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Abstract

The species–area relationship (SAR) states that species richness increases with the increase of the sampled area, although other factors can
influence the pattern. SARs have been tested on many different organisms, but only rarely on lichens. We aimed to test the SAR, across a
wide range of area sizes, for three main substratum-related guilds of lichens, namely epiphytic, epilithic and epigaeic. The test was per-
formed using data from lichen inventories carried out in 44 protected areas of various sizes across Italy. We found a positive correlation
of species richness with area size for all three guilds, better fitted by the logarithmic function for epilithic lichens and by the power function
for epiphytic and epigaeic lichens. Our results support the fundamental role of area size as the main driver for lichen diversity, suggesting
that in an area-based conservation framework, larger protected areas are fundamental to support high lichen species richness. However,
finer scale investigations are also required to better elucidate whether and how other environmental factors could interact with area size
and modify SAR patterns. Exhaustive lichen inventories could be useful information sources to more robustly test such relationships,
and therefore better inform conservation practices.
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Introduction

The ‘species–area relationship’ (SAR) is one of the oldest studied and
most widely recognized patterns in ecology, being well established
since the 1920s (Arrhenius 1921; Gleason 1922). In simple terms,
it states that species richness increases with an increase in sampled
area size (Connor & McCoy 1979, 2017; Rosenzweig 1995;
Lomolino 2000). Various hypotheses have been suggested to explain
the causes of this pattern and its underlying mechanisms (Connor &
McCoy 1979, 2017; Scheiner et al. 2011; Moradi et al. 2020).
Furthermore, other factors, such as habitat diversity or edge effect,
can simultaneously act through increases in area size and themselves
modify species richness (Connor & McCoy 2017). SARs have been
tested for different variations of the concept of ‘area’: 1) islands (Yu
et al. 2020), 2) contiguous (Dengler et al. 2020) or fragmented
(Hanski et al. 2013) habitat patches, 3) ecoregions (Martellos et al.
2020), and also 4) administratively defined territories, such as
protected areas (Fattorini 2020). The SAR can also be used as an
effective tool in biodiversity conservation, for example to predict
the biodiversity loss related to habitat loss or fragmentation
(Brooks et al. 2002; Halley et al. 2013; Hanski et al. 2013), to test

long-term changes in species diversity (Chiarucci et al. 2017), or
to disentangle the combined effect of area size, climate and disturb-
ance on plant species richness (de Bello et al. 2007).

SARs have been studied for almost all taxa, for example vascu-
lar plants (Krauss et al. 2004; Powell et al. 2013; Patiño et al. 2014;
D’Antraccoli et al. 2019; Dengler et al. 2020) and bryophytes
(Weibull & Rydin 2005; Silva et al. 2018; Yu et al. 2020), but
have been poorly investigated in lichens. The positive effect of
increasing area size on lichen richness has been highlighted in
some papers, but with these mainly considering the area of suit-
able habitat. For example, in forest habitats, an increase in forested
surface area has been shown to correlate with increasing species
richness of epiphytic lichens (Marini et al. 2011), and the increase
in good quality forested habitat has had a positive effect on lichen
richness together with the diversity of available substratum types
(Lõhmus et al. 2007). Alteration of SARs has been investigated in
epilithic lichens in relation to increased levels of pollution (Lawrey
1991). When considering broader areas, such as ecoregions, SARs
remain detectable, albeit affected by habitat heterogeneity
(Martellos et al. 2020). SARs of lichens have also been addressed
at local scales, usually in plots in which many taxa were recorded
(e.g. Lõhmus et al. 2012; Dengler et al. 2020; Dembicz et al. 2021).
Some studies have considered SARs in lichens as part of investi-
gations into disturbance processes (Lawrey 1991), but very few
studies have examined broader scales with a biogeographical or
macroecological focus (Buckley 2005; Lücking et al. 2009).
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In the present paper, we aim to fit traditional SAR models
using data for three main substratum-related guilds of lichens,
namely epiphytic, epilithic and epigaeic, obtained from exhaustive
floristic inventories carried out in protected areas across Italy, and
to test different functions to find which are the best in describing
SARs for the different guilds. This has never been carried out
before, to the best of our knowledge. A better understanding of
the role of area size on lichen richness can be useful to inform
area-based conservation (Maxwell et al. 2020; Hoffmann 2022),
and to highlight further knowledge gaps in the study of SARs
for lichens, for example the comparison between poorly investi-
gated versus well-studied areas, or between well-preserved natural
areas versus areas located in anthropized landscapes.

Materials and Methods

Lichen inventories

Italy is an environmentally heterogeneous country, ranging from
the Alpine chain to the centre of the Mediterranean Sea, in which
lichenological studies have been widely carried out over the last
four decades (Nimis 1993, 2016; Nimis & Martellos 2022). We
retrieved 44 sources reporting exhaustive lichen inventories car-
ried out mainly in well-defined protected areas of various sizes
within this context, over the last 25 years. Most inventories
were retrieved from published papers, each dealing with a single
protected area; for the area of the Ticino River, we merged the
Piedmont and the Lombardy Ticino Natural Parks, since the mul-
tiple data sources referring to this area often lacked precise locality
details for the species (G. Gheza, unpublished data). The distribu-
tion of the 44 areas is shown in Fig. 1 and their metadata is provided
in Supplementary Material File S1 (available online).

For each area, we extracted separate lists of the three guilds (i.e.
species growing on the three main substratum types colonized by
lichens: bark and wood (epiphytic), rock and bryophytes on rock
(epilithic), and soil, bryophytes on soil and plant debris (epi-
gaeic)). Species lists were not available for all substrata within
each protected area, which resulted in 40 lists of epiphytic species,
37 of epilithic and 37 of epigaeic species.

Data analysis

Polygons of most of the areas were retrieved from regional or
national databases. When the relevant polygon was not available,
the area was digitized by hand using QGIS 3.28 (QGIS
Development Team 2022) based on the information available in
the relevant paper.

All the subsequent analyses were performed using R v. 4.2.2 (R
Core Team 2022). The area of each polygon (km2) was calculated
using the ‘st_area’ function in the sf package (Pebesma 2018). In
cases where the area calculated using the available or digitized
polygon differed from that declared in the paper, we retained
the latter, presuming this to be the more accurate calculation of
the true area surveyed.

We compared three commonly used SAR models: 1) the Gleason
model (Gleason 1922), where S (number of species) is a function of
LogA (area), 2) the Arrhenius power function and 3) the linear
model. All models were fitted using the sars package (Matthews
et al. 2019), using ‘sar_loga’, ‘sar_pow’ and ‘sar_linear’ for the
Gleason (LogA), Arrenhius (Power) and linear (Linear) models
respectively. The three models were compared using the Akaike
information criterion corrected for small sample sizes (AICc).

Results

The 44 protected areas investigated have an average area size of
60.1 km2, the smallest area measuring 0.04 km2 and the largest
970.9 km2. In the lichen inventories there were reported an aver-
age of 81.0 epiphytic (min. 7, max. 257), 78 epilithic (min. 10,
max. 458) and 28 epigaeic (min. 2, max. 116) species (Table 1).

A SAR based on the LogA model was the best fit in the case of
the epiphytic guild, while in the epilithic and epigaeic species the
Power model fitted better (Fig. 2; Table 2). In all three cases the
Linear model resulted in a poor fit. Given the small differences
in AICc, all subsequent comparisons were carried out using the
Power model, which was the best performing model in two out
of the three cases. The amount of variance in species richness
explained by the SAR models was constantly low (< 36%), indicat-
ing that area size significantly affected lichen species richness but
that other factors probably contributed to a higher amount of spe-
cies richness variation for the three lichen guilds. Using the Power
model, the epiphytic guild presented the highest number of spe-
cies found per unit area (1 km2), as indicated by the c value of
the SAR (59.7 species), followed by the epilithic (49.9 species)
and epigaeic (16.9 species) guilds. Epigaeic lichens had the higher
slope values (0.23), followed by epilithic (0.19) and epiphytic
(0.15) species.

Discussion

Our results indicate that area size has a significant effect on spe-
cies richness for all three guilds of lichens, albeit with different

Figure 1. A map of Italy showing the areas considered in this study. The numbers
refer to the area identification code (ID) used in Supplementary Material File S1
(available online). Sites with an area > 50 km2 are shown in blue/shaded. In colour
online.
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patterns. In fact, we found support for a positive correlation
between species richness and area size, thus confirming the gen-
eral validity of SARs in lichens, with major differences according
to the substratum guild. In particular, epigaeic lichens were
revealed to have the lowest species richness at the unit area (1
km2) and the highest increase in species richness with increasing
area size. On the other hand, species richness of epiphytic and
epilithic lichens showed high values at the unit area and a lower
increase with increasing area size. These findings are consistent
with the suggestion that availability of the different substratum
types could be expected to vary with the increase in area size,
for example depending on the geographical zone. However, larger
areas are more likely to include a higher habitat heterogeneity
(Scheiner et al. 2011; Connor & McCoy 2017; Drira et al. 2019;
Martellos et al. 2020; Moradi et al. 2020), which leads to a greater
diversity in climate, substrata and microhabitats available for
lichen colonization, than small areas. Larger areas could also be
expected to include wider elevational spans, and lichen assem-
blages are known to vary along altitudinal gradients (Bruun
et al. 2006; Grytnes et al. 2006; Bässler et al. 2016; Di Nuzzo
et al. 2021; Vallese et al. 2022), thus promoting species richness
as broader gradients are considered. Interestingly, the form of a
SAR can be directly influenced by elevation: at increasing eleva-
tions, plant species richness decreases due to an increase of bare
rock (Moradi et al. 2020). This could imply a decrease in epi-
phytic lichens but, on the other hand, it could increase the diver-
sity of epilithic lichens owing to the greater substratum
availability, and also of epigaeic species that can easily colonize
the thin bare soil layer often developed in rock crevices.

Our analysis highlighted the presence of a small number of
remarkable outliers in the dataset. The Paneveggio-Pale di San
Martino Natural Park hosts a far higher richness for all three
guilds than expected, given its area, confirming its claimed role
as a ‘lichen diversity hotspot’. This is explained by the high envir-
onmental heterogeneity but also by its long history of lichenolo-
gical exploration (Nascimbene et al. 2022). A similar pattern is
highlighted, even if only for epigaeic species, for the Trentino sec-
tor of the Stelvio National Park (Nascimbene et al. 2012).
However, two outliers show a far lower richness than expected
given their areas, probably for two different reasons. The
Majella National Park (Gheza et al. 2021) is probably under-
investigated, whereas the area of the Ticino Natural Parks lies
within the western Po Valley, a territory that is largely a plain
and severely impacted by human activities. Indeed most of its
extent is covered by urbanized and agricultural lands, which has
led to a depletion of its lichen biota (Nimis 1993). These results
are consistent with the analysis by Martellos et al. (2020), who
tested SARs with lichens in the ecoregions of Italy, finding that
the Montane and Subalpine ecoregions (the most represented in

the Paneveggio-Pale di San Martino and Stelvio Parks) are posi-
tive outliers, whereas the Padanian ecoregion (in which most of
the Ticino River area is located) represents a negative outlier.
The case of Majella Park also highlights the limitations of
not-so-exhaustive inventories when investigating SARs, which
requires as comprehensive data as possible, especially when con-
sidering territories with a high environmental heterogeneity; good
quality data from extensive fieldwork are therefore crucial to reli-
ably test SAR.

The c value (i.e. the number of species per km2) seems to
depend, among other factors, on the overall number of species
within the guild considered (Triantis et al. 2012; Fattorini et al.
2017). The whole lichen biota of Italy is composed of a low num-
ber of epigaeic (326) species and an intermediate number of epi-
phytic (663) species, while epilithic species represent the highest
number (1352). This is partially consistent with our results, as
the c value is lowest for the epigaeic (17) guild, while a different
pattern is found for epilithic (44) and epiphytic (58) species.
This difference between the epilithic and epiphytic guilds could
be partially explained by the area effectively available for each
guild. For example, in regions where forests were prevalent, the
surface/substratum area available for epiphytic colonization was
higher than that available for epilithic species, which are restricted
to rocks not covered by vegetation. By contrast, except for high
altitude zones, at least some trees that can harbour epiphytic spe-
cies are always present in the areas considered. The lower number
of epigaeic lichens could be due to this effect, and also to their
overall lower diversity, which is probably driven by multiple fac-
tors, including higher competition with vascular plants and/or
their higher sensitivity to environmental alteration and habitat
loss (Scheidegger & Clerc 2002).

However, in complex landscapes it will be difficult to disentan-
gle the effects of area size from those of other environmental vari-
ables, such as climatic or habitat heterogeneity. Finer-scale data
would be required to test this relationship fully, for example by
comparing different areas selected ad hoc to include both size
and environmental gradients in a balanced design. Furthermore,
precise data on microclimate would also be required, since lichens
are greatly influenced by this factor (Di Nuzzo et al. 2022).

Implications for conservation and future perspectives

Our results show that larger areas host more lichen species across
all three substratum guilds, making larger protected areas more
likely to display a higher species richness. Habitat heterogeneity
and geographical context are expected to play a role in this, but
area size itself seems quite crucial in the pattern. This supports
the idea that mitigation of the main current threats to biodiversity
conservation (i.e. habitat loss and global change) could be

Table 1. Species richness and area of the sites in Italy where the 44 lichen inventories were made, that were used in the analysis. SD = Standard deviation.

Mean Max Min SD

Species richness

Epiphytic 81.0 257 7 53.0

Epilithic 78.1 458 10 79.4

Epigaeic 28.9 116 2 27.9

Enviromental variables

Area (km2) 60.1 970.9 0.04 182.9

The Lichenologist 433

https://doi.org/10.1017/S0024282923000488 Published online by Cambridge University Press

https://doi.org/10.1017/S0024282923000488


improved in the case of lichens by protecting larger areas, in a
framework of area-based conservation. Larger areas are also
more likely to include a higher number of so-called ‘microrefugia’,
sites with locally favourable conditions that are placed outside the
main range of a species or that are surrounded by unfavourable
habitats, the preservation of which is considered one of the best
strategies to mitigate the effects of climate change on sensitive
lichens (Ellis 2020; Greiser et al. 2021; Porada et al. 2023), even
with recognized limitations (Di Nuzzo et al. 2022). To date,
there is contrasting evidence about the effectiveness of already

established protected areas in lichen conservation (Martínez
et al. 2006; Rubio-Salcedo et al. 2013), even though in some
cases protected areas have been recognized as lichen diversity hot-
spots (Nascimbene et al. 2022) or refugia for fragmented species
at the border of their distributional range (Gheza et al. 2021). To
verify this, however, a comparison of SAR patterns with non-
protected areas, that sometimes can be included in area-based
conservation frameworks (Hoffmann 2022), should also be
made, to examine whether the protection regime could influence
SAR.

Figure 2. Species–area relationships (SAR) using the Power model for the three lichen guilds from inventories from the 44 protected areas from across Italy. Outliers
discussed in the text are indicated. In colour online.

Table 2. Parameters and model fitting of the three species–area relationship (SAR) models for the three lichen guilds from inventories of 44 protected areas from
across Italy. For each SAR model, the c value, representing the intercept, and the z value, representing the slope of the fitting line, are reported in terms of the
number of species. For both c and z, the lower and upper confidence intervals (CI) are also given. The last two columns show the model evaluation data as
corrected Akaike’s information criterion (AICc) and R2.

c c - CI 95% z z - CI 95% AICc R2

Epiphytic

LogA 58.324 [42.387 - 74.262] 14.329 [8.643 - 20.015] 416.373 0.368

Power 59.735 [44.156 - 75.315] 0.155 [0.092 - 0.218] 417.019 0.358

Linear 75.126 [58.020 - 92.233] 0.092 [0.007 - 0.178] 432.133 0.063

Epilithic

LogA 47.146 [17.389 - 76.903] 16.366 [6.451 - 26.281] 424.376 0.193

Power 49.925 [22.848 - 77.001] 0.190 [0.069 - 0.311] 424.235 0.196

Linear 72.015 [44.081 - 99.949] 0.085 [-0.049 - 0.220] 432.688 -0.011

Epigaeic

LogA 15.931 [6.604 - 25.258] 7.233 [4.055 - 10.411] 339.684 0.335

Power 16.954 [8.996 - 24.911] 0.226 [0.127 - 0.324] 338.298 0.359

Linear 25.311 [16.021 - 34.601] 0.052 [0.008 - 0.097] 351.359 0.088
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The study of the SAR itself can also be used as a powerful tool
in biodiversity conservation, to set baseline targets for conserva-
tion based on area and/or species richness. In the latter case, how-
ever, these need to be set according to the local situation and
studied considering alternate model frameworks (Desmet &
Cowling 2004; Metcalfe et al. 2013; Drira et al. 2019).
Obviously, the selection of potential protected areas cannot be
based solely on their area size, since other factors must be taken
into account (e.g. habitat diversity and heterogeneity, or eleva-
tional ranges), and species richness is not the only valid criterion
with which to assess the conservation value of a site. Furthermore,
the validity of the SAR is also dependent on scale (Dolnik &
Breuer 2008; Chiarucci et al. 2012; Powell et al. 2013) and sam-
pling effort (Azovsky 2011; Metcalfe et al. 2013), and this could
also apply when considering lichens.

To better understand the processes underlying the SAR, making
a transition from a taxonomically descriptive and pattern-based
approach towards a more predictive and generalizable process-
based ecological approach, could make functional traits a valuable
tool (Ellis et al. 2021; Hulshof & Umaña 2023). An increase in traits
variation with increasing area size has been demonstrated for
lichens, although this is dependent not only on the area size but
also on scale and environmental factors (Giordani et al. 2019).

The present work can be considered as a starting point towards
a better knowledge of the multiple issues related to SARs applied
to the study of lichen diversity patterns, and which need to be
addressed to achieve a better understanding of the possible appli-
cations to conservation.

Finally, the present work highlights the importance of exhaust-
ive species inventories, realized at different scales, to address eco-
logical and conservation issues. Such endeavours are challenging,
yet crucial for providing knowledge on the ecology and distribu-
tion of lichen species, and also for detecting diversity hotspots
(Nascimbene et al. 2021, 2022; Vondrák et al. 2022). High quality
floristic research should therefore be recognized as a key tool to
support more applied tasks in lichenology.
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