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Abstract—Serverless Computing is an emergent solution that
helps deploy applications in the Cloud and sometimes on the
Edge, reducing the integration time and the maintenance cost of
the data centers. The lack of a standard for functions and the
impossibility of connecting them together in complex workflows
is currently holding back the growth of Function-as-a-Service
(FaaS) use. In this scenario, OpenWolf tries to overcome these
issues by implementing a solution to spread functions over the
Cloud-Edge Continuum and connecting them using a standard-
ized Domain-Specific Language (DSL) to describe a serverless
based workflow. In this work, we aim to enhance the OpenWolf
project, solving many security threats the engine suffers, like
the authenticated and authorized execution of workflows and
the injection of malicious functions inside a workflow. We
will validate this new version of OpenWolf in a Smart City
surveillance scenario, providing validation and performance tests.

Index Terms—serverless, faas, workflows, cloud-edge contin-
uum, security, authentication

I. INTRODUCTION

Serverless computing debuted in 2014 when Amazon re-
leased the first serverless model, AWS Lambda, with the
goal of simplifying software delivery in a cloud environment.
Function as a Service (FaaS) is the most well-known serverless
approach, which lets developers focus on the function, while
the FaaS platform is in charge of containerizing, deploying,
and load balancing it. The popularity of FaaS increased
quickly, and many open source solutions (such as Openwhisk
[1], Knative [2], OpenFaaS [3], [4], [5]) where proposed
to avoid vendor lock-in to a specific Cloud environment.
These technologies are now mature enough, and recently, new
projects (i.e., [6], [7]) that incorporate FaaS at the network’s
edge have been started, allowing for rapid response to the
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Internet of Things (IoT) triggers. However, applications that
totally run at the edge of the network are very rare, while it
is more common to have applications composed of different
modules which are distributed over different tiers (Edge, Fog,
Cloud) and interact between themselves. This well-known
computational model is called Edge-Cloud Continuum (or
Continuum Computing). Instead of linking and orchestrating
many events and related operations, FaaS is typically applied
to small and minimally connected systems. Although the
lack of composability for the function could be seen as an
architectural choice, it negatively affects the ease of use of
serverless, particularly in the Continuum. For this reason, it
is necessary a function orchestrator to overcome this issue.
Big Players proposed their own orchestrators, like Amazon
Step Function, Microsoft Azure Durable Functions, and IBM
Composer. However, it is impossible to use these systems
everywhere since they are constrained at the providers’ data
centers. OpenWolf [8] was recently introduced as the first
open-source serverless engine capable of building serverless
applications (workflows) by composing functions using three
main components: a Kubernetes heterogeneous cluster, a Bro-
ker Agent, and a workflow manifest. OpenWolf attempts to
introduce serverless to the Continuum layer; however, this
raises significant security concerns linked to the authorization
of the execution of both the entire application (the workflow)
and each of its components (the functions). This work aims to
improve the OpenWolf engine by introducing an authentication
system to allow only authorized workflow executions. In
particular, it aims to reach the following objectives:

1) Introduce an authentication system into the OpenWolf
engine, which allows identifying the user that requests
to start a workflow. This enforces the system’s security
because it denies unknown users access to it.

2) Introduce an authorization system for external re-
quests into the OpenWolf engine, which allows the
management of external requests, triggering workflow
execution only if the requesting user is authorized. In
this way, the system security is strengthened because



unauthorized execution requests are blocked.
3) Introduce an intra-workflow authorization system

into the OpenWolf engine, which allows the manage-
ment of callback requests at each workflow step, han-
dling them only if they are generated by an authorized
workflow execution. In this way, it is possible to block
unwanted partial execution of the workflows that could
have been triggered, for example, by a malicious node
inside the cluster, namely a compromised node that can
reach the OpenWolf execution endpoint and executes
malicious code that sends requests to it.

A. Organization of the paper

The rest of the paper is organized as follows. In section
II we discuss related works about security in a serverless
environment, focusing on authentication and authorization
problems. In section III, basic information about the OpenWolf
engine is given. The implementation of the system is described
in section IV. A possible Smart City use case is described in
section V. The implemented system is validated in section VI.
In section VII, we assess the performance of the proposed
system. Finally, in Section VIII, conclusions and future works
are discussed.

II. STATE OF THE ART

When using Serverless technologies, applications can be
managed without creating a server from scratch. As a result,
the service provider also handles some security-related issues.
However, even though Serverless apps are not running on
a managed server, they still execute code. This code must
be written in a secure manner; otherwise, the application
may be vulnerable to traditional application-level attacks [9]–
[11]. Thus, there are two major security risks in a serverless
environment [12]. On the one hand, the security level is strictly
dependent on the features provided by the manufacturer. On
the other side, using unsafe code for serverless applications in-
creases the attack surface. For this reason, it is really important
to accurately choose the vendor service and to pay particular
attention to the quality of the code, also introducing continuous
monitoring of the production environment. Many approaches
to improving the consumer security mindset are suggested by
the researchers. In particular, they underline the importance of
creating security-by-design architectures [13], implementing
secure coding standards [14], introducing threat modeling
and limitation of authorization [15], and automating secure
deployment systems by leveraging continuous monitoring [16].
In the scientific community, one of the innovative trends is
to employ Secret Sharing (SS) [17] or Nested Secret Sharing
(NSS) [18] [19] techniques to handle data in Cloud Continuum
environments. In a Serverless environment, following all these
approaches is fundamental to guarantee thorough security
measures based on layered protection [20]. In the fields of
authentication and authorization of external requests, many
works have been proposed. To secure access to public ser-
vices, multi-factor authentication tools based on microservices
with Blockchain architecture have been designed and tested,

demonstrating how the overhead of a few seconds can result
in evident security benefits [21].

In the case of serverless workflows, the authentication and
authorization system should be based on decoupling authen-
tication from execution with the use of a message-oriented
middleware [22], [23]. In this way, blocking malicious requests
as early as possible is possible by verifying the external
request authorization for all the functions at the workflow entry
point. For this reason, JSON Web Token (JWT) [24] and the
Oauth2 protocol [25] are good solutions for authentication,
authorization, and access control in a serverless environment
[26].

III. BACKGROUND

Recently, OpenWolf was introduced as the first solution in
the Cloud Edge Continuum to enable serverless native work-
flows. The formal definition of workflow, or, more accurately,
scientific workflow, can be found in [27]: ”A scientific work-
flow system is a specialized form of a workflow management
system designed specifically to compose and execute a series
of computational or data manipulation steps, or workflow,
in a scientific application”. Openwolf brings this well-known
concept to the Serverless layer, using different functions spread
in the Cloud and in the Edge to act as a step for the
workflow. Finally, the workflow structure, that is, how the
functions interact with each other, is described in a manifest
file, structured according to the Serverless Workflow DSL [28]
designed by the Cloud Native Computing Foundation.

Fig. 1. OpenWolf Architecture



OpenWolf’s architecture is shown in Figure 1. It stands
over the K3s cluster, a tiny Kubernetes distribution well suited
to be run in heterogeneous clusters composed of both ARM
AMD nodes. Over the cluster, OpenWolf installs the OpenFaas
engine, the OpenWolf agent, and a Redis instance. OpenFaas
is the serverless engine used to build, deploy, and invoke the
functions; the Agent is in charge of intercepting any function
call, associating it with a specific workflow execution, and
then forwarding its result to the proper destination functions
in the workflow. Finally, Redis stores the manifest definitions
and the workflow execution states.

IV. IMPLEMENTATION

The authentication and authorization mechanism designed
for the deployed system is based on the Oauth2 protocol [25].
The reason behind this choice is the fact that applying the
Oauth2 protocol allows for decoupling authentication and au-
thorization routines, resulting in an important security benefit:
the authorization code of the application does not have to
interact with user credentials. In particular, it was decided
to use the JSON Web Token (JWT) [24] for authorization
purposes. In fact, the structure itself of JWT guarantees some
benefits: I) it’s a JSON, so it can be easily used, since most
programming languages provide JSON parsers; II) it’s signed
using a secret, resulting in the trustness of the contained
information; III) it’s compact and, after being encoded, it’s also
smaller, resulting in a small and acceptable payload; IV) it has
a standard structure (header, payload and signature) but at the
same time it’s versatile as you can both use standard claims
and define your own ones; V) in a distributed environment
it is more secure to have token authentication, that requires
to set each time the request’s Authorization header, than the
traditional cookie-based one, where the Set-Cookie header
is automatically included into the request by the browser
[29]; VI) it is optimum for authenticating stateless serverless
functions, because JWT itself is defined as stateless: the autho-
rizing entity does not need to keep any state; the token alone
is sufficient to authenticate a token bearer’s authorization.

Fig. 2. User authentication

The algorithm used for the signature of the token is HMAC-
SHA512 (HS512). It is a symmetric algorithm in which a
single 512-bit secret key is used to generate and verify the

signature. The JWT standard allows using also other algo-
rithms, both symmetric ones, like HMAC-SHA256 (HS256),
and asymmetric ones, including RSA-SHA256 (RS256), RSA-
SHA512 (RS512), ES256, ES512, and many others. In this
work, it was preferred to use a symmetric algorithm because,
as it will be explained below, the workflow engine authentica-
tion module releases the tokens, while the execution module
verifies them in the incoming requests, so there is no need to
use an asymmetric algorithm, which is slower and allows third
parties to verify the token using the public key.

The user authentication flow (Figure 2) is based on a
traditional username and password authentication. By using
his credentials, the user logs into the system to obtain a token.
The user’s existence is verified in a database, and if the user
exists, the hashed password stored in the database is compared
with the one computed from the submitted one; otherwise,
the token is not released. If the hashed passwords correspond,
the token (JWTu) is released; otherwise, not. This satisfies
objective 1.

The workflow execution authorization is based on a MAC
(Mandatory Access Control) system, which implements zero-
trust principles: access rules are manually defined by system
administrators and strictly enforced by the operating system
or security kernel. In this particular case, three different levels
of permissions were defined: world, group, and user. World
permission level refers to functions that can be executed
by anyone. Group permission level is related to functions
that can be executed by a particular group of users. User
permission level refers to functions that can be executed only
by a particular user. In addition to that, some authorization
policies were defined. The authorization policy comprises the
permission level and, eventually, the group or user’s name
related to that policy. Different Kubernetes namespaces were
created for the functions. All the functions with the same
execution policy were deployed in the same namespace and
each namespace was labeled with the name of the policy.

The workflow execution authorization flow (Figure 3) starts
when the user invokes the workflow through an API. The
presence of a valid JWTu in the request is verified; otherwise,
the execution is not authorized. The sub claim of the token is
compared with the usernames stored in the databases, and if
a match is not found, the execution is not authorized. Instead,
if a match is found, the user’s authorization to execute all the
functions of the invoked workflow is verified by comparing
some labels associated with the user and the namespace of the
requested functions. If the user is authorized, the workflow is
triggered. This satisfies objective 2.

The workflow steps are stateless and unique entities called
States that include a function. For this reason, the workflow
engine triggers each step of the workflow, which listens for
the callbacks of each state execution and triggers the next
state executions. In this way, it is possible to manage any
kind of state relationship (one-to-one, one-to-many, many-to-
one, many-to-many). When a callback request is sent to the
workflow engine, it is necessary to authenticate the state that
sent the callback to ensure that it comes from an authorized



Fig. 3. Workflow execution authorization

executive of the workflow. For this reason, another token
(JWTe), released when the workflow execution is triggered,
is used.

Fig. 4. Workflow States authentication

The workflow step execution authorization (figure 4) flow
starts each time a callback is received by the workflow
engine. The presence of a valid JWTe in the callback request
is verified; otherwise, the execution is not authorized. The
exec id claim of the token is compared with the workflow
execution is stored in the databases and if a match is not
found, the execution is not authorized. Instead, if a match is
found, the execution is authorized, and the callback request is
handled. This satisfies objective 3.

V. USE CASE

The authenticated version of OpenWolf allows the definition
of workflows distributed over the Continuum. This is useful,
for example, in all those scenarios where there is the need
to do lighter computations at the Edge of the network, near
the data sources, than heavier ones in Cloud data centers. A
typical scenario where these needs are met can be represented
by Smart Cities. An example of a workflow that can be applied
in such a scenario could be an imaging processing workflow.
In fact, it is common in Smart Cities to have image data from
some Smart Cameras distributed over the city. The collected
data may be processed locally using a pre-trained machine
learning model to detect, for example, traffic rules violations
or dangerous situations. Then, these data can be stored in
Cloud data centers. In this particular scenario, the benefits
introduced by the authentication system are significant: having
an authenticated flow, where every single step needs to be
authorized before execution, allows to avoid some malicious
third party from injecting corrupted data into the system.
This is very important because the collected and processed
data could be used, for example, by the municipalities to
make fines or by the police to intervene in case of danger.
In addition to that, some functions could be used to access
sensitive data, and for this reason, authorization control must
be ensured. The description of a simple image processing
workflow, composed of five states, each one represented by a
serverless function, follows. Collect: utilizes a camera stream
for gathering environment pictures. Transform: cleans the
pictures from noisy data by filtering them. Train: trains a
Convolutional Neural Network (CNN) model for analyzing
the collected pictures. Inference: makes inference on the input
data using the most recent model produced at the workflow
Train state. Show: pushes the output data to a web page where
they can be visualized. All these functions, except ”Collect”,
may need to be executed either on the Cloud or on the Edge,
depending on the required Quality of Service (QoS). From
the performance point of view, it should be more convenient
to train the neural network on the Cloud, while the inference
instead depends on the requirement. For example, dangerous
situations, like fights, muggings, or robberies, must be detected
as early as possible, so Edge real-time computation is required.
In other cases, such as traffic rules violations detection, an
optimized and massive computation can be done later on the
Cloud. The proposed solution allows customizing where each
workflow state is executed, depending on where the serverless
functions are scheduled. Thus it satisfies any kind of required
QoS.

Finally, figure 5 gives a visualization of the environment we
will simulate. Basically, we chose the most common way to
deploy our functions, locating the data gathering and inference
at the edge while the training and plotting in the cloud, leaving
the fog in charge of cleaning the data. As highlighted in
figure 5 and in the previous section, OpenWolf acts like a
broker, and then functions do not reach each other directly
but by passing through it, for this even properly locating



Fig. 5. OpenWolf for Image Processing

and eventually replicating OpenWolf in different tiers is an
important choice to take in account.

VI. VALIDATION

The authenticated version of OpenWolf and its authorization
system were tested by registering three users and two groups:
user1 who belongs to group1, user2 who belongs to group2,
user3 who belongs to both the groups. In addition to that, some
workflows were defined: three workflows, one for each user,
including functions with world-level permission policy and at
least one function with the specific user permission policy;
two workflows, one for each group, composed of functions
with world-level permission policy and at least one function
with the specific group-level permission policy; a workflow,
including only functions with world-level permission policy.
The tests were executed by logging into the system with each
user and trying to trigger each defined workflow. The results
are summarized here: I) the workflow including only functions
with world-level permissions policy execution was triggered
by all three users; II) the workflows including at least one
function with group-level permission policy were triggered,
as expected, only by the users who belonged to the specific
group; III) the workflows including at least one function with
user-level permissions policy were triggered, as expected, only
by the specific user. In addition to that, the intra-workflow
authorization system was tested by simulating the presence
of a malicious node inside the Kubernetes Network that
generates malicious callback requests to the OpenWolf Agent.
As expected, all the requests were rejected, and unwanted
partial executions of the workflows were avoided.

VII. PERFORMANCE EVALUATION

In this section, the performances of the implemented system
are described. In particular, the execution time of a CNN
workflow, composed of three states (data fetch, train, and
inference), is evaluated. The testbed used for the performance
evaluation is a three-node Kubernetes cluster composed of two
Edge nodes and one Cloud node. In particular, Kubernetes

Master, Prometheus, OpenFaas (the Gateway, the Nats, and the
Queue Manager) and OpenWolf Engine (the Agent and Redis)
were deployed on the Cloud node, while the Edge tier was used
only for hosting functions. Our three-state workflow has been
evaluated in the versions full cloud, full edge, and continuum;
in the first one, all the functions of the workflows are deployed
in the cloud, while in the second, all of them are located in
the edge, finally, in the continuum version we balanced the
functions trying to optimize the location considering the best
tier they fit. The systems’ characteristics are summarised in
table I, while the OpenWolf parameters are summarized in
table II.

Fig. 6. Workflow Execution without Authentication and Authorization

Fig. 7. Workflow Execution with Authentication and Authorization

In Figures 6 and 7 we reported the results, we obtained in
terms of the response time of the workflow in the different
tiers and in the Continuum environment. As expected, the
Continuum guarantees the best performance with respect to
the full-cloud and full-edge executions; this happens because,
in Continuum, we can orchestrate the workflows to execute



TABLE I
CLUSTER’S NODES CHARACTERISTICS

Instances Tier Model CPU Memory Operating System
1 Cloud Openstack VM Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz, 2-core 4 GB Ubuntu 20
2 Edge Raspberry Pi 4 ARM64 SoC 1.5GHz, 4-core 4 GB Raspberry OS ARM64

TABLE II
OPENFAAS AND OPENWOLF PARAMETERS

Parameter Value Condition
Queue Workers 1 Ever
Function replicas State references States Number < 60
Function replicas (State References)/2 States Number ≥ 60
Max inflight Equal to functions replicas Ever

functions where they best fit; in this case, it’s critical training
in the Cloud, and fetching data in the Edge. The authentication
an authorization processes added latency to the response time
of the system. In particular, in the conducted experiments,
the unit cost of these processes is about 0.4 seconds in
the full Cloud environment, about 0.7 seconds in the full
Edge environment and about 0.5 seconds in the Continuum
environment. As we can see by comparing the results in Figure
6 and in Figure 7, the entire execution of the authenticated
and authorized version of the workflow is on average 1.5%
slower than the non-secure one. So the latency added to the
workflow execution time can be considered negligible, taking
into account also the earned security benefits.

VIII. CONCLUSION

In 2022 we started the OpenWolf project, an open-source
engine available on GitHub1, that aims to act like a broker
for the Serverless Continuum, which is a distributed and
heterogeneous environment where FaaS functions interact each
other following a Workflow Manifest file parsed and managed
by OpenWolf itself. In this work, we are still improving the
OpenWolf project, trying to solve some open issues related
to the security of the environment; in particular, we tried to
I) guarantee an authentication system to address functions,
workflows, and executions, II) introduce an authorization
system, able to allow and disallow the execution of workflow
to particular users and group and III) keep secure the workflow
state, avoiding the injection of malicious code that can affect
the behavior of one or more functions in the system. We
deeply described how these goals had been reached, and all
the updates have been uploaded to the official repository. We
verified the correctness of our work by providing a validation
assessment that demonstrated that all the security threats we
aimed to solve had been avoided; finally, we measured the
performances of this version of OpenWolf, comparing it with
the previous one; we did that to verify that the security features
we added in this work had not affected the performance of the
system, and as shown they didn’t.

The OpenWolf project is still in early state release, and
we have already planned plenty of work on it. In the next

1https://github.com/christiansicari/OpenWolf-Serverless-Workflow

future, we plan to apply the Osmotic Computing paradigm
to OpenWolf; in particular, we believe that some interest-
ing concepts like the Software Defined Membrane and the
Micro Element for the Continuum can be greatly integrated
into OpenWolf to improve the security aspect of this engine
further. Furthermore, we strongly believe that the serverless
engine solutions proposed in the open-source context are still
complementary, therefore for some use cases OpenFaas, that
is, the engine used in OpenWolf, could not absolve all use
cases; for this reason, we aim to integrate more serverless
engine in OpenWolf, like OpenWhisk and KNative. The last
work we planned to work on is defining a standard for
serverless workflow. As we said in this and in the linked works,
Serverless is a great opportunity for the Continuum, but the
lack of a standardized workflow engine reduces the potential
of these solutions; indeed, we have planned to work on a white
paper with the intent of defining a common and standardized
way to implement serverless workflow architectures for the
Computing Continuum.
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