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The impact of the time-varying dependence
structure on the tail risk of a portfolio of foreign

currencies during the Covid-19 pandemic

Fabio Gobbi∗ Sabrina Mulinacci†
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Abstract

Purpose - The purpose of this paper is to introduce a generalization
of the time varying correlation elliptical copula models and to analyze its
impact on the tail risk of a portfolio of foreign currencies during the Covid-
19 pandemic.
Design/methodology/approach - We consider a multivariate time se-
ries model where marginal dynamics are driven by an ARMA-GJR-GARCH
model and the dependence structure among the residuals is given by an
elliptical copula function. The correlation coefficient follows an autoregres-
sive equation where the auregressive coefficient is a function of the past
values of the correlation. The model is applied to a portfolio of a couple
of exchange rates, specifically U.S. dollar - Japanese yen and U.S. dollar -
Euro and compared with two alternative specifications of the correlation
coefficient: constant and with auroregressive dynamics.
Findings - The use of the new model results in a more conservative evalu-
ation of the tail risk of the portfolio measured by the Value-at-Risk and the
Expected Shortfall suggesting a more prudencial capital allocation policy.
Originality - The main contribution of the paper consists in the intro-
duction of a time-varying correlation model where the past values of the
correlation coefficient impact on the autoregressive structure.

JEL classification: G11, G15, C22

Keywords: copula functions, time-varying dependence structure, tail
risk, exchange rates.
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1 Introduction

The recent financial crisis due to the Covid-19 pandemic has highlighted
the importance of the systemic risk in the dynamics of financial markets.
The conditional dependence among financial instruments can drastically
change in periods of financial or economic distress and the recent pandemic
has had a profound impact on the markets. In this paper, we propose
to investigate if the nature of the correlation structure between exchange
rates affects the tail risk of a portfolio of foreign currencies. The Covid-19
pandemic can be considered one of the most major landmark event from
an economic, social and political point of view of the 21 century (together
with the great depression started in 2008) which involved a great number
of countries around the world in less than one year. Due to the novelty of
the topic, the empirical impact on the global economy in general and on
exchange rates in particular of the Covid-19 pandemic has not yet been
developed with accuracy.

Being one of our aim to model the impact of the pandemic on the de-
pendence structure between exchange rates, we believe that a particularly
effective tool is the copula function. The main advantage to build multi-
variate models using copula functions is that the contribution to the global
risk may be partitioned into components only relating to the marginal dis-
tributions and components only relating to the copula. In our approach,
we consider non-gaussian conditional marginal distributions to reflect the
stylized facts about daily exchange rates returns, such as serial depen-
dence in the conditional mean and strongly persistence in the conditional
variance, which will likely be accentuated in the presence of violent and
systemic shocks such as the Covid-19 pandemic.

In this paper we generalize the approach of Patton (2006a and 2006b)
by assuming a conditional dependence structure modeled by a fixed copula
with a parameter δt whose dynamics is modeled by a nonlinear autoregres-
sive process and to measure its effects on the risk of a portfolio of currencies.
The parameter evolution is given by a state-dependent autoregressive type
models as introduced and discussed in Cherubini, Gobbi and Mulinacci
(2016) and in Gobbi and Mulinacci (2021). This approach assumes that
in the evolution equation of the parameter δt, the coefficient of the lagged
value δt−1 is not constant as in the Patton specification but has a specified
functional form which depends on δt−1, e.g., ψ(δt−1). Another extension
of Patton models, applied to exchange rates time series, is introduced in
Ahdika et al. (2021) where a wide class of copula functions is considered
with different ARMA process dynamics of the time varying coefficient δt.

The model is tested on two time series of exchange rates, e.g., U.S. dol-
lar - Japanese yen and U.S. dollar - Euro in the Covid pandemic period.
The dependence structure may change due to the financial distress and
this effect can be more or less strong in relation to the financial reputation
of countries. Our methodology consists in estimating the ARMA-GJR-
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GARCH models for the exchange rates univariate returns to obtain the
conditional marginal distributions of the residuals whose dependence struc-
ture is given by a copula function with time-varying parameter. The new
model with depenence parameter driven by a state-dependent autoregres-
sive coefficien is introduced as an alternative model to the existing copula
approaches with constant parameter and with time varying autoregressive
dynamics.

The above models are applied to the analysis of the tail risk of a port-
folio of currencies. In order to compare their performance we consider the
Value-at-Risk and the Expected Shortfall being tail risk measures with
a monetary value that are used to define capital allocation requirements.
More precisely, we analyze the 10-days Value-at-Risk and Expected Short-
fall of an equally-weighted portfolio expressed in dollar built on U.S. dollar
- Japanese yen and U.S. dollar - Euro exchange rates. The comparison will
be conducted through a Monte Carlo simulation experiment which allows
to obtain the distribution of the portfolio returns. The results suggest that
the the new method corresponds to a more prudential capital allocation
strategy.

The plan of the paper is the following. In Section 2 we discuss the liter-
ature review. Section 3 specifies the models for the marginal distributions
and the models for the copulas describing the time-varying parameter.
Section 4 is devoted to an empirical application to exchange rates. More
precisely, in subsection 4.2 we present and discuss the estimation results,
while in subsection 4.3 a portfolio of Euro and Yen currencies is constructed
and a Monte Carlo simulation to compute its Value-at-Risk and Expected
Shortfall is performed. Section 5 concludes.

2 Literature review

Some studies on the impact of the pandemic on exchange rates and on
related economic and financial quantities are present in literature. Among
others, Aslam et al. (2020) analyze the efficiency of foreign exchange mar-
kets during the initial periods of the Covid-19 outbreak, Li et al. (2021)
used the Covid-19 pandemic impact on the USA and China exchange rates
and Singh et al. (2021) explore the time-varying pattern caused by the
pandemic between exchange rates and other variables like stock market
returns, temperature and number of Covid-19 cases of G7 countries. Iyke
and Ho (2020) examined the impact of exchange rate exposure on different
sectors of the South African stock market before and during the Covid-
19 pandemic and Villarreal-Samaniego (2021) used the autoregressive dis-
tributed lag (ARDL) procedure to investigate the connection between oil
prices and exchange rates during the Covid-19 pandemic in a sample of
five emerging economies. Kinateder et al. (2021) apply the bivariate
Dynamic Conditional Correlation Generalized Autoregressive Conditional
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Heteroskedasticity model to analize the effect of the Global Financial Cri-
sis and COVID pandemic on major financial assets while Ahdika et al.
(2021) investigate the dynamic dependency among exchange rates of five
Asian countries during the pandemic. In a recent paper Aliu et al. (2023)
address the problem of modeling the joint dynamics of European exchange
rates considering the shock scenario due to the Ukraina war.

From a univariate point of view, there is a number of papers which
address the problem of analysing the exchange rates dynamics using dif-
ferent models (see, among others, Krager and Kugler, 1993, Clements and
Smith, 1997, Chappel, Padmore, Mistry and Ellis, 1996, and Peel and
Speight, 1994, who evaluate forecasts from self-exciting threshold autore-
gressive (SETAR) models for exchange rates). On the other hand, the
estimate of the conditional joint distribution of daily exchange rates can
be found in Patton (2006a, 2006b) whose analysis focuses on the U.S. dol-
lar - Japanese yen and the U.S. dollar - Euro exchange rates during 1990s
and early 2000s.

The problem of exchange rate determination and its predictability is a
very controversial issue in the international economics literature. In par-
ticular, the specification of non-linear models for exchange rates has been
largely motivated in many papers. Among them, we mention those which
concentrate on the most commonly applied non-linear models, e.g., the
GARCH (generalized autoregressive conditional heteroscedastic), includ-
ing its generalizations, and the SETAR. Such models have proved success-
ful in describing the dynamic behaviour of many economic and financial
variables; moreover, they offer the advantage of being readily interpretable
in economic terms (see, among others, Krager and Kugler, 1993, Peel and
Speight, 1994; Chappell et al., 1996). The generalized family of GARCH
models allow one to specify the process governing both the mean and the
variance of the series, while the SETAR models represent a stochastic
process generated by different regimes depending on fixed conditions. Ac-
cording to Doman and Doman (2014), Nurrahmat et al. (2017), He and
Hamori (2019), in this paper we will focus on GARCH or GJR-GARCH
with a Student’s t or skewed Student’s t distribution for residuals that are
suitable for liquid assets like exchange rates (see Tsay, 2010).

To investigate the dependence structure of exchange rates, we make
use of a theorem due to Sklar (1959), which shows that an d-dimensional
joint distribution function may be decomposed into its d margins distribu-
tions, and a copula, which completely describes the dependence between
the d variables. For a general discussion on copulas the reader can con-
sult Nelsen (2006) and Joe (2015). The construction of joint distributions
using copula functions has many applications in finance: see among oth-
ers, Cherubini and Luciano (2002), Rosenberg (2003) and Patton (2004,
2006a and 2006b). For a detailed review of dynamic copula-based models
in finance, the reader can consult Cherubini et al. (2012) and the vast
literature therein.
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A number of papers have shown that the dependence structure between
financial asset returns, and therefore the copula parameters, cannot be con-
sidered constant, but, rather, time-varying (see, among others, Engle, 2002,
Patton, 2006a and 2006b, and Manner and Reznikova, 2012, and references
therein). Furthermore, as these studies indicate, the correlation between
asset returns tends to be more pronounced during downward phases of the
stock market than upward phases: this is a feature that can be captured
either considering time-varying dependence or considering asymmetric cop-
ula functions as in Junker et al. (2006). In general, disregarding these facts
could be misleading from the point of view of risk assessment and could
lead to incorrect inferences. In literature many papers have studied spe-
cific models with time varying dependence structure also based on regime
switching: among others, see Tse and Tsui (2002), Patton (2006a and
2006b), Lu et al. (2014), Ahdika et al. (2021) for copula models with time
varying parameters, Creal et al. (2013) for the generalized autoregressive
score models and Doman and Doman (2014) and Jondeau and Rockinger
(2006) for time variation based on regimes. The correct modelling of the
dependence structure among assets is crucial for the analysis of the risk of
a portfolio and many papers study its impact in the evaluation of Value-
at-Risk and Expected shorfall measures (see, among the others, Lu et al.,
2014, Nurrahmat et al., 2017, and He and Hamori, 2019). The contribu-
tion of this paper is in line with this stream of literature since we introduce
a new more general dynamics for the time varying correlation coefficient
and we analyze its effect in a portfolio Vale-at-Risk and Expected Shortfall
values.

3 The model: ARMA-GARCH with time-

varying copulas

In this section we introduce the models for the marginal distributions and
the models for the dependency structure. For the former we will consider
autoregressive moving average–generalized autoregressive conditional het-
eroskedasticity (ARMA-GARCH) models that established themselves in
the early 80s, drawing inspiration from the works of Engle (1982) and
Bollerslev (1986) and their ARMA-GJR-GARCH extension of Glosten et
al. (1993). On the other hand, the dependence structure will be modeled
by a copula function or more precisely by a conditional copula in the spirit
of Patton (2006a and 2006b).

3.1 ARMA-GARCH marginal models

The models employed for the marginal distributions are presented below.
We will denote the log-returns of two time series of prices as the variables
X1,t and X2,t. We assume that the marginal distributions are completely
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characterized by an ARMA(p, q)-GJR-GARCH(1,1) specification. The er-
ror term is distributed as a Student’s t random variable with ν degrees of
freedom. The functional form is the following

Xj,t = cj +
∑p

i=1 φj,iXj,t−i +
∑q

i=1 θj,iηj,t−i + ηj,t,
h2j,t = ωj,0 + ωj,1η

2
j,t−1 + γj1j,t−1η

2
j,t−1 + ωj,2h

2
j,t−1,

ηj,t
hj,t

∣∣∣Fj,t−1 ∼ Skewed Student’s t with νj d.f.

. (3.1)

with j = 1, 2 and 1j,t−1 =

{
1, if ηj,t−1 < 0
0, if ηj,t−1 ≥ 0

. The structure of an

ARMA(p, q)-GJR-GARCH(1,1) combines two needs: that of having a con-
ditional mean component and that of modeling the heteroskedasticity of
the time series of returns. In the equation above the conditional mean is
an ARMA(p, q) process where the AR part involves the lagged values of
the variable and the MA component involves a linear combination of the
innovation and its lagged values. The conditional variance h2j,t, j = 1, 2,
is a GJR-GARCH(1,1) process which models the heteroskadasticity and
the asymmetric volatility clustering with an equation involving both the
lagged value of the variance and the lagged value of the squared innovation.

3.2 State-dependent copula model

The theoretical framework of the multivariate model is based on Sklar’s
theorem. Let H be the joint cumulative distribution function of a ran-
dom pair of continuous random variables (X,Y ) and let F and G be the
marginal distributions functions of X and Y , respectively. Sklar’s theo-
rem (Sklar, 1959) states that there exists a unique 2-dimensional copula
function C on [0, 1]2 such that for all (x, y) ∈ R2 we have H(x, y) =
C(F (x), G(y)). The functional form of the copula C and its parameters
determine the shape and the strength of the dependence structure between
X and Y .

Our analysis focuses on multivariate time series and both marginal dis-
tributions and copula functions must be considered in their conditioned
versions: this extension was introduced and studied in Patton (2006a,
2006b). Therefore, assuming that the time series represent the log-returns
of some financial instrument at time t, e.g., (X1,t)t and (X2,t)t, adapted
to the filtration (Ft)t with Ft−1-conditional marginal distributions F1,t

and F2,t respectively, the Ft−1-conditional joint distribution Ht of the pair
(X1,t, X2,t)t can be expressed in terms of an Ft−1-conditional copula Ct

Ht(x1, x2) = P (X1,t ≤ x1, X2,t ≤ x2) = Ct(F1,t(x1), F2,t(x2)), (x1, x2) ∈ R2.

The copula function Ct is characterized by a functional form and a set of
parameters: in this paper we focus on elliptical copulas, in particular we
consider Gaussian and t-copula functions. The novelty of the approach
consists in assuming a dynamics in which the correlation coefficient is a
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nonlinear function of the lagged values extending the models presented in
Patton (2006a and 2006b) in the spirit of the state-dependent autoregres-
sive models discussed in Gobbi and Mulinacci (2021).
Patton (2006a, 2006b) suggests to model time variation in the conditional
copula parameter in order to capture time-varying volatility using a specifi-
cation similar to the GARCH model in the spirit of Hansen (1994). Explic-
itly, the time-varying correlation coefficient ρt has the following functional
forms:

ρt = Λ

(
β0 + β1ρt−1 + β2

1

m

m∑
i=1

Φ−1 (u1,t−i) Φ−1 (u1,t−i)

)

for the Gaussian copula (Φ−1 is the inverse of the standard normal distri-
bution) and

ρt = Λ

(
β0 + β1ρt−1 + β2

1

m

m∑
i=1

T−1ν (u1,t)T
−1
ν (u2,t)

)

for the Student’s t copula with ν degrees of freedom being T−1ν the inverse
cumulative distribution function of a standard Student’s t distribution with
ν degrees of freedom. In both cases, u1,t and u2,t are the conditional
distribution functions values of the two marginal lagged variables (m is
the lag order) while Λ(x) = (1 + e−x)/(1 + e−x) is a modified logistic
function that is used to ensure that the correlation coefficient is in (−1, 1)
for all t and (β0, β1, β2) is the vector of parameters.

In this paper we consider a slighly modified version of the time-varying
correlation coefficient

ρt = Λ

(
β0 + β1ρt−1 + β2

1

m

m∑
i=1

η̄1,t−iη̄2,t−i

)
, (3.2)

where η̄j,t, j = 1, 2, are the standardized lagged innovations. This ap-
proach, allows to disentangle the nature of the copula from the distribution
of the lagged variables on which it depends.
In order to evaluate the impact of a powerful and systemic shock such as
the Covid-19 pandemic, a possible drawback of the Patton model may be
the fact that the autoregressive coefficient β1 is constant. To overcome
this limit we try to generalize the Patton approach in the spirit of the
state-dependent autoregressive models considered by Gobbi and Mulinacci
(2021) where the autoregressive coefficient in equation (3.2) is a specified
function of ρt−1, say, ψ(ρt−1). Therefore, the state-dependent time-varying
correlation coefficient has the form

ρt = Λ

(
α0 + ψ(ρt−1;α1, ..., αk−1)ρt−1 + αk

1

m

m∑
i=1

η̄1,t−iη̄2,t−i

)
, (3.3)
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where the function ψ(ρt−1;α1, ..., αk−1) is characterized by a vector of pa-
rameters (α1, ..., αk−1), that modify its properties. The idea behind this
specification of the correlation coefficient arises from the consideration that
the dynamics of ρt also influences the ”weight” that is attributed to the
autoregressive component rather than being constant over time. In partic-
ular, in this article we propose an exponential form of ψ characterized by
two parameters; more precisely

ψ(x;α1, α2) = α1e
α2|x|, x ∈ [−1, 1] (3.4)

As a function of ρt−1, ψ has some properties which characterize the
persistence. As can be seen from the formula, it can assume positive and
negative values depending on the sign of the first parameter α1. Not only
that: if α1 > 0, ψ is positive and, if α2 > 0 it is an increasing function of
|ρt−1| and it assumes its minimum value (α1 > 0) when ρt−1 = 0 while, if
α2 < 0, it is a decreasing function of |ρt−1| and it assumes its maximum
value (α1 > 0) when ρt−1 = 0. The opposite behaviour is performed for
α1 < 0 when ψ assumes only negative values. This implies that we can
model different relationships between ρt−1 and the persistence.

4 Empirical application to exchange rates:

estimation and portfolio tail risk

4.1 The data

The data set analysed in this work is composed by a couple of daily ex-
change rate returns: U.S. dollar - Japanese yen and U.S. dollar - Euro
from 28/03/2018 to 06/10/2021. The period of observations covers the
Covid-19 pandemic whose beginning can be considered December 2019. In
fact, already in that month the news coming from Wuhan had alarmed the
financial markets. The total number of observations is 920. The data (in
percentage form) are plotted in Figure 2 in the Appendix. The decision
to use the log-returns of exchange rates arises from the consideration that
these variables are very reactive in the face of sudden economic and finan-
cial shocks. Market operators react immediately to bad news and in this
specific case of the Covid-19 pandemic they responded violently anticipat-
ing the disastrous effects on the real economy during 2020. The descriptive
statistics relating to log-returns are reported in Table 2 in the Appendix.

4.2 Estimation results

The estimation was made using the rugarch-package of R and the selection
of the models of the marginal distributions was carried out with the crite-
rion of the minimum AIC (Akaike, 1973). This allowed to identify the or-
ders of the conditional mean model in the ARMA(p,q)-GJR-GARCH(1,1)
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specification. For both time series of exchange rates log-returns the best
fitted models are ARMA(5,5)-GARCH(1,1) with Student’s t distributed in-
novations: more precisely, the leverage parameter γj of the GJR-GARCH
model is not significantly different from zero for both exchange rates re-
turns. The estimation results are shown in Table 3 in the Appendix that
reports the estimates of parameters of the marginal distribution models,
the value of the log-likelihood, the AIC value and the p-values relating to
the Ljung-Box test (Ljung and Box, 1978) and the McLeod-Li (McLeod
and Li, 1983) test on residuals and squared residuals respectively.

Some insights are needed to investigate the main difference in the be-
havior of the marginal distributions. The drift term (measured by the
estimate of the parameter cj) in the conditional mean equation is close to
zero and positive for both time series, indicating a slight appreciation of the
dollar against the European and Japanese currencies: we can ask ourselves
whether the dollar has better resisted the arrival of the pandemic. The AR
coefficients are similar except for the coefficient relating to the fourth lag
φj,4 which is close to zero for the U.S. dollar - Japanese yen exchange rate
(0.070984) and strongly negative for the U.S. dollar - Euro exchange rate
(-0.723295). Exactly the opposite change of sign occurs for the fourth MA
coefficient, e.g., θj,4. As for the variance equation, the ARCH component,
measured by ωj,1, is definitely higher in the U.S. dollar - Japanese yen
exchange rate (0.108841) whereas the GARCH component, measured by
ωj,2, behaves in a mirror being higher for the U.S. dollar - Euro (0.949227
against 0.756531). The estimates of the degrees of freedom parameter are
coherent with the hypothesis of heavy tails in the marginal distributions.

We now focus on the method discussed in subsection 3.2 in order to
study the conditional joint distribution of daily marginal log-returns of the
pair of exchange rates estimated above. In particular, we are interested in
investigating the impact of the pandemic on the nature of the dependence
structure between exchange rates. The estimation technique is the quasi-
maximum likelihood introduced and discussed in White (1994).
Once the marginal models have been estimated, a preliminary analysis of
the standardized residuals highlights the absence of any tail dependence.
However we have tested the Gumbel copula, the Clayton copula, the t-
copula and the gaussian copula with constant parameters: based on AIC
criterium the best fitted one is the latter confirming the observed nature
of the data. For this reason we consider the gaussian copula with con-
stant and time-varying correlation coefficient. In practice, we compare
three joint distributions obtained with the gaussian copula which differ
in the functional specification of the dependence coefficient: the constant
copula parameter model, the Patton specification in (3.2) and the state-
dependent model in (3.3) with autoregressive functional coefficient of ex-
ponential type as in (3.4). As for specifications (3.2) and (3.3) we have
selected m = 5 since it coincides with the lags considered in the ARMA
part of the marginal dynamics: this choice is in line with Patton (2006a
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and 2006b). However experiments with different values of m show that
the estimates do not change significantly. In comparing the estimates ob-
tained and their goodness-of-fit, the structural break that occurred with
the Covid-19 pandemic plays a decisive role both in the selection of the
most suitable model and in the interpretation of the results.
A premise is necessary before any comparative analysis of the estimates.
The number of observations is not very large and therefore the comparison
between the models is not easy. We will use the AIC value for comparing
the goodness-of-fit of the different models, but we stress the fact that an
higher number of observations would be needed to better distinguish them.
We can certainly consider the following insights. Firstly, it should be noted
that, as shown in Tables 4-6 in the Appendix, the AIC of the constant pa-
rameter copula model is the highest among the three considered models,
indicating that the temporal dependence of the correlation coefficient is a
necessary assumption that the empirical data support.
The AIC value corresponding to the Patton model (Table 5) and the state
dependent autoregressive coefficient (Table 6) cases are very close each
other, being that corresponding to the Patton model slighly lower indicat-
ing a better goodness-of-fit. Nonetheless, analyzing Table 6, the estimates
of α2 is significantly different from zero indicating a state dependent au-
toregressive component in the correlation coefficient (see (3.4)). Given
these facts, we stress again that a larger number of observations would be
needed to obtain a clearer distinction. In the sequel we will analyze the
different impact of the different selection between the Patton and the state
dependent model.
Figure 3 in the Appendix shows the dynamics of the correlation coeffi-
cient according to the Patton model and the state dependent one. The
vertical dotted line identifies the beginning of the pandemic that we place
on 01/01/2020. We see a slightly increasing trend after the onset of the
pandemic with a peak in the weeks immediately following (in line with
the findings in Ahdika et al., 2021, and Kinateder et al. 2021). On the
contrary, the dynamics appear to be mean stationary in the pre-Covid
period. In the post-Covid period the trends are apparently similar but
the higher variability induced by the state-dependent exponential model
is highlighted in Figure 4 in the Appendix where the plot of the dynam-
ics of the differences in the correlation coefficient ρEXPt − ρPt implied by
the two models are shown. We observe that the correlation dynamics in-
duced by the state-dependent exponential model tends to be higher than
that induced by Patton model after the arrival of the pandemic with a
very marked peak in the immediacy of the lockdown measures. Figure 5
in the Appendix compares the constant autoregressive coefficient of the
Patton’s model and the dynamic of the state dependent one with exponen-
tial shape: it is evident that the constant one typically overestimates the
state-dependent exponential autoregressive coefficient, while it is lower in
turbolent situations (post-Covid period of time).
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4.3 Portfolio of exchange rates: the impact of the
correlation structure on tail dependence

In this section, we consider an equi-weighted portfolio of Euros and Yen
and we will analyze the 10 days Value-at-Risk and Expected Shortfall com-
paring the standard autoregressive model, the Patton model and the time-
varying exponential autoregressive coefficient model. Through a Monte
Carlo simulation experiment we will prove that, although the Patton and
state-dependent models produce a very similar contribution from a statis-
tical point of view, the difference in impact in the calculation of the two
above risk indicators will be significant.

Let (Et)t and (Yt)t denote the exchange rates from USD dollar to Euro
and to Japanese Yen, respectively. We consider a portfolio whose value at
time t is

Vt = 0.5C
E0

Et
+ 0.5C

Y0
Yt
, (4.5)

where V0 = C is the initial capital in USD dollars. We present the results
of a Monte Carlo study based on the simulation of portfolio returns. The
aim of the experiment is to capture the effects on the VaR and the ex-
pected shortfall of the three correlation models under considerations. The
data generating process (DGP) is designed to reflect the estimates obtained
in subection 4.2. In fact, we consider three different DGPs characterized
by the same marginal distributions given by equations (3.1) but different
correlation structures. More precisely, the DGPs differ in the amount of
dependence between the two exchange rates induced by the three specifi-
cations of the correlation dynamics. Notice that this is the only source of
risk in which the model differ. We simulate a 10-day trajectory of exchange
rates, e.g., X̃j,T+10, j = 1, 2. The value of the equi-weighted portfolio af-
ter 10 days, e.g. ṼT+10, is obtained using equation (4.5). The number of
simulated trajectories is M = 50000. The empirical distribution of returns
of ṼT+10 is needed to compute the Value-at-Risk and Expected Shortfall
with level 0.01 and 0.05 of the returns. The simulation algorithm relating
to the Patton and the state-dependent exponential models is the following.
Consider the step T + n, with n = 1, ..., 10.

1. We use the vector (η̄j,T+n−5, ..., η̄j,T+n−1), j = 1, 2, to compute ρ̃T+n
using equations (3.2) or (3.3). We simulate (ũT+n, ṽT+n) ∼ C(·, ·; ρ̃T+n.

2. Simulate the standardized residuals ε̃1,T+n = T−1ν̂1
(ũT+n)

√
ν̂1−2
ν̂1

ε̃2,T+n = T−1ν̂2
(ṽT+n)

√
ν̂2−2
ν̂2

,
. (4.6)
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3. Simulate the residuals{
η̃1,T+n = ε̃1,T+nh̃1,T+n
η̃2,T+n = ε̃2,T+nh̃2,T+n,

. (4.7)

using {
h̃21,T+n = ω̂1,0 + ω̂1,1η̃

2
1,T+n−1 + ω̂1,2h̃

2
1,T+n−1

h̃22,T+n = ω̂2,0 + ω̂2,1η̃
2
2,T+n−1 + ω̂2,2h̃

2
2,T+n−1,

. (4.8)

4. The returns are{
X̃1,T+n = ĉ1 +

∑5
i=1 φ̂1,iX̃1,T+n−i +

∑5
i=1 θ̂1,iη̃1,T+n−i + η̃1,T+n,

X̃2,T+n = ĉ2 +
∑5

i=1 φ̂2,iX̃2,T+n−i +
∑5

i=1 θ̂2,iη̃2,T+n−i + η̃2,T+n,
.

(4.9)

5. Simulate the exchange rate levels{
Ẽ1,T+n =, Ẽ1,T+n−1e

X̃1,T+n

Ẽ2,T+n =, Ẽ2,T+n−1e
X̃2,T+n ,

. (4.10)

6. The portfolio value is ṼT+n = 0.5Ẽ1,T+n + 0.5Ẽ2,T+n

7. Repeat steps 2-6 M times.

The simulation algorithm described above generates a simulated distribu-
tion of the portfolio value after 10 days, i.e., ṼT+10, which can be used to
obtain the VaR and the expected shortfall of the portfolio. The results
of the Monte Carlo study are displayed in Table 1. For both risk mea-
sures, the constant autoregressive model returns the lowest value and the
state-dependent exponential the highest one, while the Patton model is
always in between the two. Furthermore, they show that the model with
constant correlation coefficient and the model with Patton dynamics pro-
duce very similar risk indicators, while the model with the state-dependent
exponential dynamics differs markedly both in terms of VaR and expected
shortfall. In fact, though the Patton and exponential modesl are sub-
stantially equivalent as goodness-of-fit, the choice of the state-dependent
exponential model corresponds to a more conservative approach. Figure 1
depicts the empirical densities of the worst 5% of the simulated portfolio
returns generated by the Patton and exponential models. Figure 1 shows
the empirical density obtained from Monte Carlo simulations for the port-
folio returns below the 5th percentile, comparing the Patton model with
the state-dependent exponential one. Observe how the exponential model
generates much more negative returns than the Patton model, thus high-
lighting a greater risk in the portfolio of currencies.

Given the monetary meaning of the VaR and ES risk measures as re-
gards capital allocation policies, the above analysis suggests that that the
choice of the new proposed model for the time-varying dynamics of the
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correlation coefficient is the most prudential among those analyzed and
considered as benchmarks in this paper.

Constant Patton state-dependent exponential
Minimum -5.8117 -5.3786 -6.7012
Maximum 4.6651 4.0606 6.1182

SD 0.7790 0.7867 0.8281
VaR(5%) 2.0465 2.0475 2.1064

Expected shortfall (5%) 2.4403 2.4463 2.5358
VaR(1%) 2.6954 2.6863 2.7989

Expected shortfall (1%) 3.0554 3.0741 3.2280

Table 1: Monte Carlo simulation results on the portfolio of exchange rates.

−7 −6 −5 −4 −3 −2

0.
0

0.
5

1.
0

1.
5

percentage returns

Worst 5% of simulated portfolio returns

Figure 1: Empirical density of the worst 5% portfolio returns. Solid line: Patton
model; dashed line: state-dependent exponential model.

5 Conclusion

In this paper we have introduced a new dynamics for the dependence co-
efficient of an elliptical copula and we have tested three different types
of dependent structures between time series of exchange rates, e.g., U.S.
dollar - Japanese yen and U.S. dollar - Euro during the Covid-19 pan-
demic. In particular, we estimated three correlation models based on cop-
ula functions with three different parameter specifications: constant over
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time, autoregressive with constant coefficient (from Patton, 2006) and a
new autoregressive model with state-dependent coefficient of exponential
type. The study of goodness-of-fit showed that the first model underper-
forms compared to the remaining two, indicating that the time-varying
dynamics is needed for the exchange rates, while the Patton model and
the state-dependent model offer a very similar fit. However, this does not
prevent the two models from offering a significantly different performance
in the simulation experiment we conducted. In fact, we have applied these
three models to measure the riskiness of a portfolio of currencies, show-
ing that the choice of a state dependent autoregressive coefficient corre-
sponds to a more conservative approach since it returns the highest values
of both risk measures analyzed, e.g., the Vaue-at-Risk and the Expected
Shortfall. The sample period analysed is characterized by the Covid-19
pandemic and its financial impact is strongly noticeable on the behaviour
of the time-varying dependence parameter, pointing out the importance of
a temporally adaptive dynamics especially in the period of economic and
financial turbulence.

The implications of the obtained results are related to the problem of
capital allocation: the study suggests that the model with state-dependent
autoregressive coefficient corresponds to a more prudential strategy in the
turbolent Covid pandemic period, compared with the standard alternative
models with constant or with autoregressive dynamics correlation coeffi-
cient.
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Figure 2: Log-returns.
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Figure 3: Dependence structure: dynamics of the correlation coefficient according
to the modified Patton model (bottom) and the state-dependent exponential
model (down). The vertical dashed line identifies the beginning of the Covid
pandemic phase in most countries of the world.
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Figure 4: Absolute differences of the correlation coefficient dynamics generated
by the two alternative models: ρEXPt −ρPt . The vertical dashed line identifies the
beginning of the Covid pandemic phase in most countries of the world.
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Figure 5: Relationships between the exponential autoregressive coefficient and
the constant autoregressive coefficient. The vertical dashed line identifies the
beginning of the Covid pandemic phase in most countries of the world. The
horizontal line represents the value of the autoregressive coefficient in the modified
Patton dynamics.
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U.S. dollar - Japanese yen U.S. dollar - Euro
N. of obs. 920 920

Mean 0.005323 0.06892
Maximum 2.021916 1.753970
Minimum -2.693895 -1.752801
Std. dev. 0.395612 0.375652
Skewness -0.469995 0.024288
Kurtosis 5.044356 1.85223

Table 2: Descriptive statistics relating to log-returns in percentage form.

U.S. dollar - Japanese yen U.S. dollar - Euro
ARMA(5,5)-GARCH(1,1) ARMA(5,5)-GARCH(1,1)

c 0.014225 (0.008727) 0.010236 (0.010521)
φj,1 -0.215870 (0.024025) -0.369444 (0.207732)
φj,2 0.617358 (0.023607) 1.212758 (0.067431)
φj,3 0.663843 (0.021679) 0.866613 (0.269389)
φj,4 0.070984 (0.024867) -0.723295 (0.067497)
φj,5 -0.728333 (0.021705) -0.616614 (0.201820)
θj,1 0.241345 (0.000578) 0.454922 (0.184798)
θj,2 -0.611589 (0.000804) -0.984135 (0.248401)
θj,3 -0.744960 (0.000102) -0.407830 (0.117236)
θj,4 -0.152233 (0.002636) 0.653537 (0.075092)
θj,5 0.742006 (0.000105) 0.702825 (0.174705)
ωj,0 0.018884 (0.005984 0.001342 (0.000886)
ωj,1 0.108841 (0.034312) 0.040429 (0.017437)
ωj,2 0.756531 (0.058537) 0.949227 (0.019528)
νj 5.662673 (1.045171) 7.539101 (2.045167)

Log-lik -339.6638 -327.7351
AIC 0.77185 0.74589

LB (Lag=1) 0.4434 0.4724
LB (Lag=29) 1.000 1.000
LB (Lag=49) 0.9835 1.000
ML (Lag=1) 0.3826 0.3432
ML (Lag=29) 0.7842 0.2177
ML (Lag=49) 0.2885 0.1737

Table 3: Results for the marginal distributions. Estimated parameters and rela-
tive standard errors. We report the value of the loglikelihood at maximum, the
AIC value and p-values relating to the Ljung-Box test (LB) and McLeod-Li test
(ML) on residuals.
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Constant parameter
ρ 0.304810∗∗

(0.028621)
`C 44.83

AIC -0.095803

Table 4: Quasi-maximum likelihood estimates of the model with constant pa-
rameter. The asterisks denote that the parameter is significantly different from
zero at 10% level (∗) or at 5% level (∗∗). We also report the value of the copula
likelihood at optimum and the AIC value.

Patton’s model
β0 0.018081
β1 1.935189∗∗

β2 0.085531∗∗

`C 51.623670
AIC -0.106398

Table 5: Quasi-maximum likelihood estimates of the copula parameters. The
table considers the gaussian copula and the time-varying parameters as in
Patton (2006a). The asterisks denote that the parameter is significantly different
from zero at 10% level (∗) or at 5% level (∗∗). We also report the value of the
copula likelihood at optimum and the AIC value.

state-dependent exponential model
α0 0.040819∗∗

α1 1.675904∗∗

α2 0.343329∗

α3 0.074377∗∗

`C 52.408260
AIC -0.105926

Table 6: Quasi-maximum likelihood estimates of the copula parameters. The
table considers the gaussian copula and the time-varying parameters proposed
in this papers. The asterisk denotes that the parameter is significantly different
from zero at 10% level (∗) or at 5% level (∗∗). We also report the value of the
copula likelihood at optimum and the AIC value.
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