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Abstract—Linear systems over the max-plus algebra provide a
suitable formalism to model discrete-event systems where syn-
chronization, without competition, is involved. In this article, we
consider a formulation of the model matching problem for systems
of such class, in which the output of a given system, called the
plant, is forced, by a suitable input, to track exactly that of a given
model. A necessary and sufficient condition for its solvability is
obtained by making a suitable use of geometric methods in the
framework of systems over the max-plus algebra.

Index Terms—Discrete-event systems, geometric methods,
manufacturing, max-plus systems.

I. INTRODUCTION

Linear systems over the max-plus algebra Rmax were introduced
in [1] as a suitable formalism to model discrete-event systems where
synchronization, without competition, is involved (an in-depth discus-
sion can be found in [2], while a good summary can be found in [3]).
This class of systems coincides with timed event graphs, which are Petri
nets where all the places have only one upstream and one downstream
transition.

Control problems involving systems over the max-plus algebra
are important in many applications, especially in industrial engineer-
ing [4]–[6], and a number of analysis and control techniques have been
developed in the last years [7]–[10]. In particular, the development of
a structural geometric approach for linear systems over the max-plus
algebra has been indicated as a promising research direction in [3] and,
since then, several results have been obtained along that line [9], [11],
[12] and [13].

One of the problems considered in the literature consists in searching
for a suitable control law that forces a given plant, modeled as a linear
system over the max-plus algebra Rmax, to behave accordingly to a given
model of the same kind. Different formulations of this problem, usually
referred to as the model matching problem (MMP), have been given
in relation to max-plus systems. In particular, in [14], it is required
that the output of the plant is forced to be greater than or equal to
that of the model in a suitable ordering and the problem is dealt with
by exploiting the properties of monotone formal series over a dioid.
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In [15], the matching condition consists in minimizing the distance, in
a suitable sense, between the output of the plant and that of a reference
model while delaying as much as possible the control action. The
tools used for solving the problem are based on residuation theory
and some properties of the Kleene star operator. A similar formulation
is considered in [16], where the problem is tackled by developing a
three-block control structure that implements a precompensation and
a feedback action. In a similar vein, we consider here the problem of
forcing the plant to generate an output that equals that of a given model,
giving in this way a formulation of the problem that more closely mimics
the classical MMP for linear systems [17].

The contribution of our study consists in deriving a novel, simple
structural necessary and sufficient condition for the solvability of the
problem that can be practically checked under suitable conditions.

The rest of this article is organized as follows. In Section II, we
introduce notions and tools of the max-plus algebra and we show by an
example how they can be used to model a class of discrete-event systems
as linear systems over Rmax. Moreover, we formally state the MMP, we
want to study. Section III contains the main result of this work that is a
structural geometric necessary and sufficient solvability condition for
the considered MMP. An example is provided in Section IV. Finally,
Section V concludes this article.

II. BACKGROUND AND PROBLEM STATEMENT

In this section, we recall some basic concepts and the corresponding
notation for max-plus linear systems. An example is also provided in
order to show how a manufacturing system can be modeled using such
formalism.

The max-plus algebra Rmax consists of the set R ∪ {−∞}, equipped
with two operations denoted, respectively, by ⊕ and by ⊗ and defined
by a⊕ b = max {a, b} for a, b ∈ Rmax and by a⊗ b = a+ b if a, b be-
longs to R or by (−∞)⊗ a = a⊗ (−∞) = −∞ for anya ∈ Rmax.The
neutral element for ⊕ and for ⊗ are denoted, respectively, by ε and by
e and we have ε = −∞ and e = 0 ∈ R. As ⊗ distributes over ⊕, Rmax

is a semiring.
Semimodules over semirings are analogous to vector spaces over

fields and the aspects of their theory that are considered in this article
can be dealt with by standard tools of linear algebra, provided the fact
that the elements of Rmax, except ε, have no inverse with respect to ⊕ is
kept into account. An introduction to the theory of semimodules over
Rmax with application to the study of max-plus systems can be found
in[9], [11], and [18]. By Rn

max, we denote the semimodule over Rmax

consisting of the set of all the n-tuples of elements of Rmax, or vector,
equipped with the component-wise and the scalar operations defined
in a standard way in terms of ⊕ and ⊗. If v and w are vectors of the
same dimension, the relation v ≥ w is understood to hold component-
wise. By abuse of notations, ε ∈ Rn

max will be used to denote the vector
whose components are all equals to ε, also referred to as the null vector.
Subsemimodules of Rn

max are subsets of elements that are closed with
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respect to the component-wise and the scalar operations defined in terms
of ⊕ and ⊗. Subsemimodules will be denoted by script letters, as V ⊆
Rn

max. A set of vectors {v1, . . ., vn} ∈ V ⊆ Rn
max is a set of generators

for V if any element x ∈ V can be written as a linear combination of the
vis, namelyx =

⊕n
i=1 ai ⊗ vi. Note that not all the subsemimodules of

Rn
max have a finite set of generators and those which enjoy this property

are said to be finitely generated.
In particular, (n×m)-matrices with entries in Rmax can be viewed

as elements of Rn×m
max , so that, given A,B ∈ Rn×m

max and using sub-
scripts to denote, in a standard way, the elements of a matrix, their
sum A⊕B ∈ Rn×m

max is defined by (A⊕B)ij = Aij ⊕Bij . Given
A ∈ Rn×m

max and B ∈ Rm×p
max , their product A⊗B ∈ Rn×p

max , or simply
AB, is defined by (A⊗B)ij =

⊕m
r=1 Air ⊗Brj . Analogously, given

A ∈ Rn×m
max anda ∈ Rmax, the scalar producta⊗A ∈ Rn×m

max , or simply
aA, is defined by (a⊗A)ij = a⊗Aij . If no confusion arises, ε will
also be used to indicate a matrix whose entries are all equal to ε. The
identity matrix, whose diagonal elements are all equal to e and whose
off-diagonal elements are all equal to ε, is denoted by In, where the
subscript denotes the dimension, or simply by I whenever its dimension
is clear from the context. If A is an n×m matrix the semimodule ImA
is the subsemimodule of Rn

max generated by the columns of A.
In modeling a situation in which events of n different types may

occur, we can consider a so-called n-dimensional dater function d(.) :
N → Rn

max, whose value at k ∈ N is an n-dimensional vector d(k) =
(d1(k), . . ., dn(k))


 in which the ith component di(k) indicates the
time instant at which an event of the ith type occurs for the kth time.
Dater functions must be nondecreasing (i.e., such that d(k + 1) ≥ d(k)
for each k ∈ N) in order to have physical meaning.

Using the abovementioned notions, we can see a max-plus linear
system Σ as a dynamical object whose evolution is defined by the
equations

Σ ≡
⎧⎨
⎩

x(k + 1) = Ax(k)⊕Bu(k + 1)
y(k) = Cx(k)
x(0) = ε

(1)

where k ∈ N is the event instance index, x(.) : N → X = Rn
max is

the dater of internal events, u(.) : N → U = Rm
max is the dater of

input events, and y(.) : N → Y = Rp
max is the dater of output events,

A ∈ Rn×n
max , B ∈ Rn×m

max , and C ∈ Rp×n
max . Coherently with the usual

terminology for dynamical systems, the semimodules X , U , and Y
are called, respectively, the state module, the input module, and the
output module of the system. Note that in Σ, we have n types of
internal events that correspond to the n components of x, m types
of input events that correspond to the m components of u and p
types of output events that correspond to the p components of y.
The vector x(k) = (x1(k), . . ., xn(k))


 ∈ Rn
max indicates that the kth

internal event of type i occurs at time xi(k) and a similar interpretation
holds for u(k) and for y(k). A sequence {u(k + 1)}k∈N is viewed as
an input to Σ, while a sequence {y(k + 1)}k∈N is viewed as an output
of Σ.

Example 1: Two types of components, R1 and R2, are used in a
manufacturing plant. These raw parts are processed by the machines M1
and M2, respectively, in order to obtain the semifinished parts S1 and S2.
These intermediate parts are then assembled together by the machine
M3, in order to obtain a unit of final product F1. The machines M1,
M2, and M3 require 1, 2, and 4 time units, respectively, to execute their
processing cycles. The plant is schematized, from an operational point
of view, as shown in Fig. 1. We assume that all the machines involved
can process only one part at a time, and that buffers of infinite capacity
are present at each stage of the plant. Clearly, these assumptions can be
suitably modified, still obtaining a max-plus linear model.

Fig. 1. Scheme of the plant.

TABLE I
DATERS AND EVENTS

The only type of event that is triggered internally by the system, and
is visible from outside it, is the “completion of a cycle by the machine
M3,” we will refer to this event as an output event. Two types of events
are triggered by outside of the system: “arrival of a component of type
R1” and “arrival of a component of type R2,” we refer to them as input
events. We can consider as internal events the ones of type “completion
of a cycle by the machine M1” and “completion of a cycle by the
machine M2.” We can associate a dater function to each of this events,
as reported in Table I .

Clearly, the values u1(k) and u2(k) need to be provided by some
external source, while the values of the other variables can be computed
using appropriate rules. Events of type “completion of a cycle on the
machine M1” can occur only after the previous activity on M1 has been
completed and one unit of time has elapsed after a new input raw part of
type R1 has been made available. Assuming that all the activity starts
as soon as possible, we can express this statement by the following
equation:

x1(k + 1) = max {x1(k), u1(k + 1)}+ 1

= max {x1(k) + 1, u1(k + 1) + 1}
and, using similar arguments, we have

x2(k + 1) = max {x2(k) + 2, u2(k + 1) + 2}
x3(k + 1) = max {x1(k + 1) + 4, x2(k + 1)

+ 4, x3(k) + 4}
y(k) = x3(k).

The two abovementioned equations are linear in the max-plus algebra
and they can be written as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1(k + 1) = 1⊗ x1(k)⊕ 1⊗ u1(k + 1)
x2(k + 1) = 2⊗ x2(k)⊕ 2⊗ u2(k + 1)
x3(k + 1) = 4⊗ x1(k + 1)⊕

4⊗ x2(k + 1)⊕ 4⊗ x3(k)
y(k) = x3(k)

or, using a matrix notation and omitting the multiplication operator as
usual, as ⎧⎨

⎩
x(k + 1) = A0x(k + 1)⊕A1x(k)⊕

B′u(k + 1)
y(k) = Cx(k)

(2)
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with

A0 =

⎛
⎝ ε ε ε

ε ε ε
4 4 ε

⎞
⎠ , A1 =

⎛
⎝ 1 ε ε

ε 2 ε
ε ε 4

⎞
⎠ , B′ =

⎛
⎝ 1 ε

ε 2
ε ε

⎞
⎠ , C =

(
ε ε e

)
.

The first equation of (2), due to the presence of the termA0x(k + 1),
describes an implicit relation that has to be made explicit in order
to obtain an expression of the form (1). In the max-plus algebra,
the least solution of the implicit equation x = Ax⊕ b (that is: x =
max{Ax, b}) can be expressed, by means of the so-called Kleene star
A∗ =

⊕
n∈N An

0 , asx = A∗b, wheneverA∗ can be given a meaning. In
our case, thanks to the fact that A0 is lower triangular, we have Ai

0 = ε
for all i ≥ dimA0 (note that this holds in general, provided that in the
plant to be modeled there are no events that cannot be triggered because
of mutual dependence or, in other words, if there are no cyclic paths
in the graph describing the sequence of the plant’s operations), and

therefore, we can compute A∗
0 getting A∗

0 = (
e ε ε
ε e ε
4 4 e

). Then, we obtain

the following representation of the form (1) of the considered plant:

⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) = A∗
0A1x(k)⊕A∗

0B
′u(k + 1)

= Ax(k)⊕Bu(k + 1)
y(k) = Cx(k)
x(0) = ε

with A =

⎛
⎝ 1 ε ε

ε 2 ε
5 6 4

⎞
⎠ , B =

⎛
⎝ 1 ε

ε 2
5 6

⎞
⎠ , C =

(
ε ε e

)
, and the condi-

tion x(0) = ε is taken accordingly to the derivation of the explicit form
from the least solution of the implicit equation.

Assuming, for sake of illustration that raw parts of type R1 and R2
arrive together at the time instant 0 and, again, at the instant 1 and
simulating the evolution of the system, we get

u(1) =

(
0
0

)
→ x(1) =

⎛
⎝ 1

2
6

⎞
⎠ y(1) = 6

u(2) =

(
1
1

)
→ x(2) =

⎛
⎝ 2

4
10

⎞
⎠ y(2) = 10.

Remark 1: In the physical world, the (k + 1)th occurrence of an
event cannot anticipate the kth one and so, using dater representations,
any input {u(k + 1)}k∈N is as a nondecreasing sequence. The same
must hold for the sequence {x(k + 1)}k∈N that describes the state
evolution and this implies that the dynamic matrix A in the defining
(1) is greater than or equal to the identity matrix In, i.e., A ≥ In,
where In is the n× n-matrix with all elements on the diagonal equal
to e and all other elements equal to ε. Decreasing inputs or systems
with a dynamic matrix that is not greater than the identity matrix, or
anticipative systems, are, therefore, of little interest and they will not
be considered here.

We now have the tools to formalize the problem, we tackle in this
article.

Problem 1 (MMP): Given a linear max-plus system

ΣP ≡
⎧⎨
⎩

xP (k + 1) = APxP (k)⊕BPuP (k + 1)
yP (k) = CPxP (k)
xP (0) = ε

(3)

of the form (1), called the plant, and a linear max-plus system

ΣM ≡
⎧⎨
⎩

xM (k + 1) = AMxM (k)⊕BMuM (k + 1)
yM (k) = CMxM (k)
xM (0) = ε

(4)

of the form (1), called the model, with xP : N → RnP
max , xM : N →

RnM
max , uP : N → RmP

max , uM : N → RmM
max , and yP , yM : N → Rp

max ,
the MMP consists in finding, for all possible nondecreasing input se-
quences {uM (k + 1)}k∈N of the model, an appropriate nondecreasing
control input sequence {uP (k + 1)}k∈N for the plant, such that the out-
put {yP (k + 1)}k∈N of this latter equals the output {yM (k + 1)}k∈N

of the model, i.e., yP (k + 1) = yM (k + 1) for all k ∈ N.
A more restrictive formulation of the MMP is obtained by requiring

that the control signal can be computed as a linear function of the state
of the plant and of the state and the input of the model, which can be
viewed as a feedback map.

Problem 2 (Feedback Model Matching Problem (FMMP)): Given a
plant of the form (3) and a model of the form (4), the FMMP consists
in finding, for all possible nondecreasing input sequences {uM (k +

1)}k∈N of the model, two appropriate matrices F ∈ RmP ×(nP+nM )
max

and G ∈ RmP×mM
max such that the control input sequence {uP (k +

1)}k∈N defined by

uP (k + 1) = F

(
xP (k)
xM (k)

)
⊕GuM (k + 1) for k ≥ 0 (5)

is a solution for the corresponding MMP.
Remark 2: Since in the given formulation of the FMMP the entries of

F andG are not required to be positive real numbers, it may happen that
some components ofuP (k + 1) computed by (5) are smaller than some
component of uM (k + 1), or even that uP (k + 1) < uM (k + 1). Ac-
cording to the meaning of the daters uP (.) and uM (.), this implies
that, in order to satisfy the matching requirement, the plant must
receive (some components of) its (k + 1)-input before the model has
received (some components of) its (k + 1)-input. Therefore, since the
knowledge of uM (k + 1) is necessary to compute uP (k + 1), the
control law constructed by means of (5) is physically implementable
only if the time at which the model receives (each component of) its
k-input is appropriately known in advance. For instance, this happens in
practice when the sequence of input events of the model is scheduled in
advance to satisfy some specific requirements or to comply with some
specific policy. In such cases, the value of xP (k) and xM (k) can be
obtained by simulating the joint dynamics, using the previous states
and the scheduled value for uM (k).

III. SOLUTION OF THE PROBLEMS

Given the plant ΣP described by (3) and the model ΣM described

by (4), let us consider the joint internal event dater xE(.) = (
xP (.)
xM (.)

) :

N → R(nP+nM )
max and the related joint dynamics, which is described by

the equation

xE(k + 1) = AExE(k)⊕B1uP (k + 1)⊕B2uM (k + 1) (6)

with AE = (
AP ε
ε AM

), B1 = (
BP

ε
), B2 = (

ε
BM

) and xE(0) = ε.

It is possible, then, to reformulate the control problem expressed in
Problem 1 as that of finding, for any input {uM (k + 1)}k∈N , a control
input {uP (k + 1)}k∈N that keeps xE(k) inside the output equalizer

subsemimodule K ⊆ R
(np+nM )
max defined by

K = {xE =

(
xP

xM

)
∈ R

(np+nM )
max , s. t. CPxP = CMxM}. (7)
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In the framework of max-plus systems, control problems of this type, in
which the control objective is that of constraining x(k) inside a given
subsemimodule, have been considered and dealt with by employing a
structural geometric approach in [9] and [19].

Remark 3: Viewing {uM (k + 1)}k∈N as a disturbance input and
{uP (k + 1)}k∈N as a control input, the abovementioned formulation
essentially reduces the MMP to a disturbance decoupling problem, as
it happens in the case of classical linear systems with coefficients in a
field or in a ring. In those cases, it is possible to consider the difference
between the output of the plant and that of the model and to describe the
resulting control problem as that of keeping the state inside the kernel
of such function [20]. Differences cannot be computed in the max-plus
algebra and, in general, it is not possible to find a matrix CE such that
the output equalizer subsemimodule K defined in (7) is the kernel of
CE , neither using the classical definition of kernel (i.e., KerA = {x ∈
Rnr

max, such thatAx = ε}, where nr is the number of rows of A), nor
the alternative definition, more convenient in the max-plus case, given
by some authors (see, for instance, [12]) in terms of congruence (i.e.,
Ker = {(x, y) ∈ R2nr

max , such thatAx = Ay}). This means that it is
not possible to associate to the dynamics (6) a linear output map that
represents the difference between the output of the plant and that of
the model. Note, however, that the output equalizer subsemimodule K
defined in (7) is the pull-back, in the category of modules over Rmax ,
of the pair of maps (CP , CM ) and, as such, it generalizes the notion
of kernel of the difference between these two maps [21]. Note that it
would be possible to proceed differently by introducing the operator �,
defined over Rmax bya� b = a− b fora, b ∈ R, by ε� a = a� ε = a
for any a ∈ Rmax and by ε� ε = e. This, actually makes it possible to
write

yE(k) = yP (k)� yM (k) = CPx(k)� CMxM (k) (8)

and the MMP reduces to find, for any disturbance input {uM (k +
1)}k∈N , a control input {uP (k + 1)}k∈N such that yE(k) = e for
all k ∈ N. However, the output (8) is nonlinear and it cannot be
conveniently handled in this context. For such reason, we do not follow
this approach.

In order to deal with the MMP in the formulation that consists in
keeping xE(k) inside the output equalizer subsemimodule K, it is
convenient to make use of a structural geometric approach that extends
those developed for classical linear systems with coefficients in a field
in [22] and [23]. Extensions of such approach to systems with coeffi-
cients in a ring [24]–[26] and, then, in a semiring [3], [9], [11]–[13] have
been considered by several authors. Here, we recall the basic notion of
controlled invariant subsemimodule for max-plus linear systems given
in [9] and some related results.

Definition 1: Given a max-plus linear system Σ of the form (1), a
subsemimodule V ⊆ Rn

max is said to be an (A,B)-controlled invariant
subsemimodule if for all v ∈ V there exists u ∈ Rm

max such that (Av ⊕
Bu) belongs to V .

Given a max-plus linear system Σ of the form (1) and a subsemi-
module of its state semimodule K ⊆ Rn

max, the set of all the (A,B)-
controlled invariant subsemimodules contained in K is a semilattice
with respect to inclusion and sum of semimodules, so a maximum
element, denoted V∗(K), exists.

The sequence of semimodules Vk defined by

V0 = K
Vk = Vk−1 ∩A−1(Vk−1 � ImB) (9)

where A−1(Y)={v ∈ Rn
max, such thatAv∈Y} and Vk−1 � ImB =

{x∈Rn
max, for which there exists u∈Rm

max such that x⊕Bu∈Vk−1}, is
such that Vk+1 ⊆ Vk for all k ∈ N. If we define V∞ = limk→∞Vk =⋂

k∈N Vk, then every (A,B)-invariant semimodule contained in K

is also contained in V∞. Moreover, Vk+1 = Vk if and only if Vk is
(A,B)-invariant and in such caseV∞ = Vk = V∗(K). As it happens for
systems with coefficients in a ring, the sequence (9) does not necessarily
converge in a finite number of steps, and therefore, it does not provide,
in general, an algorithm for the computation ofV∗(K), as its counterpart
does for systems with coefficients in a field [23].

Remark 4: If K is finitely generated, then the semimodules Vk are
finitely generated for all k ∈ N. In fact, given some finitely generated
semimodules Z and Y , the semimodules Y � Z , A−1(Y), and Y ∩ Z
are all finitely generated (see [18, Corollary 86]). As explained in [9,
Remark 1], their generators can be obtained as the set of solutions of
appropriate systems of linear equations over the max-plus algebra Rmax .

Definition 2: Given a max-plus linear system Σ of the form (1), a
subsemimodule V ⊆ Rn

max is said to be an (A,B)-controlled invariant
subsemimodule of feedback type if there exists a matrix F ∈ Rm×n

max

such that (A⊕BF )v belongs to V for all v ∈ V .
Clearly, (A,B)-controlled invariance of feedback type implies

(A,B)-controlled invariance. In the framework of systems with co-
efficients in a field, the two properties are known to be equivalent [22],
[23], but this is not true in the case of systems with coefficients in a
ring [24], [25] or in a semiring [9] and, in particular, in the case of the
max-plus systems considered here.

We can now state the main result of this work that is a necessary and
sufficient condition for the existence of a solution to the MMP.

Theorem 1: Given a plantΣP of the form (3) and a modelΣM of the
form (4), assume that AP ≥ InP

and AM ≥ InM
. Then, the related

MMP is solvable if and only if for all x ∈ ImB2 = Im(
ε

BM
) there

exists y ∈ ImB1 = Im(
BP

ε
) such thatx⊕ y belongs toV∗(K), where

V∗(K) is the maximum (AE , B1)-invariant semimodule contained in
the output equalizer semimodule K defined by (7).

Proof: If. By (AE , B1)-controlled invariance of V∗(K), it follows
that given xE(k) ∈ V∗(K), there exists u1(k + 1) ∈ RmP

max such that
AExE(k)⊕B1u1(k + 1) belongs to V∗(K). Moreover, by hypoth-
esis, given uM (k + 1) ∈ RmM

max , there exists u2(k + 1) ∈ RmP
max such

that B1u2(k + 1)⊕B2uM (k + 1) belongs to V∗(K). We can then
construct recursively a control input {uP (k + 1)}k∈N for the dynamics
(6) as

uP (k + 1) =

{
u2(1) for k = 0
u1(k + 1)⊕ u2(k + 1)⊕ uP (k) for k > 0

. (10)

More precisely, we start by taking u2(1) such that B1u2(1)⊕
B2uM (1) ∈ V∗(K) and we set uP (1) = u2(1). Then, we compute
xE(1) by means of (6), xE(0), uP (1), and uM (1), and we take u1(2)
and u2(2) such that AExE(1)⊕B1u1(2) ∈ V∗(K) and B1u2(2)⊕
BMuM (2) ∈ V∗(K). We set uP (2) = u1(2)⊕ u2(2)⊕ uP (1) and
we iterate the same procedure increasing by 1 the index k at each
step. Note that the sequence {uP (k + 1)}k∈N , thanks to the presence
of the term uP (k) in the second equation of (10), is nondecreasing and
it gives rise to the following state evolution:

xE(k + 1) =

⎧⎨
⎩
AExE(0)⊕B1u1(1)⊕B2uM (1) for k = 0
AExE(k)⊕B1u1(k + 1)⊕ (B1u2(k + 1)
⊕B2uM (k + 1))⊕B1uP (k) for k > 0

.

(11)
In (11), the term B1uP (k) is irrelevant, since, by induction, we have
xE(k) ≥ B1uP (k) and hence, thanks to the assumption AE ≥ I ,
also AExE(k) ≥ B1uP (k). Then, disregarding this last term, we
can show by induction that the state evolution {xE(k)}k∈N given in
(11) is contained in V∗(K). In fact, xE(0) = ε belongs to V∗(K).
Moreover, by the definition of u1(.), it follows that the summand
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(AExE(k)⊕B1u1(k + 1)) in the right-hand term of (11) is con-
tained in V∗(K) if xE(k) is contained in V∗(K). Finally, the second
summand (B1u2(k + 1)⊕B2uM (k + 1)) in the right-hand term of
(11) is contained in V∗(K) by the definition of u2(k + 1). Since
V∗(K) ⊆ K, by the definition ofK given in (7), it follows that the output
{yP (k + 1)}k∈N of the plant generated by the input {uP (k + 1)}k∈N

defined by (10) is equal to the output {yM (k + 1)}k∈N of the model
generated by the input {uM (k + 1)}k∈N and the MMP is solved.

Only if: If the condition of the theorem does not hold, there
exists an input vector ūM such that B2ūM ⊕B1uP /∈ V∗(K) for
any uP ∈ RmP

max . Then, for the constant input {uM (k + 1)}k∈N

with uM (k + 1) = ūM for k ∈ N, we have, from (6) that
xE(1) = AExE(0)⊕B1uP (1)⊕B2uM (1) = AEε⊕B1uP (1)⊕
B2ūM = B1uP (1)⊕B2ūM does not belong to V∗(K) for
any value uP (1) ∈ RmP

max and also xE(1) ≥ B2ūM . The latter
inequality, thanks to the assumption AE ≥ I , implies recursively
xE(k + 1) = AExE(k)⊕B1uP (k + 1)⊕B2uM (k + 1) =
AExE(k)⊕B1uP (k + 1)⊕B2ūM = AExE(k)⊕B1uP (k + 1),
while the fact that xE(1) does not belong to V∗(K) implies that
for any input {uP (k + 1)}k∈N there exists k̄ ∈ Z such that
xE(k̄ + 1) = AExE(k̄)⊕B1uP (k̄ + 1) /∈ K. In other words,
xE(k + 1) cannot be kept indefinitely inside the subsemimodule K
and, as a consequence, the MMP cannot be solved. �

Remark 5: The condition expressed by Theorem 1 can be equiv-
alently written, using the � operator introduced in (9), as ImB2 ⊆
V∗(K)� ImB1 and it can be practically checked using the same
techniques described in Remark 4.

For the feedback version stated in Problem 2, we can state the
following solvability condition.

Theorem 2: Given a plant ΣP of the form (3) and a model ΣM of
the form (4) as in Theorem 1, the related FMMP is solvable if and only
if there exists an (AE , B1)-invariant subsemimodule V of feedback
type contained in the output equalizer subsemimodule K such that for

all x ∈ ImB2 = Im(
ε

BM
) there exists y ∈ ImB1 = Im(

BP

ε
) with

x⊕ y ∈ V .
Proof: Let V ⊆ K be an (AE , B1)-invariant subsemimodule of

feedback type for which the condition of the theorem holds. Then,
by hypothesis, there exists a matrix F such that for each xE(k) ∈ V ,
(AE ⊕B1F )xE(k) belongs toV and a matrixG such that the columns

of the matrix (
ε

BM
)ImM

⊕ (
BP

ε
)G = (

BPG
BM

) belong to V . We can

then construct recursively a control input {uP (k + 1)}k∈N , of the form
(5), for the dynamics (6) as

uP (k + 1) = FxE(k)⊕GuM (k + 1). (12)

More precisely, we start by taking uP (1) = FxE(0)⊕GuM (1) =
GuM (1). Then, we compute xE(1) by means of (6), xE(0), uP (1)
and uM (1), and we take uP (2) = FxE(1)⊕GuM (2). We iterate the
same procedure increasing by 1 the index k at each step. The sequence
{xE(k + 1)}k∈N that is generated, together with {uP (k + 1)}k∈N ,
during the iteration, is nondecreasing, sinceAE ≥ InP+nM

. Since also
{uM (k + 1)}k∈N is assumed to be nondecreasing, the input {uP (k +
1)}k∈N turns out to be nondecreasing. The resulting state evolution

xE(k + 1) = (AE ⊕B1F )xE(k)⊕
(
BPG
BM

)
uM (k + 1) (13)

clearly evolves in V ⊆ K and, hence, the MMP is solved.
Only if. Assume that the FMMP is solved by a control law of the form

(5). Then, the set of reachable states for the dynamics (13) is an (A,B)-
invariant subsemimodule of feedback type contained in K that contains

all the columns of the matrix (
BPG
BM

) = (
ε

BM
)ImM

⊕ (
BP

ε
)G. This

clearly implies the condition of the theorem. �
Remark 6: The solvability condition for the FMMP given in The-

orem 2 is stronger than the solvability condition for the MMP given
in Theorem 1, since any (A,B)-controlled invariant of feedback type
V contained in K is also contained in V∗(K) due to the maximality of
the latter, and V∗(K) is not necessarily of feedback type. Therefore,
the solvability of the FMMP implies the solvability of the MMP and
any solution of the first is a solution also of the second. In particular,
if the solvability condition given in Theorem 2 is satisfied, the solution
{uP (k + 1)}k∈N given by (12), being nondecreasing, can be expressed
as

uP (k + 1) =

{
GuM (1) for k = 0
FxE(k)⊕GuM (k + 1)⊕ uP (k) for k > 0

.

(14)
Letting u1(k + 1) = FxE(k) and u2(k + 1) = GuM (k + 1), (14)
shows that the procedure indicated in the proof of Theorem 2 provides
the same control input we can have from (10) in the proof of Theorem 1.

Remark 7: In practice, the condition of Theorem 1 can be checked
and the elements u1(k + 1), u2(k + 1) that are needed in (10) to
construct the control input {uP (k + 1}k∈N can be found by solving
systems of linear equations over the max-plus algebra Rmax that involve
the matrices AE , B1, B2 and the generators of V∗(K). The same holds
for the condition of Theorem 1 and for the matricesF ,G that are needed
in (12). Since inverses with respect to⊕ do not exist in Rmax , the general
systems of linear equations in the vector indeterminate ξ over Rmax one
has to deal with takes the bilateral form

Mξ ⊕ α = Nξ ⊕ β (15)

where M and N are known matrices and α and β are known vectors of
compatible dimensions with elements in Rmax (see [2]). Computational
problems that arise in dealing with such systems of equations are
illustrated in [9] and [18]. Elimination methods can be applied to
find solutions, as described in [9] and [27], possibly with the aid of
a dedicated Scilab toolbox [28]. An example of how to deal in practice
with the computations involved in solving the FMMP is given in the
following section.

IV. EXAMPLE

In this section, we provide an example to illustrate the previous
results.

Let us consider a plant ΣP of the form (3) described by

ΣP ≡

⎧⎪⎪⎨
⎪⎪⎩

xP (k + 1) =

(
e e
2 e

)
xP (k)⊕

(
2
e

)
uP (k + 1)

yP (k) =
(
e e

)
xP (k)

xP (0) = ε

.

and a model ΣM of the form (4) described by

ΣM ≡
⎧⎨
⎩

xM (k + 1) = 3xM (k)⊕ 4uM (k + 1)
yM (k) = xM (k)
xM (0) = ε

.

The related joint dynamics is given by

xE(k + 1) = AExE(k)⊕B1uP (k + 1)⊕B2uM (k + 1)

with xE = (
xP

xM
) and

AE =

⎛
⎝ e e ε

2 e ε
ε ε 3

⎞
⎠ , B1 =

⎛
⎝ 2

e
ε

⎞
⎠ , B2 =

⎛
⎝ ε

ε
4

⎞
⎠ .
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The output equalizer subsemimodule K is easily seen to be given by the
set of vectors in R3

max whose last component is equal to the maximum
of the first two components, namely

K =

⎧⎨
⎩
⎛
⎝x1

x2

x3

⎞
⎠ ∈ R3

max with max{x1, x2} = x3

⎫⎬
⎭ (16)

and we also have K = ImK = Im (
e ε
ε e
e e

). Note that K is not AE-

invariant, since, e.g., (
e e ε
2 e ε
ε ε 3

)(
e
ε
e
) = (

e
2
3
) does not belong to K, but it

can be proved to be (AE , B1)-invariant of feedback type and, hence,
V∗(K) = K.

To show that K is (AE , B1)-invariant of feedback type, we need to
solve the two sided linear max-plus system of equations

(AE ⊕B1F )K = KQ (17)

whose set of solutions (F,Q) is a finitely generated max-plus set [9].
This can be done, first, by rewriting (17) as a system of max-plus
linear equations in the vector indeterminate ξ of the form (15) and,
then, by solving it by implementing the technique presented in [27]. To
accomplish the first step, let us consider separately each column Ki,
with i = 1, 2, of K in the left-hand side of (17), so obtaining a set of
equations of the form

(AE ⊕B1F )Ki = AEKi ⊕B1FKi = KQi for i = 1, 2. (18)

Now, for the max-plus product FKi, we can write FKi =

Δ(K

1 ,K



2 )f where f is a vector in R(nM+nP )mP

max that consists of all
the columns of F stacked on top of each other in lexicographic order
and Δ(K


1 ,K


2 ) is a block-diagonal matrix in RmP×((nP+nM )mP )

max

whose diagonal blocks are all equal to K

i . Substituting in (18), we get

B1Δ(K

1 ,K



2 )f ⊕AEKi = KQi for i = 1, 2 (19)

that is an equation of the form (15) with ξ = (
f
Qi

) ∈ R(nP+nM )mP+2
max ,

M = (B1Δ(K

1 ,K



2 ) ε ) ∈ R(nP+nM )×((nP+nM )mP+2)

max ,
α = AEKi ∈ RnP+nM

max , N = ( ε K ), β = ε, and N and β have the
same dimensions of M and α, respectively.

Using elimination methods, as mentioned in Remark 7, it is possible
to find a solution of (19) and then a solution

(F,Q) =

((
1 1 ε

)
,

(
3 3
2 1

))

of (17) [we do not report here the single elementary steps of the
computation, but the reader can easily verify that the pair (F,Q) given
above solves (17)]. In particular, the control lawuP (k + 1) = FxE(k)
keeps inside K any state evolution, which starts in K.

The condition of Theorem 2 is satisfied for V = V∗(K) = K. In

fact, any x ∈ ImB2 is of the form x = B2 a = (
ε
ε
4
)a = (

ε
ε

4 + a
) with

a ∈ Rmax and, taking y = B1 b = (
2
e
ε
) b = (

2 + b
b
ε

) with b = 2a ∈

Rmax, we have that x⊕ y = (
4 + a
2 + a
4 + a

) belongs to K. In particular, the

columns of the matrix (
ε

BM
)ImM

⊕ (
BP

ε
)G = (

BPG
BM

) = (
2 G
G
4

)

belongs to K for G = (2). Hence, according to the proof of Theorem
2, a solution to the FMMP turns out to be given by the control law

uP (k + 1) = FxE(k)⊕GuM (k + 1)

= (1 1 ε)xE(k)⊕ 2uM (k + 1)

= 1xP1(k)⊕ 1xP2(k)⊕ 2uM (k + 1) (20)

that is of the form (5). In fact, by substituting uP (k + 1) with the
abovementioned expression in the joint dynamics (6) we get⎛
⎝xP1(k + 1)

xP2(k + 1)
xM (k + 1)

⎞
⎠ =

⎛
⎝ 3 3 ε

2 1 ε
ε ε 3

⎞
⎠

⎛
⎝xP1(k)

xP2(k)
xM (k)

⎞
⎠⊕

⎛
⎝ 4

2
4

⎞
⎠uM (k + 1)

and

yP (k + 1) = xP1(k + 1)⊕ xP2(k + 1)

= 3xP1(k)⊕ 3xP2(k)⊕ 4uM (k + 1)

= 3yP (k)⊕ 4uM (k + 1)

yM (k + 1) = xM (k + 1)

= 3xM (k)⊕ 4uM (k + 1)

= 3yM (k)⊕ 4uM (k + 1).

From the last expression, since xP (0) = xM (0) = ε, it is easy to
see by induction that {yP (k + 1)}k∈N is equal to {yM (k + 1)}k∈N .
Obviously, the found solution of the FMMP is a solution also of the
MMP and, as explained in Remark 6, the control law (20) satisfies the
requirement of Problem 1.

V. CONCLUSION

A natural formulation of the matching problem for max-plus systems
has been given and the problem has been tackled in the framework
of the geometric approach. This provides solvability conditions that
basically extend those originally found in the framework of classical
linear systems, showing, in particular, the validity and the potential of
the geometric approach also for this class of systems. Future work will
consider the extension of the methods and of the results to max-plus
systems that have a switching structure and can, therefore, model the
behaviour of real plants in varying operational conditions.
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