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Abstract: We introduce the Random Walk Approximation (RWA), a new method to approximate
the stationary solution of master equations describing stochastic processes taking place on graphs.
Our approximation can be used for all processes governed by non-linear master equations without
long-range interactions and with a conserved number of entities, which are typical in biological
systems, such as gene regulatory or chemical reaction networks, where no exact solution exists. For
linear systems, the RWA becomes the exact result obtained from the maximum entropy principle.
The RWA allows having a simple analytical, even though approximated, form of the solution, which
is global and easier to deal with than the standard System Size Expansion (SSE). Here, we give
some theoretically sufficient conditions for the validity of the RWA and estimate the order of error
calculated by the approximation with respect to the number of particles. We compare RWA with SSE
for two examples, a toy model and the more realistic dual phosphorylation cycle, governed by the
same underlying process. Both approximations are compared with the exact integration of the master
equation, showing for the RWA good performances of the same order or better than the SSE, even in
regions where sufficient conditions are not met.

Keywords: non-linear processes; master equation; random walk; Fokker–Planck; bistability

1. Introduction

Stochastic processes are ubiquitous in nature and generate fluctuations that are not
just noise, in particular in biochemical reactions occurring in single cells, where the copy
number of the reactants can be relatively small, i.e., of the order of few hundreds [1,2].
At first glance, these molecules present in a small number were neglected and considered
as unimportant, also because of the experimental difficulties to detect them. However, it
soon became clear that in a biological system, all the reactions are coupled and even low
copy numbers of, for instance, messenger RNA in bacteria [1] can determine the fate of the
cell and result in peculiar properties due to large fluctuations, which can be very far from
standard Poisson statistics [3]. Therefore, all stochastic properties became important to
make predictions in that it was realized that noise can govern gene expression and in turn
evolution [4,5], and it is necessary to adapt to new biological challenges [6]. Sometimes,
fluctuations themselves can even generate phase transitions [7].

In these systems, it has thus been understood that considering only the macroscopic
dynamics, neglecting then the stochasticity of the process, can be misleading and works
only in very large systems. Therefore, a stochastic description, based on the master equation
(ME), started being necessary [8]. Although in some simple cases, the ME can be solved
analytically, mainly for linear processes, i.e., when the transition rates are constant, as for
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Brownian motion, most of the time, this is not possible. Those are, of course, cases of
great interest, where self-organization phenomena occur, and the actual state of the system
regulates its stability and evolution [9] and where the cell fate is determined by positive or
negative feedback loops [10]. Moreover, nonlinearities are often at the origin of interesting
phase transitions of biologic importance. Examples are gene expression networks [11],
networks of chemical reactions showing non-equilibrium steady states and net fluxes, such
as signal cellular pathways [12–15] and the phospho/dephosphorylation cycle of AMPA
receptors in a single synaptic spine [16]. When the number of states of the system under
study is finite, the process can be seen as a random walk on a graph. In this picture, a state
of the system would be each possible observed form of it, quantified by some observables
such as levels of proteins, messengers, organelles, or phenotypes. For instance, for gene
expression networks, it would be the number of attractors (i.e., the number of cell types in
the Waddington’s epigenetic landscape [11]) or the different levels of phosphorylation of a
molecule in dual phosphorylation cycles [9] or again the number of chemicals involved in
a signal transduction pathway. Each state of the system is then related to each other with
some transition rates, generating a weighted graph, in which the weights associated to each
edge are the transition rates and the nodes are the possible states of the system. This is a
directed graph, since the pairs of nodes defining an edge are ordered by the direction of the
transition; moreover, interesting behaviors, such as bifurcation phenomena, appear when
the rates are not symmetric.

Recently, a lot of effort has been put into solving ME associated with non-linear
systems on both developing accurate numerical techniques [17] and developing theoretical
frameworks and approximation methods. Concerning the former, most of the numerical
methods are derived from the progenitor of Monte Carlo sampling for the ME, the Gillespie
algorithm [18], and the one exploiting the structure of the ME is remarkable [19]. On the
other hand, the latter are mainly built on known results about the linear case, exploiting,
for instance, the reaction velocities and then neglecting fast variables [20]. Theoretical
methods to describe these systems at a mesoscopic scale can be divided into two main
approaches: solving directly the ME by approximating the rates as constants or using the
SSE, which transforms the ME in a diffusion equation by developing in terms of the system
size [8,21], which is also known as van Kampen’s Ω-expansion.

Here, we present a new approach for giving an approximation of the solution of
the ME exploiting the graph structure, the Random Walk Approximation (RWA), and we
compare it with commonly used methods. Our method leverages both the two approaches
mentioned above: we use the solution of the linear ME (the multinomial distribution),
but we do not impose the transition rates to be constant, therefore hardly modifying the
multinomial shape. This, as we will show, has two main advantages. First, we obtain a
global solution and not only a local one, as it is with the SSE or with the pure multinomial
approximation obtained approximating the transition rates as constant. The global solution
is therefore able to approximate also the tail of the distribution and can contain itself the
phase transition; if one exists, it allows indeed to establish whether a system undergoes a
critical bifurcation point without further calculations. Second, it is much simpler and easier
to use than the SSE, since all is needed is to solve an eigenvalue problem. Indeed, it gives
an analytical solution that can be easily used for further calculations, such as, for instance,
the computation of the entropy production of the process. Our method is general and can
be applied to all systems governed by a ME, no matter the number of states, as long as the
transition rates are given.

The paper is organized as follows. In Section 2, we introduce the RWA from a mathe-
matical point of view and give some theoretical results on its performance. In Section 3,
we briefly explain the numerical and analytical methods used as comparison with our
RWA. In Section 4, we describe the common backbone of the models to which the ap-
proximation is applied and then give the explicit theoretical results for, first, a simple toy
model considered to check the validity of the RWA and its essential properties, and, second,
a more relevant model of biological importance, the dual phospho/dephosphorylation
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cycle (PdPC). Those models are chosen because analytical calculations were possible and
for the ease of numerical implementation, which is useful to clarify how and to what extent
the RWA can be successfully applied. In Section 5, we show the results of the application of
the RWA to the described models and finally give a global discussion of our work.

2. The Random Walk Approximation

We introduce here the main topic of the paper, namely the Random Walk Approxima-
tion. In particular, among some theoretical results about its expected behavior, we state the
sufficient conditions for it to be a reliable approximation in the sense of the `1-norm.

2.1. Linear Master Equation for One Step Processes

We consider a generic system that is described by an ensemble of i = 1, · · · , M states
with transition rates πij from the state j→ i, which defines the probability that a “particle”
(individual of the system) changes its state on a time unit. Therefore, one obtains a weighted
graph (network) with M nodes and link weights given by the rates πij. If one considers the
dynamics of N identical independent particles, the statistical properties of the system are
described by the particle distribution function ρ(~n, t), which gives the probability of the
network state ~n = (n1, · · · , nM) where ni is the number of particles in the state i at time
t. Since

|~n| = ∑
i

ni = N

is fixed, we are realizing a microcanonical ensemble (generalizations are possible by intro-
ducing an external node representing the reservoir coupled with the system). The evolution
of the distribution function ρ(~n, t) is the master equation:

∂ρ

∂t
(~n, t) =

1
N ∑

i,j

[
πijE+

j E−i nj − πjini

]
ρ(~n, t), (1)

assuming the one-step process approximation (i.e., the probability that two particles move
simultaneously in a time interval ∆t is assumed to be o(∆t)). The one-step process is a
continuous time Markov process, whose transition rates matrix allows only transitions
between neighboring network states, which is not a strong experimental assumption,
as long as you have a time resolution much higher than the typical transition time of a
particle. The symbols E±i denote the Van Kampen operators defined by:

E±i f (~n) = f (~n± êi)

for any function f (~n), where êi is the standard canonical base of ZM.
If the transition rates matrix πij does not satisfy the detailed balance condition,

the same is true for the ME (1); however, it is possible to prove that the stationary so-
lution for the linear random walk is, regardless of whether detailed balance is verified
or not, a maximum entropy distribution with the constraint that the average value of the
particles in each node is finite (see Appendix A). In the following, detailed balance will not
be assumed; therefore, we will deal, in general, with non-equilibrium processes. Moreover,
in Equation (1), the distribution function ρ(~n) is extended to all possible states ~n ∈ ZM,
defining ρ(~n, t) = 0 for all the non-physical states |~n| 6= N. Since the particles do not
interact, it is also possible to analytically compute the solution ρ(~n, t) from the spectral
properties of the Laplacian matrix [22] of the graph

Lki(~n) = δkidk(~n)− πki(~n) dk(~n) = ∑
i

πik(~n), (2)
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where, for the linear case, the rates are independent of ~n. In particular, the stationary
solution is given by the multinomial distribution

ρ(~n) = N!
M

∏
i=1

pni
i

ni!
, (3)

where the vector ~p = (p1, . . . , pM) is the eigenvector corresponding to the null eigenvalue
of L and the covariance matrix of the solution reads

Cij = Npiδij − Npi pj. (4)

We note that all the other eigenvalues of the Laplacian are positive and the second smallest
eigenvalue is known as the Fiedler’s eigenvalue [22].

The multinomial solution is the same elegantly obtained by the application of the
maximum entropy principle, as we show in Appendix A.

For N � 1, the multinomial converges to a symmetric distribution and the average
values 〈ni〉 = Npi are also the mode of the multinomial distribution. The average dynamics
can be directly computed from the ME

〈ṅk〉 = ∑
|n|=N

ni
∂ρ

∂t
(~n, t) =

1
N ∑

i,j
∑
|n|=N

nk

[
πijE+

j E−i nj − πjini

]
ρ(~n, t)

= ∑
i,j

∑
|n|=N

[
πijE+

j E−i πij(nk − δjk + δik)nj − πjinkni

]
ρ(~n, t) (5)

= ∑
j
(πkj〈nj〉 − πjk〈nk〉),

whose critical points are the average values.

2.2. The Non-Linear Case

We consider now how the previous results generalize to non-linear random walks on
graphs, when the transition probability rates depend on the network states πij = πij(~n).
These models allow to simulate the effect of particle interactions at the node, but a physical
interpretation is needed to justify the one-step process assumption in the formulation of
the ME. Indeed, each time a particle moves, the transition probabilities are instantaneously
updated before another particle moves. Therefore, a synchronous evolution of the network
in which many particles move at the same time gives rise to a different dynamical system.
In the case πij(~n) = πij(ni, nj), the interactions are local (Markov random field) and the
one-step process assumption is physically justified. The corresponding ME is:

∂ρ

∂t
(~n, t) =

1
N ∑

i,j

[
E+

j E−i πij(~n)nj − πji(~n)ni

]
ρ(~n, t). (6)

We observe that the factor 1/N that defines the one-step process is a time scaling and scales
the spectral properties of the Laplacian operator (defined hereafter), introducing a Fiedler’s
eigenvalue of O(N−1). Then, it is convenient to scale the time by a factor 1/N and remove
this factor from the equation. Moreover, we assume πij(~n) = πij(~x) where xi = ni/N, that
is, the particle interactions depend on the density at each node i, in the limit N � 1. The
stationary points of Equation (6) correspond to the eigenvectors ~p(~x) associated with the
null eigenvalue of the Laplacian (2) (here in the density-dependent version) that satisfy the
self-consistent condition:

p∗i (~x
∗) = x∗i with ∑

i
x∗i = 1, (7)
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where ~x∗ is the stationary solution of the deterministic dynamics associated with ME (6),
∑i Lji(x∗i )x∗i = 0.

An explicit solution for the stationary distribution of the ME (6) is difficult due to the
non-linear nature of the problem, except in the cases where the detailed balance holds.
Indeed, detailed balance introduces the constraint of zero current between each pair of
states, i.e., the process is at equilibrium, leading to a Maxwell–Boltzmann distribution with
a potential energy depending on the state of the system (differently from the standard
linear case) [9,23]. The potential energy can be computed by recursion from a function of
the rates of the process, starting from an arbitrary value which will be uniquely determined
by the normalization of ρ.

In order to build an approximate stationary solution, we introduce the eigenvector
of components pk(~x) and consider the multinomial-like solution, which we refer to as the
Random Walk Approximation of the stationary solution:

ρ∗~p(~n) = C(N)N!
M

∏
k=1

pnk
k (~x)
nk!

xk = nk/N, (8)

where C(N) is a normalizing factor. We are now interested in analyzing the behavior of
the RWA with respect to the system size N and giving an estimate of the approximation
error. First, in order to show that C(N) does not have a strong dependence on N, we use a
perturbative approach by considering small perturbations of ~p(~x) around the stationary
points: pk(~x) = p∗k + ∆pk(~x), where the perturbations ∆pk satisfy the condition ∑k ∆pk = 0.
Then, by injecting this into (8), we show that C(N) = O(1) for N � 1, with a weak
dependence on N (see detailed calculation in Appendix B).

We now give some conditions on the validity of Equation (7) for the critical points. For
N � 1, we compute the modes of the distribution (8) from the condition

log
ni

Npi
−∑

k

∂pk
∂xi

nk
Npk

' 0

If one introduces the zk = nk/(Npk) = xk/pk, the relation can be written in the form

log zi = ∑
k

∂pk
∂xi

zk, (9)

which is clearly satisfied for zk = 1, since:

∑
k

∂pk(~x)
∂xi

= 0.

Therefore, as long as the matrix ∂p/∂x (i.e., the transpose of the Jacobian matrix of the
eigenvector ~p(~x)) has all the eigenvalues λ < 1, the self-consistent average solution
x∗i = p∗i (~x

∗) (the unperturbed solution for ∆pk = 0) is the only critical point of the
distribution (8) and the distribution is peaked at the critical point with a spread O(

√
N).

This is because one cannot have a tangency condition between log zi and the right-hand
side of Equation (9) in such a way that self-consistency is verified. When we have an
eigenvalue λ ≥ 1, the perturbation ∆pk may introduce other solutions to Equation (9)
that are critical points for the RWA distribution but not for the stationary distribution of
Equation (6). We remark that this condition is also the condition necessary for a bifurcation
phenomenon, i.e., when the distribution (8) becomes bi-(or multi-)modal. Indeed, if one
considers the self-consistent Equation (7) for the average dynamics, the existence of a
bifurcation is equivalent to the existence of a null eigenvalue for the matrix

δik −
∂pi
∂xk

,
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computed at the critical point. In other words, when a bifurcation phenomenon occurs
for the self-consistent critical points of the average dynamics (7), the RWA (8) may have
spurious stationary points that do not correspond to those of the average dynamics. Then,
in this case, it is not guaranteed that the RWA is a good global approximation of the ME
stationary solution.

We are now ready to compute the error of the approximation of the RWA (8) and its
scaling with N. We will show that it depends on the derivative of the probabilities pi(~x).
The intuition behind this is that fluctuations should be small with respect to the inhomo-
geneity of the system, which is represented by the derivatives of the pi(~x). An estimate of
the error |ρ∗~p(~n)− ρs(~n)|, where ρs is the exact stationary distribution, can be achieved by
substituting the distribution (8) in the ME:

`1-error = ∑
i,j

[
E+

j E−i πij(~x)nj − πji(~x)ni

]
ρ∗~p(~n)

When N � 1, the main contribution to the error is due to the dependence of pk from the
densities ~x:

`1-error ' 1
N ∑

i,j
πij(~x)nj ∑

k

(
∂pk
∂xj
− ∂pk

∂xi

)
nk
pk

ρ∗~p(~n). (10)

Considering the fluctuations around the critical point of order ∆ni = piO(
√

N) in the limit
N � 1, the largest contribution to Equation (10) is proved to be of order O

(∥∥∥ ∂p
∂x

∥∥∥) (details

in Appendix C). Finally, we can write the estimate for the `1-error:∥∥∥ρ∗~p(~n)− ρs(~n)
∥∥∥

1
= O

(∥∥∥∥∂p
∂x

∥∥∥∥), (11)

this means that the error does not depend on N, since the rates depend only on the densities
~x and not on N. The error is then independent of N if the distribution reaches its peak at the
critical values with a spread O(

√
N). At a bifurcation of the critical point, when a bimodal

distribution is expected, the previous estimate (11) could no longer be valid for both the
increased spread of the peak and for the existence of a very small Fiedler’s eigenvalue for
the matrix Lij(~x).

3. Methods

As stated previously, except for systems in which the detailed balance condition holds,
it is a challenging task to compute the stationary distribution because of the non-linearity
of the problem. In this section, a standard method that will be applied in the following,
the System Size Expansion (SSE) is presented and adapted to the situation of interest.
The exact solution of the ME is given by the numerical integration of the ME, obtained with
the Runge–Kutta (RK) algorithm [24,25] (RK5(4) or Runge–Kutta–Dormand–Prince, Python
3.10.4, mainly from module scipy v1.9.1), in an adapted way for one-step processes, which
fastens the numerical convergence [26]. Details are given in Appendix D, and the code for
all the results on the dual PdPC used in this paper is publicly available on GitHub [27].

3.1. System Size Expansion

The SSE considers the thermodynamic limit N → ∞ of the master Equation (1), or (6)
for non-linear processes, in the continuous variables ~x = ~n/N. Developing the ME up to
terms of order O(N−2) one obtains the Fokker–Planck (FP) equation associated to the ME.
If for linear cases, the SSE is straightforward [8], the calculations for the non-linear case
are a little more cumbersome. The details of the calculations for both cases are given in
Appendix E. In both cases, the SSE locally approximates the multinomial distribution (8) as
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N → ∞ by a Gaussian distribution in the neighborhood δ~x = ~x−~x∗ of the critical point ~x∗.
The general solution for the non-linear case is the Gaussian:

ρ∗SSE(δ~x) =
1

(2π)3/2 |Σ|1/2 exp
[
−1

2
δ~xTΣ−1δ~x

]
, (12)

where the covariance matrix Σ solves the continuous Lyapunov equation [8]:

−ĀΣ− ΣĀT + D∗ = 0 (13)

in which we denoted as Ā the matrix such that:

Āij = ∑
k

[
L∗ikδjk +

∂Lik
∂x∗j

x∗k

]
, (14)

where L∗ik is the Laplacian at the critical point, and with a slight abuse of notation, we
denoted ∂Lik

∂x∗j
as the derivative of the Laplacian calculated at the critical point. The positive

symmetric matrix D∗ is the diffusion matrix:

Dij(~x) =
1
N

[
∑
k

δij(πik(~x)xk + πki(~x)xi)−
(
πij(~x)xj + πji(~x)xi

)]
,

calculated as well at the critical point. In the non-linear case, these equations can only be
solved numerically.

4. Model

The general setup we chose to test the RWA consists of a three-state (chemical species)
process ruled by two underlying reaction cycles; a general scheme is reported in Figure 1.
This is a typical setup for biochemical reactions in single cells, and it is a still reasonably
simple setup to apply the RWA.

xA

xB

xC

πBA
πCB

πAB
πBC

Figure 1. Scheme of the three-state model.

The state of the system is represented by a three-dimensional vector~n = (nA, nB, nC),
and it can be reduced to two dimensions ~n = (nA, N − nA − nC, nC) by assuming the
conservation on the total number of particles |~n| = N. The dependence of the dynamics
with respect to ~n can be removed by defining the concentration vector ~x = ~n/N. The
transition rates πij from a species j to a species i may depend on this vector, and they allow
to build a parameterized transition matrix Π(~x) and Laplacian matrix L(~x).

In order to analyze the time evolution of the system, we write down explicitly the
deterministic equation of the dynamics for the density (or concentration) vector:

dxA
dt = πAB(~x)xB − πBA(~x)xA

dxC
dt = πCB(~x)xB − πBC(~x)xC

(15)
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Notice that this system of equations is equivalent to the system associated to the dynamics
of the graph obtainable through the Laplacian matrix:

d~x
dt

= −L(~x)~x (16)

in which the equation associated to the time derivative of xB is redundant as a consequence
of the constraint on the concentrations |~x| = 1. The critical states of the system, which can
be stable or unstable, correspond to the vectors ~x∗ with a null time derivative in (15): this
is equivalent to considering the macroscopic dynamics. At the base of the RWA, there is
the eigenvector with null eigenvalue of the Laplacian L(~x), that for our three-state model
depends on the current ~x by:

pA(~x) =
πAB(~x)πBC(~x)

πAB(~x)πBC(~x) + πCB(~x)πBA(~x) + πBA(~x)πBC(~x)

pC(~x) =
πCB(~x)πBA(~x)

πAB(~x)πBC(~x) + πCB(~x)πBA(~x) + πBA(~x)πBC(~x)

with the self-consistent condition (7).
If we want instead to consider the stochasticity of the process, the time evolution of

the probability distribution ρ(~x, t) associated to the states of the system is constructed by
taking into account all of the possible exchanges of the particles, as in (6). Explicitly, the
ME reads:

∂ρ(xA, xC, t)
∂t

=πAB

(
xA −

1
N

, xC

)(
1− xA +

1
N
− xC

)
ρ

(
xA −

1
N

, xC, t
)
+

− πAB(xA, xC)(1− xA − xC)ρ(xA, xC, t)

+ πBA

(
xA +

1
N

, xC

)(
xA +

1
N

)
ρ

(
xA +

1
N

, xC, t
)
+

− πBA(xA, xC)xAρ(xA, xC, t)

+ πCB

(
xA, xC −

1
N

)(
1− xA − xC +

1
N

)
ρ

(
xA, xC −

1
N

, t
)
+

− πCB(xA, xC)(1− xA − xC)ρ(xA, xC, t)

+ πBC

(
xA, xC +

1
N

)(
xC +

1
N

)
ρ

(
xA, xC +

1
N

, t
)
+

− πBC(xA, xC)xCρ(xA, xC, t),

(17)

where we explicitly removed the dependence on xB. Therefore, while the macroscopic
approach provides an average dynamics of the system in the N → ∞ limit, the ME describes
statistically the time evolution of the probability distribution together with its stationary
properties. In the thermodynamics limit N → ∞, fluctuations are negligible, and the
stationary state of the ME approach recovers the macroscopic kinetics, since the distribution
converges toward a delta function peaked on the critical point of the average dynamics.
If the system satisfies the detailed balance condition, the stationary solution coincides
with the equilibrium solution and it can be computed in a closed form corresponding to
a Maxwell–Boltzmann distribution [28]. However, in non-equilibrium steady states, an
explicit solution of the stationary distribution cannot be obtained as a consequence of the
effect of stationary currents.

According to the functional form of the transition matrix Π(~x), we consider two
different models that follow the scheme in Figure 1: a toy model and a biologically-inspired
model, i.e., the dual PdPC.
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4.1. Toy Model

As a consequence of their complex dynamics, biologically inspired models often de-
pend on a large set of parameters, and the sensitivity on this high-dimensional parameters
space can make it difficult to carry out a systematic study of the model itself. Therefore,
before generalizing to a more reliable and known model such as the dual PdPC, we per-
form the analysis on a simple model depending on a one-dimensional parameter space. In
particular, referring to Figure 1, the rates are:

πAB = 1 πBA(~x) = θ(xA)

πCB = 1 πBC(~x) = θ(xC)

in which θ(z) is a threshold function depending on the unique control parameter α in
the form:

θ(x) = 1− α + α(1− x)2, α ∈ [0, 1]. (18)

When α = 0, the system is linear, and all the transitions are equally likely, whereas on the
opposite, when α = 1, a large fraction of particles in states A and C drops the transition
rates toward state B, leading to bistability. This model can be interpreted as a Markov
process on a graph whose time evolution is governed by Equation (16). It is possible to
compute the critical condition for the bifurcation of the symmetric equilibrium x1 = x3 for
the average self-consistent Equation (7):

f (x) = 1 +
dθ

dx
1

θ(x)(2 + θ(x))
= 0, (19)

of which a solution can be computed numerically and is for 0.8 < α < 0.9.

4.2. Dual Phospho/Dephosphorylation Cycles

We analyze here the dual phospho/dephosphorylation cycles. In order to analyze
the time evolution of the system, we make use of the Michaelis–Menten (MM) approach,
which provides an average description of the dynamics of the enzyme kinetics under the
hypothesis of the quasi-steady-state approximation. In particular, the latter consists of
assuming a constant concentration for the enzyme–substrate complex and results in rates
being a non-linear function of the system state. The components of the concentration
vector xA, xB and xC represent, respectively, the unphosphorylated, phosphorylated and
double-phosphorylated substrates. Each of the four reactions of the dual PdPC follows the
same MM enzyme kinetic scheme, which consists of a reversible and an irreversible process.
In particular, the former involves a substrate S which binds to an enzyme E, forming an
enzyme–substrate complex ES. The latter uses this complex to produce a product P and
regenerates the free enzyme E.

The whole system of reactions reads:

xA + E1
k f 1−−⇀↽−−
kb1

E1xA
kc1−−→ xB + E1

xB + E1
k f 2−−⇀↽−−
kb2

E1xB
kc2−−→ xC + E1

xB + E2
k f 3−−⇀↽−−
kb3

E2xB
kc3−−→ xA + E1

xC + E2
k f 4−−⇀↽−−
kb4

E2xC
kc4−−→ xB + E2

in which for each reaction i, the kinetic constants k f i, kbi and kci represent the forward,
backward and catalytic constants, respectively. Under the standard quasi-steady-state
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assumption (sQSSA) for the enzyme–substrate complex concentration, the transition rates
assume the following form [29]:

πAB(~x) =
k4v2

k4k2 + k4xB + k2xC
πBA(~x) =

k3v1

k1k3 + k1xB + k3xA

πCB(~x) =
k1v3

k1k3 + k1xB + k3xA
πBC(~x) =

k2v4

k2k4 + k4xB + k2xC

in which ki = (kbi + kci)/k f i is the MM constant and vi represents the maximal rate velocity
associated to reaction i.

We note that the literature proposes alternative methods to study the dynamics of the
dual PdPC, different from the sQSSA [30], and our RWA can be applied to any kind of
chosen reaction kinetics, since all of them depend on densities. However, for the purpose
of this paper, which is to apply the RWA to a real case, we selected the sQSSA.

The complexity of the model is reduced by assuming k1 = k4 = 0.1, k2 = k3 = 1,
v1 = v4 = 1 and v2 = v3. Therefore, v2 is the control parameter which governs the
bifurcation phenomena, which, with the given parameters occurs at v2 = 2.5. By computing
the critical states, one obtains a solution ~x∗1 of the form:

~x∗1 =

(
k1v2

k2v1 + 2k1v2
,

k2v1

k2v1 + 2k1v2
,

k1v2

k2v1 + 2k1v2

)
(20)

which exists independently of the value v2. Notice that this solution automatically satisfies
the constraints on the density 0 ≤ x∗1,(A,B,C) ≤ 1, |~x∗1 | = 1. Moreover, if the following
conditions on v2, which come from the existence of a stationary real solution of Equation (15)
and the requirements for ~x∗ to be a probability distribution, are satisfied simultaneously:

[v2 − v1(1 + k2)]
2 ≥ [2k1v2]

2

v2 ≥ v1 (21)

v2 ≥ v1(1 + k2),

we have two additional and symmetric critical states in the form:

~x∗2 =

(
xs
+,

k2v1

v2 − v1
, xs
−

)
(22)

~x∗3 =

(
xs
−,

k2v1

v2 − v1
, xs

+

)
(23)

in which xs
± are the roots of the following second-order equation:

(xs
±)

2 −
xs
±

v2 − v1
(v2 − v1(1 + k2)) +

(
k1v2

v2 − v1

)2
= 0

Therefore, if the conditions in Equation (21) are met, then we have a bistable system, with
two stable solutions ~x∗2 , ~x∗3 and an unstable critical point ~x∗1 . Otherwise, the latter is the
unique stable point, and the system is monostable (with the chosen parameters, this occurs
when v2 < 2.5).

5. Results

We describe here the comparison between the RWA and the theoretical relations from
Section 2 or the other approximation methods commonly used in the literature. In particular,
we use the toy model to observe in action the discussion on RWA of Section 2 and the dual
PdPC to prove its utility in a typical research situation compared to currently used methods.
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5.1. Toy Model

A direct calculation gives ∂pi/∂xj ∝ g(α), where g is a function independent of N,
monotonically increasing with respect to α (see Appendix F), which is the control parameter.
We can check the validity of the estimate (11) by computing the RWA `1-error with respect
to the numerical solution of the ME associated to Equation (15). The results are plotted in
Figure 2 (right) for different values of the parameter α. We observe that for values α ≤ 0.6,
the `1-error of the RWA is independent of the particle number, and it is proportional to the α
value. When α = 0.8, we are near the bifurcation condition, and the error becomes sensitive
to the particle number, increasing with the number of particles, since the perturbation
approach starts being less accurate. However, at α = 0.9, when the distribution ρ(~n) is
bimodal (Figure 2), the existence of local peaks may reduce the `1-error, but one has no
warranty that spurious critical points exist (i.e., critical points for the distribution that are
not solutions of (7)).

Figure 2. (a) Plot of the critical condition (19) for α = 0.8 (black line) and α = 0.9 (red line) for which
the intersection with the x-axis is clearly visible, showing a bifurcation. (b) `1-error for the RWA
of the ME associated to Equation (15) using the toy model transition rates for different values of α.
The error is N-independent before the bifurcation, whereas it increases with N near the bifurcation.

In Appendix F, we show that the error on the variance is also independent of N and
increases quickly close to bifurcation, starting having the same dependence on N as the
`1-error.

Finally, at the bifurcation point, we also observe a change in the spectral properties
of the Laplacian: this is shown in Figure A1c, where we plot the relaxation rate of the
numerical solution of the ME associated to Equation (15) for the parameter values α = 0.4
(before the bifurcation) and α = 0.9 (after the bifurcation) at N = 200 particles.

The change in the relaxation process depends on the Fiedler’s eigenvalue, as we
discussed in Section 2: before the bifurcation, we have an explicit exponential relaxation
dominated by the Fiedler’s eigenvalue that is far from zero; after the bifurcation, when the
distribution is bimodal, the relaxation process shows different exponential slopes because
the Fiedler’s eigenvalue (and possibly also other successive eigenvalues) is very close to
zero, so the relaxation time is much longer.

5.2. Dual Phospho/Dephosphorylation Cycles

The dual PdPC show a more complex behavior that is more similar to what one can
encounter in real case scenarios. This is the reason why we focus here on the comparison
between the RWA and other common approximation methods usually applied in the
literature. Those alternatives are: the SSE, probably the most used, and the standard
multinomial solution of the ME, which is obtained by linearizing the ME and considering
only the zero-order expansion of the rates around the critical point ~x∗ and then using
directly the linear solution (3). In Figure 3, we plot the error of each approximation
method with respect to the direct numerical integration of the ME through the RK4(5)
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algorithm (Section 3). Here, we decided to use as error metric the Jensen–Shannon (JS)
divergence [31,32]. It is a measure based on the entropy of the distribution, and it is
symmetric and normalized to 1 (with log2), giving then an absolute scale of comparison
between the information content of the different approximations. The same plot, but with
the `1-norm, is given in Appendix F, showing the same scaling with respect to N, but with
the drawback that is less accurate for the comparison, because it is more sensitive to the
discretization of the space and it is not absolute. We note that our theoretical results of
Section 2 are rigorous only with respect to the `1-error. Nonetheless, since the JS divergence
is based on the product of a probability distribution with the logarithm of a ratio between
probabilities (which is of order 1 in N), and it does not involve exponentiation of ρ, it is
expected to behave with N in the same way as the `1-error.

Figure 3. Jensen–Shannon (JS) error for the dual PdPC model with respect to the Runge–Kutta
numerically integrated distribution vs. the number of particles N. The colors refer to: System Size
Expansion (dashed blues), multinomial approximation (dashed-dotted yellow, referred to as MUL∗)
and Random Walk Approximation (solid cyan): (a) Monostable state with control parameter v2 = 1.82.
(b) Close to criticality, with v2 = 2.47. (c) Bistable with v2 = 3.04. The other parameters are set to
k1 = 0.1, k2 = 1 for all plots.

Our results show two main things. First of all, as in Figure 2, the error of the RWA
(both for the JS and for the `1-norm, as shown in Appendix F) does not depend much
on N, except at very low N, where stochastic fluctuations are important. This confirms
the analytical result (10), because, by direct calculation, the derivatives ∂pi

∂xj
are, in this

model also independent of N, even if it does not have a simple proportionality with the
control parameter v2. Close to the bifurcation or after the bifurcation (when the system is
bistable, plots (b) and (c) of Figure 3), some spurious dependence on N seems to appear,
but especially for the JS measure, the error is still reasonably constant with N, suggesting
that the RWA can be a good approximation even during and after the bifurcation. Second,
the RWA, in addition to always performing significantly better than the standard multino-
mial approximation, is comparable to or better than the SSE, again even close to or after
the bifurcation. Together, these numerical results suggest that the RWA can be reliable
even when the mathematical conditions given in Section 2 are not met, and it is likely more
general that what we proved. In this respect, we should note that after or close to the bifur-
cation, even the SSE has some issues of applicability. Indeed, the SSE (whose distribution is
shown in Figure 4 for the monostable regime and Figure 5 for the bistable regime) in this
case is constructed artificially, centering the two symmetric Gaussian distributions on the
critical points ~x∗2 and ~x∗3 . This works well for the parameters of Figure 5, but in general,
when the two Gaussians are partially overlapped, this can lead to incorrect distributions.
The issue would be even more problematic in systems with more than two stable states.
This is a consequence of the fact that the SSE is a local approximation that only works in a
neighborhood of ~x∗, while the RWA is global.
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Figure 4. Rescaled distributions ρ(nA, nC)/ρmax in the monostable regime (v2 = 1.82)
as resulted from (a) numerical integration of the master equation via Runge–Kutta method
(ρmax = 2.48× 10−3); (b) Random Walk Approximation (ρmax = 1.14× 10−3); (c) System Size Ex-
pansion (ρmax = 2.47× 10−3) and (d) linear approximation of the master equation (multinomial
distribution) (ρmax = 6.78× 10−3). N = 205, k1 = 0.1, k2 = 1 for all plots.

In order to give some measures of the error on the whole approximated distribution,
we can state that at the mesoscale for N = 200 and v2 = 1.82, the RWA makes a JS error of
about 32%, while the SSE is 25%; at v2 = 2.47, close to bifurcation, the RWA has an error of
29%, while the SSE is 50% and at v2 = 3.04, in the bistable regime, the RWA has an error
of 27%, while the SSE is 29%. These errors could seem high in general, but it has to be
considered that these are errors on the information contained in the whole distribution,
even considering the tails, which are usually neglected.

A visual picture of the results is given in Figures 4 and 5, for the monostable and
the bistable regime respectively, while the distributions close to criticality are shown in
Figure A3. The numerical solution is shown in plot (a) of Figures 4 and 5. We can observe
that the SSE (plots (c) of Figure 4 and 5) has good local performances around the critical
point but fails in capturing the tails, which are better approximated by the global RWA
(plot (b) of Figures 4 and 5). In Figure 5, we notice that if the mean of the Gaussian is close
to the boundary the SSE is poorer, in that the Gaussians are cut, resulting in a distortion of
the final probability. This is likely why the SSE performs worse than the RWA close to the
bifurcation and after, since the numerical distribution flattens and reaches the boundaries
of the state space. This also explains why the SSE does not decrease with N in plots (b)
and (c) of Figure 3 as expected, since it is a N → ∞ approximation. On the other hand, the
multinomial solution (plots (d) of Figures 4 and 5) is always much worse than the other
two, being able to capture only a very narrow neighborhood around the critical point. We
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remark that for all of them, the mode was the correct one, i.e., x∗, so the differences between
the distributions were given by larger order moments.

Figure 5. Rescaled distributions ρ(nA, nC)/ρmax in the bistable regime (v2 = 3.04) as resulted from
(a) numerical integration of the master equation via Runge–Kutta method (ρmax = 1.22× 10−3);
(b) Random Walk Approximation (ρmax = 7.39 × 10−4); (c) System Size Expansion
(ρmax = 1.42× 10−3) and (d) linear approximation of the Master Equation (multinomial distribution)
(ρmax = 3.68× 10−3). N = 205, k1 = 0.1, k2 = 1 for all plots.

The RWA has also the advantage that, being global, it allows an estimate of the
transition rate between the two states, because it gives the energy barrier between the two
stable states, which is in turn proportional to the Fiedler’s eigenvalue. Approximating the
energy barrier is useful for the application of Kramers theory of transition rates.

Finally, we note that the numerical RK solution was compared with the solution
obtained by means of the Gillespie algorithm [18] to ensure that the numerical integration
was arrived at convergence to the stationary state. The results were exactly the same
either considering the numerical integration or the Gillespie Monte Carlo simulation as
benchmark, and therefore, the RK integrated solution can be considered as the “true”
solution of the ME.

6. Discussion

We presented a new way to approximate the stationary distribution of stochastic
processes governed by an ME, in general out of equilibrium (since we did not impose
detailed balance), that can be mapped on a graph. We called this method the Random Walk
Approximation, since it is based on the properties of the Laplacian matrix of random walk
dynamics on graphs, which has been already successfully applied for instance for graph
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clustering [33,34]. Here, Laplacian theory on graphs is applied to justify the genesis of the
RWA and in general to understand its range of applicability. The goal of the approximation
is to give a stationary solution at the mesoscale, where stochasticity is important and the
system is not at the thermodynamic limit (N → ∞).

Summarizing, the essence of the RWA is to transform the complex problem of solving
a non-linear ME (for the linear ME the analytical result and the RWA coincide) into an
eigenvalue problem. Indeed, once the state-dependent rate matrix is given, all that is needed
is to compute the null eigenvector of the Laplacian matrix associated to the process. We
emphasize that this needs to be performed only once for each model, since the eigenvector
will be parametrically dependent, and changing the parameters value can be easily achieved
by replacement, while this is not the case for the numerical solutions of the ME. Therefore,
the RWA can be preferable to the other techniques if one wants to make a systematic
parametric study, exploring a large set of parameter values. Then, the eigenvector can
easily be injected in formula (8) and computed for every point of the state space with any
standard computational software, giving the stationary probability distribution.

Notably, the error of the RWA is related to the norm of the Jacobian matrix associated
to the transition rates as a function of the local density. Therefore, the RWA is valid when
we have an adiabatic variation of the transition rates in the state space. The RWA procedure
can be applied in principle for any possible number of system states M, regardless of the
number of particles N (even though for very large N, a deterministic approach may be
often preferable), but both the complexity of the eigenvalue problem (which is of order
O(M3) [35]) and the product in Equation (8) become numerically prohibitive for large M.
However, it has to be said that in those cases, also the other methods, including the numeri-
cal ones, are computationally very expensive, and an ME approach is often impossible.

Although the RWA is computationally faster than both direct RK integration and the
Gillespie algorithm, if one needs a very accurate prediction of the stationary distribution,
those numerical methods are still in most cases preferred. The main added value of our
approximation is to have a simple global analytical form that can be used for further
computations on the stochastic system, such as entropy production, or to explore the
importance of rare mesoscale states contained on the tail of the distribution. This is
something that a numerical solution does not easily allow and something that, even in the
simpler monostable regime, with the SSE is quite complicated to achieve, involving many
steps, both numerical and analytical, as described in Section 3.1. Moreover, the RWA does
not decrease its accuracy when the probability distribution is close to the boundaries, since
all the constraints are automatically included in the procedure.

We also showed that the RWA has the advantage of including the bifurcation in
itself, meaning that the multi-stability does not need to be added artificially as for the
SSE, and therefore, an a priori stable solution of the deterministic dynamics is not needed.
Nevertheless, as a drawback, the RWA is mathematically reliable only before the bifurcation,
when one stable solution exists. Although this may be an issue in more complex models,
at least for the systems that we studied in this paper, the RWA performs well even during
and after the bifurcation, setting the foundation to further studies that may make our
results more general, at least under some conditions.

Finally, with respect to the SSE, our approximation is simpler, global and has compara-
ble, or better, accuracy, when the thermodynamic limit is not verified and the number of
particles is not very large (of the order of Avogadro number).
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Appendix A. Entropic Derivation of the Multinomial Solution

We show here that the distribution (3) can be derived from an entropic principle
assuming the statistical weight

w(~n) =
N!

n1!...nM!

for any physical state of the network |~n| = N, regardless of whether the Laplacian L satisfies
the detailed balance condition. Since the particles are identical and w(~n) counts in how
many ways the state~n can be realized by N particles, the ratio ρ(~n)/w(~n) is the statistical
weight of the microstate. Using the Lagrangian multipliers to consider the constraints on
the average number of particles for each node, we obtain the variational principle

δF [ρ] = − ∑
|~n|=N

δ

[
ρ(~n) log

(
ρ(~n)
w(~n)

)]
+ ∑

i
µi ∑
|~n|=N

δ[niρ(~n)] = 0.

Therefore, the stationary solution of (1) is

ρ(~n) ∝ w(~n)∏
i

eµini (A1)

and the choice µi = log(pi) provides 〈ni〉 = Npi.

Appendix B. Scaling of the Normalization Factor of the RWA

In order to show that C(N) does not have a strong dependence on N, we consider
small perturbations of ~p(~x) around the critical points: pk(~x) = p∗k + ∆pk(~x) where the
perturbations ∆pk sqatisfy the condition:

∑
k

∆pk = 0.

Then,

∑
|~n|=N

N! ∏
k

pnk
k (~x)
nk!

= ∑
|~n|=N

N! ∏
k

p∗k
nk

nk!

(
1 +

∆pk(~x)
p∗k

)nk

https://github.com/tommasomarzi/random-walk-approximation
https://github.com/tommasomarzi/random-walk-approximation
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and for N � 1, we obtain

C−1(N) ' ∑
|~n|=N

N! ∏
k

p∗k
nk

nk!
exp

(
∑
k

nk∆pk(~x)
p∗k

)

The main contributions to the probability distribution are when |nk − Np∗k | ≤ O(N1/2)p∗k ,
according to the law of large numbers, and we obtain:

C−1(N) ' ∑
|~n|=N

N! ∏
k

p∗k
nk

nk!
exp

(
∑
k

∆pk(~x)
p∗k

O(N1/2)

)

so that if ∆pk is O(N−1/2), we have the estimate C(N) = O(1) with a weak dependence on
N and p∗k .

Appendix C. Error of the RWA

Starting from Equation (10), we apply the fact that if nj = Npj(~x) = Nxj, the ex-
pression vanishes; then, one can consider only the contribution of the fluctuations, which
are expected of order O(

√
N), according to the law of large number. Indeed, an explicit

calculation gives:

∑
i,j

πij(~x)pj(~x)

(
∂pk
∂xj
− ∂pk

∂xi

)
nk
pk

= ∑
i,j

(
πij(~x)pj(~x)

∂pk
∂xj
− πji(~x)pi(~x)

∂pk
∂xj

)
nk
pk

.

Then, using the local stationarity condition

∑
i

πji(~x)pi(~x) = ∑
i

πij(~x)pj(~x),

the previous expression vanishes.
Therefore, the main contribution to the error estimated from (10) is:

1
N ∑

i,j
πij(~x)∆nj ∑

k
ρ∗~p(~n)

(
∂pk
∂xj
− ∂pk

∂xi

)
∆nk
pk

= O
(∥∥∥∥∂p

∂x

∥∥∥∥)

since the fluctuations are of order ∆ni = piO(
√

N). The spectral properties of the Laplacian
operator (2) follow from the ones of the transition rate matrix, and the Fiedler’s eigenvalue
is independent of N. Then, the estimate

∑
i,j

[
E+

j E−i πij(~x)nj − πji(~n)ni

]
ρ∗~p(~n) = O

(∥∥∥∥∂p
∂x

∥∥∥∥)

implies that estimate for the `1-error is Equation (11), which is given in the main text.

Appendix D. Runge–Kutta Algorithm

Runge–Kutta (RK) methods [36] are a family of iterative algorithms which allow
to approximate the solution of initial value problems through numerical integration. In
particular, at each step, the solution of the ordinary differential equation is computed by
adding to its current value a fixed number of weighted increments. The latter are given
by the slope of the solution evaluated at different points of the time step, and the weights
are computed according to the instant of evaluation. If we denote as h the step size, an RK
method of nth order performs a local truncation error of order O(hn+1), which leads to an
accumulated (or global) error of order O(hn). For example, the most well-known method
belonging to this family is the RK4 method [37], which commits a global error of order
O(h4). In Section 5, we will use an adaptive version of RK4, namely the RK5(4) [25]
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(or Runge–Kutta–Dormand–Prince) method: at each step, the algorithm evaluates the
solution in parallel through an RK4 and an RK5 method and computes the subsequent time
increment as a function of the difference of these solutions. Since the implementation of
two parallel algorithms is computationally demanding, the solutions are evaluated using
the same increments, and the associated weights are chosen to minimize the RK5. The
whole procedure results in a fourth-order method, and the adaptive step size extends the
region of absolute stability of the algorithm.

Starting from the one-step process ME in Equation (6), we can systematically build a
dynamical linear system which takes into account all the possible exchanges of particles [26].
First of all, we denote as P the M-dimensional normalized and ordered vector with
components representing the probability associated to each possible state ~n. In a closed
system, the dimensionM is given by:

M =
M

∏
i=1

(Ni + 1)M (A2)

where Ni is the maximum number of particles of the species i. By keeping the same
indexing of P(t), we can properly build theM×M Laplacian matrix G of the stochastic
process: each off-diagonal element represents the transition rate associated to the one-
particle exchange evaluated on a specific state, while the diagonal elements normalized
each column to zero (accordingly to the canonical definition of the Laplacian matrix in
Equation (2)). Because of the properties of G, the one-step process ME can be represented
in terms of the following autonomous and positive linear system:

Ṗ = GP (A3)

A priori, starting from an initial condition, we can make the system relax toward the
stationary solution by using a numerical integration algorithm such as the RK methods.
However, as the number of species and particles increases, the number of equationsM
grows drastically, and computations may become impractical in terms of processing power
and times of convergence of the algorithm. Possible dependencies between the species
result in a reduction of the dimension of ~n: the state of a system can be described by a
vector with dimension M−Mc, where Mc is the number of mass balance constraints. This
also implies a reduction of the dimension ofM, since the probability associated to states
that are not allowed is set to zero. Furthermore, the one-step process hypothesis results in a
high sparsity of G, since the only non-zero elements are those associated to the exchanges
of one particle. Indeed, the structure of G is a block-tridiagonal matrix, leading to some
numerical advantages [26]. The analysis was carried out by means of Python 3.10.4, mainly
by means of module scipy v1.9.1, based on [24,25].

Appendix E. System Size Expansion of the ME

Since we consider the one-step process evolution, in the limit N → ∞, it is convenient
to rescale the time unit ∆t→ ∆t/N to obtain a finite relaxation time, as in Section 2. Then,
the ME (1) can be written in the form

∂ρ

∂t
(~x, t) = ∑

i,j

[
E+

j E−i πijxj − πjixi

]
ρ(~x, t)

'∑
i,j

(
∂

∂xj
− ∂

∂xi

)
πijxjρ(~x, t) +

1
2N ∑

i,j

(
∂

∂xj
− ∂

∂xi

)2

πijxjρ(~x, t)

up to terms of order O(N−2). If one approximates the distribution in a neighborhood
δ~x = ~x−~x∗ of the mode value ~x∗, we obtain the Fokker–Planck (FP) equation for the SSE:
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∂ρ

∂t
(δ~x, t) = ∑

i,j

∂

∂xj

(
πijxj − πjixi

)
ρ(δ~x, t)

+
1

2N ∑
i,j
(πijx∗j + πjix∗i )

(
∂2

∂x2
i
− ∂2

∂xi∂xj

)
ρ(δ~x, t). (A4)

The drift term is a linear force field associated to the Laplacian matrix Lij, whereas the
diffusion coefficient is defined by the positive symmetric matrix

Dij =
1
N

[
∑
k
(πikx∗k + πkix∗i )δij − (πijx∗j + πjix∗i )

]
=

1
N

[
Lijx∗j + Ljix∗i

]
The stationary distribution of the FP equation (A4) is a Gaussian function [8], with average
value xi = x∗i and covariance matrix C that satisfies the Lyapunov equation

Ċ = −LC− CLT + D (A5)

Then, the covariance matrix for the stationary distribution satisfies the equation

LikCkj + CikLT
kj +

1
N
(Lij pj + Lji pi) = 0

and by a direct calculation, we obtain a solution of the form

Cij =
1
N
(piδij − pi pj)

that coincides with (4).
The SSE is an approximation of the multinomial distribution (3) as N � 1. In general,

for non-linear master equations, the FP reads:

∂ρ(~x, t)
∂t

= ∑
i

∂

∂xi
Ai(~x)ρ(~x, t) +

1
2 ∑

i,j

∂2

∂xj∂xi
Dij(~x)ρ(~x, t) (A6)

in which we defined the drift term and the diffusion term, respectively, as:

Ai(~x) = ∑
j

(
πji(~x)xi − πij(~x)xj

)
= ∑

j
Lij(~x)xj

Dij(~x) =
1
N

[
∑
k

δij(πik(~x)xk + πki(~x)xi)−
(
πij(~x)xj + πji(~x)xi

)]

The System Size Expansion is the key step to obtain a linear FP equation. In particular,
it consists in assuming the linearity of this equation by requiring that the drift field is linear
and the diffusion coefficient is constant with respect to ~x. Since it allows approximating the
distribution near the critical value, we develop the drift field near the vector ~x∗ up to the
first order, and we compute the diffusion coefficient in the same point. The linearized FP
equation associated to the SSE reads:

∂ρ(δ~x, t)
∂t

= ∑
i

∂

∂xi

(
∑

j
L∗ijδxj + ∑

j,k

∂Lij

∂x∗k
x∗j δxk

)
ρ(δ~x, t) +

1
2 ∑

i,j

∂2

∂xj∂xi
D∗ijρ(δ~x, t) (A7)

which holds in a neighborhood δ~x = ~x − ~x∗ of the critical point ~x∗. The solution of
Equation (A7) is known again to be a normal distribution [8]. Its stationary mean and
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covariance can be obtained by imposing the time-derivative of the first and second moment
equal to zero. Thus:

∂〈δxh〉
∂t

=
∫

dδ~x δxh
∂ρ(δ~x, t)

∂t
(A8)

and
∂〈δxhδxl〉

∂t
=
∫

dδ~x δxhδxl
∂ρ(δ~x, t)

∂t
. (A9)

From Equations (A8) and (A9), by injecting (A7) and integrating by parts, one can prove
that the mean of the stationary distribution is centered in ~x∗, while the covariance matrix Σ
solves the continuous Lyapunov equation [8]:

−ĀΣ− ΣĀT + D∗ = 0 (A10)

in which we denoted as Ā the matrix such that:

Āij = ∑
k

[
L∗ikδjk +

∂Lik
∂x∗j

x∗k

]
. (A11)

Therefore, a local stationary solution which holds in a neighborhood of the critical point ~x∗

is obtained by the Gaussian distribution given in the main text:

ρ∗SSE(δ~x) =
1

(2π)3/2 |Σ|1/2 exp
[
−1

2
δ~xTΣ−1δ~x

]
. (A12)

Appendix F. Supplementary Results

In Figure A1a, we have computed the relative error ∆σ between the variance σ of the
numerical solution of the ME associated to Equation (15) for the model and the variance σm
computed by the RWA, which turns out to be an overestimate of the numerical variance

∆σ =
σm − σ

σ
.

We observe that the error ∆σ is independent of the particle number, it is directly related to
the `1-error of the RWA, and the error increases abruptly near the bifurcation value α = 0.8
with a dependence from N.

Figure A1c shows the `1-error as a function of α, which is approximately linear for
small α, far from the bifurcation, and increases monotonically for increasing values of α.
At the bifurcation, there is the emergence of abrupt changes in the monotony of the function.
Moreover, we note once again that far from the bifurcation, there is no dependence on N,
as expected theoretically. 
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Figure A1. (a) Plot of the relative variance error of the RWA for different values of the parameter α.
We observe that the error values correspond to the `1-errors shown in Figure 2; (b) relaxation rate
in log-scale of the numerical solution of the master equation associated to (15) for α = 0.4 (before
the bifurcation) and α = 0.9 (after the bifurcation with N = 200 particles; (c) plot of the `1-error
as a function of α for different values of N = 150, 200, 300. Far from the bifurcation, the curve is
monotonically increasing (approximately linear for small α), while when approaching the bifurcation,
changes in the monotony of the function emerge.
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Figure A2. `1-error with respect to the Runge–Kutta numerically integrated distribution vs. the
number of particles N for the PdPC model. The colors refer to multinomial approximation (dashed–
dotted yellow, referred to as MUL∗), System Size Expansion (dashed blues) and Random Walk
Approximation (solid cyan): (a) Monostable state with control parameter v2 = 1.82. (b) Close to
criticality with v2 = 2.47. (c) Bistable with v2 = 3.04. The other parameters are set to k1 = 0.1, k2 = 1
for all plots.

Figure A3. Rescaled distributions ρ(nA, nC)/ρmax of the PdPC model close to bifurcation (v2 = 2.47)
as resulted from (a) numerical integration of the master equation via Runge–Kutta method
(ρmax = 9.32 × 10−4); (b) Random Walk Approximation (ρmax = 7.24 × 10−4); (c) System Size
Expansion (ρmax = 9.11× 10−4) and (d) linear approximation of the master equation (multinomial
distribution) (ρmax = 5.69× 10−3). N = 205, k1 = 0.1, k2 = 1 for all plots.
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