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In recent years, intense efforts have been devoted to studying how nonlinear effects can be used to shape
the transverse beam distribution by means of an adiabatic crossing of nonlinear resonances. By this
approach, it is possible to split the beams in the transverse plane so that the initial single-Gaussian beam is
divided into several distinct distributions. This is at the heart of the multiturn extraction process that is
successfully in operation at the CERN Proton Synchrotron. Nonlinear effects can also be used to cool a
beam by acting on its transverse beam distribution. In this paper, we present and discuss the special case of
a beam with an annular distribution, showing how its emittance can be effectively reduced by means of
properly devised manipulations based on nonlinear effects.
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I. INTRODUCTION

Nonlinear effects introduce new beam dynamics phe-
nomena that might open up the possibility of devising
novel beam manipulation techniques. This is the case, for
instance, when shaping the transverse beam distribution by
means of the adiabatic crossing of a stable nonlinear
resonance. This process is at the heart of the so-called
beam splitting that is used for CERN Multiturn Extraction
(MTE) [1–3] and has been successfully implemented as a
routine part of the CERN Proton Synchrotron operation for
several years [4–6].
However, this is not the only nonlinear manipulation that

can be devised. Indeed, under the inspiration of [7], it has
been found that a controlled redistribution of the invariants
can be achieved between the two transverse degrees of
freedom [8], provided that an appropriate two-dimensional
nonlinear resonance is crossed. This opens novel options in
terms of manipulation of the transverse beam emittances.
It is, therefore, natural to study whether nonlinear effects

can be used efficiently to reduce the linear invariants of a
transverse beam distribution, thus generating a cooling of
the transverse beam emittance. The basis of this approach
to beam cooling is the observation that nonlinear effects do
not preserve the linear invariant, i.e., the linear action, or the
so-called Courant-Snyder invariant. In this sense, they can

be used to reduce the value of the linear invariant without
violating the symplectic character of the Hamiltonian
dynamics. Therefore, comparing the value of the linear
invariant before and after the action of nonlinear forces, i.e.,
when the dynamics is linear and expressed as a rotation
around the origin of the phase space, is a correct indicator
of the reduction of the invariant for each individual particle,
hence of the entire beam distribution and of the corre-
sponding emittance.
In this paper, the initial step toward the development of a

nonlinear cooling of a particle distribution is discussed. We
present a framework to cool an annular beam distribution,
i.e., a distribution with nonzero density in an interval of
radii r1 < r < r2; r1 > 0 in the normalized phase space. It
is well known that annular beam distributions are generated
as the result of applying a single transverse kick to a
centered beam in the presence of decoherence. Hence, a
potential application of annular beam cooling could be the
restoration of the initial centered distribution after a trans-
verse kick.
It is worth recalling the two well-established techniques,

namely electron cooling [9] and stochastic cooling [10],
which represent the options available to manipulate the
transverse emittances of a charged particle beam. The first
relies on creating an equilibrium between the circulating
beam and an electron beam that provides cooling to the
circulating particles. The latter reduces the beam emittances
by imparting a dipole kick of appropriate amplitude,
determined upon a beam measurement performed by a
dedicated beam position monitor. These two cooling
techniques are clearly very different with respect to the
proposed cooling based on nonlinear effects. First, in terms
of the physical phenomenon used to achieve cooling;
second, in terms of the hardware needed to implement
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the various approaches, as the well-established cooling
principles rely on complicated hardware devices, which is
not the case for the proposed cooling mechanism. Last, the
domain of applicability contrasts the three methods: elec-
tron and stochastic cooling being very general, the newly
proposed one being very specific, as it applies only to a
certain beam distribution. Worth mentioning is also laser
cooling, another cooling technique that, however, is appli-
cable only to certain ion species and over a limited range of
beam energy values (see, e.g., [11–19] for a selection of
references on this topic).
A general discussion of the systems that can be used to

devise a cooling method for an annular beam distribution is
presented in Sec. II, while the considered models are
presented in Sec. III together with some results of the
adiabatic trapping theory applied to the models. In the same
section, several cooling protocols are defined, and their
performance is analyzed in detail using extensive numerical
simulations, the results of which are presented and dis-
cussed in Sec. IV. Finally, conclusions are drawn in Sec. V,
with some mathematical details reported in the appendix.

II. CONSIDERATIONS ON THE MODEL CHOSEN

A. General aspects

The general idea underlying the approach developed to
achieve cooling of the emittance of an annular beam
distribution is based on creating stable islands in phase
space. This can be done by slowly varying the parameters
to vary the area of the islands to cause the particles to cross
the separatrices. When the resonance islands are moved
in phase space, the action can be changed and eventually
reduced.
To create stable phase-space islands, a resonance needs

to be excited. The MTE experience suggests using a
Hénonlike map as a model, close to stable low-order
resonances, e.g., 1=4, 1=5. If the initial annulus lies outside
the chain of islands, then by changing the linear frequency,
one can act on the area of the central region and of the
islands to trap particles in the center. This reduces the action
by a quantity equivalent to the area of the islands divided by
2π, according to the separatrix crossing theory.
A simple analysis of the scaling laws of the parameters of

the islands, found in [20], suggests that this approach is
feasible only for resonances of order n ¼ 4. However, to
obtain the best cooling results, two parameters are needed
to control the position and area of the resonance islands.
Using the sextupole coefficient is not efficient, since it
acts as a global scale parameter [20] and therefore changes
the dynamic aperture of the map. Therefore, an octupole
kick should be added to the sextupole one to provide an
additional free parameter. Estimates for the island area and
the central region can be derived using the results of [20]
and [21]. However, the main drawback of this approach is
the thick stochastic layer generated by the octupole kick

around the outer part of the separatrix of the four stable
islands. This has the effect of inducing particle loss, making
the method unreliable. These observations make the
approach based on Hénon-like maps unsuitable for the
application under consideration.
Ongoing studies indicate that trapping in islands and

transport from within islands can also be achieved effi-
ciently using ac-modulated magnets [22]. The most
straightforward option consists of creating an island using
an ac dipole in a 1∶1 resonance condition, i.e., with the
oscillation frequency close to the linear tune of the system.
It is worth recalling that ac dipoles have been widely
studied in the field of accelerator physics, with essential
applications to beam diagnostics (see, e.g., [23–30], for an
overview of ac dipole studies and applications). Therefore,
a cooling method for annular beams will be devised based
on the Hamiltonian system modeling of the stable islands
used to perform the adiabatic trapping and subsequent
transport under the influence of an ac dipole.

B. Phase-space dimension

The fundamental idea behind the proposed application of
nonlinear dynamics to reduce the emittance of an annular
beam consists of using magnets that generate nonlinear
fields, e.g., sextupoles, and an ac dipole that generates an
oscillatory field. It is not restrictive to assume that the
annular distribution occurs in the horizontal phase space.
Therefore, the ac dipole will also act in this plane. However,
the sextupoles act on both horizontal and vertical planes,
introducing a nonlinear coupling between the two trans-
verse degrees of freedom. Therefore, based on these simple
considerations, the model that describes the cooling process
should be defined in a 4D phase space. However, the
dimensionality of the model can be reduced to two
dimensions only, provided that the sextupoles are located
in sections of the ring where the horizontal beta function
(βx) is larger than the vertical one (βy), which seems to be a
rather mild constraint. Another possibility, though inducing
a stronger constraint, is to use a beam in which the vertical
emittance is smaller than that of the annular distribution in
the horizontal plane. These qualitative considerations have
been quantitatively confirmed in the framework of studies
(experimental, theoretical, and numerical) carried out to
implement the CERN MTE. This beam manipulation is
carried out in the horizontal plane and is performed using
sextupoles and octupoles that have been installed in straight
sections in which βx ≈ 2βy [31] and the impact on the
vertical emittance due to the cross of the horizontal
resonance is very small [6]. More precisely, over the
intensity range of 1.5–2 × 1013 protons per pulse, the
vertical emittance [32] features a growth in the range of
10%–16%. This growth is computed from injection to just
before extraction, and the sextupoles and octupoles act only
shortly before extraction. Therefore, the reported emittance
growth clearly also includes the effects of all possible
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sources of emittance increase, unrelated to the nonlinear
magnets inducing beam splitting. This indicates that the
nonlinear coupling caused by MTE is only a fraction of the
measured emittance growth and that the strategy to mitigate
the nonlinear coupling is fully successful.
These arguments can be mathematically rigorous. The

system under consideration is described by the following
Hamiltonian:

Hðx; px; y; py; tÞ ¼ ω0;x
x2 þ p2

x

2
þ ω0;y

y2 þ p2
y

2

þ k3
3
ðx3 − 3xy2Þ þ εx cos ωt; ð1Þ

where the coordinates used are the Courant-Snyder coor-
dinates [33]. This Hamiltonian can be studied using
perturbative techniques, such as normal forms (see, e.g.,
[34]). In the case that the linear tunesω0;x;ω0;y are not close
to a low order resonance condition, the unperturbed
Hamiltonian (1) (ε ¼ 0) is quasi-integrable in a neighbor-
hood of the origin and one can introduce action angle
variables ðϕx; JxÞ and ðϕy; JyÞ. Moreover, since we are
interested in the linear resonanceω0;x − ω ¼ 0, it is sufficient
to consider the leading term in the time-dependent perturba-
tion theory, applying an averaging procedure for the other
Fourier components [35]. Therefore, in the action angle
variables, it is possible to reduce the Hamiltonian (1) to the
form

Hðϕx; Jx;ϕy; Jy; tÞ

¼ ω0;xJx þ ω0;yJy þ
Ωxx

2
J2x

þ Ωyy

2
J2y þΩxyJxJy þ ε

ffiffiffiffiffiffiffi
2Jx

p
cosϕx cos ωt: ð2Þ

We observe thatH does not depend on ϕy, which implies
that Jy is an invariant. Therefore, system (1) can be
described by the following Hamiltonian:

Hðϕx; Jx; tÞ ¼ ω0;xJx þ
Ωxx

2
J2x

þ ΩxyJxJy þ ε
ffiffiffiffiffiffiffi
2Jx

p
cos ϕx cos ωt; ð3Þ

in which Jy is a parameter. Furthermore, the system can be
designed so that Ωxy ≪ 1, which reduces the dynamics to a
one-dimensional pure case.

III. THEORY

A. The Hamiltonian model

Horizontal betatron motion in the presence of an ac
dipole can be described by the Hamiltonian of a generic
oscillator with sextupole nonlinearity and dipolar time-
dependent excitation [23–25], namely,

Hðx; px; tÞ ¼ ω0

x2 þ p2
x

2
þ k3

3
x3 þ εx cos ωt; ð4Þ

where x and px are Courant-Snyder coordinates [33], and

k3 ¼
1

B0ρ

∂
2By

∂x2
l; ð5Þ

where B0ρ stands for the magnetic rigidity of the reference
particle, By is the transverse component of the magnetic
field, and l is the physical length of the magnetic element.
We remark that the choice of the sextupole nonlinearity is
rather arbitrary, as other types of nonlinearity might be
used, as long as they generate an amplitude-detuning term.
On the other hand, from the standpoint of applications, the
use of a sextupole nonlinearity is very convenient, as it is
present in all magnetic lattices of circular accelerators.
Using the normal form approach to determine the

nonresonant interpolating Hamiltonian of (4) (see, e.g.,
[20]) and expressing it in the action angle coordinates
ðϕ; JÞ of the unperturbed (ε ¼ 0) system, the Hamiltonian
reads as

Hðϕ; J; tÞ ¼ ω0J þ
Ω2

2
J2 þ ε

ffiffiffiffiffi
2J

p
cos ϕ cos ωt; ð6Þ

where Ω2 ¼ gðω0Þk23 and gðω0Þ is a function of the linear
frequency [20] given by

gðω0Þ ¼ −
5

6ω0

; ð7Þ

which is obtained applying the Poincaré-Von Zeipel per-
turbation theory to Eq. (4). The quantity Ω2 represents an
amplitude detuning term. We recall that Jðx; pxÞ is an
adiabatic invariant of the unperturbed system if the fre-
quency ω0 slowly changes.
If we change the coordinates to refer the system to a

rotating reference frame with slow angle γ ¼ ϕ − ωt, taking
into account the generating function F ¼ Jðϕ − ωtÞ and its
time derivative ∂F=∂t ¼ −ωJ, the transformation gives

Hðγ;J;ψÞ¼ðω0−ωÞJþΩ2

2
J2þε

ffiffiffiffiffi
2J

p
cosðγþψÞ cosψ ;

ð8Þ

where ψ ¼ ωt.
One can average the fast variable ψ using

1

2π

Z
2π

0

dψ cosðγ þ ψÞ cos ψ ¼ 1

2
cos γ; ð9Þ

yielding the new averaged Hamiltonian,
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Hðγ; JÞ ¼ ðω0 − ωÞJ þ Ω2

2
J2 þ ε

2

ffiffiffiffiffi
2J

p
cos γ; ð10Þ

which, after a rescaling, can be written in the following
form:

Hðγ; JÞ ¼ 4J2 − 2λJ þ μ
ffiffiffiffiffi
2J

p
cos γ; ð11Þ

where

λ ¼ 4

Ω2

ðω − ω0Þ; μ ¼ 4ε

Ω2

: ð12Þ

Equation (11) represents a well-known Hamiltonian
[35,36] that can be conveniently written in the form

HðX; YÞ ¼ ðX2 þ Y2Þ2 − λðX2 þ Y2Þ þ μX ð13Þ

using the Cartesian coordinates X ¼ ffiffiffiffiffi
2J

p
cos γ, Y ¼ffiffiffiffiffi

2J
p

sin γ. When λ > ð3=2Þμ2=3, a hyperbolic fixed point
exists only for Y ¼ 0 and

X ¼ xc ¼
ffiffiffiffiffi
6λ

p

3
cos

�
π

6
þ α

�
; ð14Þ

where

α ¼ 1

3
asin

�
3

ffiffiffi
6

p

4

μ

λ3=2

�
: ð15Þ

The phase-space portrait of the Hamiltonian (13) is
shown in Fig. 1, and it can be divided into three regions:

the inner regions G1 and G2 (and G3 ¼ G1 ∪ G2) and the
region outside them.
Let us compute the area Ai of any region Gi. IfHc is the

value of the Hamiltonian in ðX ¼ xc; Y ¼ 0Þ, the equation
Hðγ; JÞ ¼ Hc has the solution

JðγÞ ¼ λ − 2x2c
2

− 2xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 2x2c

q
sin γ þ 2x2c sin2 γ; ð16Þ

and JðγÞ ¼ 0 for γ ¼ γ0 with

γ0 ¼ asin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 2x2c

p
2xc

: ð17Þ

The area of G1 in polar coordinates is thus given by

A1 ¼
Z

π−γ0

−γ0
dγ JðγÞ ¼ πλ

2
− K1 − K2; ð18Þ

while the area of G3 is given by

A3 ¼
Z

γ0

−π−γ0
dγ JðγÞ ¼ πλ

2
þ K1 þ K2 ð19Þ

so that

A2 ¼ A3 − A1 ¼ 2ðK1 þ K2Þ; ð20Þ

where

K1 ¼ λ asin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 2x2c

p
2xc

�
; ð21Þ

K2 ¼
3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 2x2c

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6x2c − λ

q
: ð22Þ

Let us now consider a particle that lies in the outer region
with an action J0 > A3=ð2πÞ. The area enclosed by its orbit
will be A0 ¼ 2πJ0. If we start a slow change in parameters
λ ¼ λðtÞ, μ ¼ μðtÞ, according to the theory of adiabatic
separatrix crossing [36,37], at t ¼ t�, when the condition
A3 ¼ A0 is met for λ ¼ λ�, μ ¼ μ�, the particle is captured
in G1 or G2 as a random event. Defining

ξi ¼
dAi=dt
dA3=dt

i ¼ 1; 2; ð23Þ

the probability Pi of trapping in Gi; i ¼ 1, 2 is given by

Pi ¼

8>><
>>:

1 if ξi > 1

ξi if 0 < ξi < 1

0 if ξi < 0

: ð24ÞFIG. 1. Phase-space portrait of the Hamiltonian (13) with
parameters λ ¼ 0.1, μ ¼ 0.01. The red line represents the
separatrix.
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After trapping, the resulting action J is given by Ai=ð2πÞ,
where Ai is calculated when trapping occurs, that is, for
λ ¼ λ� and μ ¼ μ�.
Given an initial distribution of particles, all of which

have an initial action in the neighborhood of J0, the
expected value of their final action is

hJi ¼ P1A1 þ P2A2

2π

����
λ�;μ�

; ð25Þ

and we have hJi ≤ J0, since P1 þ P2 ¼ 1, A1 þ A2 ¼
A3 ¼ 2πJ0, and Ai > 0, Pi > 0. Therefore, the final
expected action is smaller than the initial one, i.e., the
Courant-Snyder invariant of the particle has been reduced.
For distribution of particles with action J0, this results in a
cooling of the beam.
Furthermore, when trapping occurs at (λ�, μ�), we have

A3 ¼ 2πJ0, and using A3 ¼ πλ�=2þ K1 þ K2 ¼ 2πJ0, we
obtain the expression

K1 þ K2 ¼ π

�
2J0 −

λ�

2

�
: ð26Þ

Substituting K1 þ K2 into the expressions for A1 and A2,
one obtains

A1ðλ�; μ�Þ ¼ πðλ� − 2J0Þ A2ðλ�; μ�Þ ¼ πð4J0 − λ�Þ:
ð27Þ

We note that the values of A1 and A2 at the crossing time
do not depend on μ�.
We can then rewrite hJi using P2 ¼ 1 − P1, which gives

hJi ¼ 2J0 −
λ�

2
þ P1ðλ� − 3J0Þ ð28Þ

having calculated P1 at λ ¼ λ�, μ ¼ μ�.

B. Cooling protocols

We envisage three possible protocols to achieve beam
cooling since we can trap particles by varying only λðtÞ,
only μðtÞ, or both parameters. We recall that, as indicated
by Eq. (12), λ is proportional to the frequency of the ac-
modulated magnet, while μ is proportional to its strength.
We will present the three possible processes in this order,
referring to them as Protocol A, B, and C, respectively.

1. Variation of λ (Protocol A)

If we keep μ constant, dAi=dt ¼ ∂Ai=∂λ · dλ=dt, and the
probabilities are thus given by

ξi ¼
dAi=dλ
dA3=dλ

����
λ¼λ�

i ¼ 1; 2: ð29Þ

Their expressions have been computed in [35,36] and read

∂A1

∂λ
¼ Θ

2
;

∂A2

∂λ
¼ π − Θ;

P1 ¼
Θ=2

π − Θ=2
; P2 ¼

π − Θ
π − Θ=2

; ð30Þ

where

Θ ¼ acos

�
λ

2x2c
− 2

�
: ð31Þ

Figure 2 shows hJi=J0 as a function of J0 for different
values of μ�. We find that the minimum value of hJi=J0 is
independent of μ� (the proof is given in the appendix).
A numerical calculation of this minimum value gives

hJi=J0 ¼ 0.3957. Given J0, we can always find a value μ
that optimizes the cooling, with the final action reduced to
≈40% of the initial value.
Generally speaking, when ε ≠ 0, as in the final state of

this protocol, the emittance is not equal to the average value
of the adiabatic invariant. The reason for this is that the
emittance is computed assuming that the dynamics induces
a rotation around the origin, whereas the adiabatic invariant
is computed with respect to the fixed point around which
the initial conditions actually evolve. In fact, when ε ≠ 0,
and especially when the particles are trapped in bothG1 and
G2, as in the final state of this protocol, they do not rotate
around the origin. We also observe that if such a cooled
beam were transferred to another accelerator, then its
emittance would indeed be equal to the average action
of the particle distribution. In this sense, the cooling ratio
hJi=J0 calculated from Eq. (28) is the lower bound to the
actual ratio between the final and initial emittance values.
This situation could be solved or at least mitigated if it

were possible to develop a protocol of adiabatic transport

FIG. 2. Cooling ratio hJi=J0 for trapping inG1 andG2, with the
variation of λ according to Eq. (28), for three values of μ�.
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that, after the trapping phase, would preserve the actions of
the particles while reducing μ to zero. However, it should
be considered that when trapping is achieved by means of a
variation of λ only, cooling is not particularly efficient
since, at best, the cooling ratio is ≈60%. The methods we
will present in the following sections are, in theory, capable
of achieving total cooling.

2. Variation of μ and complete trapping
in G2 (Protocol B)

For the protocol based on the variation of μ, the area
derivatives (i ¼ 1, 2) are given by

dAi

dμ
¼ dα

dμ
dxc
dα

dAi

dxc
; ð32Þ

where

dα
dμ

¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12

8λ3 − 27μ2

s
;

dxc
dα

¼ −
ffiffiffiffiffi
6λ

p

3
sin

�
π

6
þ α

�
;

dA1

dxc
¼ −2

ð6x2c − λÞ3=2
xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2c − λ

p ;
dA2

dxc
¼ 4

ð6x2c − λÞ3=2
xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2x2c − λ

p : ð33Þ

Thus, we have ξ1 ¼ −1 and ξ2 ¼ 2, which means that
P1 ¼ 0 and P2 ¼ 1. Therefore, all particles are trapped in
G2, with an action value

J ¼ A2

2π
¼ 2J0 −

λ�

2
ð34Þ

Cooling is possible in the interval λ�=4 ≤ J0 ≤ λ�=2, i.e.
2J0 ≤ λ� ≤ 4J0, which corresponds to the existence of
square roots

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ� − 2x2c

p
and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6x2c − λ�

p
.

On the other hand, for λ� > 4J0, the initial condition
does not belong to the outer region but to the inner region,
G1. In that case, the separatrix crossing occurs when A1 ¼
2πJ0 and the particle is trapped in G2 at an action
A2ðλ�; μ�Þ=ð2πÞ. Using the expressions for A1 and A2,
we find that the expected final action is

J ¼ λ�

2
− 2J0; ð35Þ

which means that cooling is also possible for 4J0 ≤
λ� ≤ 6J0, i.e. λ�=6 ≤ J0 ≤ λ�=2.
After being trapped in G2, the particle distribution has a

smaller action than the initial one, but, as before, the
definition of adiabatic invariant, which being μ ≠ 0, is not
related to ðx2 þ p2

xÞ=2. Therefore, a transport process must
be designed to reduce μ to zero without losing particles
from G2. Since the particles are trapped in the region G2,
we need to keep its area constant, i.e., dA2=dt ¼ 0, or

dA2

dt
¼ dλ

dt

�
∂A2

∂λ
þ dxc

dλ
∂A2

∂xc

�
¼ 0: ð36Þ

This can be used to derive a differential equation for μðλÞ

dμ
dλ

¼ −2xc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 2x2c
6x2c − λ

s
asin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ − 2x2c

p
2xc

: ð37Þ

Following this equation, as λ is reduced, μ increases, and
while A2 remains constant, A1 is reduced to zero, which
occurs when μ ¼ ð2λ=3Þ3=2. We can then safely reduce both
μ and λ to zero, stopping the perturbation: In fact, as μ is kept
below ð2λ=3Þ3=2, no island is present in the phase space.

3. Coupled variation of λ and μ and complete
trapping in G1 (Protocol C)

One could also devise a protocol in which both λ and μ
are changed. We can express μ as a function of λ, and the
expression of the capture probabilities becomes

Pi ¼
∂Ai=∂λþ μ0 ∂Ai=∂μ
∂A3=∂λþ μ0 ∂A3=∂μ

����
λ¼λ�;μ¼μ�

i ¼ 1; 2; ð38Þ

where the prime symbol denotes the derivative w.r.t. λ.
The trapping probability is calculated at the jumping point

ðλ�; μ�Þ. Therefore, we can define an implicit function λ�ðμÞ
that resolves the equationA3 ¼ A0 (see Fig. 3, left). Then,we
optimize the probability by imposing that (i) all particles are
trapped in region G1; (ii) the area A1 is minimized at the
trapping point. For the first condition, equation P1 ¼ 1,
P2 ¼ 0, gives the following condition on μ0

μ0 ¼ −
∂A2=∂λ
∂A2=∂μ

����
λ�;μ�

: ð39Þ

Note that the signs of thepartial derivatives ofA2w.r.t. λ andμ
ensure that μ0 < 0.
When P1 ¼ 1, P2 ¼ 0, and 2πhJi ¼ A1 ¼ λ� − 2J0, we

can minimize hJi by choosing the minimum λ� for which
trapping is possible. This corresponds to A1 ¼ 0, from
which λ� ¼ 2J0, and the equation A3 ¼ 2πJ0 becomes

K1 þ K2 ¼ πJ0; ð40Þ

which can be solved by setting K1 ¼ πJ0 and K2 ¼ 0.
From K1 ¼ πJ0, we have the equation

asin

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J0 − 2x2c

p
2xc

�
¼ π

2
; ð41Þ

which is solved when the argument of the arc-sine is 1, so
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2J0 − 2x2c

q
¼ 2xc ⇒ 6x2c − 2J0 ¼ 6x2c − λ ¼ 0: ð42Þ

It is straightforward to verify that this implies K2 ¼ 0.
Furthermore, this condition induces ∂A2=∂μ ¼ 0, and μ0 to
diverge. Thus, a perfect cooling, i.e., in which the final
value of the action is zero, would require one to change μ
infinitely fast, which contradicts the adiabatic condition we
have made to apply the theoretical results.
Although it is not possible to provide an analytical

expression for the implicit solution λ�ðμ�Þ of equation
A3 ¼ 2πJ0, we can prove that the graphs shown in Fig. 3
represent the unique solution after having properly scaled
the axes. In particular, we find (the details are reported in the
appendix) that the graph of the implicit solution of the
equation A3 ¼ 2πJ0 is independent of J0 if we rescale λ� →
λ�=J0 and μ� → μ�=J3=20 (see Fig. 3, left). Similar laws hold
for the expected cooling J=J0, which is a function of the only
variable μ�=J3=20 (see Fig. 3, center), and for the required μ0,
which fulfills the functional relation μ0=

ffiffiffiffiffi
J0

p ¼ fðμ�=J3=20 Þ;
see Fig. 3, right.

IV. SIMULATION RESULTS

We perform numerical simulations of the dynamics
generated by the Hamiltonian of Eq. (4) varying λ and μ
according to the protocols previously described. In these
simulations, we set ω0=ð2πÞ ¼ 0.414, k3 ¼ 1 and invert the
relations of Eq. (12) to obtain the values of ω and ε as
functions of λ and μ at each time step. It is worth
mentioning that although Eq. (7) provides the estimate
of Ω2, to increase precision, including higher-order con-
tributions to the detuning generated by the dynamics of the
system (4),Ω2 has been numerically evaluated by fitting the
tracking data of the system (4) at ε ¼ 0. A frequency
analysis of the orbits has been performed using the

techniques described in [38]. With the chosen values of
ω0 and k3, we obtained Ω2 ¼ −0.3196, to be compared
with Ω2 ¼ −0.3204 provided by Eq. (7). The simulation
times are reported in the caption of each plot and are
expressed in units of turns of the accelerator represented by
the Hamiltonian model. It should be stressed that, in
general, the best performance in terms of emittance cooling
is achieved for a total number of turns corresponding to
approximately 105.
The initial distribution used in the simulations is an

infinitely thin annular distribution with initial action J0 ¼
ðx20 þ p2

x;0Þ=2 while uniformly distributed according to the
angle variable ϕ0 ¼ atanðpx;0=x0Þ, i.e., with pdf.

ρJ0ðϕ; JÞ ¼
δðJ − J0Þ

2π
: ð43Þ

The distribution of Eq. (43) is not a description of a
kicked beam, but its study is very useful, as the results in
terms of cooling obtained with ρJ0ðϕ; JÞ can be integrated
over any other distribution to obtain the corresponding
cooling ratio. Furthermore, we also performed some
numerical simulations using the distribution introduced
in [3], which describes a Gaussian beam of zero average
and standard deviation σ in x and px that is displaced at a
distance ζ on the x axis and undergoes filamentation. Given

ρaζ;σðxÞ ¼ N exp

�
−
x2 þ ζ2=2

2σ2

��
I0

�
ζ2

4σ2

�
I0

�
ζx
σ2

�

þ 2
X
k>0

ð−1ÞkIk
�

ζ2

4σ2

�
I2k

�
ζx
σ2

��
; ð44Þ

where N is a normalization constant and Ik is modified
Bessel function of order k (we compute the sum up to
k ¼ 6), we define

FIG. 3. Left: implicit solution λ�ðμ�Þ of the equation A3ðλ�; μ�Þ ¼ 2πJ0. Center: expected cooling ratio J=J0 for trapping particles via
the coupled variation of λ and μ, as a function of μ�. Right: the required value of μ0 to achieve the cooling efficiency shown in the center
plot, as a function of μ�. Thanks to the ratios of variables reported on the axes, the plotted functions are unique and independent from the
value of J0.
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ρaζ;σðϕ; JÞ ¼
1

2π
ρaζ;σðx ¼

ffiffiffiffiffi
2J

p
Þ: ð45Þ

A. Protocol A: Cooling by varying λ

This protocol is divided into two phases. The first is a
matching phase, to slowly adapt the initial distribution to
the phase space topology, as when μ ≠ 0 the elliptic fixed
point is shifted. We will increase μ until the chosen value μ�
while keeping λ ¼ 0.
In the first phase, for time t ∈ ½0; t1�, we set

(
λðtÞ ¼ 0

μðtÞ ¼ μ� t
t1
:

ð46Þ

The actual trapping occurs in the second phase. The
parameter λ increases linearly from 0 to a value Δλ. To
trap particles at J0, one needs Δλ > λ�, where
λ� ¼ λ�ðμ�; J0Þ. We then set, for time t ∈ ½t1; 2t1�(

λðtÞ ¼ Δλ
�
t−t1
t1

	
μðtÞ ¼ μ�:

ð47Þ

We remark that although the proposed protocol, for the
sake of simplicity, envisages two phases of the same
duration, it is certainly possible to remove this constraint
to adapt the duration of each phase to make it as adiabatic
as possible.
Figure 4 shows the simulated hJi=J0 for different

annular distributions ρJ0 as a function of the initial action

J0 using three values of Δλ (with μ� ¼ 7.5 × 10−3) and
compares it with the theoretical estimate given by Eq. (28).
We note that the scales of λ and μ are related to that of J0
and therefore the selected values of μ� do not have any
specific meaning since any change would simply rescale
the J0 axis in Fig. 4.
We observe two effects that are the root of the difference

between the theoretical reduction of hJi=J0 and the observed
behavior. For higher values of Δλ, the cooling range is
increased at the expense of theminimumcooling ratio. Given
Δλ and μ�, for large values of J0, λ is never big enough to
achieve trapping since thevalue of λ� that solvesA3ðλ�; μ�Þ is
larger than Δλ. Furthermore, increasing Δλ to trap more
particles moves the center of G2 far from the origin of the
phase space (all fixed points of Eq. (13), from the solution of
the resulting cubic equation, areOð ffiffiffi

λ
p Þ for largevalues of λ),

thus decreasing the effective cooling ratio.

B. Protocol B: Cooling by varying μ

This protocol consists of three phases: the first phase is
used to perform particle trapping, and the second and third
phase is needed to transport the particles back to the center
of the phase space by progressively reducing the strength of
the ac dipole.
In the first phase, for times t ∈ ½0; t1�, we have the

following:


 λðtÞ ¼ λ�

μðtÞ ¼ μ1
t
t1
;

ð48Þ

and the condition μ1 > μ�, where μ� solves the equa-
tion A3ðλ�; μ�Þ ¼ 2πJ0.
In the second phase, the differential equation (36) is

solved. For t ∈ ½t1; t2�, we set λðtÞ ¼ λ� − _λðt − t1Þ and
obtain μðtÞ by numerically integrating the Cauchy problem


 dμ
dt ¼ dλ

dt
dμ
dλ ¼ −_λ dμ

dλ

μðt1Þ ¼ μ1;
ð49Þ

where dμ=dλ is given by Eq. (36). The second phase is
stopped at time t2 once condition μðt2Þ ¼ μ2 ¼
ð2λðt2Þ=3Þ3=2 is met. The third phase follows for times t ∈
½t2; t3� (t3 ¼ t1 þ t2), with8<

:
λðtÞ ¼ λðt2Þ

h
1 −

�
t−t2
t1

	i
μðtÞ ¼

�
2
3
λðtÞ

	
3=2

: ð50Þ

The plots of the time evolution of λ and μ are shown
in Fig. 5.
Figure 6 shows the simulated cooling ratio hJi=J0, as a

function of λ�, for an initial annular distribution ρJ0ðϕ; JÞ
with J0 ¼ 0.05, together with the theoretical expected

FIG. 4. Simulated cooling ratio obtained by applying Protocol
A for different values of Δλ, as a function of the initial annular
distribution action J0. A comparison with the theoretical bound
on the cooling efficiency given by Eq. (28) is presented. The
Hamiltonian (4) has been used, with k3 ¼ 1, ω0=ð2πÞ ¼ 0.414,
Ω2 ¼ −0.3196, μ� ¼ 7.5 × 10−3, t1 ¼ 5 × 104.
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value given by Eqs. (34) and (35). In order to introduce
only one time scale in our simulations, we adapt the time
step of the numerical integration of Eq. (49) so that we
always have t2 ¼ 2t1.
We note that the theory presented earlier accurately

describes the simulated cooling ratio unless it is in the
vicinity of λ� ¼ 4J0 ¼ 0.2, where the theory predicts total
cooling, while in simulation, hJi=J0 ≈ 10%. This is due to
the angular dependence on which we averaged in our
analysis, as can be inferred from Fig. 7. This figure shows

the distributions at the end of each of the three phases of
Protocol B for the same initial annular distribution for three
values of λ�. We observe that at the end of each phase, the
action of the particles, which were all the same at the
beginning, spreads according to their initial phase. For
example, red particles, which correspond to the initial
phase π, result in the innermost position when λ� ¼ 0.15
and in the outermost position when λ ¼ 0.25. This behavior
reverses for cyan particles, which have ϕ0 ¼ 0. This means
that particles with different initial angles are trapped at
slightly different values of J. Some particles are trapped
earlier or later than expected, with a larger or smaller value
of J than that given by theory. In the graphs, it is also visible
that the inner and outer particles are reversed, depending on
whether λ� < 4J0 or λ� > 4J0. However, when λ ≈ 4J0,
all particles are trapped at a higher value than expected,
regardless of when they cross the separatrix, thus
increasing hJi. In our simulations, we were able to reach
hJi=J0 ¼ 0.078, for a cooling efficiency of 92%.
In Fig. 8 (top), we show the dependence of the cooling

ratio on the value of the initial action J0 for three values of λ�.
The range in which hJi=J0 < 1 represents the possible
interval of actions of a thick annular distribution that could
be cooled usingProtocolB.Note that according to theoretical
predictions, cooling is possible in the range λ�=6 ≤ J0 ≤
λ�=2 and the optimal cooling ratio is found at J0 ¼ λ�=4. An
animation of the trapping process for a thick annular
distribution is available as Supplemental Material [39].
In Fig. 8 (bottom), the cooling for the case of a

distribution such as Eq. (45) is shown as a function of
σ0 of the Gaussian function before filamentation. Note that
the parameter ζ is the same for the three cases of λ�
considered. The curves have a similar structure: they have
an initial plateau of increasing length for a decreasing value
of λ� and then a rather linear increase for increasing values
of σ0. The difference between the three curves is mainly
determined by the value of ζ and the position of the
minimum cooling visible in Fig. 8 (top).

C. Protocol C: Cooling by varying λ and μ

This protocol requires two phases: the first to adapt the
phase space and the second for trapping and transport. Our
goal, in addition to trapping the particles inside G1, is to
ensure that both at the beginning and at the end of the
process, the adiabatic invariant is as close as possible to the
linear action variable J ¼ ðx2 þ p2

xÞ=2, which is true if
the ac dipole is turned off, i.e., when μ ¼ 0. Thus, in the
first phase, μ gradually increases, while keeping λ ¼ 0 (i.e.,
ω ¼ ω0), until it reaches the value needed to initiate the
trapping process. In the second phase, the derivative of μðλÞ
remains at a constant value μ0, while increasing λ and taking
advantage of the fact that as μ0 < 0, we can slowly reduce μ
until it reaches zero to recover the equivalence between the
adiabatic invariant and J.

FIG. 5. Evolution of λðtÞ and μðtÞ during the three phases of
Protocol B.

FIG. 6. Expected and simulated cooling ratio for trapping in G2

using Protocol B as a function of λ�. The initial distribution is
ρ0.05. The Hamiltonian (4) has been used, with k3 ¼ 1,
ω0=ð2πÞ¼0.414, Ω2¼−0.3196, μ1¼0.02, t1 ¼ 1=_λ ¼ 5 × 104.
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In the first phase, for times t ∈ ½0; t1�, we set

(
λðtÞ ¼ 0

μðtÞ ¼ μmax
t
t1
;

ð51Þ

where μmax ¼ μ� þ λ�jμ0j. This ensures that during the
second phase when λ ¼ λ�, μ is exactly μ� and its derivative
μ0 has the appropriate value. The values of μ� and λ� are
obtained by choosing a solution of the implicit equation
A3 ¼ A0 for the selected value of J0 that corresponds to the
desired cooling. From Eq. (39), the desired value of μ0 is
also calculated.

In the second phase, where t ∈ ½t1; 2t1�, we have

(
λðtÞ ¼ μmax

jμ0j
�
t−t1
t1

	
μðtÞ ¼ μmax − jμ0jλðtÞ:

ð52Þ

When the process ends and μ ¼ 0 is reached, G2

disappears, as the perturbation provided by the ac dipole
has been turned off and the particles trapped in G1 have
been transported to the center of the phase space. The
values of λ and μ during the whole procedure are plotted
in Fig. 9.

FIG. 7. Distributions at the end of the first (left), second (center), and third (right) phase for an initial distribution ρ0.05 for Protocol B
for three values of λ�. The color scale represents the initial angle ϕ0 and the initial distribution is the same as that shown in the left plots
of Fig. 11. Note that for λ� > 4J0 ¼ 0.2, the angular dependence of the final action is reversed w.r.t. λ� < 0.2. The Hamiltonian of
Eq. (4) has been used, with k3 ¼ 1, ω0=ð2πÞ ¼ 0.414, Ω2 ¼ −0.3196, μ1 ¼ 0.02, and t1 ¼ 1=_λ ¼ 5 × 104.
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We remark that although the proposed protocol envis-
ages two phases of the same duration, it is possible to
remove this constraint to adapt the duration of each phase to
make them as adiabatic as possible.
In Fig. 10, we show the simulated cooling ratio hJi=J0

for an initial annular distribution ρ0.05ðϕ; JÞ, as a function
of μ�, and a comparison with the theoretically expected
value hJi ¼ ðλ�ðμ�Þ − 2J0Þ=ð2πÞ. It can be seen that the
agreement between theory and simulation is notable up to a
certain breakdown value of μ�. This breakdown is due to
the angular dynamics, which has been neglected in the
averaging process of the theory. In Fig. 11, we show the
initial distribution, the situation at the end of the first phase,
and the final distribution of particles for two different
values of μ�, using the hue to represent the initial angle ϕ0.
For both values of μ�, we observe that the distribution after
the first phase is no longer infinitely thin and that the action
of each particle depends on the initial angle. As a result,
each particle crosses the separatrix at a different time at the

end of the second phase, resulting in different values of the
final action. For μ� smaller than the breakdown threshold,
all particles are still trapped in G1, and this angular
dependence is averaged out. On the other hand, for higher
values of μ�, particles, which are at the end of the first
phase, are in the outer part of the distribution and can also
be trapped in G2 at high amplitude, thus dramatically
increasing the value of the final action. We again stress that
we cannot expect to reach 100% cooling, since jμ0j and μmax
would need to reach unlimited values. The best cooling that
we could achieve in our numerical simulations is 92%,
at hJi=J0 ¼ 0.08.

FIG. 8. Top: cooling ratio for trapping in G2 using Protocol B,
at different values of λ�, as a function of the initial action of the
annular distribution J0. Bottom: cooling ratio for the same values
of λ� as a function of σ0, using the initial distribution ρaζ;σ0ðJ0;ϕÞ
defined in Eq. (45) with ζ ¼ 0.05. hJii is the average of the
initial actions. The Hamiltonian (4) has been used, with
k3 ¼ 1, ω0=ð2πÞ ¼ 0.414, Ω2 ¼ −0.3196, μ1 ¼ 0.02, and
t1 ¼ 1=_λ ¼ 5 × 104.

FIG. 9. Evolution of λðtÞ and μðtÞ during the two phases of
Protocol C. The two values λmax and μmax have expressions in
function of the computed λ�, μ�, and μ0, i.e., μmax ¼ μ� þ λjμ0j,
λmax ¼ λ� þ μ�=jμ0j.

FIG. 10. Expected and simulated cooling ratio for trapping in
G1 using Protocol C as a function of μ� for an initial distribution
ρ0.05. The Hamiltonian (4) has been used, with k3 ¼ 1,
ω0=ð2πÞ ¼ 0.414, Ω2 ¼ −0.3196, and t1 ¼ 1 × 105.
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To study the applicability of the cooling protocol to a
more realistic particle distribution, we have looked at an
ensemble of infinitely thin annular distributions ρJ0 cover-
ing a certain interval in J0. The values of μ0 and μmax have
been chosen to optimize the trapping for a particular value
of J0, Ĵ0 ¼ 0.05. The results are shown in Fig. 12 (top). It is
clearly visible that for different values of μ�, which translate
into different cooling targets for particles at Ĵ0, a significant
range of action values is actually cooled. The width of this
cooling well, i.e., the range of J0, where hJi=J0 < 1, is the
thickness of the annular distribution that the protocol can
handle successfully. We note that, contrary to theoretical
expectations, the minimum value of hJi=J0 does not occur
at Ĵ0, although this difference tends to decrease as μ�
increases.
In Fig. 12 (bottom), the cooling for the case of a

distribution such as Eq. (45) is shown as a function of
σ0 of the Gaussian function before filamentation. Note that
the parameter ζ is the same for the three cases of μ�
considered. The curves have a similar structure: they
feature an initial plateau of increasing length for decreasing
values of μ� and then an increase for increasing values of σ0

that is not linear. The difference between the three curves is
smaller than for the case shown in Fig. 8 (bottom) because
the position of the minimum cooling visible in Fig. 12 (top)
does not change much.
This is again due to angular dynamics. Using the same

parameters as the plots shown in Fig. 12, two final
distributions are shown in Fig. 13 using the color hue to
identify the initial phase. The right graph shows the case
where the initial distribution is ρ0.05, i.e., the initial
conditions are selected at Ĵ0, while the left graph shows
the case where the initial distribution is ρ0.045, where the
initial actions have a value J0 < Ĵ0, but close to the
minimum. In the left plot, a gap in the final distribution
is clearly visible. This can be explained by the fact that, in
this case, some particles are trapped earlier (the red dots in
the plots) because of the spread of the action after the first
phase. These can end up in G2 or in G1, according to the
probability law, but when their areas are smaller. Therefore,
the average final action is reduced more by this effect than
by the increase induced by the particles in G2.
An animation of the trapping process for a thick annular

distribution is available as Supplemental Material [39].

FIG. 11. Particle distributions when applying Protocol C at the beginning (left), after the first phase (middle), and at the end of the
second phase (right), for two values of μ�. The hue encodes the initial angle of the action distribution. The Hamiltonian (4) has been
used, with k3 ¼ 1, ω0=ð2πÞ ¼ 0.414, Ω2 ¼ −0.3196, t1 ¼ 1 × 105.
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V. CONCLUSIONS

In this paper, beam manipulations based on nonlinear
beam dynamics have been devised with the goal of
achieving cooling for annular transverse beam distribu-
tions. Such a beam distribution can be generated after a
beam is kicked in the transverse direction. The possibility
of achieving cooling by means of crossing stable reso-
nances generated by static magnetic elements has been
ruled out; however, the use of an ac dipole for such
manipulations has proven to be very successful.
A Hamiltonian model describing the transverse dynam-

ics in the presence of an ac dipole has been studied using
concepts from adiabatic theory for Hamiltonian systems.
This has allowed the design of three cooling protocols, two
of which have proven to be extremely effective with a
simulated best cooling performance of ≈90%, which is
achieved over a timescale of approximately 105 turns of the
accelerator represented by the Hamiltonian model consid-
ered in our studies. In physical terms, the observed cooling
is achieved by controlling the strength and frequency of the
ac dipole according to the specifications of the proposed
protocols.
The Hamiltonian model used for our studies includes

amplitude detuning from single-particle nonlinear effects in
the 4D transverse phase space, and the final analysis can be
carried out in 2D. Low-order resonances excited by non-
linear effects, which might spoil the phase space topology
that is generated by the ac dipole used for the beam cooling
protocols presented in this paper, are not included in the
model studied. This does not seem to be a serious
limitation, as, in general, circular accelerators are operated
far from this type of resonance. Higher-order resonances

FIG. 12. Top: simulated cooling ratio hJi=J0 for initial dis-
tributions ρJ0 using Protocol C at different values of μ�, having
computed μ0 and μmax for J0 ¼ Ĵ0 ¼ 0.05 (indicated by a vertical
dotted line in the plot). Bottom: cooling ratio for the same values
of μ� as a function of σ0, using the initial distribution ρaζ;σ0ðJ0;ϕÞ
defined in Eq. (45) with ζ ¼ 0.05. hJii is the average of the initial
actions. The Hamiltonian (4) has been used, with k3 ¼ 1,
ω0=ð2πÞ ¼ 0.414, Ω2 ¼ −0.3196, and t1 ¼ 1 × 105.

FIG. 13. Final particle distributions after applying Protocol C, for initial distributions ρ0.045 (left) and ρ0.05 (right), having computed μ0

for Ĵ0 ¼ 0.05. The hue indicates the initial angle ϕ0. We see that, although the process has been optimized for Ĵ0 ¼ 0.05, for J0 < Ĵ0
(and close to the minimum shown in Fig. 12), the resulting cooling is better. The Hamiltonian (4) has been used, with k3 ¼ 1,
ω0=ð2πÞ ¼ 0.414, Ω2 ¼ −0.3196, t1 ¼ 1 × 105, and μ� ¼ 0.01.
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have a much smaller effect on trapping and transport
phenomena, which is why they have not been included
in our analysis. The coupling of synchrotron motion with
transverse betatron dynamics has also been neglected. This
coupling manifests itself, in the presence of finite chro-
maticity, as a modulation of the transverse tunes.
Potentially, this has an adverse impact on the trapping
and transport phenomena that are at the heart of the method
presented in this paper. However, reducing the chromaticity
value is an efficient mitigation measure, as has been
experimentally observed on the CERN MTE.
Detailed numerical simulations carried out on the con-

sidered Hamiltonian systems have revealed a rich phenom-
enology that could be explained in detail by using adiabatic
theory for Hamiltonian systems. Although an infinitely thin
annular distribution was initially used, the two best pro-
tocols have been shown to have a significant cooling range.
It, therefore, seems possible to use them to cool a transverse
annular beam distribution of finite thickness. Numerical
studies of realistic distributions representing a filamented
Gaussian have been carried out, which confirm the pos-
sibility of achieving cooling even for these distributions.
These results are important in view of experimental tests at
the CERN Proton Synchrotron.
Such annular beam distributions can also be represen-

tative of the beam halo, which opens up the study of future
applications to halo manipulation that could result in
experimental tests at the LHC. The critical aspect to be
examined and evaluated in future theoretical studies is to
ensure that beam halo manipulation does not damage the
main beam, especially in terms of emittance.
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APPENDIX: SOME PROOFS

Some interesting and useful properties of the theoretical
laws that describe the parameters of the cooling protocols
described in this paper can be derived by reasoning on the
functional dependencies. Note that in the following, fðxÞ,
gðxÞ, AðxÞ, BðxÞ, etc. represent generic functions of the
only variable x, and the same happens for their product,
i.e., fðxÞgðxÞ ¼ hðxÞ.

1. Uniqueness of the minimum of hJi=J0 for Protocol A
From the expressions of xc,K1, K2, andΘ [see Eqs. (14),

(15), (21), (22), and (31)], we define χ ¼ μ=λ3=2, and we
can express these quantities as xc ¼

ffiffiffi
λ

p
x̃cðχÞ,Ki ¼ λK̃iðχÞ,

and Θ ¼ ΘðχÞ.
From the relation A3 ¼ 2πJ0, we have J0 ¼ λ�fðχ�Þ,

while from Eq. (28), we find hJi ¼ λ�gðχ�Þ. Therefore,
setting hðχÞ ¼ gðχÞ=fðχÞ, we finally have hJi=J0 ¼ hðχ�Þ.
From the expression of fðχ�Þ ¼ hJi=λ�, noting that

gðχ�Þ ¼ J0=λ� is monotone (see Fig. 3, left), it is possible
to show that the function hðχ�Þ has a minimum for a
value χ̂�.
Then, there exists only one pair ðλ�; μ�Þ that solves A3 ¼

2πJ0 and for which μ�=λ�3=2 ¼ χ̂�. Therefore, for each J0,
there exists only one value χ̂� and, therefore, a unique value
of hðχ̂�Þ, which does not depend on μ�. This proves what
has been observed in Sec. III B 1.

2. Scaling laws for Protocol C

A similar approach can be used to derive the scaling laws
of Sec. III B 3. As A3 ¼ λ�Ã3ðχ�Þ, the equation defining the
invariant after trapping reads

λ� Ã3ðχ�Þ ¼ λ� Ã3

�
μ�

λ�3=2

�
¼ 2π J0: ðA1Þ

The functional equation

xf

�
y
xα

�
¼ 2πz ðA2Þ

under the transformations x̄ ¼ x=z, ȳ ¼ y=zα becomes

x̄f

�
ȳ
x̄α

�
¼ 2π; ðA3Þ

and this implicit equation is solved by the function
x̄ ¼ gðȳÞ, from which we infer that, after rescaling λ� →
λ�=J0 and μ� → μ�=J3=20 , the function

λ�

J0
¼ A

�
μ�

J3=20

�
ðA4Þ

represents the unique solution to Eq. (A1). This explains
the scaling shown in Fig. 3 (left).
Moreover, inverting Eq. (A1), one finds that χ� can be

written as a function of λ�=J0 and therefore of μ�=J3=20 :

χ� ¼ χ�
�
λ�

J0

�
¼ χ�

�
A

�
μ�

J3=20

��
¼ χ�

�
μ�

J3=20

�
: ðA5Þ

Therefore, we can find a scaling law for the expected
cooling ratio, as 2πJ ¼ A1 ¼ λ�Ã1ðχ�Þ, and using
Eqs. (A4) and (A5), one obtains

J
J0

¼ λ�

J0
J̃ðχ�Þ ¼ A

�
μ�

J3=20

�
J̃

�
χ

�
μ�

J3=20

��

¼ B

�
μ�

J3=20

�
; ðA6Þ

which explains the scaling shown in Fig. 3 (center).
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In the sameway, the coefficient μ0, from the expressions of
∂A2=∂λ and ∂A2=∂μ in Eqs. (30) and (31), can be written as

μ0 ¼
ffiffiffi
λ

p
μ̃0ðχÞ; ðA7Þ

and, dividing by
ffiffiffiffiffi
J0

p
and using the functional dependencies

of Eqs. (A4) and (A5), one obtains

μ0ffiffiffi
J

p
0

¼
ffiffiffiffiffi
λ�

J0

s
μ̃0ðχ�Þ ¼ C

�
μ�

J3=20

�
; ðA8Þ

which is the scaling for the plot shown in Fig. 3 (right).
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