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Abstract—This paper explores the issue of enabling Ultra-
Reliable Low-Latency Communications (URLLC) in view of the
spatio-temporal correlations that characterize real 5th generation
(5G) Industrial Internet of Things (IIoT) networks. In this
context, we consider a common Standalone Non-Public Network
(SNPN) architecture as promoted by the 5G Alliance for Con-
nected Industries and Automation (5G-ACIA), and propose a new
variant of the 5G NR semi-persistent scheduler (SPS) to deal with
uplink traffic correlations. A benchmark solution with a “smart”
scheduler (SSPS) is compared with a more realistic adaptive
approach (ASPS) that requires the scheduler to estimate some
unknown network parameters. We demonstrate via simulations
that the 1-ms latency requirement for URLLC is fulfilled in
both solutions, at the expense of some complexity introduced
in the management of the traffic. Finally, we provide numerical
guidelines to dimension IIoT networks as a function of the use
case, the number of machines in the factory, and considering
both periodic and aperiodic traffic.

This paper has been accepted for presentation at the 2023 IEEE International Conference on Communications (ICC). ©2023 IEEE.
Please cite it as: S. Cavallero, N. Sarcone Grande, F. Pase, M. Giordani, J. Eichinger, R. Verdone, M. Zorzi, “A New Scheduler for URLLC in 5G NR IIoT

Networks with Spatio-Temporal Traffic Correlations,” IEEE International Conference on Communications (ICC), Rome, Italy, 2023.

Index Terms—5G, NR, URLLC, IIoT, traffic correlations,
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I. INTRODUCTION

The fourth Industrial Revolution (Industry 4.0) is driven
by several 5th generation (5G) technologies such as Artificial
Intelligence (AI) and robotics, and aims at improving the ef-
ficiency, security, and revenue of Industrial Internet of Things
(IIoT) applications [1], [2]. For some IIoT processes, Ultra-
Reliable Low-Latency Communications (URLLC) is required,
i.e., network reliability up to 99.99999%, and end-to-end
(E2E) latency below 1 ms [3]–[5].

From the network architecture point of view, the 3rd Gen-
eration Partnership Project (3GPP) introduces in Rel-16 (and
future specifications) the paradigms of Standalone Non-Public
Network (SNPN) and Public Network Interface Non-Public
Network (PNI-NPN) to promote URLLC in IIoT scenarios [6],
[7]. The 3GPP SNPN paradigm has also been explored by the
5G Alliance for Connected Industries and Automation (5G-
ACIA) to recommend promising network architectures able
to satisfy IIoT application requirements [8]. With regard to
resource allocation, the 3GPP NR supports semi-persistent
scheduler (SPS) in the uplink (UL) [9], in which the network

pre-allocates radio resources, avoiding the need for the User
Equipments (UEs) to receive uplink grants before transmission
as in conventional grant-based scheduling. Many works have
analyzed and demonstrated the potential of SPS to reduce the
UL latency [10]–[12], also against some other contention-
based solutions which prioritize latency at the expense of
reliability [13], [14]. However, most of the prior art neglects
the impact of the 5G protocol stack, thus considering the air
latency instead of the more representative E2E latency, or
introduces some assumptions in the traffic model. For example,
in our previous contribution [15], we assumed that UEs in
different machines generate packets simultaneously and ac-
cording to pre-defined periodicity and size, thus neglecting the
complexity of IIoT scenarios where different types of traffic
may coexist.

To fill these gaps, in this paper we introduce a new, but
more realistic, traffic model in which industrial machines
and users activate and generate traffic, respectively, based
on some specific temporal and spatial correlations. Based on
that, we propose a new implementation of the SPS for IIoT
networks based on a 5G-ACIA SNPN architecture, able to
predict and exploit the temporal/spatial correlations of the
traffic, and to pre-allocate resources accordingly. We consider
two schemes: (1) the smart semi-persistent scheduler (SSPS)
(our benchmark), in which a “smart” Next Generation NodeB
(gNB) is assumed to have full knowledge of the system model;
and (2) the adaptive semi-persistent scheduler (ASPS) in which
the gNB implements a heuristic algorithm to estimate the
system parameters for resource allocation. The performance
of the proposed schemes is studied in terms of E2E latency
against some baselines, as a function of the type of traffic
(periodic or aperiodic), the offered traffic, the number of
users, the bandwidth, and considering two IIoT use cases
with different requirements. To do so, we develop a custom
full-stack simulator implementing the 3GPP channel model
proposed in [16], already tailored to IIoT environments [15],
and model the total latency taking into account the time for
the protocol and the control operations at the transmitter, data
transmission and propagation, radio frequency (RF) processing
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Fig. 1. The baseline 5G-ACIA network architecture [8].

at the receiver, and the delay introduced by the core network.
The rest of the paper is organized as follows. In Sec. II

we describe our system model and simulator, in Sec. III
we present our proposed SPS schemes for IIoT networks
considering traffic correlations, in Sec. IV we introduce our
system parameters and discuss the numerical results, and in
Sec. V we conclude with suggestions for future research.

II. END-TO-END SYSTEM MODEL

A. Network Architecture

The reference scenario is a factory with “machines” (in-
dustrial assets in charge of different tasks), connected to an
SNPN, which is a 5G remote and private network with a
reserved Radio Access Network (RAN) and 5G Core (5GC).
Our baseline SNPN architecture is designed according to the
5G-ACIA recommendation, as illustrated in Fig. 1, where the
Controller/Master (C/M) is the IIoT central entity responsible
for monitoring and controlling the machines from the 5GC.

B. Deployment Model

The gNB and its fronthaul are located at the center of
the ceiling of the factory, as shown in Fig. 1. The factory
floor is modeled as a parallelepiped of length l, width w,
and height h, as indicated in [17]. We consider M machines,
modeled as fixed cubes of size S, and deployed on the
factory floor according to a uniform distribution ensuring
a given inter-machine distance D (evaluated from halfway
across the lower base) and a minimum number of machines
Mmin (where both D and Mmin are input parameters of our
simulator). Likewise, N UEs are distributed following the
same method, at a maximum height S, and can be placed
onboard industrial machines, on top of walls, on metal slabs, or
on robots. Inside the factory, several ”obstacles” may obstruct
the communication between the UEs and the gNB.

C. Channel Model

The channel is characterized based on the 3GPP Indoor
Factory (InF) model for IIoT networks [16, Table 7.2-4] and
is implemented as in our previous work [15]. Specifically, the
model suggests four InF scenarios, depending on the density
of machines and the height of the UEs and of the gNB with
respect to the ground. Then, the path loss depends on the
condition of the channel (Line-of-Sight (LOS) or Non-Line-
of-Sight (NLOS)), while the quality of the received signal is
assessed in terms of the Signal-to-Noise-Ratio (SNR).

D. Traffic Model

Unlike in previous work [15], the traffic is generated ac-
cording to pre-defined IIoT-specific correlations. As such, the
M machines are organized in nlines production lines, and each
UE is associated with the nearest machine. When a machine
in a production line activates, its UEs produce data traffic
for an entire activation period of duration τon. The traffic
model accounts for both temporal and spatial correlations. In
principle, we investigate two different types of correlation:
• Inter-machine correlation, which refers to the way ma-

chines activate. When an event occurs, one machine per
production line is activated. Then, machines in the same
production line activate in sequence.

• Intra-machine correlation, which refers to the way UEs
associated with each active machine generate data. After
one machine per line is activated, the UEs associated with
those machines activate too, each with probability p. Once
active, each UE generates a flow of packets according to
some statistics (e.g., in terms of the inter-packet interval
and/or the packet size) for a whole τon. We consider
periodic traffic, generated at constant periodicity τ , or
aperiodic traffic, in which the inter-data-burst interval
changes according to a uniform random variable within
the interval [tmin, tmax].

III. 5G-NR UPLINK SCHEDULER
WITH TRAFFIC CORRELATIONS

The E2E latency is affected by the implementation of the
5G Uplink Scheduler (US), located at the gNB. After a brief
overview on the baseline 5G NR SPS (Sec. III-A), in Sec. III-B
we present our new SPS designs for correlated traffic.

A. 5G NR SPS General Overview

Four messages are exchanged for the 5G NR scheduling: (1)
each UE uses the Physical Uplink Control Channel (PUCCH)
to ask the US for being scheduled; (2) the gNB communicates
via the Physical Downlink Control Channel (PDCCH) to the
UEs which resources can be used for transmission; (3) the
UEs transmit their data blocks through the Physical Uplink
Shared Channel (PUSCH); (4) the gNB provides the communi-
cation acknowledgment via Hybrid Automatic Repeat reQuest
(HARQ). In the frequency domain, the overall bandwidth
B is split into nRB Resource Blocks (RBs), each made
of 12 Orthogonal Frequency Division Multiplexing (OFDM)
subcarriers [18], where PUCCH, PDCCH and HARQ signals
occupy one RB, whereas the number of RBs in the PUSCH
depends on the modulation order, the number of mapped data
blocks, and their size. On the contrary, the time domain is
organized in OFDM symbols, where 7 OFDM symbols (nos)
define a Scheduling Unit (SU): PUCCHs and PDCCHs occupy
one SU each, while PUSCHs and HARQs form one SU, where
one OFDM symbol is spent to switch from transmission to
reception and vice versa under the assumption of half-duplex
communication.

Every TIP, i.e., the inter-PUCCH time, each UE asks for
resources by means of the PUCCH, after which the US



Fig. 2. Timing diagram of the proposed SPS scheme for correlated traffic.
The PUSCH opportunities are allocated to the i-th UE immediately after a
new data block generation.

employs one SU to process the request and allocate resources
accordingly. With SPS, the US (1) estimates the times at which
new data blocks will be generated until the next PUCCH
opportunity; (2) allocates time/frequency resources based on
the SU in which they will be served (where data blocks
generated at SUi will be assigned to SUi+1); and (3) notifies
the UEs via the PDCCH, which takes another SU.
In our simulator, the US assigns resources according to the
following criteria, in sequential order:

1) Earliest Deadline First (EDF), i.e., UEs’ requests that are
closer to the 1-ms latency requirement are prioritized.

2) Fairness First (FF), i.e., UEs are served up to a given
minimum level (the bucket size Bs), to promote fairness
during transmission. This approach avoids that some
UEs monopolize the channel at the expense of the others.
If there are still resources available, the UEs’ requests
beyond the bucket size are processed.

Notice that, when considering correlated traffic, at each
PUCCH opportunity only a fraction of the machines in the
factory is active, so only the UEs associated with those specific
machines can send the PUCCH. Ideally, if the US knows
the spatio-temporal statistics of the correlated traffic, it can
schedule resources even without explicit scheduling requests
from the UEs via the PUCCH, as we will propose to do in
the following section.

B. Proposed SPS for IIoT Correlated Traffic

In [15] we showed that SPS may be inefficient when the
traffic is aperiodic, due to estimation errors in the US. In order
to deal with traffic correlations, we introduce the following
assumptions for aperiodic UEs.
• To avoid packet accumulation in the queue, and the

possibility that packets are not transmitted on time before
the UE is switched off, each UE can generate at most two
packets during τon, as follows:

– The first packet is generated randomly within the
interval [tmin, (tmin + tmax)/2].

– The second packet is generated randomly within the
interval [tmin, tmax], provided that it is within the
UE’s activation period.

• The US schedules three SUs per activation period for each
aperiodic UE: one SU at time (tmin + tmax)/2, and two

SUs in the second-last and last resources of the current
activation period, respectively.

• If many UEs have to send packets in the last two
assigned SUs, more resources may be needed to complete
their transmissions, which may involve using some of
those already allocated in the following τon. Therefore,
a guard interval (GI) of two SUs has been introduced
in the data plane at the end of each activation period,
to complete ongoing transmissions. The GI ensures that
UEs’ transmissions in consecutive activation periods do
not overlap, as depicted in Fig. 2. The effect of the GI
affects the definition of TIP. In particular, we have that

TIP = (τon + 2 · SU) · non, (1)

where non is the number of activations during TIP, and
is an input parameter which allows some machines to re-
activate within the same TIP, especially when M is small.

Based on the above assumptions, we propose two imple-
mentations of the SPS for correlated traffic.

1) Smart semi-persistent scheduler (SSPS): The “smart
gNB” is fully aware of the E2E system model, including:
• the number of production lines (nlines) inside the factory;
• the number of machines (M ) in each production line;
• both the number and the ID of the UEs associated with

each machine;
• the type of traffic generated by the UEs (i.e., periodic or

aperiodic), and the data block size;
• the activation period (τon) of the machines;
• the number of activations per TIP (non).

When the gNB receives the PUCCH requests from the active
UEs, it can immediately identify the active machines, and
those that will activate in the following τon. As such, the
gNB can accurately predict the entire flow of activations, and
schedule resources accordingly. SSPS introduces very strong
assumptions at the gNB, which makes it a suitable approach
for benchmarking the performance of more practical schemes.

2) Adaptive semi-persistent scheduler (ASPS): To consider
a more realistic scenario, we assume that the gNB does not
know a priori τon and non. Hence, the gNB implements
an adaptive heuristic algorithm to estimate these missing
parameters, as described in Algorithm 1. In particular, the gNB
initially estimates τ̂on and n̂on based on the values of TIP and
nlines (known). Then, the value of n̂on is updated based on the
ID of UEs sending scheduling requests in consecutive PUCCH
opportunities, while the value of τ̂on is updated based on the
outcomes of previous resource allocations, that is based on the
number of unused SUs in previous PUCCH opportunities.

Preliminary simulations show that a training phase of at
least 3TIP is required to accurately learn τ̂on, thus to perform
error-free scheduling, which has implications in terms of la-
tency, as we will show in Sec. IV. Besides, during the training
phase, some data blocks may be buffered, accumulating very
long delays. For this reason, UEs adopt a dropping policy
that allows queued packets to be discarded if they are not



Algorithm 1 Adaptive semi-persistent scheduler (Sec. III-B2)
1: System Initialization

• ne: estimation cycle
• τ̂on: estimated activation period
• n̂on: estimated number of activations
• sunotx: list of SUs not used by UEs for data tx
• tnotx[i]: instant of time corresponding to sunotx[i]
• sutx: list of SUs used by UEs for data tx
• ttx[i]: instant of time corresponding to sutx[i]

2: Start
3: ne = 1 → τ̂on = TIP/nlines and n̂on = nlines
4: ne = 2 → gNB recovers the activation period index (k) at ne − 1 for

UEs that sent the PUCCH at ne → n̂on = nlines + k − 1
5: Based on n̂on and TIP → τ̂on even (τ̂onev ) or odd (τ̂onod )
6: gNB keeps track of sunotx
7: if τ̂onev = True then
8: τ̂on = tnotx[0] + (ne − 1) (nos)
9: else

10: τ̂on = tnotx[0]
11: end if
12: ne = 3→ gNB keeps track of the new su

(new)
notx and sutx

13: if su(new)
notx [0] = sunotx[0] then

14: τ̂on = tnotx[0] + (ne − 1) (nos)
15: else
16: for i = 1 to lenght(sutx) do
17: ∆ = sutx[i]− sutx[i− 1]
18: if ∆ > τ̂on then
19: τ̂

(new)
on =

τ̂on+ttx[i−1]
2

20: τ̂on = τ̂
(new)
on + (ne − 1) (nos)

21: end if
22: end for
23: end if

transmitted within the current activation period (GI included),
thus promoting lower latency, at the cost of reduced reliability.

IV. PERFORMANCE EVALUATION

In Sec. IV-C we compare the E2E latency, defined in
Sec. IV-A, of different SPS schemes, based on the simulation
parameters introduced in Sec. IV-B.

A. End-to-End Latency Analysis
In this work we evaluate the E2E latency experienced in

the IIoT scenario referenced in Sec. II. The E2E latency for a
single data burst (Service Data Unit (SDU) at the application
layer) is computed as the time between the generation of the
data burst at the UE and its reception at the C/M. Formally,
the E2E latency L, is given by:1

L = TP +TRAN +TTX +τP +TFH +τFH +TgNB +TCN, (2)

where TRAN is the time between the generation of the data
block (Packet Data Unit (PDU) at the physical layer) and
its transmission over the channel, which depends on the
scheduling algorithm, and on the system parameters. On the
contrary, the other terms have constant values. Finally, we
introduce the average E2E latency L̄, averaged over the data
blocks generated by the UEs within the simulation time TS ,
and over the number of UEs.

B. Simulation Parameters
The simulation parameters are in Table I. We consider:

1For a more detailed explanation of the terms in Eq. (2), we refer the
interested readers to the analysis in [15].

TABLE I
SIMULATION PARAMETERS.

Parameter Description Value
fc Carrier frequency 3.5 GHz
B Overall system bandwidth {60,120} MHz
∆f Subcarrier spacing 60 kHz
SNRth SNR threshold −5 dB
T Noise temperature 290 K
TP Delay to create data block 7 OFDM symbols
TTX Data block transmission time 4 OFDM symbols
τP Propagation time 0
TFH Fronthaul delay 0.05 ms
τFH FH-to-gNB propagation time 0
TgNB gNB delay 7 OFDM symbols
TCN 5GC delay 0.1 ms
TS Simulation time 10 s
GUE = GgNB Antenna gain 0 dB
PTX,UL UE (UL) transmit power 23 dBm
PTX,DL gNB (DL) transmit power 30 dBm
D Inter-machine distance {5, 10} m
S Side of the machines {2, 3} m
Mmin Min. number of machines 16
l Length of the factory floor {20, 50} m [8]
w Width of the factory floor {20, 10} m
h Height of the factory floor {4, 10} m
H 5G protocol stack header 72 bytes [19]
Bs Bucket size 40% of data burst
p User activation probability 1

• Two use cases, defined by the 5G-ACIA: (1) augmented
reality and (2) remote access and maintenance. According
to the requirements in [17], and given their factory
layouts, in (1) nlines = 4, with four machines per line,
while in (2) nlines = 2, with eight machines per line.

• A subcarrier spacing of ∆f = 60 kHz which, as observed
in [15], offers lower latency compared to ∆f = 30 kHz.

• Two values of the bandwidth, i.e., B = 60 and 120 MHz,
which lead to nRB = 84 and 167 RBs, respectively.

We compare the performance of 5G NR SPS presented
in Sec. III-A and deployed in [15] (referred to as baseline
semi-persistent scheduler (BSPS) in the rest of the paper)
with our extensions SSPS and ASPS for correlated traffic
presented in Sec. III-B. Moreover, we analyze the performance
of correlated traffic according to the model in Sec. II-D, for
both periodic and aperiodic data, as a function of the per-user
offered traffic G, i.e., the ratio between the data block size
and the traffic periodicity.

C. Numerical Results
Impact of the SPS implementation. Tab. II compares

the average E2E latency for BSPS, SSPS and ASPS, vs. the
number of UEs N . We consider the augmented reality use
case, τon = 8 ms, B = 60 MHz, and non = 5 (i.e., TIP =
41.25 ms according to Eq. (1)). Active UEs generate periodic
traffic with periodicity τ = 2 ms. We see that, for BSPS, L
may grow indefinitely. This is due to the fact that the US can
assign resources only to those UEs making scheduling requests



TABLE II
E2E LATENCY VS. N, FOR DIFFERENT SPS IMPLEMENTATIONS.

N LBSPS [ms] LSSPS [ms] LASPS [ms]
60 97.2 0.798 4.417
70 107.429 0.846 4.782
80 118.774 0.901 4.865
90 131.056 0.967 4.998
100 147.682 1.022 5.089

Fig. 3. Average E2E latency vs. N , for BSPS, SSPS and ASPS with the
dropping policy. We consider the augmented reality use case, G = 2.75
Mbit/s, τon = 8 ms, non = 5. Numbers on top of the bars are the packet
loss ratios.

via the PUCCH, while the others keep their data blocks in the
queue, thus accumulating delays. On the other hand, SSPS and
ASPS are designed to predict the spatio-temporal correlations
of the traffic even without explicit PUCCH requests, and make
faster scheduling decisions. While L ≤ 1 ms only for SSPS
with N < 100, and under the assumption that the gNB has
complete information about the traffic statistics of machines
and UEs, ASPS can still provide very low latency (up to −97%
compared to BSPS), even though during the training phase the
US may assign resources inaccurately, which implies that some
data may remain in the queue and accumulate delays.

Impact of the dropping policy. In Fig. 3 we still evaluate
the E2E latency for BSPS, SSPS and ASPS, but now we
introduce the dropping policy as described in Sec. III-B2.
While SSPS is designed to schedule resources with 100%
accuracy, unscheduled packets in BSPS and ASPS will now be
discarded if they are not transmitted within the UE’s activation
period. The dropping policy is the result of a compromise
between latency and reliability: for ASPS, we can see that
L is up to 75% lower than the results in Tab. II (that do
not include the dropping policy), and can satisfy the 1-ms
latency requirement for URLLC as long as N < 70, despite
some packet loss. Notice that the latency for BSPS is not
meaningful, as it comes with around 80% packet loss, which
makes the system less congested: the (few) packets that will
not be discarded because of the dropping policy are then
transmitted with lower delay. As such, we can conclude that
BSPS is totally unreliable for correlated traffic.

Impact of the use case and G. Fig. 4 shows the average
E2E latency for SSPS and ASPS with the dropping policy, as
a function of G and of the use case. According to Eq. (1),

Fig. 4. Average E2E latency vs. G and the use case (where (1) is for
augmented reality and (2) is for remote access and maintenance), for SSPS
and ASPS with the dropping policy. We set N = 60, τon = 8 ms. Numbers
on top of the bars are the packet loss ratios.

Fig. 5. Average E2E latency vs. non, N and B for ASPS with the dropping
policy. We consider the augmented reality use case, τon = 8 ms, G = 2.75
Mbit/s. Numbers on top of the bars are the packet loss ratios.

and given that non is equal to the number of machines per
production line, we have that for use case (1) (augmented
reality) TIP = 33 ms, while for use case (2) (remote access
and maintenance) TIP = 66 ms. As expected, the E2E latency
increases with G since the network is more congested. Also,
the impact of the use case is remarkable: the number of
machines (and, consequently, of UEs) that can be active
simultaneously is proportional to nlines, and is higher for use
case (1), meaning that each UE can be assigned fewer RBs on
average. In these conditions, the 1-ms requirement for URLLC
can always be satisfied for use case (2), while for (1) it should
be G ≤ 4.25 Mbit/s if SSPS or G ≤ 3.75 Mbit/s if ASPS.

Impact of the number of activations and B. Fig. 5 shows
the average E2E latency for ASPS with the dropping policy,
as a function of non, B and N , for the augmented reality use
case and G = 2.75 Mbit/s. We observe that L increases as B
decreases, proportionally with N . When N = 120, the 1-ms
URLLC latency requirement can never be achieved for B = 60
MHz since nRB is lower than N , or only when non ≤ 8
for B = 120 MHz. When N = 60, L is similar in both
configurations, meaning that the impact of the bandwidth is
negligible if the ratio between N and B is constant.

Moreover, L grows with the number of activations: at the
beginning of the training, ASPS may underestimate non, which
implies that many data blocks would not be scheduled or,



Fig. 6. Average E2E latency vs. tmin and the percentage of aperiodic UEs
for ASPS with the dropping policy. We set N = 60, τon = 8 ms, B = 60
MHz, G = 2.75 Mbit/s, tmax = 6 ms. Numbers on top of the bars are the
packet loss ratios.

equivalently, some UEs will be assigned fewer RBs than
expected, which would increase the transmission delay. Be-
sides, the probability of underestimating non increases as the
actual non increases, which explains the increasing trend of
the packet loss in Fig. 5.

Impact of aperiodic traffic. Since the gNB has complete
system information in SSPS, we explored the impact of
aperiodic traffic on the E2E latency in the best case. The
results are illustrated in Fig. 6 as a function of tmin. We
assume that non is equal to the number of production lines, and
that {100%, 80%, 60%, 40%} of the UEs generate aperiodic
traffic with tmax = 6 ms. We observe that L increases when
tmin decreases because the traffic is more intense and the
system is more congested. However, the 1-ms requirement for
URLLC cannot be satisfied in most cases when introducing
totally unpredictable aperiodic traffic: the requirement is met
with 100% of aperiodic UEs only when tmin = 5 ms. This
suggests that SPS (also in the best case of SSPS) is not always
compatible with unpredictable traffic, even considering some
degrees of correlation in the activation of machines and UEs,
which motivates further studies towards more sophisticated
(e.g., grant-free/distributed) scheduling methods [20].

V. CONCLUSIONS

In this work we presented two new custom designs of
the SPS (SSPS and ASPS, with the former that serves as a
benchmark for the latter) that allocate resources in a 5G-ACIA
SNPN architecture, considering IIoT-specific spatio-temporal
traffic correlations. For both, we assessed the E2E latency vs.
a baseline 5G NR scheduling implementation (BSPS), as a
function of the bandwidth, the use case, the per-user offered
traffic, and the number of UEs. Simulation results show that
ASPS significantly outperforms BSPS, and can satisfy the 1-
ms URLLC requirement in many configurations. However, for
aperiodic traffic, no scheme can strictly support URLLC. As
such, as part of our future work, we will explore the design
of more advanced (learning-based) scheduling techniques to
speed up the training of ASPS and achieve faster resource
allocation, with considerations related to energy consumption.
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