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Abstract

Genetic markers (especially short tandem repeats or STRs) located on the X chromosome

are a valuable resource to solve complex kinship cases in forensic genetics in addition or

alternatively to autosomal STRs. Groups of tightly linked markers are combined into haplo-

types, thus increasing the discriminating power of tests. However, this approach requires

precise knowledge of the recombination rates between adjacent markers. The International

Society of Forensic Genetics recommends that recombination rate estimation on the X chro-

mosome is performed from pedigree genetic data while taking into account the confounding

effect of mutations. However, implementations that satisfy these requirements have several

drawbacks: they were never publicly released, they are very slow and/or need cluster-level

hardware and strong computational expertise to use. In order to address these key concerns

we developed Recombulator-X, a new open-source Python tool. The most challenging

issue, namely the running time, was addressed with dynamic programming techniques to

greatly reduce the computational complexity of the algorithm. Compared to the previous

methods, Recombulator-X reduces the estimation times from weeks or months to less than

one hour for typical datasets. Moreover, the estimation process, including preprocessing,

has been streamlined and packaged into a simple command-line tool that can be run on a

normal PC. Where previous approaches were limited to small panels of STR markers (up to

15), our tool can handle greater numbers (up to 100) of mixed STR and non-STR markers.

In conclusion, Recombulator-X makes the estimation process much simpler, faster and

accessible to researchers without a computational background, hopefully spurring

increased adoption of best practices.

Author summary

The X-chromosome is unique in the human genome. In males, the single copy of the X-

chromosome is transmitted as a single unbroken DNA chunk to the females of the next
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generation, while in females the two chromosomal copies recombine and one of them is

passed to both male and female descendants. Given this peculiar inheritance mode, X-

chromosomal genetic markers are crucial for kinship analyses involving, for instance,

half-sisters or deficiency paternity cases. In this situation, the recombination rates

between genetic markers along the X chromosome need to be known to perform unbiased

kinship analysis in forensics, which would be otherwise flawed due to the independence

assumption. However, available implementations of computational methods for the esti-

mation of recombination rates are lacking: they are slow, cumbersome and not open

source. Thanks to algorithmic improvements and other optimization techniques, we were

able to drastically reduce running time, also allowing us to handle more markers than pre-

viously feasible. Moreover, we extended previous methods, that were limited to Short Tan-

dem Repeats (STR) markers, to handle any type of polymorphisms. We released our

complete implementation as a Python module named Recombulator-X, which is the first

open-source software for the estimation of recombination rates between markers along

the X-chromosome.

Introduction

The analyses of DNA profiles for personal identification and kinship in forensic casework

strongly rely on the biostatistical evaluation of the evidential weight under alternative mutually

exclusive scenarios, whose specific probabilities are then combined into likelihood ratios

(LRs). Short tandem repeats (STR) have been the markers of choice for such analyses due to

their high discriminating capacity and genotyping ease using standard capillary electrophore-

sis typing techniques [1]. While autosomal DNA polymorphisms are most widely used in

forensic practice thanks to their higher informativeness, particular caseworks require comple-

mentary information from other genomic regions including haploid markers. For instance,

mitochondrial DNA is crucial when ancient or degraded genetic material is involved, while Y-

chromosomal STRs are fundamental for the interpretation of mixtures involving a high ratio

of female:male contribution [2]. Thanks to its unique features, halfway between autosomes

and uniparental markers, the STR markers on the X chromosome (X-STRs) play a relevant

role in challenging kinship testing, such as when the DNA from one of the parents is unavail-

able (kinship deficiency cases), half-sister or incest cases (S1 Fig and S1 Appendix). Moreover,

in paternity analyses with inconclusive or statistically weak results, for instance in case of

genetic inconsistencies or poor amplification from exhumed remains, adding X-STR markers

can help in reaching an informative solution [3–7]. Over the last decade, use of sequencing-

based techniques has become increasingly widespread in forensic genetics [8–11]. This

brought back interest in other types of markers, especially SNPs, which can be analysed either

in combination with STRs or alone [12–17]. Whilst more SNPs are necessary to reach the dis-

crimination capacity of STRs, the possibility of genotyping large number of markers simulta-

neously from low quantities of input DNA or from degraded material has opened the

floodgates to new forensic applications also based on SNPs, such as ancestry inference, DNA

phenotyping and investigative genetic genealogy, the latter being specifically designed on

dense SNP data [18–24]. Nevertheless, due to the almost exclusive attention traditionally given

to STRs in forensics, most available tools do not support non-STR markers.

Forensic markers are located in the non-pseudoautosomal region of the X chromosome.

This means that while females have two haplotypes, one inherited from the mother (the mater-

nal haplotype) and one from the father (the paternal haplotype), males have just a single
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haplotype inherited from the mother. This haplotype is a mixture of the mother’s two haplo-

types as a result of the recombination process. Since the genetic size of the X chromosome is

about 155Mb [25] and assuming a 50Mb physical distance between markers to ensure inde-

pendence, a maximum of 3–4 markers can be simultaneously analysed as independently segre-

gating. For this reason, traditional analyses of highly polymorphic haplotypes, consisting of

X-STR markers organised into “linkage groups” or “clusters”, were devised in order to increase

the evidential weight, which would be otherwise statistically inconclusive [6]. Nowadays four

different X-STR linkage groups are routinely used for forensic applications [3, 26–44]. How-

ever, it has been shown that, while well spaced along the X chromosome, some of these linkage

groups cannot be considered truly independent from each other [45–47]. The consequent vio-

lation of the independence assumption requires proper considerations in the biostatistical

evaluation of kinship. Moreover, although it was originally assumed that recombination did

not happen within linkage groups, later studies have demonstrated that, albeit rare, recombi-

nation may occur, thus motivating the evaluation of recombination rates for markers both

between and within the same cluster [6, 48, 49]. Indeed, the latest recommendations of the

International Society for Forensic Genetics (ISFG) about the use of X-STRs in kinship analyses

clearly indicate the precise knowledge of recombination rates between markers included in in-

house and commercial X-chromosomal multiplex PCR assays as a prerequisite to unbiased

estimates of kinship likelihood ratios (LRs) [6]. The available software for kinship LR calcula-

tions, with FamLinkX being the most widely used, infers neither recombination nor mutation

rates, which are instead expected to be known a priori [45, 46]. However, the evaluation of

such measures is not straightforward and may appear computationally intensive. As also

highlighted by recent works on the use of the X chromosome in forensics [3, 50], the analytical

and statistical issues deriving from genetic linkage and the lack of software addressing such

issues are actually hindering the proper applications by leading to significant biases in the

quantification of the genetic evidence. For this reason, technical advancements in this field are

highly encouraged [3, 6, 50].

Recombination rates are known to vary across the human genome and cannot be automati-

cally derived from combined linkage physical maps [51]. In the case of forensic X-STRs,

recombination rates have been either inferred from population samples through high-density

multi-point single nucleotide polymorphism (SNP) data [52] or directly estimated in large

pedigree-based studies [44, 48, 49, 53]. However, while population-based approaches may suf-

fer from long-term population size changes and selection effects, pedigree studies infer recom-

bination across a few generations by directly observing the inheritance of alleles from parents

to offspring [54]. Indeed, the ISFG’s guidelines recommend that recombination rates should

be primarily estimated from family-based studies [6]. For these reasons, further pedigree-

based studies are expected in the future to comply with the steady increase in the number of

X-chromosomal markers described for forensic applications [3] and to investigate possible

population-specific variability in recombination rates [55].

Recombination between X-chromosomal markers only happens in female meiosis. This

entails that only females can provide information on recombination events, while haploid

males can be used to phase their mother/offspring. Such events are more easily observed

between mother and sons, since genotyping sons immediately yields the recombined maternal

haplotypes. Ideal linkage-informative families in pedigree studies are therefore three-genera-

tion families, including maternal grandfather, mother and one or more sons. In such families,

labelled as type I, the mother can be phased using the grandfather and thus recombination

events between the maternal haplotypes can be directly observed in the sons. Also informative

are two-generation families consisting of one mother and two or more sons, labelled as type II
(Fig 1A). Here the maternal haplotypes cannot be determined given the lack of the
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grandfather. Hence the need for multiple sons to be evaluated together in order to discern,

among all possible maternal phasings, those that can better explain multiple recombination

events and thus also give information about recombination rates. Moreover, not only sons can

be used: when the father genotype/haplotype is available, the maternal haplotype can also be

retrieved from a daughter after phasing (Fig 1B).

The standard statistical approach for the estimation of recombination rates from pedigrees

computes the likelihood of kinship by taking into account all possible recombinations within

the maternal haplotype, resulting in the exponential complexity of the original algorithm [48].

Despite a new implementation in C++ that allows multi-core parallelization, this approach

remains too slow to handle panels of more than 15 X-STRs [49]. Such limitation clashes with

the increasing capability of forensic laboratories to simultaneously investigate larger panels of

DNA markers favoured by advances in standard capillary electrophoresis typing techniques

and the growing use of massively parallel sequencing (MPS) technology [8–17].

Fig 1. A) Three and two-generation family configurations useful for inferring recombination events (type I in blue on

the left and type II in yellow on the right). B) An example pedigree in which one type I (in blue) and two type II

families (in yellow with stripe patterns) can be extracted.

https://doi.org/10.1371/journal.pcbi.1011474.g001
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Moreover, the implementations of the estimation algorithm were never released to the pub-

lic, even though they are available upon request from the authors (who kindly provided us

with the original R script). They also do not include necessary steps such as data parsing and

preprocessing, requiring some R programming knowledge from the user. All of these issues

make performing the estimation on new datasets quite onerous, to the point that some recent

studies resorted to less accurate but simpler approaches that can be solved manually [56–59].

In order to make the estimation of recombination rates between X chromosomal markers

faster and more accessible, we developed the first open-source software with optimised algo-

rithms that allows the user to perform the estimation from a standard pedigree file in just one

command. The new algorithms implement the same statistical framework of the previous

work [48], without approximations or limiting assumptions, but extending its applicability

also to other types of polymorphisms (e.g., SNPs and INDELs). Taking advantage of dynamic

programming and other optimization techniques, we were able to drastically reduce computa-

tional time, also allowing us to handle an increased number of markers than previously possi-

ble. Notably, this improvement was obtained without sacrificing accuracy and without

increasing memory usage. We released this work as a Python module named “Recombulator-

X”, which is the first open-source software for the estimation of the recombination and muta-

tion rates for all types of genetic markers Fig 2. Beyond the optimised implementations of the

estimation method, it includes a command-line tool (requiring no programming knowledge),

extensive documentation and usage examples, all available in a GitHub repository (https://

github.com/serena-aneli/recombulator-x) and a dedicated website (https://serena-aneli.

github.io/recombulator-x/).

Materials and methods

Recombulator-X follows the general statistical framework and estimation strategy introduced

in [48]. There, the authors define a likelihood function that computes the exact probability of

observing a pedigree, given recombination and mutation rates as parameters. Then, they use

standard optimisation techniques (the L-BFGS-B method implemented in the optim function

in R) to find those rates that maximise the likelihood of the dataset. Our main contribution is

introducing a much faster implementation of the likelihood function (based on an optimised

algorithm) which yields the exact same probability as the original, that is, without resorting to

approximation.

Statistical framework and algorithmic optimization

We present here the statistical framework first introduced in [48] and show the parts that

resulted amenable to optimization. A haplotype of STR markers can be described as a vector x
= (x1, . . ., xn) of positive rational numbers (repeats can be fractionary). Let m = (m1, m2) be the

mother’s haplotypes and c be the child’s maternal haplotype (the one inherited from the

mother through recombination of her haplotypes). Possible recombinations are represented

by the inheritance vector v = (v1, . . ., vn−1) where vi 2 {1, 2} for all i (S2 Fig and S1 Appendix).

Other parameters are the recombination and mutation rate vectors θ and μ of length n − 1 and

n, respectively. Rates are all in the 0; 1

2

� �
intervals. Then we can define the likelihood of observ-

ing a child c from a mother m by a specific inheritance vector v as follows:

Lðc j m; y;m; vÞ ¼
Yn� 1

i¼1

ðyi þ ð1 � 2yiÞdðvi; viþ1ÞÞ �
Yn

i¼1

ðmi þ ð1 � 2miÞdðm
vi
i ; ciÞÞ ð1Þ

where δ(a, b) is 1 when a = b and 0 otherwise.
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Fig 2. The steps of Recombulator-X are represented on the left column of the figure, while we reported a

simplified example on the right using just three X-STRs. 1) Preprocessing: Recombulator-X reads the PED file,

performs preliminary quality checks, extracts the informative type I and type II families and phases all the females,

whenever their father is available. 2) Likelihood computation, depending on the family type: in the case of a phased

mother (type I family), the likelihood (L1) of each possible recombination is computed and summed up. Here, the red

crosses indicate genetic incompatibilities (mutations greater than one repeat), while the single red lines correspond to

compatible single-step mutations. When the grandfather is not available (and thus the mother cannot be phased, type

II family), this process is repeated for each possible maternal phase (L2). 3) In the last step—optimization—the

likelihood of the entire dataset is computed by multiplying together the likelihood of each family and Recombulator-X

searches the parameters (recombination and mutation rates) that maximize the global likelihood.

https://doi.org/10.1371/journal.pcbi.1011474.g002
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Then, by summing over all possible 2n inheritance vectors in V = {1, 2}n, we obtain the like-

lihood of a child’s haplotype:

Lðc j m; y;mÞ ¼
X

v2V

Lðc j m; y;m; vÞ ð2Þ

A son’s maternal haplotype can be observed directly from his genotype. For daughters, it

can be inferred by subtraction of the father haplotype, when it is available.

This definition of likelihood is enough for type I families (Fig 1A), where the mother’s hap-

lotypes can be determined using the grandfather’s haplotype and multiple children are handled

as independent recombination events, thus multiplying their likelihood together:

LðC j m; y;mÞ ¼
Y

c2C

Lðc j m; y;mÞ ð3Þ

where C is the set of the children’s haplotypes.

For type II families, where only the mother’s genotype is known but not her haplotypes, Eq

3 must be extended by further conditioning on the set M of all possible mother’s haplotypes

given her known genotype as follows:

LðC j M; y; mÞ ¼
X

m2M

LðC j m; y; mÞ ð4Þ

The original exponential-time algorithm, which we will call the direct algorithm, iterates

over all possible 2n recombinations of n markers, following directly Eq 2. However, for any

two inheritance vectors that are equal up to marker i, it can be seen that, in Eq 1, all products

up to marker i − 1 are the same. These repeated sub-computations can be avoided with

dynamic programming techniques and indeed by factoring them out we obtained an opti-

mised linear time-complexity algorithm for computing Eqs 2 and 3 with no loss of precision,

which we will call the dynamic algorithm. This is the case for type I families, where the moth-

er’s haplotypes are known. For type II families, where the grandfather is unavailable and only

the mother’s genotype is known, an additional iteration on all the possible 2(n−1) maternal hap-

lotypes is still needed as in Eq 4. Thus, type II families require exponential time also with the

dynamic algorithm, albeit going from O(2(2n−1)) of the original direct algorithm to O(n2(n−1)).

Our solution still provides an exponential speed-up with respect to the standard implementa-

tion (speed up is equal to O 2n

n

� �
).

The new likelihood function is then used to estimate the recombination and mutation rates

in the same way as in the original paper, by finding a minimum of the negative log-likelihood

of the dataset with the rates as parameters, employing the L-BFGS-B method for bound con-

straints (the rates must be positive and smaller than 0.5) as implemented in the scipy.optimize.

minimize function in the SciPy Python package [60], version 1.10.1.

Likelihood implementations

Beyond the algorithmic improvements, other optimization techniques were explored to fur-

ther reduce computation times. As a result, Recombulator-X includes multiple implementa-

tions of the likelihood computation, both of the original direct algorithm and the improved

dynamic one: the direct-loop, direct-numpy, dynamic and dynamic-numba implementations.

The direct-loop is a straightforward implementation of the direct algorithm using loops,

similar to the original R implementation. This version of the likelihood is arguably the simplest

to understand and was thus used as a reference for testing the correctness of the more complex

optimised versions. The same computation was also implemented using the fast vectorized
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operations offered by the NumPy package version 1.23.5 [61], with the label direct-numpy.

However, this implementation is still exponential in time and also in space, since it requires

intermediate results to be stored as large multidimensional arrays.

The dynamic programming algorithm is much faster with its linear complexity (for type I

families), even when written using Python loops as in the dynamic implementation. However,

it still benefits from being compiled with the Numba package (version 0.56.4) as the dynamic-
numba implementation [62]. For type II families, to ameliorate the still exponential complex-

ity, we introduced a further optimization, branching through the possible maternal phasings

and computing partial likelihoods up to a certain marker, sharing part of the computations

and discarding the branches with zero likelihood early.

Testing and benchmarking were performed by simulating random pedigrees from given

recombination and mutation rates using generative functions (included in Recombulator-X).

The procedure for generating the simulated pedigrees is the following: at first, the mother’s

haplotypes are generated with random markers and they are then recombined and mutated

according to the given rates to generate the children’s maternal haplotype. Then fathers and

paternal haplotypes are randomly generated for female children. For type I families, a grandfa-

ther is added with one of the mother’s haplotypes. Then haplotypes of females are sorted, effec-

tively removing the phase information which will be recovered during preprocessing. This

process is repeated for the desired number of families and the generated individuals are then

written as a PED file. Datasets yielded by this procedure allow testing of the whole estimation

process, from data loading to the recombination and mutation rate estimation.

All benchmarks were averaged across ten runs on a workstation with an Intel i9–12900F

processor and 128Gb of RAM. The direct-numpy implementation does require a considerable

amount of memory, especially for type II families, and thus an adequate machine was required

for benchmarking; however, the actual requirements of the dynamic programming implemen-

tation are much lower, allowing Recombulator-X to run on non-workstation hardware for

many typical use cases.

Extension to non-STR markers

We extend the statistical framework from [48] to handle panels of arbitrarily mixed STR and

non-STR polymorphisms. Single base substitutions are expected to be represented as single-

letter codes, but generic strings are accepted to accommodate for more complex non-STR

polymorphisms like INDELs. Internally we extend the numeric representation of alleles by

encoding unique non-STR alleles with decreasing negative integers. In the likelihood defini-

tion, we keep the recombination part unchanged since it is not affected by the type of marker,

but we need to extend the mutation part. So we replace Eq 1 with the following:

Lðc j m; y;m; vÞ ¼
Yn� 1

i¼1

ðyi þ ð1 � 2yiÞdðvi; viþ1ÞÞ �
Yn

i¼1

p∗i ðm
vi
i ; ciÞÞ

where p∗i ða; bÞ is the probability of mutation from an allele a to an allele b, which is defined dif-

ferently depending on the type of marker. For STR markers, we define:

pSTRi ða; bÞ �

1 � mi a ¼ b;

mi ja � bj ¼ 1;

0 ja � bj =2 f0; 1g:

8
><

>:

so that non-unit mutations (insertion or deletions of multiple or partial repeats) have zero

probability since they are much less frequent than unit mutations. Instead for non-STR
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polymorphic markers, we define:

pPOLYi ða; bÞ �

1 � mi a ¼ b;
9

10
mi a! b is a transition

1

10
mi otherwise

8
><

>:

where transitions are single base mutations between purines (A and G) or pyrimidines (C and

T), which are much more frequent than other single base substitutions or more complex poly-

morphisms [63].

Additional features

While the dynamic programming algorithm for the likelihood function is arguably the core of

the package, Recombulator-X original contributions also include non-trivial dataset parsing

and preprocessing functions. Thanks to those, datasets can be read from the standard PED for-

mat as used by the PLINK software [64], a simple textual format that encodes both arbitrary

relatedness and genetic information. Preprocessing functions then 1) build an arbitrarily com-

plex graph for each group of related individuals (S3 Fig and S1 Appendix); 2) extract all sub-

graphs that can be used as type I or II families; 3) phase mothers and daughters whenever

possible and finally yield the processed dataset ready for the estimation. During this prepro-

cessing some consistency checks take place, alerting the user of eventual problems with the

data. All these steps are wrapped into a single command line tool, that takes a pedigree file as

input and outputs the recombination and optionally the mutation rates. This tool allows the

user to run the entire estimation without programming knowledge.

Results

The main contribution of this work is arguably the dynamic programming optimization in the

likelihood computation for type I families, where the mother’s phasing is known. The likeli-

hood is defined as a sum over all the possible recombinations of the mother’s haplotypes,

which are 2n for n markers. The exponential number of recombinations is the source of the

exponential complexity of the original implementation. The key observation for the optimiza-

tion is that the likelihood formula for n markers includes the likelihood formula for the first n
− 1 markers two times. By avoiding the double computation of the likelihood of the first n − 1

markers, we can halve the computation time. The same can be done for the first n − 1 markers

by avoiding the double computation of the likelihood of the first n − 2 markers. By repeating

this process recursively, we avoid all repeated computations and obtain a linear time algo-

rithm. More details on the dynamic optimization are available in the Methods section.

Similarly, the likelihood computation for type II families, where the mother’s phasing is

unknown, requires computing the type I likelihood for all possible phasings. Again these are

exponential in the number of markers. The optimization of the type I likelihood computation

strongly reduces the complexity, but performing an exponential number of linear-time sub-

computations still yields an exponential-time algorithm. Unfortunately, the type II likelihood

computation does not appear to be amenable to dynamic programming optimization and thus

the presence of type II families is still a limiting factor for the number of markers that can be

analysed.

In order to assess the reduction in the likelihood computation time and how it improves

the whole recombination and mutation rate estimation process, we performed a series of

benchmarks using simulated datasets with incremental number of markers.
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The first benchmark compares the different algorithms and implementations of the likeli-

hood function that are included in Recombulator-X. To see how the computation time is

affected by the number of markers, we measured the average time to compute the likelihood of

type I or type II simulated families in Fig 3 (see also S1 File and S1 Table). The exponential

complexity of the direct algorithm is clearly visible, both for type I and type II families. The

dynamic programming algorithm shows instead its linear complexity for type I families, allow-

ing a virtually unlimited number of markers. Unfortunately, type II families remain problem-

atic, even though the dynamic programming numba-optimised version is able to handle ten

more markers than the numpy-vectorized direct implementation in the same time (from 11 to

21 markers).

After testing the likelihood function implementations, we benchmarked the entire optimi-

zation procedure using the fastest implementation, dynamic-numba, in order to see how the

improvements to the likelihood computations impact the whole process of recombination and

mutation rate estimation. The results are reported in Fig 4.

Unsurprisingly, when considering only type I families, the estimation is very fast. For 100

families, the estimation of up to 100 markers is almost instantaneous, taking less than two

Fig 3. Mean time needed to compute the likelihood for one family typed over up to 10,000 markers. Each implementation is represented with a

different colour, while the linestyle refers to family types. The y axis is in log scale. For each implementation, the number of markers was progressively

increased until the computation time went above one second per family.

https://doi.org/10.1371/journal.pcbi.1011474.g003
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seconds. However, at around 130 markers, we start having issues where the optimization fails

to converge. Even raising the iteration limit for convergence and trying the other optimization

methods available in SciPy did not allow the estimation to converge.

When also type II families are involved, the exponential complexity of the likelihood func-

tion poses a hard limit to the number of markers. For a dataset of 100 type I and 100 type II

families, the computation times are much longer, roughly doubling for each additional marker

(as expected). We stopped testing at 20 markers, where the average computational time was 16

hours.

While a direct comparison of Recombulator-X with previous software is difficult (the

genetic data from the two previous studies are not publicly available), we also simulated data-

sets with the same size as in previous studies to have a comparison in more realistic scenarios.

Nothnagel and colleagues analysed 216 type I and 185 type II families genotyped with a panel

of 12 markers [48]. While they did not report the time required, they felt the need to say that a

faster implementation was needed. Our method only takes 3.5 minutes on a simulated dataset

with the same number of families. In a later analysis, involving 54 type I and 104 type II fami-

lies with a panel of 15 markers, the authors developed a much faster parallel version in C++.

However, due to the increased number of markers and the exponential complexity, the estima-

tion process took a few months on a highly parallel computing systems [49]. Our method takes

20 minutes to carry on the same task. While these times are not completely comparable given

that they ran on different datasets, on different hardware and in different languages, it is clear

that such a decrease in time cannot be attributed to those factors alone and that Recombula-

tor-X, even with its current limitations, brings a substantial improvement over previous

methods.

Note that this speed-up in computation does not entail any trade-off in spatial complexity.

On the contrary, Recombulator-X has a minimal memory usage: in the previous two simulated

examples, the maximum memory occupation were 197Mb and 202Mb for the 12 and 15

marker datasets, respectively.

Fig 4. Recombination and mutation estimation times using the fastest (dynamic-numba) likelihood implementation depending on the number of

markers. A simulated dataset of 100 type I families (A) and one of 100 type I and 100 type II families (B) were tested. Times are in seconds, with a

logarithmic axis for the right panel.

https://doi.org/10.1371/journal.pcbi.1011474.g004
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Discussion

The proper biostatistical evaluation of the evidential weight in personal identification and kin-

ship tests when dealing with X chromosome markers is a nagging problem in forensics, due to

physical linkages [3, 6, 45, 50, 65]. Despite being crucial for unbiased formulations of the evi-

dential weight, as also highlighted by the International Society of Forensic Genetics [6], few

biostatistical tools for the evaluation of recombination rates between adjacent forensic markers

along the X chromosome are available today.

Routine kinship analyses rely almost exclusively on commercial kits, such as the commonly

used Argus X-12 QS which consists of 12 X-STRs [3, 26–44]. However, current implementa-

tions of state-of-the-art statistical framework for estimation from pedigrees, besides being

quite onerous to use, are already very slow for 12 markers and so unsuitable for larger panels

without the availability of large computational resources [48, 49]. Consequently, many recent

works have been limited to a “manual” evaluation of the recombination rate which does not

consider the mutation probability [56–59].

The growing use of next-generation sequencing technologies in the forensic fields, with the

possibility of combining thousands of markers together, requires the development of new bio-

statistical frameworks scalable to a higher number of genetic markers [9]. Moreover, many com-

mercially available NGS-based kits allow to combine STRs and other non-traditional markers,

such as SNPs or INDELs [12–17]. In particular, SNPs have been increasingly appealing thanks

to their technical features and informational power: their smaller amplicon size is crucial with

samples of low quantity and poor quality (this is relevant since the majority of forensic analyses

involves degraded DNA) [66] and they provide insight for predicting human appearance and

the biogeographical origin of unknown sample donors or deceased/missing persons [67, 68],

thus ultimately resulting in new investigative leads. Additionally, given their lower mutation rate

when compared to STRs, they were shown to be helpful in solving kinship cases [69, 70]. Nota-

bly, the latest application of SNPs is investigative genetic genealogy where dense SNP data are

jointly analysed to infer distant relationships (which in forensics indicate relatedness exceeding

that of first cousins) [71]. For these reasons, an increasing number of commercial NGS-based

kits have included X chromosomal SNPs and/or STRs to address complex kinship scenarios [14,

18, 72–78]. Nevertheless, complex kinship cases relying on many and mixed types of X chromo-

somal genetic markers cannot be addressed using the previous implementations for the infer-

ence of recombination rates, which are used, albeit with limitations, for STR markers.

In order to overcome these issues, we developed Recombulator-X, the first open-source

tool for rapidly inferring X chromosome recombination rates. Our optimised algorithm is sub-

stantially faster than existing gold-standard methods, with no loss of accuracy since it is based

on the same statistical framework. Performing the estimation on standard panels of 12 markers

on a new dataset can now be done in minutes instead of days or weeks on a single PC. This

will also enable new studies to experiment with larger panels than previously possible, going

from a practical limit of around 15 markers to more than 25 for general datasets and one hun-

dred when considering only type I families. Moreover, the extension to mixed STR and non-

STR markers is especially relevant to enable sequencing-based panels.

No less important from a practical point of view is that the full implementation and source

code (including dataset parsing and preprocessing) are available as a Python package. The

repository also includes documentation, usage examples and a command line tool, greatly sim-

plifying the estimation process for a non-technical user. This, together with the lower compu-

tational requirements, will encourage the use of the gold standard estimation technique that

can account for mutations instead of the simpler but biased frequency calculation that are still

commonly used in the research community.
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For all these reasons, we hope that Recombulator-X might transform the estimation of

recombination rates from an arduous process requiring specialised expertise and hardware to

a routine computational analysis that anyone can perform.
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10. Alonso A, Barrio PA, Müller P, Köcher S, Berger B, Martin P, et al. Current state-of-art of STR sequenc-

ing in forensic genetics. Electrophoresis. 2018; 39(21):2655–2668. https://doi.org/10.1002/elps.

201800030 PMID: 29750373

11. Parson W, Ballard D, Budowle B, Butler JM, Gettings KB, Gill P, et al. Massively parallel sequencing of

forensic STRs: Considerations of the DNA commission of the International Society for Forensic Genet-

ics (ISFG) on minimal nomenclature requirements. Forensic Sci Int Genet. 2016; 22:54–63. https://doi.

org/10.1016/j.fsigen.2016.01.009 PMID: 26844919

12. Churchill JD, Schmedes SE, King JL, Budowle B. Evaluation of the Illumina Beta Version ForenSeq

DNA Signature Prep Kit for use in genetic profiling. Forensic Sci Int Genet. 2016; 20:20–29. https://doi.

org/10.1016/j.fsigen.2015.09.009 PMID: 26433485

13. Novroski NMM, Cihlar JC. Evolution of single-nucleotide polymorphism use in forensic genetics. WIREs

Forensic Science. 2022; 4(6). https://doi.org/10.1002/wfs2.1459

14. Stephens KM, Barta R, Fleming K, Perez JC, Wu SF, Snedecor J, et al. Developmental validation of the

ForenSeq MainstAY kit, MiSeq FGx sequencing system and ForenSeq Universal Analysis Software.

Forensic Sci Int Genet. 2023; 64:102851. https://doi.org/10.1016/j.fsigen.2023.102851 PMID: 36907074

15. van der Gaag KJ, de Leeuw RH, Hoogenboom J, Patel J, Storts DR, Laros JFJ, et al. Massively parallel

sequencing of short tandem repeats-Population data and mixture analysis results for the PowerSeq sys-

tem. Forensic Sci Int Genet. 2016; 24. https://doi.org/10.1016/j.fsigen.2016.05.016 PMID: 27347657

16. Turchi C, PreviderèC, Bini C, Eugenia C, Grignani P, Manfredi A, et al. Assessment of the Precision ID

Identity Panel kit on challenging forensic samples. Forensic Sci Int Genet. 2020; 49:102400. https://doi.

org/10.1016/j.fsigen.2020.102400 PMID: 33075733
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