlier is propagated along its momentum for the time
difference between the two. In Fig. 1, the neutron and the 
+
resonance are depicted at time t1 at distances rn(t1) and r
(t1)
from the production point, respectively, after the aforemen-
tioned time equalisation. The resonance decays after a time
interval 
t
, during which the neutron moves. To estimate
the distance between the neutron and the final-state proton,
the neutron is propagated along its momentum for the time

t
. The distance between the proton and the neutron dnative

pn
is evaluated at the time t1 + 
t
. In the case in which both
nucleons come from resonances, the one with the smallest
time component is propagated along its momentum until the
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time equalisation is achieved. Finally, if a resonance decays
into the particle of interest in a multi-step process (e.g. as it
is the case for 
(1900)++ → N∗(1440)+ → p), 
t
 is
defined as the time difference between the last decay and the
production of the first resonance. After the resonances decay
and the final state particles have equal time (t1 + 
t
), the
distance dnative

pn , in the proton-neutron pair rest frame, and the

average transverse mass 〈mT〉of the resulting pair5 are stored.
The native source size rnative

0 is obtained from the mean value
rnative
μ of the dnative

pn distribution as rnative
0 = (

√
π/4) rnative

μ

(see Sect. 2). In Fig. 2, rnative
0 is shown as a function of

〈mT〉 of the particle pair for both EPOS 3 (orange line) and
PYTHIA 8.3 (green line) simulations. From the comparison
with the ALICE measurement rALICE

0 [46] (black points), it
is clear that the native source size predicted by MC genera-
tors does not reproduce the observedmT-dependence. Hence,
an additional mT-scaling S(mT) = rALICE

0 /rnative
0 is intro-

duced and the corrected proton-neutron distance is obtained
as dscaled

pn = S(mT) dnative
pn .

In summary, with this model, we succeed in preserving the
space-momentum correlations among the nucleons, which
were explicitly broken in the factorisation shown in Eq. 15,
by reproducing the measured source size. This is shown in
Fig. 2 for both EPOS 3 (red line) and PYTHIA 8.3 (blue
line).

Finally, the angular correlations of the nucleon pairs in
the event generators do not match the 
φ–
η correlations
measured by ALICE [59]. However, reweighting them would
destroy the nucleon space-momentum correlations provided
by the event generators. More details on the angular correla-
tions are given in Appendix B.

4 Results

The source modelling and the Wigner function formalism
described in the previous sections are employed to obtain
the deuteron spectra starting from nucleons simulated with
EPOS 3 and PYTHIA 8.3. The proton and neutron6 spec-
tra are reweighted such to match the proton measurement
by ALICE [24] (see Fig. 3) in order to start from realistic
transverse momentum distributions.

Starting from the generated protons and neutrons, the
event-by-event coalescence is implemented as a statistical

5 The average transverse mass of a pair of two particles with mass m1
and m2 is here defined as

〈mT〉 =
√(

pT,1 + pT,2

2

)2

+
(
m1 + m2

2

)2

.

6 Neutrons and protons are assumed to have the same production spec-
tra, since both belong to the same isospin doublet.

Fig. 2 Comparison between the source size r0 measured by ALICE
[46], the native ones for EPOS 3 (orange) and PYTHIA 8.3 (green) and
those obtained after the source modelling (in red and blue for EPOS
3 and PYTHIA 8.3, respectively), as a function of the average trans-
verse mass 〈mT〉 of the proton–proton (antiproton-antiproton) pair. For
the ALICE data, statistical and systematic uncertainties are summed in
quadrature and shown as vertical bars, while for EPOS 3 and PYTHIA
8.3 uncertainties are negligible

Fig. 3 Proton spectra generated by EPOS 3 and PYTHIA 8.3, com-
pared with the ALICE measurement [24]. In the bottom panel, the data-
to-model ratios are shown

rejection method. For each pair, we apply the source mod-
elling described in Sect. 3 and calculate the coalescence prob-

ability for the single proton–neutron pair P
(√

π

4 dscaledpn , q
)
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Fig. 4 Deuteron spectra obtained from EPOS 3 and PYTHIA 8.3,
applying the coalescence model with different hypotheses for the
deuteron wavefunction, compared with the ALICE measurement [24].
The width of the bands represents the statistical uncertainty of the mod-
els. The systematic uncertainty of the spectra (6%) is not shown. In the
bottom panel, the data-to-model ratios are shown

using Eq. 17. The exact form of P depends on the deuteron
wavefunction. For this study, we have considered three differ-
ent wavefunctions: a Gaussian, Hulthén [41], and Argonne
v18 [51]. Whereas the Gaussian is the simplest functional
form of the wavefunction, the Hulthén and Argonne v18

are based on physical properties of the deuteron. While the
Argonne v18 is expected to yield the best results, as it repro-
duces modern scattering data with a χ2 ∼ 1, the Hulthén
and the Gaussian are merely considered for comparison with
previous studies. The shape of the deuteron wavefunction
in the asymptotic region (r � 1.5 fm) is determined by the
solution of the Schrödinger equation for an interaction poten-
tial that reproduces the deuteron binding energy correctly
(EB ∼ 2.2 MeV). In this range, Hulthén and Argonne v18

are very similar, as shown in Fig. 8. In the range r � 1.5 fm,
the Hulthén and Argonne v18 wavefunctions drastically dif-
fer, as a consequence of the different p-n potentials. Indeed,
the Hulthén potential corresponds to an attractive interaction,
while the Argonne v18 contains a repulsive core in the inter-
action. A difference in the predicted yields computed with
the two wavefunctions suggests that the nuclear production
mechanism is sensitive to the short-range strong interaction
between nucleons. In this work, the Wigner functions of the
Hulthén and Argonne v18 wavefunctions are computed for

the first time, with details given in Appendix A. Figure 4
shows the deuteron spectra obtained with the different wave-
functions and different event generators. The results using
the Argonne v18 wavefunction are in excellent agreement
with the data measured by ALICE, regardless of the event
generator used. This proves that with our model, given the
correct source size, nucleon spectra and average charged-
particle multiplicity density, and a realistic wavefunction, it
is possible to predict deuteron yields accurately.

The systematic uncertainties of the model on the final
deuteron spectra are estimated to be around 6%, independent
of pT. The first source of systematic uncertainties is related
to the source size. For this, we varied the source size used
in the model by ±7%, based on the uncertainties reported in
[46]. The resulting systematic uncertainty is obtained from
the relative deviation in the final spectra between the default
source size and the varied one. The second source of sys-
tematic uncertainties is related to the fraction of primordial
nucleons. To account for this, the primordial nucleon frac-
tion is varied by ±10% and the relative deviation is the final
spectra is considered. The two sources of uncertainties are
summed in quadrature.

In order to further test the impact of the core part of
the strong-interaction potential on the deuteron yield, the
deuteron wavefunction obtained from ab initio Chiral Effec-
tive Field Theory (χEFT) [52] (N4LO) calculations are
employed to compute the deuteron yield and the results are
compared with those obtained using the Argonne v18 wave-
function (see Fig. 5). As for the Hulthén and Argonne v18

wavefunctions, also the χEFT one is computed for the first
time in this work, with details reported in Appendix A. On
the one hand, the Argonne v18 potential constructs the core
part of the interaction using a combination of central, ten-
sor, and spin-orbit interactions. On the other hand, the χEFT
NN potential is derived systematically from the underlying
theory of QCD and involves a perturbative expansion in pow-
ers of a small parameter related to the pion mass. The two-
body interactions in χEFT are calculated using Feynman
diagrams that involve pions and nucleons. The leading order
(LO) two-body interactions involve only one-pion exchange,
while higher-order (NLO, NNLO, etc.) interactions involve
multiple pion exchanges and nucleon self-interactions.

While Argonne v18 and χEFT are two different
approaches, the deuteron wavefunctions obtained from these
approaches do not differ significantly, except for very short
ranges. Indeed, the deuteron wavefunction from χEFT shows
less repulsion than the one obtained from the Argonne v18

potential. Nevertheless, the predicted deuteron yields using
Argonne v18 and χEFT are compatible, indicating that the
production of the deuteron is not affected by extremely short-
range interactions, as shown in Fig. 5.

Figure 6 shows the deuteron spectrum using the Argonne
v18 wavefunction, with and without the re-modelling of the
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Fig. 5 Deuteron spectra obtained with EPOS 3, comparing two wave-
function hypotheses, i.e. Argonne v18 and χEFT. Predictions are com-
pared with the corresponding ALICE measurement [24]

Fig. 6 Deuteron spectra obtained with EPOS 3, with the source mod-
elling (model) and without (native), for the same wavefunction hypoth-
esis, i.e. Argonne v18. Predictions are compared with the corresponding
ALICE measurement [24]

source. Only the modeled source is able to describe the data.
The difference between the two predictions is up to a factor
of two, depending on pT.

The impact of the correlation between the relative momen-
tum q and the distance between particles r taken from the
event generator, shown in Fig. 10, on the final results is eval-
uated to be around 10%. For this, we compare the deuteron
spectrum shown in Fig. 4 with one obtained by randomly
sampling distances from the source size measurement shown
in Fig. 2. Using the mT-dependent parameterisation of the
source size, the final spectra change by around 30% with
respect to the ones obtained with the native source provided
by the generator, as shown in Fig. 6. Lastly, the difference
between the results obtained using a realistic wavefunction
and a Gaussian one is around 50%.

Fig. 7 Coalescence parameter B2 obtained with EPOS 3 and Pythia
8.3, compared with the ALICE measurement [24]

Using the spectra of protons and deuterons shown in
Figs. 3 and 4, it is possible to compute the coalescence param-
eter B2, as

B2 =
(

1

2πpd
T

d2Nd

dydpd
T

)/(
1

2πpp
T

d2Np

dydpp
T

)2

. (19)

The labels d and p indicate the deuteron and the proton,
respectively, and the transverse momentum of protons is half
of that of deuterons (pp

T = pd
T/2). The comparison among

the B2 measured by ALICE [24] and those obtained using
EPOS 3 and PYTHIA 8.3, is shown in Fig. 7. A similar
comparison in terms of B2 was done in [24], where the
coalescence predictions were obtained using the formalism
described in [37]. In that case, the Gaussian wavefunction
provided the best description of data, while Hulthén overes-
timated the measurement by a factor of two. In comparison,
in this work, the predictions using a Gaussian wavefunction
underestimate the coalescence parameter by about 50–70%,
while the predictions using the Hulthén wavefunction overes-
timate the measured B2 by about 20–50%. Among different
assumptions, the main difference between the coalescence
predictions shown in [24] and in the present work is that in
the formalism described in [37] the difference in momentum
between the nucleons (�q = ( �pp − �pn)/2) is neglected in the
Wigner function of the p–n state. The authors of [37] state that
such approximation, motivated by the ease of calculations,
is valid to an accuracy of around 10% in Pb–Pb collisions,
while the accuracy in pp collisions is not estimated and could
potentially be much larger.

5 Conclusions

In this paper, we show the implementation of a coalescence
afterburner based on a state-of-the-art Wigner function for-
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malism and use it to reproduce the (anti)deuteron spectra
measured by ALICE in pp collisions at

√
s = 13 TeV, col-

lected with a high-multiplicity trigger. The novelty of our
work consists in the preservation of the space-momentum
correlation of nucleons, obtained by correcting the mT scal-
ing of the source in the event generators with a parameteri-
sation anchored to experimental measurements. At the same
time, the Wigner function formalism with realistic deuteron
wave functions is employed. The constraint to the mea-
sured source size allows for an accurate prediction of the
(anti)deuteron spectra. In this work, three different hypothe-
ses for the internal wavefunction of the deuteron are tested:
a simple Gaussian, the Hulthén and the Argonne v18 wave-
function. The Wigner function formalism is applied for the
first time to the Hulthén and Argonne v18 wavefunctions.
The Argonne v18 wavefunction, which is anchored to a real-
istic description of the nucleon–nucleon interactions, pro-
vides the best agreement with the deuteron spectra measured
by ALICE. The predictions obtained with the Argonne v18

wavefunction are compared with those obtained with a χEFT
(N4LO) one and they are found to be in excellent agree-
ment. This suggests that the production of the deuteron is
not affected by extremely short-range interactions, where the
two approaches differ. The good agreement between data and
predictions shows that this model, is able to predict deuteron
spectra if the correct proton spectra and source sizes are pro-
vided as input. Our work shows how important it is to mea-
sure the proton production spectra and the size of the emit-
ting source simultaneously for different collision energies.
This would allow for a prediction of the production yields
of (anti)deuterons for different energies and multiplicities,
providing a reliable estimation of antideuterons produced in
the collisions of cosmic rays with the interstellar medium,
which constitutes the background for the search for dark-
matter annihilation with antinuclei in the final state.

Acknowledgements We are grateful to Norbert Kaiser for the valuable
discussions and his essential help in the steps of calculations.

DataAvailability Statement This manuscript has no associated data or
the data will not be deposited. [Authors’ comment: Predictions obtained
from local simulations.]

Declarations

Conflicts of interest This work has received funding from the Euro-
pean Research Council (ERC) under the European Union’s Hori-
zon 2020 research and innovation programme (Grant Agreement No.
950692). This work has been supported by the Deutsche Forschungs-
gemeinschaft through grant SFB 1258 “Neutrinos and Dark Matter in
Astro- and Particle Physics”. This research was supported by the Munich
Institute for Astro- and Particle Physics (MIAPP) of the DFG cluster of
excellence “Origin and Structure of the Universe”.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you

give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.
Funded by SCOAP3. SCOAP3 supports the goals of the International
Year of Basic Sciences for Sustainable Development.

Appendix A: Deuteron wavefunctions

In this Appendix, we report the calculation of Wigner den-
sities D(�r , �q) for different hypotheses of the deuteron wave-
function. Namely, we will consider a simple Gaussian, the
Hulthén , the Argonne v18 wavefunctions, and χEFT as
shown in Fig. 8. All wavefunctions are normalised according
to
∫
d3r |φ(�r)|2 = 1, thus the effect on the deuteron yields

arises from the different shapes of the wavefunction.

A.1 Gaussian wavefunction

The most simple assumption is a single Gaussian wavefunc-
tion

φd(r) = e
− r2

2d2

(
πd2

)3/4 , (20)

where d is a parameter related to the nucleus radius. For
this calculation, d = 3.2 fm, as in [60]. Using Eq. 13, the

Fig. 8 Deuteron wave functions using different potential hypotheses,
namely Gaussian (red), Hulthén (green) [41], χEFT N4LO S-wave and
D-wave (solid and dashed orange curves, respectively) [52], Argonne
v18 [51] S-wave and D-wave (solid and dashed blue curves, respectively)
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corresponding Wigner density is

D(�r , �q) = 8 e− d4q2+r2

d2 . (21)

A.2 Hulthén wavefunction

The Hulthén wavefunction represents a more realistic hypoth-
esis for the deuteron wavefunction and it is based on the
Yukawa theory of interaction. The wavefunction has the form

φd(r) =
√

αβ(α + β)

2π(α − β)2

e−αr − e−βr

r
, (22)

where α = 0.23 fm−1 and β = 1.61 fm−1 are parame-
ters taken from [41]. For convenience, the Wigner density is
calculated starting from the Fourier transform ψ(�k) of the
wavefunction

ψ(�k) =
√

α + β

π(α − β)

(
1

k2 + α2 − 1

k2 + β2

)
. (23)

In Fourier space, Eq. 13 has the form

D(�r , �q) =
∫

d3ξ

∫
d3k1

∫
d3k2 ψ∗(�k2) ψ(�k1)

× e
−i
[

�q·�ξ+�k2·(�r−�ξ/2) + �k2·(�r−�ξ/2)
]
. (24)

Using the substitutions �k2 = 2�q + �k1 and �k1 = �k + �q , and
integrating over �ξ and �k2, one obtains the following expres-
sion

D(�r , �q) = 8
∫

d3k e2i�r ·�k ψ∗(�q − �k) ψ(�q + �k)

=
∫

d3k ei�r ·�k ψ∗(�q − �k/2) ψ(�q + �k/2). (25)

The integral depends on the angle θ between �r and �k. To
eliminate this dependence on the angle θ , the angular average
over θ is performed using sin(θ). With these simplifications,
the Wigner density of the Hulthén wavefunction becomes

D(�r , �q) = 4(α + β)2

αβ(α − β)πqr

×
∫ ∞

0
dk

α2β2 sin (2kr)

α2 + β2 + 2(k2 + q2)

×
{

1

k2 + q2 + α2 ln

[
(k + q)2 + α2

(k − q)2 + α2

]

− 1

k2 + q2 + β2 ln

[
(k + q)2 + β2

(k − q)2 + β2

]}
. (26)

A.3 Argonne v18 wavefunction

The Argonne v18 potential is a phenomenological potential
constrained to proton-neutron scattering measurements [51].

In such a potential, the deuteron wavefunction has the form

φd(�r) = 1√
4π r

[
u(r) + 1√

8
w(r) S12(r̂)

]
χ1m, (27)

where S12(r̂) = 3�σ1 · �r �σ2 · �r− �σ1 · �σ2 is the spin tensor, χ1m is
a spinor, and u(r) and w(r) are radial S and D wavefunctions,
respectively. We define �r1 the coordinates of the proton, �r2

the coordinates of the neutron, �r = �r1−�r2
2 , and �R = �r1+�r2

2 .
The spin averaged density for the deuteron is

|φd(�r)|2 = 1

3

∑
m=0,±1

φd(�r1)
†φd(�r2)

= 1

4π r1 r2

{
u(r1)u(r2)

+ w(r1)w(r2)
1

2

[
3
(
r̂1 · r̂2

)2 − 1
]}

, (28)

and the wavefunction is normalised as∫
d3r |φd(�r)|2 =

∫
d3r

1

4π r2

[
u2(r) + w2(r)

]
= 1.

(29)

In the previous integral, the contribution of the first addend
is dominant, as the first part of the integral is equal to 0.9424
[51]. Since the Argonne v18 potential has only a numerical
evaluation and no analytical form, an analytical form of its
Wigner density is obtained through a fit to the numerical
values of u(r)/r and w(r)/r . The fit is performed using the
function

F(r) = N1a

π(a2 + r2)
+ N2b

π(b2 + (r − c)2)
+ N3e

− r2
f , (30)

where N1, N2, N3, a, b, c, and f are fit parameters. F(r) can
describe both u(r)/r and w(r)/r individually. Therefore,
u(r)/r and w(r)/r are fitted separately and two different
sets of fit parameters are obtained for the S and D wave
components, respectively. F(r) describes the shape ofu(r)/r
in the range 0 < r < 15 fm with a χ2

ndf ∼ 6.83 · 10−8 and
w(r)/r with χ2

ndf ∼ 1.3 · 10−10 in the same range. The fit
parameters for the S and D waves are reported in Table 1.
The corresponding Wigner density for F(r) has the form

D(�r , �q) = 1

8π
(T1 + T2 + T3 + T4 + T5 + T6) , (31)

where the terms T1, T2, T3, T4, T5, and T6 are defined as

T1 = (2π f )3/2 N 2
3 e− f 2q2−4r2

2 f , (32)

T2 = 16a2N 2
1

πqr

∫ ∞

0
dξ

sin(qξ)

4a2 + 4r2 + ξ2

× ln

[
4a2 + (ξ + 2r)2

4a2 + (ξ − 2r)2

]
, (33)

T3 = 8aN1N3

qr

∫ ∞

0
dξ sin(qξ) e− 2a2+4r2+ξ2

2 f
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×
[

Ei

(
4a2 + (2r + ξ)2

4 f

)
− Ei

(
4a2 + (ξ − 2r)2

4 f

)]
,

(34)

T4 = 4bN2N3

q

∫ ∞

0

∫ 1

−1
dξ dγ sin(qξ) ξ

×
⎛
⎝ e− 4r2+4γ rξ+ξ2

4 f

b2 + c2 − c
√

4r2 − 4γ rξ + ξ2 + r2 − γ rξ + ξ2

4

+ e− 4r2−4γ rξ+ξ2

4 f

b2 + c2 − c
√

4r2 + 4γ rξ + ξ2 + r2 + γ rξ + ξ2

4

⎞
⎠ ,

(35)

T5 = 4abN1N2

πq

∫ ∞

0

∫ 1

−1
dξ dγ sin(qξ) ξ

×
⎡
⎢⎣

(
a2 + r2 + γ rξ + ξ2

4

)−1

b2 +
(
c − 1

2

√
4r(r − γ ξ) + ξ2

)2

+
(
a2 + r2 − γ rξ + ξ2

4

)−1

b2 +
(
c − 1

2

√
4r(r + γ ξ) + ξ2

)2

⎤
⎥⎦ , (36)

T6 = 4N 2
2 b2

πq

∫ ∞

0

∫ 1

−1
dξ dγ sin(qξ) ξ

×
⎡
⎢⎣ 1

b2 +
(
c − 1

2

√
4r(r + γ ξ) + ξ2

)2

× 1

b2 +
(
c − 1

2

√
4r(r − γ ξ) + ξ2

)2

⎤
⎥⎦ . (37)

In the previous equations, Ei is an exponential integral
defined as Ei(x) = ∫∞

x dt e−t/t.

A.4 Chiral effective field theory wavefunction

The Chiral Effective Field Theory (Chiral EFT or χEFT) is
a theoretical framework used to study the low-energy QCD,
such as atomic nuclei or hadrons (protons and neutrons). The
Chiral EFT approach is systematic in the sense that the var-

Table 1 Fit parameters for F(r) obtained from the numeric values of
u(r)/r (2nd column) and w(r)/r (3rd column) in the range 0 < r <

15 fm

Fit parameters For u(r)/r For w(r)/r

N1 0.81370516 − 0.34242388

N2 4.49712863 1.0973295

N3 − 0.68798139 − 0.25201684

a − 10.82747628 4.33930564

b 1.68243617 1.28156015

c − 0.40957858 0.22952727

f 0.39633979 0.42620769

ious contributions to a particular dynamical process can be
arranged as an expansion in terms of a suitable expansion
parameter. The expansion parameter is chosen to be the ratio
of a typical low momentum (soft scale) to the chiral symmetry
breaking scale (�χ ∼ 1 GeV, hard scale). The systematic
expansion allows for the derivation of low-energy observ-
ables with controlled uncertainties. The deuteron wavefunc-
tion is obtained using the NN potentials through five orders
of Chiral EFT, ranging from leading order (LO) to next-to-
next-to-next-to-next-to-leading order (N4LO) [52], with the
normalisation defined in [61]. A cutoff at �c = 500 MeV is
used. As in the case of Argonne v18, the wavefunction is com-
posed by two components u(r) and w(r), which correspond
to the radial S wave and to the radial D wave, respectively.
The two components are shown separately in Fig. 8. Also in
this case, only the numerical values of u(r)/r and w(r)/r
are available and an analytic expression of the wavefunction
is obtained with a fit, using the function

F(r) = N0(
a2r2 − r2

0

)2
b−1 + c2r2

0

+
3∑

i=1

Niαi

π(r − βi )2 + α2
i

, (38)

where N0, Ni , αi , βi , a, b, c, and r0 are fit parameters. For
w(r)/r , only the second term of F(r) is used since it is suf-
ficient to describe the numerical values properly. u(r)/r and
w(r)/r are fitted separately and the two sets of fit parame-
ters are reported in Table 2. The extracted values of χ2

ndf of

the fits in the range 0 < r < 15 fm are ∼ 3.31 · 10−8 and
∼ 3.23 · 10−3 for u(r)/r and w(r)/r , respectively.

The Wigner density of F(r) has the form

D(�r , �q) = 1

2qπ2

∫ ∞

0

∫ 1

−1
dζ dγ sin(qζ ) ζ

× (κ0 + κ1 + κ2 + κ3) , (39)

where the terms κ0, κ1, κ2, and κ3 are defined as

κ0 = 4bN 2
0(

4r2
0 − a2

(
ζ 2 + 4r2 + 4γ ζr

))2 + 4bc2r2
0

× 1(
4r2

0 − a2
(
ζ 2 + 4r2 − 4γ ζr

))2 + 4bc2r2
0

, (40)

κ1 =
3∑

i=1

4N 2
i α2

i(
2βi −√ζ 2 + 4r2 − 4γ ζr

)2 + 4α2
i

× 1(
2βi −√ζ 2 + 4r2 + 4γ ζr

)2 + 4α2
i

, (41)
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Table 2 Fit parameters for F(r) obtained from the numeric values of
u(r)/r (2nd column) and w(r)/r (3rd column) in the range 0 < r <

15 fm

Fit parameters For u(r)/r For w(r)/r

N0 14.83063014 –

N1 0.3644193 90.06036202

N2 0.01876164 0.22901687

N3 0.58780443 90.167747

a 2.95678555 –

b 7.03082423 –

c 2.85271022 –

r0 2.65962623 –

α1 0.86804832 1.75803721

α2 − 2.99220936 2.55621569

α3 2.51249685 1.7664106

β1 1.81024872 2.07489033

β2 12.77230151 4.11299107

β3 0.95031591 2.0759802

κ2 =
3∑

i=1

3∑
j=1

i �= j

8Ni N jαiα j

×

⎧⎪⎨
⎪⎩

⎡
⎢⎣ 1(

2βi −√ζ 2 + 4r2 − 4γ ζr
)2 + 4α2

i

× 1(
2β j −√ζ 2 + 4r2 + 4γ ζr

)2 + 4α2
j

⎤
⎥⎦

+
⎡
⎢⎣ 1(

2βi −√ζ 2 + 4r2 + 4γ ζr
)2 + 4α2

i

× 1(
2β j −√ζ 2 + 4r2 − 4γ ζr

)2 + 4α2
j

⎤
⎥⎦
⎫⎪⎬
⎪⎭ , (42)

κ3 =
3∑

i=1

4 πN0 Niαi

×

⎧⎪⎨
⎪⎩

⎡
⎢⎣ 1(

2βi −√ζ 2 + 4r2 − 4γ ζr
)2 + 4α2

i

×

× 4b(
4r2

0 − a2
(
ζ 2 + 4r2 + 4γ ζr

))2 + 4bc2r2
0

]

+
⎡
⎢⎣ 1(

2βi −√ζ 2 + 4r2 + 4γ ζr
)2 + 4α2

i

× 4b(
4r2

0 − a2
(
ζ 2 + 4r2 − 4γ ζr

))2 + 4bc2r2
0

]}
.

(43)

Appendix B: Angular correlations

In this Appendix, we discuss the effect of angular correla-
tions, namely 
ϕ
η, on the deuteron predictions. In Fig. 9
the 
η-integrated 
ϕ correlation function C(
ϕ) of sign-
like (anti)proton pairs measured by ALICE is shown and
compared to predictions by EPOS 3 and PYTHIA 8.3 with
the Monash 2013 tune [59]. Note that, while the EPOS 3 pre-
diction was obtained from pp collisions at

√
s = 13 TeV, the

ALICE measurement and PYTHIA prediction were obtained
from pp collisions at

√
s = 7 TeV. However, no qualitative

difference between the predictions at these different energies
is expected. It is noteworthy that at 
ϕ close to zero ALICE
measures a depletion in the correlation function, while both
models predict a peak. On the contrary, the away-side peak
around 
ϕ = π is much more pronounced in the ALICE
measurement compared to Monte Carlo studies. These dis-
crepancies show a fundamental flaw in the production mech-
anism of baryons in these models. This means that it is impos-
sible to properly correct these effects a posteriori. Instead, a
rework of the hadron production mechanism inside the event
generators would be required. A worst-case estimation of the
effect on deuteron spectra can be performed by reweighting
the p-n pairs according to the ratio of measured and predicted
C(
ϕ). Such a conservative estimate would lower the overall
deuteron yield by no more than 20%. This effect is neglected
in this study.

Fig. 9 
η-integrated 
ϕ pp ⊕ p̄ p̄ correlation function C(
ϕ) of
(anti)proton pairs measured by ALICE (black points) and predictions
by EPOS 3 (red band) and PYTHIA 8.3 Monash 2013 (yellow band)
[59]
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Fig. 10 Distribution of relative momenta and distances of proton-
neutron pairs in EPOS 3

Appendix C: Correlation of q and r

Figure 10 shows the distribution of relative momentum q and
distance r for proton-neutron pairs, evaluated in the pair rest
frame. Clearly visible is a positive correlations between q
and r, where small relative momenta are preferred for pairs
with small distances. This effect enhances the deuteron yield
by roughly 10% since the phase-space region interesting for
coalescence (q � 0.5 GeV/c, r � 2 fm) is more populated
than a sample with no correlation.
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