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Inclusion of pairing fluctuations in the differential equation for the gap parameter for superfluid
fermions in the presence of nontrivial spatial constraints
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Most theoretical treatments of inhomogeneous superconductivity/fermionic superfluidity have been based on
the Bogoliubov-deGennes equations (or, else, on their various simplified forms), which implement a standard
mean-field decoupling in the presence of spatial inhomogeneities. This approach is reliable even at finite tem-
perature for weak interparticle attraction, when the Cooper pair size is much larger than the average interparticle
distance (corresponding to the BCS limit of the BCS-BEC crossover). However, it loses accuracy for increasing
attraction when the Cooper pair size becomes comparable or even smaller than the average interparticle distance
(corresponding to the BEC limit of the BCS-BEC crossover), in particular when finite-temperature effects are
considered. In these cases, inclusion of pairing fluctuations beyond mean field is required, a task that turns
out to be especially difficult in the presence of inhomogeneities. Here, we implement the inclusion of pairing
fluctuations directly on a coarse-graining version of the Bogoliubov-deGennes equations, which makes it simpler
and faster to obtain a solution over the whole sector of the temperature-coupling phase diagram of the BCS-BEC
crossover in the broken-symmetry phase. We apply this method in the presence of a supercurrent flow, such that
problems related to the Josephson effect throughout the BCS-BEC crossover can be addressed under a variety of
circumstances. This is relevant in the view of recent experimental data with ultracold Fermi atoms, to which the
results of the present approach are shown to favorably compare in the companion paper.
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I. INTRODUCTION

Soon after the properties of homogeneous fermionic super-
fluids have been accounted for on the basis of the BCS pairing
approach [1,2], Gor’kov was able to extend this approach to
deal with inhomogeneous fermionic superfluids in terms of a
many-body Green’s functions formulation [3], which specif-
ically emphasizes that the resulting Gor’kov equations hold
within a mean-field decoupling. The goal of that approach
was to accurately calculate physical properties that depend
on the spatial profile of the gap (order) parameter �(r) in
the presence of non-trivial geometrical constraints and/or
confinements. Later on, de Gennes reformulated the Gor’kov
approach in terms of a complete set of fermionic single-
particle wave functions in the superfluid phase, obtaining what
are known as the Bogoliubov-deGennes (BdG) equations [4].
The equivalence between the Gor’kov and de Gennes ap-
proaches can be demonstrated by expressing the Gor’kov
single-particle Green’s functions in terms of the de Gennes
wave functions [5].

Numerical solutions of either Gor’kov or de Gennes ap-
proaches were mostly implemented in what is currently
referred to as the weak-coupling (BCS) limit of the BCS-
BEC crossover [6], which is characterized by the presence of
a well-defined underlying Fermi surface. This presence has
made it possible to introduce approximations to either the
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Gor’kov or the de Gennes approaches, that hold specifically in
the BCS limit. These include the derivation of the Ginzburg-
Landau (GL) equation at temperatures close to the superfluid
critical temperature Tc [7], as well as the Eilenberger [8]
and Usadel [9] transport equations to deal with type-II and
disordered superconductors, respectively. These approxima-
tions, however, do not hold in the context of the BCS-BEC
crossover, whereby the concept of an underlying sharp Fermi
surface loses progressively its meaning away from the BCS
limit.

In principle, the Gor’kov and de Gennes approaches can be
applied to the whole BCS-BEC crossover, for given attractive
interparticle interaction and at any temperature below Tc, by
taking care of the density equation that determines the evolu-
tion of the thermodynamic chemical potential throughout the
crossover [6]. This was done, for instance, for the Josephson
effect at zero temperature in Ref. [10] and for a single vortex
at any temperature below Tc in Ref. [11]. In this respect, one
may recall what Leggett has recently emphasized [12], that
the BdG equations have formed the basis of almost all discus-
sions of inhomogeneous superconductivity in the theoretical
literature for the last fifty years.

Nevertheless, efficient numerical methods to solve the BdG
equations in the presence of nontrivial geometrical constraints
and/or confinements are still lacking. This is because, in spite
of their apparent simplicity, the numerical solution of the BdG
equations poses severe problems related both to computa-
tional time and memory space [10,11]. These problems are
related to the fact that enforcing the Pauli principle requires
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detailed knowledge of a whole set of single-particle wave
functions, even though one eventually ends up with the single
function �(r) that accounts for the spatial dependence of the
gap parameter.

To make these computational problems less severe, a
(highly) nonlinear differential equation for the gap parame-
ter �(r) (called the LPDA equation, for it entails a Local
Phase Density Approximation) was introduced in Ref. [13],
by performing a suitable double-coarse-graining procedure
on the BdG equations which affects the magnitude and
phase of the gap parameter separately, and through which an
averaging over the above set of single-particle wave func-
tions was effectively achieved. The LPDA equation was
also shown analytically to reduce to the Ginzburg-Landau
(GL) equation for Cooper pairs in the weak-coupling (BCS)
limit at temperatures close to Tc [7], as well as to the
Gross-Pitaevskii (GP) equation for composite bosons in the
strong-coupling (BEC) limit at low temperature [5]. The
LPDA equation thus represents a suitable generalization of
both GL and GP equations over an extended sector of
the coupling-temperature phase diagram of the BCS-BEC
crossover (whereby, by tuning the interparticle coupling, the
system evolves from a BCS state with largely overlapping
pairs of opposite-spin fermions that obey Fermi statistics,
to a BEC state with dilute fermionic dimers that obey Bose
statistics [6]).

In addition, owing to this capability of spanning the whole
BCS-BEC crossover, the differential LPDA equation has a
definite advantage over the mean-field Eilenberger [8] and
Usadel [9] equations, which, as already mentioned, instead
apply only in the weak-coupling (BCS) limit by assuming that
the phenomenon of superconductivity occurs near the Fermi
surface.

In practice, solving for the LPDA equation leads to a
considerable reduction of time and storage requirements with
respect to the BdG equations [13]. The LPDA approach was
then utilized to account for the generation of complex vortex
patterns in a trapped Fermi gas undergoing the BCS-BEC
crossover [14], and more recently was applied to investigate
several phenomena related to a supercurrent flow in the con-
text of the Josephson effect at finite temperature along the
BCS-BEC crossover [15]. It should also be mentioned that
a nonlocal (integral) version of the LPDA equation was con-
sidered in Ref. [16], where it was shown that the length scale
of the “granularity” resulting from the double-coarse-graining
procedure, on which the LPDA approach rests, corresponds to
the Cooper pair size at any coupling and temperature. For this
reason, the results obtained by solving the differential LPDA
equation are expected to be most reliable when the profiles
of (the magnitude and phase of) �(r) vary smoothly over
a spatial range not smaller than this coarse-graining length
scale. The integral version of the LPDA equation was further
utilized in Ref. [17] in the context of the proximity effect
occurring at the interface between two different fermionic
superfluids.

Even though solving for the LPDA equation in the place
of the BdG equations represents a useful practical improve-
ment when addressing problems of physical interest across the
BCS-BEC crossover, it is clear that the LPDA approach can at
most recover the results obtained by solving the original BdG

equations, but not more than that. In particular, the mean-field
decoupling for the inhomogeneous case (on which the BdG
approach rests) is expected not to be appropriate at finite
temperature, when the interparticle coupling is increased from
the (BCS) weak-coupling to the (BEC) strong-coupling limit.
This is in line to what happens for the homogeneous case,
when the mean-field decoupling alone is not able to recover
the Bose-Einstein critical temperature in the BEC limit of
the BCS-BEC crossover [6]. As originally pointed out in
Ref. [18], inclusion of pairing fluctuations beyond mean field
is thus required to obtain reliable results at finite temperature,
and not only on the BEC side of the crossover but also in the
unitary regime intermediate between the BCS and BEC limits,
where the Cooper pair size is comparable with the average
interparticle distance.

In principle, the inclusion of pairing fluctuations beyond
mean field for the inhomogeneous case could be implemented
by a suitable generalization of the BdG equations. An initial
attempt in this direction was made in Ref. [19] through an
extension of the density-functional theory to superconductors,
although this approach was not fully applied in practice to
specific problems. A related approach was later developed
within the so-called superfluid local density approximation
(SLDA), which was implemented for a limited number of
inhomogeneous situations (and mostly at zero temperature)
[20]. Both these approaches retain the formal structure and
the ensuing numerical complexity of the BdG equations, by
solving for a system of coupled differential equations to obtain
a whole set of two-component single-particle-like fermionic
wave functions, which somewhat limits the feasibility for
applying them in practice.

In the spirit of the LPDA approach discussed above, we
prefer to retain the advantages of solving a single (although
highly nonlinear) differential equation directly for the gap pa-
rameter �(r), and to include the effects of pairing fluctuations
for the inhomogeneous Fermi system of interest directly on
top of the LPDA equation, which was itself derived from an
inhomogeneous mean-field decoupling. To this end, we take
advantage of the approach of Ref. [21], where pairing fluctua-
tions were added at the level of the t-matrix approximation
in the broken-symmetry phase on top of the homogeneous
mean-field approach. Specifically, in Ref. [21] the gap and
density equations for the homogeneous Fermi system were
treated on a different footing, in the sense that the gap equa-
tion was retained in the form valid at the mean-field level
while the density equation was modified by including pairing
fluctuations at the level of the t-matrix approximation in the
superfluid phase. Similarly, for the inhomogeneous Fermi sys-
tem of interest here, we will maintain the LPDA equation for
the gap parameter in the original form introduced in Ref. [13],
but at the same time we will modify the expression for the
local particle density n(r) [and the local particle current j(r),
when needed] by the inclusion of pairing fluctuations in the
spirit of a local-density approach. This replacement effec-
tively transforms the LPDA approach of Ref. [21] into the
modified mLPDA approach (where m stands for “modified”),
to be discussed in detail below. The flow diagram depicted
in Fig. 1 shows schematically how the LPDA and t-matrix
approaches merge with each other, giving rise to the mLPDA
approach.
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FIG. 1. Schematic “flow diagram” giving the prescription for
obtaining the mLPDA approach. At a first step, the LPDA equation is
obtained by a suitable coarse graining of the BdG equations [13]. At
a second step, the LPDA equation is merged with a local version of
the t-matrix approach of Ref. [21], yielding eventually the mLPDA
approach.

For definiteness, in this paper, we implement the mLPDA
approach by dealing with the Josephson effect at finite tem-
perature throughout the BCS-BEC crossover, whereby pairing
fluctuations need to be included in the expressions of both the
local particle density n(r) and current j(r). In this case, the
requirement for the particle current to maintain everywhere
a uniform value will act as a constraint on the numerical
solution of the mLPDA equation, in close analogy to what
was done in Ref. [13] for the solution of the LPDA equa-
tion without pairing fluctuations. In this way, we will be able
to monitor quantitatively the changes introduced by pairing
fluctuations in physical quantities related to the Josephson
effect (like the critical current), when comparing with the
results of Ref. [15] where n(r) and j(r) were instead treated
at the mean-field level. In this context, a generalized two-fluid
model at finite temperature will be introduced, which evolves
from its fermionic (Bardeen-like [22]) version in the BCS
limit to its bosonic (Landau-like [23]) version in the BEC
limit of the BCS-BEC crossover. In addition, the mLPDA
approach will enable us to obtain a favorable comparison with
the experimental data on the Josephson effect with ultracold
Fermi gases, which are available from Ref. [24] at low tem-
perature across the BCS-BEC crossover and from Ref. [25]
over an extended temperature range at unitarity. A detailed
comparison in this respect is reported in the companion paper
[26].

The diagrammatic t-matrix approach for the superfluid
phase, here considered in conjunction with the LPDA
equation to yield the mLPDA approach for dealing with in-
homogeneous spatial situations while spanning the BCS-BEC
crossover, is an approximation that has often been adopted
for including pairing fluctuations beyond mean field in the
homogeneous case. And this was done not only in Ref. [21],
on whose approach we specifically rely in the present paper,

but also in the context of the diagrammatic self-consistent
version of Ref. [27] as well as of functional integrals [28]
where the t-matrix is known as Gaussian approximation.

In this paper, we focus on the mLPDA approach as
schematically summarized in Fig. 1, which we regard as a
proof-of-principle for the way how pairing fluctuations and
spatial inhomogeneities can be dealt with simultaneously also
in the presence of a supercurrent. In perspective, however,
one may anticipate that the mLPDA approach is amenable
to systematic improvements through a “modular” inclusion of
additional many-body diagrammatic contributions, over and
above those already considered by the t-matrix approach. This
inclusion can be conveniently organized by relying on the
method introduced in Ref. [29], where the gap equation even
beyond mean field was cast in the alternative form of a gener-
alized Hugenholtz-Pines condition for fermion pairs, thereby
extending to the whole BCS-BEC crossover the validity of
this condition originally conceived for point-like bosons [30].
In Ref. [29], this generalized Hugenholtz-Pines condition was
considered for the homogeneous case only. However, it is
possible to adapt it to the presence of spatial inhomogeneities,
by (i) first replacing the homogeneous gap equation at the
mean-field level with the LPDA equation of Ref. [13] where
the kinetic energy required for spatial inhomogeneities is
duly taken into account, and (ii) then adding to the LPDA
equation the bosonic-like self-energy corrections introduced
in Ref. [29] for the homogeneous case, but now treated within
a local-density approximation to account for spatial inhomo-
geneities. For the needs of the BCS-BEC crossover, what has
now become a local Hugenholtz-Pines condition for fermion
pairs has to be further supplied by suitable expressions for the
particle and current densities. Altogether, this appears to be
a rather ambitious yet promising program, which for being
implemented would require one to undertake considerable
numerical efforts (especially in the presence of a supercur-
rent). Full implementation of this program thus definitely
remains outside the objectives of the present paper, which
focuses instead on the novelty of mLPDA approach itself.
Nevertheless, a preliminary albeit partial attempt to go beyond
the mLPDA approach along these lines is considered in the
companion paper [26], to test how it could improve on the
comparison with experimental data. In Ref. [26], the mLPDA
approach is improved according to the scheme outlined above,
by considering the bosonic-like self-energy corrections of the
Popov [31] and Gorkov-Melik-Barkhudarov (GMB) [32] type
in their extended versions established in Ref. [29], without,
however, including the effect of a supercurrent in the corre-
sponding diagrammatic contributions.

The present paper is organized as follows. Section II sets
up the theoretical framework through which pairing fluctua-
tions can be included in the LPDA approach, specifically in
the context of the Josephson effect. Section III describes the
numerical procedures that we have exploited in this context.
Section IV reports on a number of physical results for which
pairing fluctuations play an essential role in the context of
the Josephson effect. Section V gives our conclusions. Ap-
pendix A derives the expression of the particle-particle ladder
in the presence of a supercurrent, and Appendix B discusses
how the bosonic two-fluid model is obtained analytically
in the BEC limit of our expression for the current in the
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presence of pairing fluctuations. Throughout, we shall con-
sider balanced spin populations and set h̄ = 1 for conve-
nience.

II. THEORETICAL APPROACH

In this section, we describe in detail the steps required to
implement the inclusion of pairing fluctuations in the LPDA
approach of Ref. [13], thus yielding to what we refer to as the
mLPDA approach, following the procedure that is schemati-
cally summarized in Fig. 1.

As mentioned in Introduction, for definiteness we shall find
it convenient to discuss the implementation from the LPDA
to the mLPDA approaches in the context of the Josephson
effect, which was recently studied at the level of the LPDA
equation as a function of both temperature and interparticle
attraction along the BCS-BEC crossover [15]. Accordingly,
the mLPDA approach will differ from the LPDA approach of
Ref. [13] in the expressions of the local particle density n(r)
and current density j(r), since these now include the effect
of pairing fluctuations beyond mean field. At the same time,
however, the differential LPDA equation of Ref. [13] will
keep its formal structure. In particular, pairing fluctuations
will be introduced by exploiting the t-matrix approach of
Ref. [21], which will now be reframed to take into account
the presence of a supercurrent that affects in a consistent way
the single-particle Green’s functions entering the many-body
diagrammatic expression of the t-matrix itself. A task of pri-
mary importance is thus finding suitable expressions for n(r)
and j(r), which take into account the effect of local pairing
fluctuations.

Quite generally, the local number density and current in the
broken-symmetry phase can be expressed in the form

n(r) = 2

β

∑
n

eiωnη G11(r, r; ωn), (1)

j(r) = 1

β

∑
n

eiωnη
(∇r − ∇r′ )

im
G11(r, r′; ωn)|r=r′ . (2)

Here, β = (kBT )−1 is the inverse temperature (kB being the
Boltzmann constant), η a positive infinitesimal, m the fermion
mass, and ωn = (2n + 1)π/β (n integer) a fermionic Mat-
subara frequency [33]. The “normal” single-particle Green’s
function G11 entering the above expressions can, in turn, be
obtained together with its “anomalous” counterpart G12, by
solving the Dyson equation in the broken-symmetry phase
[34]

− ∂

∂τ1
Gi1i2 (x1, x2) +

∑
i3

σ
(3)
i1i3

(∇2
1

2m
− Vext (r1) + μ

)
Gi3i2 (x1, x2)

−
∫

dx3

∑
i3


i1i3 (x1, x3) Gi3i2 (x3, x2) = δi1i2δ(x1 − x2), (3)

where the imaginary time τ is limited by 0 � τ � β, x =
(r, τ ) is a four-variable, i = (1, 2) a Nambu index [35],
σ (3) the third Pauli matrix, Vext (r) an external (like a trap-
ping) potential, μ the thermodynamic chemical potential,
and 
ii′ (x, x′) are elements of the self-energy. At thermody-
namic equilibrium, all quantities entering Eq. (3) depend only
on the difference τ − τ ′ of the imaginary-time variables. In

particular, at the mean-field level [33], one takes 
12(x1, x2) =
−δ(x+

1 − x2)�(r1) for the off-diagonal component (where x+
1

signifies that the time variable is augmented by a positive
infinitesimal) and neglect the diagonal components of the
self-energy.

In our case, we need an expression for G11(r, r′; ωn) to
be used in Eqs. (1) and (2), which takes consistently into
account the presence of a supercurrent flowing through the
Fermi system of interest. The remaining part of this section is
devoted to this purpose under different relevant conditions.

A. Effects of a uniform flow on the Dyson equation
in the homogeneous case

To construct the expressions for n(r) and j(r) we are after,
which include local pairing fluctuations in the context of the
Josephson effect, it is convenient to first consider the homo-
geneous case when the external potential Vext (r) in Eq. (3) is
set to vanish. In this case, when a uniform supercurrent flows
through a homogeneous environment, the gap parameter of
the superfluid Fermi system takes the form [4]

�(r) = ei2q·r �q. (4)

Here, q is a wave vector in the direction of the flow that enters
the linear phase 2q·r of the gap parameter, while �q stands
for the associate magnitude of the gap parameter (which at
zero temperature may itself depend on the magnitude of q
when this exceeds a critical value [4]).

Quite generally, to comply with the spatial dependence
of �(r) of the form (4) (not only at the mean-field level
but also beyond it), we proceed operatively in the following
way. The single-particle Green’s functions entering the Dyson
equation (3) are taken of the form [36]

G11(x, x′; q) = eiq·(r−r′ ) G11(x − x′; q), (5)

G12(x, x′; q) = eiq·(r+r′ ) G12(x − x′; q), (6)

G21(x, x′; q) = e−iq·(r+r′ ) G21(x − x′; q), (7)

G22(x, x′; q) = e−iq·(r−r′ ) G22(x − x′; q), (8)

where

Gii′ (x − x′; q) =
∑

k

eik·(r−r′ )e−iωn (τ−τ ′ ) Gii′ (k; q), (9)

with the fermionic four-vector k = (k, ωn) and the short-hand
notation ∑

k

←→
∫

dk
(2π )3

1

β

∑
n

. (10)

Note that in Eqs. (5)–(8) the diagonal elements depend on r −
r′ while the off-diagonal elements depend on r + r′. This is
due to the way the field operators and their adjoints enter the
expressions for the single-particle Green’s functions Gi j in the
broken-symmetry phase [33].

We further assume that the self-energies 
ii′ (x, x′) in the
Dyson equation (3) share the same dependence on q of the
expressions (5)–(8). [This property will be explicitly verified
in Appendix A within the t-matrix approximation.] In this
way, the convolutions entering the last term on the left-hand
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side of the Dyson equation (3) considerably simplify. For instance,∫
dx3 
11(x1, x3) G11(x3, x2) ←→ eiq·(r1−r2 )

∫
dx3 S11(x1 − x3; q)G11(x3 − x2; q) (11)

and ∫
dx3 
12(x1, x3) G21(x3, x2) ←→ eiq·(r1−r2 )

∫
dx3 S12(x1 − x3; q)G21(x3 − x2; q). (12)

Note that, while the symbol 
i j for the self-energy is associated with the full single-particle Green’s function Gi j like in Eq. (3),
the symbol Si j for the reduced self-energy is instead associated with the reduced single-particle Green’s function Gi j , as defined
in Eqs. (5)–(8) once all factors e±iq·(r±r′ ) are conveniently disposed off.

By introducing also the expansion

Sii′ (x − x′; q) =
∑

k

eik·(r−r′ )e−iωn (τ−τ ′ ) Sii′ (k; q) (13)

in analogy with Eq. (9), the convolutions like those on the right-hand sides of Eqs. (11) and (12) become∫
dx3 Si1i3 (x1 − x3; q)Gi3i2 (x3 − x2; q) =

∑
k

eik·(r1−r2 ) e−iωn (τ1−τ2 ) Si1i3 (k; q) Gi3i2 (k; q). (14)

With the further result

∇2(e±iq·rGii′ (x − x′; q)) = −e±iq·r ∑
k

eik·(r−r′ )e−iωn (τ−τ ′ )(k ± q)2 Gii′ (k; q), (15)

the Dyson equation (3) reduces eventually to a set of four coupled algebraic equations, that can conveniently be cast in matrix
form [

iωn − ξ (k + q) − S11(k; q) −S12(k; q)
−S21(k; q) iωn + ξ (k − q) − S22(k; q)

] [
G11(k; q) G12(k; q)
G21(k; q) G22(k; q)

]
=

[
1 0
0 1

]
(16)

with the notation ξ (k) = k2/(2m) − μ. Solution to this matrix equation yields[
G11(k; q) G12(k; q)
G21(k; q) G22(k; q)

]
= 1

[iωn − ξ (k + q) − S11(k; q)] [iωn + ξ (k − q) − S22(k; q)] − S12(k; q)S21(k; q)

×
[
iωn + ξ (k − q) − S22(k; q) S12(k; q)

S21(k; q) iωn − ξ (k + q) − S11(k; q)

]
, (17)

where the properties S22(k; q) = −S11(−k; q) and S12(k; q) = S21(k; q) hold (analogous relations hold for the components of
Gii′ (k; q)).

The mean-field and t-matrix approximations correspond to different choices for the reduced self-energy Si j , which we are
now going to consider separately.

B. Results for the homogeneous case at the mean-field level

We first specify the general results of Sec. II A to the mean-field (mf) case. In this case, we take Smf
11 (k; q) = Smf

22 (k; q) = 0
and Smf

12 (k; q) = Smf
21 (k; q) = −�q, where �q is the quantity entering Eq. (4). Accordingly, the solutions (17) acquire the form

Gmf
11 (k; q) = u(k; q)2

iωn − E+(k; q)
+ v(k; q)2

iωn + E−(k; q)
, (18)

Gmf
12 (k; q) = − u(k; q) v(k; q)

[
1

iωn − E+(k; q)
− 1

iωn + E−(k; q)

]
, (19)

where

u(k; q)2 = 1

2

(
1 + ξ (k; q)

E (k; q)

)
, (20)

v(k; q)2 = 1

2

(
1 − ξ (k; q)

E (k; q)

)
(21)
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with the notation

ξ (k; q) = k2

2m
− μ + q2

2m
, (22)

E (k; q) =
√

ξ (k; q)2 + �2
q, (23)

E±(k; q) = E (k; q) ± k · q
m

. (24)

In these expressions, the wave vector q associated with the
superfluid flow plays the role of an external parameter. When
q = 0, the expressions (18)–(24) recover the standard results
of the BCS theory [37].

For finite q, the expressions (18)–(24) have already been
utilized in the context of the LPDA approach [13] through a
suitable extension to the inhomogeneous case (to be recalled
below).

C. Results for the homogeneous case with the inclusion
of pairing fluctuations

As already anticipated, to include in the results of Sec. II A
the effect of pairing fluctuations over and above mean field,
we shall rely on the t-matrix approach of Ref. [21]. This has,
however, to be suitably modified to account for the presence
of a stationary superfluid flow in a consistent way.

In Appendix A, a detailed analysis is provided of the
diagrammatic structure for the series of ladder diagrams in
the broken-symmetry phase in the presence of a superfluid
flow. This analysis yields the following expressions for the
reduced self-energies S

pf
ii′ (k; q) with the inclusion of pairing

fluctuations (pf):

S
pf
11(k; q) = −S

pf
22(−k; q) = −

∑
Q

11(Q; q)Gmf
11 (Q − k; q)

S
pf
12(k; q) = S

pf
21(k; q) = −�q. (25)

Here, Q = (Q,�ν ) is a four-vector where �ν = 2νπ/β (ν
integer) is a bosonic Matsubara frequency,

∑
Q

←→
∫

dQ
(2π )3

1

β

∑
ν

(26)

is a short-hand notation, the diagonal (normal) reduced single-
particle Green’s function Gmf

11 (k; q) is given by the mean-field
expression (18), and the elements of the particle-particle lad-
der ii′ (Q; q) in the broken-symmetry phase are given by
expressions (A2)–(A4) of Appendix A, (where they are also
represented graphically in Fig. 8 therein).

Entering the expressions (25) in Eq. (17) one obtains
for the diagonal (normal) single-particle Green’s function
Gpf

11(k; q) which includes pairing fluctuations in the presence

of a superfluid flow:

Gpf
11(k; q)

= 1

iωn − ξ (k + q) − S
pf
11(k; q) − �2

q

iωn+ξ (k−q)+S
pf
11(−k;q)

.

(27)

Note that the mean-field result (18) can formally be obtained
from the expression (27) by setting S

pf
11 = 0 therein.

Next, we proceed to manipulate the expression (18) at the
mean-field level and the expression (27) with the inclusion of
pairing fluctuations, in order to extend them to the inhomo-
geneous case and obtain the required expressions of the local
particle density and current. These expressions will then be
utilized, respectively, at the mean-field level thus recovering
the LPDA approach of Ref. [13], and with the inclusion of
pairing fluctuations for implementing its mLPDA beyond-
mean-field extension, which constitutes the main novelty of
the present paper.

D. Results for the inhomogeneous case needed
when solving the LPDA equation

The LPDA and mLPDA approaches differ from each other
as far as the expressions (1) of the local particle density and
(2) of the local particle current are concerned, in the sense that
different forms of the single-particle Green’s function G11 are
utilized in the two cases.

In the inhomogeneous case of interest, the single-particle
Green’s function G11 should, in principle, be obtained from
the solution of the Dyson equation (3) with an appropriate
choice of the self-energy plus a given form of the external
potential Vext (r), which is the source of inhomogeneities in the
system. In practice, however, it is convenient to deal with this
problem in a simplified way, by adopting a local perspective
that eventually leads to the LPDA and mLPDA approaches.

Although this strategy was already utilized in Ref. [13] in
the context of the LPDA approach, it is convenient to briefly
recall it here with the purpose of extending it to the mLPDA
approach, which depends on a different choice of the single-
particle self-energy.

Quite generally, in a local approach one is willing to ap-
proximate [cf. Eqs. (5) and (9)]

G11(x, x′; q)

−→
∑

k

ei(k+q)·(r−r′ )e−iωn (τ−τ ′ )G11(k; q|(r + r′)/2), (28)

where the local version of G11(k; q) needs to be suitably
specified. [The “mid-point” rule in Eq. (28) is useful for the
calculation of the current.] At the level of the LPDA approach,
one considers the mean-field expression for Gmf

11 (k; q) as given
by Eq. (18) and performs therein the local replacements:

μ −→ μ − Vext (r), (29)

�q −→ |�(r)|, (30)

q −→ Q0 + ∇φ(r). (31)

Specifically, the replacements (30) and (31) are consistent
with a gap parameter of the form �(r) = |�(r)| exp{i2[Q0 ·
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r + φ(r)]}, where the wave vector Q0 would be associated
with a superfluid flow also in the homogeneous case, while
the additional phase φ(r) arises from the presence of the
external potential Vext (r) (which for the Josephson effect may
correspond to a one-dimensional barrier embedded in an oth-
erwise homogeneous superfluid, cf. Sec. III). In this way, the
expression (1) for the local particle density becomes

n(r) =
∫

dk
(2π )3

{
1 − ξ (k; q|r)

E (k; q|r)
[1 − 2 fF (E+(k; q|r))]

}
,

(32)
where fF (ε) = (eβε + 1)−1 is the Fermi function and

ξ (k; q|r) = k2

2m
− μ + Vext (r) + (Q0 + ∇φ(r))2

2m
, (33)

E (k; q|r) =
√

ξ (k; q|r)2 + |�(r)|2, (34)

E+(k; q|r) = E (k; q|r) + k
m

· (Q0 + ∇φ(r)) (35)

are obtained from the expressions (22)–(24) with the replace-
ments (29)–(31).

Similarly, for the local particle current, one gets

j(r) = 1

m
(Q0 + ∇φ(r))n(r) + 2

∫
dk

(2π )3

k
m

fF (E+(k; q|r))

(36)
with n(r) given by Eq. (32). The expression (36) was origi-
nally derived in Ref. [13] where it was tested for an isolated
vortex, was further utilized in Ref. [14] for a complex array
of vortices in a rotating trapped superfluid Fermi gas, and was
finally employed in Ref. [15] in the context of the Josephson
effect. This expression generalizes to the inhomogeneous case
the Bardeen fermionic two-fluid model at finite temperature
[22].

E. Results for the inhomogeneous case needed
when solving the mLPDA equation

To go beyond the mean-field level and include the effect of
pairing fluctuations in the expressions of the local density and
current needed for implementing the mLPDA approach, we
have to convert the expression (27) for Gpf

11(k; q) into a local
version Gpf

11(k; q|r) that depends on the spatial coordinate r.
To this end, we still rely on a local perspective as we did in
Sec. II D for the single-particle Green’s functions at the mean-
field level, but we have now to extend it to the particle-particle
ladder that accounts for pairing fluctuations.

In this case, however, one cannot simply rely on making
the local replacements (29)–(31) whenever these quantities
appear in the expression (27). This is because the self-
energy S

pf
11(k; q) given by Eq. (25) that enters the expression

(27), in turn, contains the diagonal element 11(Q; q) of
the particle-particle ladder in the broken-symmetry phase
given by Eqs. (A2)–(A4). In those expressions, the gap equa-
tion (A7), relating the gap �q to the thermodynamic chemical
potential μ, guarantees the gapless condition at Q = 0 for
the particle-particle ladder in the presence of a current. When
taking into account (again, within a local perspective) spatial
inhomogeneities associated with the presence of an external
potential Vext (r), one has thus to consider a local expression
not only for the (magnitude and phase of the) gap parameter

like in Eqs. (30) and (31), but also for the chemical poten-
tial, in such a way to preserve at each spatial point r the
gapless condition at Q = 0 for the desired local expression
11(Q; q|r). Preserving locally the gapless condition is, in
fact, required to avoid the occurrence of unphysical singular-
ities in the particle-particle ladder everywhere in the spatial
regions occupied by the system (cf. Appendix A). In practice,
to make the above requirement satisfied, we will end up with
associating an effective potential Veff (r) to a given external
potential Vext (r).

To achieve these goals within contained numerical efforts,
we have adopted the following strategy.

(i) We have replaced �q → |�(r)| and μ → μ − Veff (r) in
the quantities ξ (k; q) and E (k; q) given by Eqs. (22) and (23)
which enter the expressions (A5) and (A6) for the particle-
particle bubbles, where now q → Q0 without including the
additional term ∇φ(r) of Eq. (31). This is in the spirit of a
local density approximation (LDA) approach to 11(Q; Q0|r),
whereby no gradient (either of the magnitude or the phase
of the gap parameter) is taken into account. We anticipate
that the profile of |�(r)| is here provided by the solution of
the differential mLPDA equation described in Sec. III below
which explicitly depends on the external potential Vext (r), in
such a way that the following steps (ii)–(iv) will have to be
repeated until self-consistency is achieved.

(ii) We have generated the shape of the effective potential
Veff (r) corresponding to a given local gap profile |�(r)|, by
solving at each r the now local gap equation (A7) with Q = 0,
where the local replacements of step (i) are also made [38,39].
With these values of |�(r)| and Veff (r), we have then obtained
the local diagonal element 11(Q; Q0|r) for given Q, that
results from the expressions given in Appendix A with the
local forms of the reduced single-particle Green’s functions
(18) and (19).

(iii) We have consistently made the above local replace-
ments also in the single-particle Green’s function Gmf

11 (Q−
k; q) which closes the loop in the diagonal self-energy (25), to
eventually obtain the required local expression S

pf
11(k; Q0|r).

(iv) We have finally obtained the expression for Gpf
11(k; q|r)

by replacing in Eq. (27) �q → |�(r)| and S
pf
11(k; q) →

S
pf
11(k; Q0|r), while in addition

ξ (k ± q) → k2

2m
− μ + Veff (r) + (Q0 + ∇φ(r))2

2m

± k
m

· (Q0 + ∇φ(r)). (37)

Note that in Eq. (37) we have kept the full replacement (31)
which includes ∇φ(r), in such a way that the expression of
Gpf

11(k; q|r) recovers that of Gmf
11 (k; q|r) when the effect of

pairing fluctuations is altogether neglected [in this case, the
effective potential Veff (r) would consistently coincide with
the external potential Vext (r)]. Once again, the profile φ(r)
needed in Eq. (37) is consistently provided by the solution
of the differential mLPDA equation described in Sec. III
below.

(v) We have eventually approximated the expressions (1)
for the local particle density and (2) for the local particle
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current in the following way:

n(r) = 2

β

∑
n

eiωnη

∫
dk

(2π )3
Gpf

11(k, ωn; q|r), (38)

j(r) = 1

m
(Q0 + ∇φ(r))n(r)

+ 2

β

∑
n

eiωnη

∫
dk

(2π )3

k
m

Gpf
11(k, ωn; q|r). (39)

As already mentioned, there still remains to specify the
way the spatial profiles of the magnitude |�(r)| and phase
φ(r) of the gap parameter are obtained, on whose a priori
knowledge the above prescriptions have been built. This will
be done in Sec. III, where the expressions (38) for n(r) and
(39) for j(r) will serve to set up the numerical procedure for
the inclusion of pairing fluctuations within the mLPDA ap-
proach. Accordingly, in Sec. III, the local gap profile �(r) will
be obtained from the (self-consistent) solution of the mLPDA
equation, for which the condition |j(r)| = J for the spatial
uniformity of the local particle current j(r) given by Eq. (39)
will act as a suitable constraint on the mLPDA equation itself.

Besides being utilized in conjunction with the mLPDA
equation, the expression (39) for the local particle current is
relevant in itself because it generalizes to the whole BCS-BEC
crossover the two-fluid model at finite temperature, even in
the presence of spatial inhomogeneities. In particular, Eq. (39)
recovers Eq. (36) in the weak-coupling (BCS) limit of strongly
overlapping Cooper pairs, in line with the Bardeen fermionic
two-fluid model [22]. While in the opposite strong-coupling
(BEC) limit of dilute dimers, Eq. (39) reduces to the bosonic
two-fluid model, in line with that originally introduced by
Tisza [40] and Landau [23]. This is explicitly shown analyti-
cally in Appendix B in the case of a homogeneous system.

III. NUMERICAL PROCEDURES

In this section, we describe the numerical procedures uti-
lized for solving the differential mLPDA equation with the
inclusion of pairing fluctuations beyond mean field.

We will specifically be concerned with the Josephson ef-
fect, whereby a stationary supercurrent flows (say, along x)
across a fixed barrier that acts like an external potential Vext (x).
Following Ref. [15], here we shall consider an SsS slab ge-
ometry, with the superfluid flow along the x direction and
translational invariance in the y and z directions, and with the
fermionic interparticle attraction extending unmodified across
the barrier region. Accordingly, the value of the thermody-
namic chemical potential μ and the asymptotic (bulk) value
of the gap parameter �0 away from the barrier will not be
affected by the presence of the barrier owing to its limited
spatial extent. For definiteness, the potential barrier is taken to

be of the Gaussian form Vext (x) = V0e
− x2

2σ2
L , which is centered

at x = 0 and has height V0 and variance σL. By complying with
typical values of condensed-matter samples [41], throughout
we take V0/EF = 0.1 and kF σL = 2.5, where EF = k2

F /(2m)
is the Fermi energy and kF = (3π2n)1/3 the Fermi wave vector
with density n.

When dealing with a Fermi gas with attractive interparticle
interaction like in the present case, a common practice is to
span the corresponding BCS-BEC crossover in terms of the

dimensionless coupling (kF aF )−1, where aF is the scatter-
ing length of the two-fermion problem in vacuum [6]. This
coupling parameter ranges from (kF aF )−1 � −1 in the weak-
coupling (BCS) regime when aF < 0, to (kF aF )−1 � +1 in
the strong-coupling (BEC) regime when aF > 0, across the
unitary limit (kF aF )−1 = 0 when |aF | diverges.

While Ref. [15] was mostly focused on the BCS side of
unitarity, with the argument that pairing fluctuations were not
included in that reference like in the original LPDA approach
of Ref. [13], here we will instead be able to explore the
whole BCS-BEC crossover, once pairing fluctuations will be
properly included on top of the LPDA approach.

A. Solving for the differential LPDA and mLPDA equations

With these premises, the differential LPDA equation in-
troduced in Ref. [13] takes the form considered in Ref. [15]
for the Josephson effect with an effectively one-dimensional
geometry:

− m

4πaF
�̃(x) = I0(x)�̃(x) + I1(x)

4m

d2

dx2
�̃(x)

+i I1(x)
Q0

m

d�̃(x)

dx
. (40)

Here, �̃(x) = e−2iQ0x�(x) ≡ |�̃(x)| e2iφ(x) with Q0 = |Q0|
[cf. Eq. (31)], and the coefficients I0(x) and I1(x) are given
by the expressions [13]

I0(x) =
∫

dk
(2π )3

{
1 − 2 fF (EQ0+ (k|x))

2 E (k|x)
− m

k2

}
, (41)

I1(x) = 1

2

∫
dk

(2π )3

{
ξ (k|x)

2 E (k|x)3
[1 − 2 fF (EQ0+ (k|x))]

+ ξ (k|x)

E (k|x)2

∂ fF (EQ0+ (k|x))

∂EQ0+ (k|x)

+ k · Q0

Q2
0

1

E (k|x)

∂ fF (EQ0+ (k|x))

∂EQ0+ (k|x)

}
, (42)

where

ξ (k|x) = k2

2m
− μ + Vext (x) + Q2

0

2m
, (43)

E (k|x) =
√

ξ (k|x)2 + |�̃(x)|2, (44)

EQ0+ (k|x) = E (k|x) + k · Q0

m
. (45)

Note that the expressions (43)–(45) correspond to the ex-
pressions (33)–(35) where one sets ∇φ(r) = 0, in accordance
with the original derivation of the LPDA equation given in
Ref. [13]. Note further that the expression (43) is the only
place where the external potential Vext (x) explicitly appears
in the context of the mLPDA approach (while in the context
of the LPDA approach Vext (x) enters also the expressions (32)
for the local density and (36) for the local current at the mean-
field level). Note, finally, that full three-dimensional geometry
in which the physical system is embedded (which is essential
to account for the three-dimensional structure of Cooper pairs
and/or dimers) explicitly appears in the wave-vector integrals
of Eqs. (41) for I0 and (42) for I1.
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Following Appendix A of Ref. [15], the LPDA second
order differential equation (40) can be reduced to a system
of four first-order differential equations, by separating its real
and imaginary parts associated with the complex function
�̃(x) = |�̃(x)| e2iφ(x) in the presence of a supercurrent and
introducing the spatial derivatives of |�̃(x)| and φ(x). In addi-
tion, the imaginary part of the LPDA equation is conveniently
replaced by the requirement

j(x) = J (46)

for the local particle current to be everywhere uniform. This
replacement is common practice when solving for the GL
equation close to the critical temperature [42] or for the GP
equation at zero temperature [43]. More generally, even when
solving numerically up to self-consistency the BdG equa-
tions throughout the BCS-BEC crossover at zero temperature,
one finds it convenient to replace the imaginary part of the gap
equation therein with the requirement for the local current to
be everywhere uniform [10].

In Ref. [15], the requirement (46) was enforced by taking
the local particle current j(x) of the mean-field form (36), in
line with the original LPDA approach of Ref. [13]. Here, we
improve on that approach and take instead the local particle
current j(x) of the form (39), which includes beyond-mean-
field pairing fluctuations in the presence of a supercurrent in a
consistent way.

This replacement of the expression of the local particle
current [from Eqs. (36) to (39)] is the key step for obtain-
ing what is referred to as the modified LPDA (or mLPDA)
approach, which includes pairing fluctuations beyond mean
field and represents the main contribution of the present paper.
With this replacement, one can solve for the mLPDA dif-
ferential equation by adopting otherwise the same numerical
procedures described in Appendix A of Ref. [15]. One should
also recall that, within the mLPDA approach, the expressions
(41) for I0(x) and (42) for I1(x) contain the thermodynamic
chemical potential μ which now consistently includes the
effect of pairing fluctuations via the density equation (38).

B. Solving for the particle-particle ladder
in the presence of a supercurrent

We now describe the numerical procedure we have fol-
lowed for calculating the expressions (A2)–(A4) for the
particle-particle ladder 11(Q; q) and (25) of the diagonal
self-energy S

pf
11(k; q) within the t-matrix approach in the

presence of a supercurrent. These quantities are required to
obtain the local particle current (39) with the inclusion of
pairing fluctuations needed for solving the mLPDA equation.
To this end, we adapt to the present context the procedures
utilized in Ref. [21], where these calculations were originally
performed in the homogeneous case only and in the absence
of a supercurrent.

To begin with, special care has to be used when han-
dling the sums over the bosonic Matsubara frequencies �ν

in Eq. (25) and over the fermionic Matsubara frequencies ωn

in Eqs. (38) and (39) [the sum over the fermionic Matsubara
frequencies in Eqs. (A3) and (A4), on the other hand, can be
done analytically due to the presence therein of the mean-field
expressions (18) and (19) for the single-particle Green’s func-

tions]. As it was done in Ref. [21], the sum over the bosonic
Matsubara frequencies in Eq. (25) is conveniently handled by
introducing a cutoff �c, past which the sum is transformed
into an integral over a real frequency � using the asymptotic
form of 11(Q; q) (e.g., Eq. (43) of Ref. [21] with z → �).
To speed up instead the sum over the fermionic Matsubara
frequencies in Eqs. (38) and (39), it is sufficient to add and
subtract the corresponding expressions for the particle density
and current at the mean-field level.

In addition, while the angular integration over the bosonic
wave vector Q in expression (25) of the diagonal self-energy
S

pf
11(k; q) can be dealt with analytically, by making the polar

angle to appear only inside the expression of Gmf
11 therein by

a suitable choice of the integration axes, in the expressions
(A5) and (A6) of the particle-particle bubbles the additional
angular integration over the fermionic wave vector k, that
arises from the presence of the wave vector q associated with
the supercurrent, has instead to be dealt with numerically.

Finally, the dependence on the spatial coordinate r, which
is required to obtain the local particle current j(r) needed for
the numerical solution of the mLPDA equation, is introduced
in the expression of Spf

11(k; q) via the prescriptions described
in Sec. II E.

All these calculations are repeated at each cycle of self-
consistency during the numerical solution of the mLPDA
equation, with the magnitude and phase of the gap parameter
being consistently updated at each cycle.

C. Connecting the two above procedures

To speed up the interconnection between the two numer-
ical codes, one for the solution of the mLPDA equation (cf.
Sec. III A) and the other one for the calculation of the di-
agonal self-energy S

pf
11 within the t-matrix approximation (cf.

Sec. III B), it is convenient to somewhat modify the numerical
procedures previously utilized in Ref. [15] (cf. Sec. 4 of the
Appendix therein) for decreasing the numerical noise when
solving for the LPDA equation.

Specifically, when solving for the LPDA equation in
Ref. [15], the expressions of I0 and I1 as well as those of
the local number density and current were accurately eval-
uated over a regular grid of 100 × 100 × 100 points in the
variables (|�|, μ, Q0 + dφ(x)

dx ), and a linear interpolation was
then utilized in each variable to determine the actual values of
the quantities needed at each iteration of the Newton method.
Here, when solving for the mLPDA equation, this procedure
becomes impractical due to the time required when evaluating
the expressions of the density and current with the inclusion
of pairing fluctuations.

To work around this problem, we have kept the above
grid of 100 × 100 × 100 points in the variables (|�|, μ, Q0 +
dφ(x)

dx ) supplemented as before by a linear interpolation for
calculating I1 and I0; but at the same time, we have drastically
reduced the size of the grid for calculating the density and
current to 5 × 5 points only in the variables (|�|, Q0 + dφ(x)

dx ),
now supplemented by a more sophisticated 2D spline in-
terpolation in each variable. Eliminating here the chemical
potential μ from the grid is connected with the procedure
described in Sec. II E, which takes care of the local chemi-
cal potential in the process of calculating the local effective
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potential. In addition, back to the context of the LPDA equa-
tion, we have verified that a grid of 5 × 5 × 5 points in the
variables (|�|, μ, Q0 + dφ(x)

dx ) supplemented by a 3D spline
interpolation in each variable would suffice to obtain the den-
sity and current with good enough accuracy, when compared
with the more lengthy calculations with 100 × 100 × 100
points made originally in Ref. [15].

IV. NUMERICAL RESULTS

In this section, we report on a number of numerical results
obtained by solving the LPDA and mLPDA equations on
equal footing. Specifically, this will be done by considering
a simple Josephson configuration, where a potential barrier
Vext (x) with a slab geometry of the SsS type is embedded in
a otherwise homogeneous fermionic superfluid which extends
to infinity on both sides of the barrier. Detailed consideration
of more complex Josephson spatial configurations, like those
corresponding to the experiments of Refs. [24,25], is instead
given in the companion paper [26].

A. Effective vs external potentials when including
local pairing fluctuations

In Sec. II E, we have argued that, when solving for the
mLPDA equation, one needs to introduce an effective po-
tential Veff (r) in the diagonal element 11(Q; q|r) of the
particle-particle ladder, in the place of the external potential
Vext (r) corresponding to the geometrical constraints in which
the Fermi superfluid is embedded. We have also concluded
that, by construction, the effective potential Veff (r) depends
not only on the external potential Vext (r), but also on coupling,
temperature, and the wave vector Q0 associated with the su-
percurrent.

Figure 2 shows a number of profiles of Veff (x) associated
with a given Vext (x) with the one-dimensional geometry con-
sidered throughout, for three couplings across the BCS-BEC
crossover and several temperatures in the superfluid phase. [It
is sufficient to show Veff (x) only for x > 0 due to reflection
symmetry.] In all cases, the value of Q0 at which Veff (x) is
calculated (cf. Sec. II E) corresponds to the maximum of the
associated Josephson characteristic (cf. the bottom of Fig. 3
below). Note that the differences between Veff (x) and Vext (x)
are never too pronounced, and that they become most no-
ticeable at the highest temperature. Note also the monotonic
behavior for increasing temperature at each coupling.

B. Comparison between the solutions of the LPDA
and mLPDA equations

A direct comparison between the solutions of the LPDA
and mLPDA equations is shown in Fig. 3, for the same
physical barrier considered in Fig. 2. Here, the spatial profiles
of the magnitude |�̃(x)| and phase φ(x) of the gap parameter
contributed by the presence of the barrier are shown together
with the local density n(x) at unitarity for the temperature
T/Tc = 0.15, for the four (out of six) values of the asymptotic
phase difference δφ accumulated across the barrier which are
reported with the same colors in the Josephson characteristics
of the bottom panels. Note how the inclusion of pairing fluctu-
ations implemented by the mLPDA equation acts to decrease

FIG. 2. Effective potential Veff (x) (in units of the Fermi energy

EF ) associated with an external Gaussian potential Vext (x) = V0e
− x2

2σ2
L

with V0/EF = 0.1 and kF σL = 2.5 (broken line). The spatial pro-
files of Veff (x) are shown for three couplings across the BCS-BEC
crossover and several temperatures, with Q0 taken at the maximum
of the Josephson characteristics in each case.

the local values of the magnitude of the gap parameter and of
the density inside as well as close to the barrier, with respect
to those obtained by the LPDA equation. This decrease is also
evident for the critical value Jc of the current, that corresponds
to the maximum of the Josephson characteristics in the bottom
panels of Fig. 3.

C. Further comparison of the critical currents
versus coupling and temperature

The above decrease of Jc when including pairing fluc-
tuations persists at low enough temperature over the whole
crossover region on both (BCS and BEC) sides of unitarity.
This is shown in Fig. 4 with the same barrier considered
in the previous figures and for T/Tc = 0.1, where the val-
ues of Tc are calculated for each coupling within the LPDA
and mLPDA approaches, respectively. For this barrier, the
maximum value of Jc is attained at (about) unitarity in both
(LPDA and mLPDA) cases, thus confirming the result ob-
tained in Ref. [10] by a self-consistent solution of the BdG
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FIG. 3. From top to bottom: Spatial profiles of the magnitude
˜|�(x)| and phase 2φ(x) of the gap parameter and of the density

n(x), and Josephson characteristics J (δφ) vs the asymptotic phase
difference δφ, as obtained by solving the LPDA equation (left panels)
and the mLPDA equation (right panels) at unitarity and T/Tc = 0.15,
with the same barrier of Fig. 2. The bulk values �0 of the (magnitude
of the) gap parameter and n of the density are used for normalization,
together with JF = kF n/m for the current. Here and in the following
figures, the temperature T is normalized to the respective value of Tc

obtained within either the LPDA or mLPDA approaches.

equations at zero temperature with a comparable barrier (cf.
Fig. 25 therein).

The situation can, however, get reversed for increasing
temperature. This is shown in Fig. 5 where the temperature
dependence of Jc, obtained by solving the LPDA and mLPDA
equations from T = 0 up to T = Tc, is reported for three cou-
plings across the BCS-BEC crossover. (Also in this case, Tc

is calculated for each coupling within the LPDA and mLPDA
approaches, respectively.) Note that a crossing between the
LPDA and mLPDA results occurs at an intermediate temper-
ature, whose value relative to Tc decreases as the coupling

FIG. 4. Coupling dependence of the critical current Jc (in units of
JF ) obtained in the crossover region for T/Tc = 0.1 within the LPDA
and mLPDA approaches, with the same barrier of Fig. 2. The upper
left and right full curves correspond to the appearance, respectively,
of pair-breaking and sound-mode excitations at zero temperature in
the limit of a vanishing barrier (like in Fig. 24 of Ref. [10]).

evolves from the BCS to the BEC regimes. Note also that,
within the mLPDA approach, the temperature dependence
of Jc changes from a convex to a concave behavior from
the BCS to the BEC regime, passing through an essentially
linear behavior at unitarity. This result will be relevant when

FIG. 5. Temperature dependence of the critical current Jc (in
units of JF ), obtained within the LPDA (filled squares) and mLPDA
(filled circles) approaches for three couplings spanning the BCS-
BEC crossover, with the same barrier of Fig. 2.

214503-11



PISANI, PISELLI, AND STRINATI PHYSICAL REVIEW B 108, 214503 (2023)

FIG. 6. “Flow diagram” showing schematically the way the
mLPDAext approach is set up. At a first step, the LPDA equation is
cast in the framework of the generalized Hugenholtz-Pines gap equa-
tion of Ref. [29], now within a local perspective. At a second step,
this equation is merged with a local version of the extended GMB
approach of Ref. [29], yielding eventually the mLPDAext approach.

interpreting the results shown in Fig. 4 of the companion paper
[26], which are obtained still at unitarity but with a much more
complex spatial geometry corresponding to experiments with
ultracold Fermi gases.

D. Preliminary inclusion of the extended GMB contribution

Throughout the present paper, we have implemented the
inclusion of pairing fluctuations over and above the LPDA
approach of Ref. [13], by resting on the non-self-consistent
t-matrix approach in the superfluid phase of Ref. [21]. Here,
the approach of Ref. [21] has suitably been adapted to describe
spatially inhomogeneous situations as well as to include the
presence of a supercurrent.

In the homogeneous case, on the other hand, a quite gen-
eral procedure was proposed in Ref. [29] for a systematic
inclusion of beyond-mean-field pairing fluctuations in the gap
equation. In particular, in Ref. [29] this procedure was im-
plemented by extending to the whole BCS-BEC crossover
the Gorkov-Melik-Barkhudarov (GMB) contribution in the
broken-symmetry phase [32], which was originally consid-
ered in the BCS limit only. A Popov-like correction [31] was
further included in Ref. [29], to account for some degree of
self-consistency in the t-matrix approach of Ref. [21]. Taken
together, the GMB and Popov contributions, once properly
extended to the whole BCS-BEC crossover, were dubbed the
“extended GMB approach.” The numerical results obtained
by this approach have recently been validated throughout
the BCS-BEC crossover in different experimental contexts,
namely, at low temperature in the superfluid phase [44] as well
as at the critical temperature [45].

In principle, no impediment should appear in further
adapting this extended GMB approach to spatially inhomoge-
neous situations, aiming at further improving on the mLPDA
approach as anticipated in Sec. I. Figure 6 schematically
summarizes the way how a local version of the extended
GMB approach could be combined with the differential LPDA
equation, resulting in an “extended” version of the mLPDA
approach which may shortly be referred to as mLPDAext
approach. In practice, however, implementing this mLPDAext
approach is expected to require substantial theoretical and

FIG. 7. Temperature dependence of the superfluid density at uni-
tarity. The results of the LPDA (squares) and mLPDA (diamonds)
approaches are compared with the experimental data from Ref. [46]
(dots) and Ref. [47] (triangles), where the shaded regions stand for
the corresponding experimental uncertainties. Preliminary results ob-
tained with the extended GMB approach of Ref. [29] are also shown
(pentagons).

computational efforts (especially in the presence of a super-
current), which by far exceed the aims of the present work.
Nonetheless, we can here provide a preliminary yet mean-
ingful demonstration of how the inclusion of the extended
GMB correction may influence a physical quantity like the
superfluid density ρs, of interest to the present context.

To this end, we calculate the current j without the presence
of a barrier for an infinitesimal (in practice, quite small) value
of Q0, such that ρs is obtained from the relation j = ρsQ0/m
for various couplings and temperatures. We do this, first at the
level of the LPDA approach using for j the expression (36),
and then at the level of the mLPDA approach using for j the
expression (39). The corresponding temperature dependences
of ρs at unitarity are shown in Fig. 7, where the experimental
results from Refs. [46,47] are also reported for comparison.
Although the mLPDA approach is seen to improve this com-
parison with respect to the LPDA approach, there still appear
noticeable discrepancies with the experimental results which
call for further improvements on the mLPDA approach.

This improvement can be achieved in a preliminary
fashion, by adapting to the present context the simplified
procedure described in Ref. [48] (as summarized in the para-
graph following Eq. (47) therein), whereby passing from the
non-self-consistent t-matrix approach to the GMB approach
amounts essentially to introducing a suitable temperature-
dependent shift on the value of the coupling, which can be
calculated in a well defined way. The effect of this procedure
on the temperature dependence of the superfluid density at
unitarity is also reported in Fig. 7, resulting in a definite
improvement on the comparison with the experimental data.

A similar procedure is also applied in Fig. 3(a) of Ref. [26]
to four data points obtained by the mLPDA approach on the
BCS side of unitarity. In this case, the procedure is applied to
each of the tubular filaments in which the (nearly) cylindrical
trap is partitioned, with the favorable outcome that essentially
a common shift for the value of the coupling proves sufficient
(to within a 10% uncertainty). Even in this case, this simpli-
fied version of the extended GMB approach has produced a
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non-negligible improvement over the mLPDA approach when
comparing with the experimental data.

V. CONCLUDING REMARKS AND PERSPECTIVES

In this paper, we have set up and implemented the mLPDA
approach that allows for the inclusion of pairing fluctuations
beyond mean field in inhomogeneous superfluid Fermi sys-
tems, with the purpose of dealing with problems of physical
and experimental interest for which the effects of nontrivial
geometrical constraints are as important as those originating
from the interparticle dynamics and have thus to be treated on
equal footing. The BCS-BEC crossover occurring in ultracold
trapped Fermi gases is an ideal setting for testing this type of
approach, since it involves spanning a wide region of coupling
and temperature that can be reasonably dealt with only by a
sufficiently broad-ranging theoretical approach.

To this end, the strategy we have adopted has rested on in-
cluding pairing fluctuations directly on the differential LPDA
equation of Ref. [13], by combining this equation with ele-
ments drawn from Ref. [21]. This procedure resulted in what
we have referred to as the mLPDA approach. In particular, this
approach was set up in the presence of a supercurrent, which
makes the theoretical setup unavoidably more involved but
permits applications to problems of wide interest like those
involving the Josephson effect. In the present paper these
problems have specifically been considered for a geometry
that mostly applies to condensed-matter samples, while in the
companion paper [26] a more complex geometry appropriate
to ultracold trapped Fermi gases is considered.

The above strategy may acquire an even broader impor-
tance, when connecting it with the approach developed in
Ref. [29]. There the gap equation in the homogeneous case
was cast in the form of a Hugenholtz-Pines condition for
fermion pairs, which allows for a systematic inclusion of
pairing-fluctuation corrections beyond mean field over and
above the t-matrix approximation considered in the present
paper. This is because in Ref. [29] the gap equation was
related to the two-particle Green’s function in the superfluid
phase, instead of following the common practice of associat-
ing it with the single-particle Green’s function [49]. Taking
then advantage of the fact that the LPDA approach extends
directly the equation for the gap parameter to the inhomo-
geneous case, the approach of Ref. [29] could be formally
taken over to the inhomogeneous case so as to include in the
LPDA approach pairing-fluctuation corrections even beyond
the t-matrix approximation. In this way, one may go even
beyond the mLPDA approach, yielding what in Sec. IV D is
referred to as the extended mLPDAext approach. Favorable
preliminary results along these lines have been presented in
the present paper as well as the companion paper [26], by
relying on the extended GMB approach of Ref. [29]. However,
extensive implementation of this beyond mLPDA strategy
appears highly nontrivial (especially in the presence of a su-
percurrent) and requires further dedicated projects to which it
is postponed.

It should be emphasized that, irrespective of whether one
stops at the level of the mLPDA approach (as we have
done in the present paper) or plans for further improvements
(like the extended mLPDAext approach outlined above), our

whole strategy for including pairing fluctuations in the con-
text of the LPDA differential equation of Ref. [13] is, by
construction, “modular” in nature since it rests on a pro-
gressive inclusion of diagrammatic terms borrowed from the
many-body Green’s functions theory. Accordingly, these dia-
grammatic terms do not contain “internal” parameters whose
values need to be fitted by utilizing the results of indepen-
dent theoretical calculations, as it is instead the case with
approaches based on density functional theory [50]. In this
respect, numerical results obtained by the mLPDA approach
should be considered as first-principle calculations.

However, when comparing available experimental data
with theoretical results, obtained even in the absence of inter-
nal parameters like in our case, the unavoidable occurrence of
experimental uncertainties introduces a source of “external”
parameters in the theoretical calculations, which have accord-
ingly to be taken into account for the sake of the comparison.
For instance, in experiments with ultracold trapped gases, the
uncertainty in the total number of atoms N can be as large
as 30%, such that theoretical results aiming at comparing
with experimental data for these systems should consider N
like an external parameter, as it is done in the companion
paper [26]. Note that analogous problems would occur even in
condensed matter when performing successful first-principle
band-structure calculations based on the many-body Green’s
functions theory [51], if, for instance, the lattice constant
would not be known experimentally with sufficient accuracy
(which, in practice, is not the case).
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APPENDIX A: PARTICLE-PARTICLE LADDER FOR THE
SUPERFLUID PHASE IN THE PRESENCE OF A

SUPERCURRENT

In this Appendix, we explicitly implement the form (25) of
the self-energy that includes pairing fluctuations in the pres-
ence of a stationary supercurrent within the t-matrix approach.
To this end, it is sufficient to construct the diagonal compo-
nent 11 of the particle-particle ladder in the broke-symmetry
phase, since the normal single-particle Green’s function Gmf

11
needed in Eq. (25) is given by Eq. (18). In this way, we shall
also verify that the properties (5)–(8) hold specifically for all
components of the self-energy within the t-matrix approxima-
tion of interest. The procedure for extending these results to
the presence of spatial inhomogeneities, which arise from an
external potential (like a barrier for the Josephson effect), is
implemented in Sec. II E.

We begin by briefly recalling the procedure described in
Appendix A of Ref. [52], to obtain the elements ii′ of the
particle-particle ladder in the broken-symmetry phase. This
procedure rests on the choice of a contact potential with (nega-
tive) strength v0 to represent the interparticle attraction, which
entails a suitable regularization in terms of a cutoff k0 and of
the scattering length aF of the two-fermion problem, in the
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FIG. 8. Diagrams for the particle-particle ladder in x-space, in
the presence of a stationary supercurrent: examples are shown for
(a) the 11-component, (b) the 22-component, (c) the 21-component,
and (d) the 12-component. Full lines stand for the fermionic
single-particle Green’s functions Gii′ (x, x′) and wiggly lines for the
contact interparticle attraction. At each vertex (dot), coordinates (x)
and Nambu indices (i) are indicated. In each diagram, an upper
single-particle (dashed) line is appended which closes the fermion
loop, thus obtaining the self-energy 
ii′ (x2, x1) within the t-matrix
approximation.

form [6]

m

4πaF
= 1

v0
+

∫
|k|�k0

dk
(2π )3

m

k2
. (A1)

By this regularization, the limits v0 → 0− and k0 → ∞ are
taken simultaneously so that aF is kept at the desired value. In
this way, only selected classes of diagrams of the many-body
diagrammatic structure survive the regularization (A1) when
the limit v0 → 0− is taken.

Specifically, for the particle-particle ladder of interest here
it was shown in Appendix A of Ref. [52] that only ladder dia-
grams constructed by pairs of either G11 or G22 single-particle
Green’s functions survive the regularization (A1). Examples
of these diagrams in x-space are shown in Figs. 8(a) and

8(b). In the presence of a stationary supercurrent, owing to
the properties (5)–(8) of the single-particle Green’s functions,
one readily realizes that ̃11 of Fig. 8(a) acquires the phase
factor eiq·(r2+r4−r1−r3 ), while ̃22 of Fig. 8(b) acquires the
phase factor e−iq·(r2+r4−r1−r3 ). In addition, structures like ̃11

and ̃22 can be mutually connected through rungs involving
pairs of G21 [like those in Fig. 8(c)], with the composite
structure acquiring the overall phase factor e−iq·(r2+r4+r1+r3 );
or else pairs of G12 [like those in Fig. 8(d)], with the composite
structure acquiring the overall phase factor eiq·(r2+r4+r1+r3 ). To
obtain eventually the self-energies 
i1i2 (x1, x2; q) within the
t-matrix approximation, one has to add to each of these struc-
tures an upper single-particle line represented by the dashed
line in each panel of Fig. 8, which closes the fermion loop.
Owing again to the properties (5)–(8), one ends up with the
self-energies 
i1i2 (x1, x2; q) which themselves satisfies prop-
erties like (5)–(8). This proves our statement.

Finally, by combining the structures ̃11 and ̃22 in all
possible ways through rungs of pairs of either G12 or G21

[52] (now in the presence of a superfluid current), once the
above phase factor e±iq·(r2+r4±r1±r3 ) have conveniently been
disposed off, one obtains the following expressions for the
components ii′ (Q; q) of the full particle-particle ladder in the
broken-symmetry phase in the presence of a supercurrent:[

11(Q; q) 12(Q; q)
21(Q; q) 22(Q; q)

]
= 1

A(Q; q) A(−Q; q) − B(Q; q)2

×
[
A(−Q; q) B(Q; q)
B(Q; q) A(Q; q)

]
. (A2)

Here,

A(Q; q) = − m

4πaF
+

∫
dk

(2π )3

m

k2

−
∑

k

Gmf
11 (k + Q; q)Gmf

11 (−k; q), (A3)

B(Q; q) =
∑

k

Gmf
12 (k + Q; q)Gmf

12 (−k; q), (A4)

where the regularization (A1) and the short-hand notation (10)
have been utilized.

Consistently with the non-self-consistent t-matrix ap-
proach in the broken-symmetry phase considered in Ref. [21],
the expressions for Gmf

11 (k; q) and Gmf
12 (k; q) entering Eqs. (A3)

and (A4) are taken of the mean-field form (18) and (19),
respectively. By performing the sum over the fermionic Mat-
subara frequencies ωn in the particle-particle bubbles of
Eqs. (A3) and (A4), we obtain eventually

∑
k

Gmf
11 (k + Q; q)Gmf

11 (−k; q) =
∫

dk
(2π )3

{
u(k + Q; q)2u(k; q)2[ fF (E+(k + Q; q))+ fF (E−(k; q))−1]

i�ν − Q·q
m − E (k + Q; q) − E (k; q)

+ v(k + Q; q)2v(k; q)2[1− fF (E−(k + Q; q))− fF (E+(k; q))]

i�ν − Q·q
m + E (k + Q; q) + E (k; q)

+ u(k + Q; q)2v(k; q)2[ fF (E+(k + Q; q))− fF (E+(k; q))]

i�ν − Q·q
m − E (k + Q; q) + E (k; q)

+ v(k + Q; q)2u(k; q)2[ fF (E−(k; q))− fF (E−(k + Q; q))]

i�ν − Q·q
m + E (k + Q; q) − E (k; q)

}
(A5)
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and∑
k

Gmf
12 (k + Q; q)Gmf

12 (−k; q) =
∫

dk
(2π )3

u(k + Q; q) v(k + Q; q) u(k; q) v(k; q)

×
{

[ fF (E+(k + Q; q))+ fF (E−(k; q)) − 1]

i�ν − Q·q
m − E (k + Q; q) − E (k; q)

+ [1− fF (E−(k + Q; q))− fF (E+(k; q))]

i�ν − Q·q
m + E (k + Q; q) + E (k; q)

− [ fF (E+(k + Q; q))− fF (E+(k; q))]

i�ν − Q·q
m − E (k + Q; q) + E (k; q)

− [ fF (E−(k; q))− fF (E−(k + Q; q))]

i�ν − Q·q
m + E (k + Q; q) − E (k; q)

}
. (A6)

These expressions coincide with those reported in Ref. [53]
for the same particle-particle bubbles in the presence of a
superfluid flow. Note that everywhere in the above expressions
the bosonic Matsubara frequency i�ν is “Doppler shifted”
by the amount −Q·q

m . Note also that the gapless condition of
the particle-particle ladder (A2) at Q = 0 is guaranteed by
enforcing the gap equation in the presence of a superfluid flow,
in the form

B(Q = 0; q) − A(Q = 0; q)

= m

4πaF
+

∫
dk

(2π )3

{
[1 − 2 fF (E+(k; q))]

2E (k; q)
− m

k2

}
= 0. (A7)

It should be remarked that this expression coincides with the
LPDA equation in the presence of a supercurrent of Sec. III,
in the limiting case of a homogeneous system.

APPENDIX B: MAPPING ONTO THE BOSONIC
TWO-FLUID MODEL IN THE BEC LIMIT OF THE

BCS-BEC CROSSOVER

In this Appendix, we consider the strong-coupling (BEC)
limit of the expression (27) for the diagonal (normal) single-
particle Green’s function Gpf

11(k; q) which includes pairing
fluctuations in the presence of a superfluid flow at the level of
the t-matrix approximation, in terms of which we will obtain
the expressions of the number and current densities in this
limit.

In the following, we shall consider the homogeneous case,
whereby the expressions (38) for the number density and (39)
for the current density reduce to

n = 2
∫

dk
(2π )3

1

β

∑
n

eiωnη Gpf
11(k, ωn; q) (B1)

and

j = q
m

n + 2
∫

dk
(2π )3

k
m

1

β

∑
n

eiωnη Gpf
11(k, ωn; q). (B2)

We will show that, in the BEC limit of the BCS-BEC
crossover, these expressions are consistent with a bosonic
two-fluid model for the composite bosons (or dimers) that
form in this limit, specifically at the level of the Bogoliubov
approximation.

To this end, we begin by considering the expressions (A3)
and (A5) for A(Q; q) and (A4) and (A6) for B(Q; q). In the
BEC limit, |μ| is the largest energy scale in the problem such

that we can consider the limit βμ → −∞, with the residual
term μB = 2μ + (maF )−1 corresponding to the dimers chem-
ical potential [6]. Accordingly, in the expressions (A5) and
(A6) we can neglect all Fermi functions, but we have to keep
the wave vector q in the denominators therein, both in the
expressions of E (k; q) and E (k + Q; q) where it occurs in the
combination −μ + q2

2m = 1
2ma2

F
− 1

2 μ̄B with

μ̄B ≡ μB − (2q)2

4m
, (B3)

as well as in the Doppler shifted frequency i�ν − Q·q
m . In

addition, the expressions (A5) and (A6) can be expanded to
the leading order in the dimers kinetic energy Q2

4m , since on
physical grounds this may be comparable with the bosonic
chemical potential μB.

We can then resort to the analytic methods of Ref. [54] and
obtain in the BEC limit (cf. also Appendix A of Ref. [52])

A(Q; q) � m2aF

8π

[
μ̄B + Q2

4m
−

(
i�ν − Q · q

m

)]
, (B4)

B(Q; q) � m2aF

8π
μ̄B, (B5)

such that from Eq. (A2)

11(Q; q) � 8π

m2aF

[
μ̄B + Q2

4m + (
i�ν − Q·q

m

)]
EB(Q)2 − (

i�ν − Q·q
m

)2 , (B6)

where

EB(Q) =
√(

μ̄B + Q2

4m

)2

− μ̄2
B (B7)

is the Bogoliubov dispersion relation with μ̄B = 2k3
F aF

3πm =
4π (2aF )

(2m) ( n
2 ). This expression corresponds to the value aB = 2aF

of the dimer-dimer scattering length, consistently with that
obtained in the BEC limit of the LPDA equation [13] when it
reduces to the GP equation (as, in turn, obtained from the BdG
equations in that limit [5]). The expression (B6) can further be
cast in the meaningful form

11(Q; q) � − 8π

m2aF

[
uB(Q)2

i�ν − EB+(Q; q)
− vB(Q)2

i�ν + EB−(Q; q)

]
,

(B8)
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where EB
±(Q; q) = EB(Q) ± Q·q

m and

uB(Q)2 = 1

2

(
μ̄B + Q2

4m

EB(Q)
+ 1

)
, (B9)

vB(Q)2 = 1

2

(
μ̄B + Q2

4m

EB(Q)
− 1

)
(B10)

are the Bogoliubov coherence factors such that uB(Q)2 −
vB(Q)2 = 1.

The result (B8) can now be used in the expression (25)
for the diagonal fermionic self-energy S

pf
11(k; q), which in the

BEC limit can be further approximated by

S
pf
11(k; q)�−

∑
Q

11(Q; q)G (0)(Q−k; q), (B11)

where G (0)(k; q) = [iωn − ξ (k + q)]−1. By a similar token,
the diagonal single-particle Green’s function Gpf

11(k; q) to be
used in Eqs. (B1) and (B2) takes the form

Gpf
11(k; q)

� G (0)(k; q) + G (0)(k; q)Spf
11(k; q)G (0)(k; q),

+ G (0)(k; q) (−�q)(−G (0)(−k; q))(−�q)G (0)(k; q).

(B12)

We are thus left with entering the results (B8), (B11), and
(B12) into the expressions (B1) for the density and (B2) for
the current.

In both cases, we make use of the following result:

1

β

∑
n

eiωnη

(
1

iωn − ξ (k + q)

)2 1

i�ν − iωn − ξ (Q − k + q)

� − 1

[ξ (k + q) + ξ (Q − k + q) − i�ν]2

� − 1

4 ξ (k)2

[
1 + k · Q/m

ξ (k)

]
, (B13)

where in the second line we have exploited the BEC limit
and in the third line we have retained the leading significant
terms in Q. In particular, in the third line of Eq. (B13) the first
term within brackets contributes to the expression (B1) of the
density while the second term within brackets contributes to
the expression (B2) of the current.

In the BEC limit, the expression (B1) of the density thus
becomes

n � 2

⎛
⎝�2

q +
∑

Q

ei�νη 11(Q; q)

⎞
⎠∫

dk
(2π )3

1

4 ξ (k)2

= �2
q

m2aF

4π
− 2

∫
dQ

(2π )3

1

β

∑
ν

ei�νη

×
[

uB(Q)2

i�ν − EB+(Q; q)
− vB(Q)2

i�ν + EB−(Q; q)

]

= n0 + 2
∫

dQ
(2π )3

[vB(Q)2 + (uB(Q)2 + vB(Q)2)

× b(EB
+(Q; q))], (B14)

where n0 = �2
q (m2aF )/(4π ) is (twice the value of) the con-

densate density of composite bosons that form in this limit
[5] and b(ε) = (eβε − 1)−1 is the Bose function. This result
is what would be obtained for a bosonic gas treated with the
Bogoliubov approximation in the presence of a supercurrent.
It represents the bosonic counterpart of the fermionic result
(32), once specified to the homogeneous case.

In a related fashion, the expression (B2) of the current
becomes

j − q
m

n � 2
∑

Q

ei�νη 11(Q; q)
∫

dk
(2π )3

k
4 m ξ (k)2

k · Q/m

ξ (k)

= 2
∑

Q

ei�νη Q 11(Q; q)
∫

dk
(2π )3

k2

12 m ξ (k)3

= 2

(
maF

16π

) ∑
Q

ei�νη Q 11(Q; q)

= −2
∑

Q

ei�νη
Q
2m

[
uB(Q)2

i�ν − EB+(Q; q)
+ vB(Q)2

i�ν + EB+(Q; q)

]

= 2
∫

dQ
(2π )3

Q
2m

b(EB
+(Q; q)). (B15)

This expression has the typical form of the current within
a two-fluid model [55] for a bosonic gas treated with the
Bogoliubov approximation. As such, it represents the bosonic
counterpart of the fermionic result (36) once specified to the
homogeneous case. Note that the condensate density n0 does
not explicitly contribute to the thermal part of the current
(B15), but it does only implicitly through the bosonic chemi-
cal potential.
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