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A B S T R A C T 

Constraints on the formation and evolution of the Milky Way Galaxy require multidimensional measurements of kinematics, 
abundances, and ages for a large population of stars. Ages for luminous giants, which can be seen to large distances, are an 

essential component of studies of the Milky Way, but they are traditionally very difficult to estimate precisely for a large data 
set and often require careful analysis on a star-by-star basis in asteroseismology. Because spectra are easier to obtain for large 
samples, being able to determine precise ages from spectra allows for large age samples to be constructed, but spectroscopic 
ages are often imprecise and contaminated by abundance correlations. Here we present an application of a variational encoder–
decoder on cross-domain astronomical data to solve these issues. The model is trained on pairs of observations from APOGEE 

and Kepler of the same star in order to reduce the dimensionality of the APOGEE spectra in a latent space while removing 

abundance information. The low dimensional latent representation of these spectra can then be trained to predict age with just 
∼1000 precise seismic ages. We demonstrate that this model produces more precise spectroscopic ages ( ∼ 22 per cent o v erall, 
∼ 11 per cent for red-clump stars) than previous data-driven spectroscopic ages while being less contaminated by abundance 
information (in particular, our ages do not depend on [ α/M]). We create a public age catalogue for the APOGEE DR17 data set 
and use it to map the age distribution and the age-[Fe/H]-[ α/M] distribution across the radial range of the Galactic disc. 

Key words: methods: data analysis – techniques: spectroscopic – stars: fundamental parameters. 
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 I N T RO D U C T I O N  

tars provide an important window into our Galaxy’s evolutionary 
istory as all major events that occurred in the past leave imprints
n the chemical abundances and kinematics of stars (Freeman & 

land-Hawthorn 2002 ). To improve our understanding of the for- 
ation history of the Milky Way and explore the evolution and 

hemodynamical structure of the Galaxy as a whole, we need to 
easure abundances and kinematics of stars as functions of age 

or stellar samples co v ering a large volume of our Galaxy from
he bulge and the disc to the stellar halo (Rix & Bovy 2013 ;
land-Hawthorn & Gerhard 2016 ). Age, chemical abundances, and 
inematics are interconnected in complex ways (e.g. Edvardsson 
t al. 1993 ; Haywood et al. 2013 ; Bovy et al. 2019 ; Mackereth et al.
019 ; Ness et al. 2019 ) and information on their distributions far
way from the solar neighbourhood remains scant. To observe a large 
olume of stars for galactic archaeology purposes, low-mass giants 
re of particular interest, because they are common throughout the 
alaxy, li ve relati vely long and stable lives, and they are intrinsically

uminous allowing them to be observed to large distances even in 
egions with high extinction such as the Galactic bulge. 
 E-mail: henrysky.leung@mail.utoronto.ca 
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Modern spectroscopic surv e ys such as SDSS-IV’s APOGEE 

Blanton et al. 2017 ; Majewski et al. 2017 ), GALAH (De Silva
t al. 2015 ), the ongoing SDSS-V’s Milky Way Mapper (MWM;
ollmeier et al. 2017 ), and Gaia (Gaia Collaboration 2016 ) provide
ccurate measurements of basic stellar parameters like T eff , elemental 
bundances, and kinematics. These surv e ys, ho we ver, do not directly
rovide accurate stellar age measurements for low-mass giants, 
ecause stellar ages are not a directly observable quantity. Unlike 
ubgiants, for which age can be measured fairly accurately with 
asic stellar parameters and using isochrones (Haywood et al. 2013 ;
iang et al. 2017 ; Xiang & Rix 2022 ), stellar ages for giants are

ntrinsically difficult to measure, because giant evolutionary tracks 
re crowded together compared to subgiant isochrones, age and 
etallicity are to some e xtent de generate observationally, and stellar

v olutionary models ha ve large uncertainties. While age correlates 
ith kinematics and abundances, individual stellar ages cannot 

imply be inferred accurately from stellar kinematics (e.g. Beane, 
ess & Bedell 2018 ), ab undance, or kinematics-ab undance alone.
ven if ages could be inferred in this way, to investigate the relation
etween age, abundance, and kinematics, we cannot rely on pre- 
etermined relations in this space. 
Ages for giant stars can be obtained from determinations of 

heir mass, because the age of a giant is almost directly given
y its mass-dependent main-sequence (MS) lifetime. Because of 
he steep dependence of the MS lifetime on mass ( τ ∝ M 

−3 . 5 ),
∼
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mall uncertainties in mass determinations get amplified strongly
nd giant ages typically have large uncertainties. Spectroscopically,
asses for giants can be determined using proxies such as the [C/N]

atio (e.g. Masseron & Gilmore 2015 ; Martig et al. 2016 ), which is
artially set by the mass-dependent dredge-up process. Alternatively,
ccurate masses for giants can be obtained with careful analysis
n a star-by-star basis (Appourchaux 2020 ) using asteroseismic
bservations, which can determine masses from the properties of
tochastically driven oscillations that can be observed by space
elescopes such as CoRoT (Auvergne et al. 2009 ), Kepler (Borucki
t al. 2010 ), and TESS (Ricker et al. 2015 ). Using stellar masses
n combination with spectroscopically determined parameters like
 eff and [Fe/H], we can derive stellar age using stellar models
e.g. Rodrigues et al. 2014 ). The APOKASC project (Pinsonneault
t al. 2014 , 2018 ) is an example of this, combining Kepler seismic
bservation with APOGEE spectroscopic parameters to derive stellar
ges with uncertainties of ≈ 30 per cent . APOKASC has opened up
he possibility of doing galactic archaeology with ages for thousands
f giants, but it is limited to the relatively small Kepler field.
hile TESS ’ sky coverage is much bigger, its shorter observation

pan means that it is difficult to use TESS to determine astero-
eismic ages for high-luminosity giants with their long oscillation
ime-scales. 

Spectroscopic surv e ys such as APOGEE or the ongoing SDSS-V
ilky Way Mapper (MWM) have all-sky coverage and obtain spectra

or ≈ 1 million (for APOGEE) to 5 million (MWM) stars. Recent
dvances in machine learning methodology and algorithms allow
s to do transfer learning, using which we can transfer knowledge
btained in one domain to another by training on pairs of data
rom the two domains. In the context of ages, this means that
e can transfer age knowledge from the asteroseismic realm to

he spectroscopic realm by training on stars with observations in
oth realms, without requiring any prior knowledge on how to map
tellar spectra to ages. The APOKASC catalogue provides such a
raining set and it has been used to determine spectroscopic ages
sing APOGEE (e.g. Ness et al. 2016 ; Mackereth et al. 2019 ; Ciuc ̆a
t al. 2021 ), LAMOST (e.g. Xiang et al. 2019 ), and other surv e ys.
his has allowed for millions of data-driven spectroscopic ages to be
etermined. As Xiang et al. ( 2019 ) demonstrates, these spectroscopic
ges provide great scientific value even if their precision falls short
f what is ideally required. 
Spectroscopic ages obtained through transfer-learning from aster-

seismic data currently suffer from a series of limitations. First, the
 v erlap between spectroscopic surv e ys and asteroseismic surv e ys
s small with O(10 4 ) stars. This is a relatively small amount
f data to train modern machine-learning methods (e.g. neural
etw orks; Mack ereth et al. 2019 ; Ciuc ̆a et al. 2021 ). Ho we ver,
any more pairs of, e.g. APOGEE/Kepler observations exist than
e have asteroseismic ages for and these could in principle be
sed to impro v e the information transfer between the domains.
econdly, spectra contain information on abundances that are
ighly correlated with age (e.g. the alpha enhancement [ α/Fe])
nd current methods provide no guarantee that the spectroscopi-
ally determined age is not solely or largely coming from age-
bundance correlations present in the training sample rather than
rue spectral age information. This makes any inference of the age-
bundance-kinematics correlations using current spectroscopic ages
uspect. 

In this paper, we present a no v el transfer-learning method for
etermining spectroscopic ages for giants that solves these issues
nd furthermore allows for spectroscopic ages to be determined
n the future using other small, high-quality samples of stellar
NRAS 522, 4577–4597 (2023) 
ges. We do this by splitting the spectroscopic-age determination
ask in two parts: (i) extracting the age information from stellar
pectra while discarding abundance information and (ii) mapping the
xtracted age information to age using a small sample of accurate
tellar ages. We achieve (i) by using a variational encoder–decoder
eural network to map high-resolution spectra to asteroseismic
ower spectra using a small latent-space bottleneck connecting the
wo. Because asteroseismic power spectra contain information on

ass and radius but not abundance, this ef fecti v ely e xtracts age
nformation from the stellar spectra while discarding abundance
nformation. In step (ii) we then train a simpler machine-learning

ethod with fewer free parameters to map the latent space to age
sing the small sample of high-quality ages. Predictions for new
pectroscopic ages are obtained by encoding the spectrum in the
atent space and then mapping its location in latent space to age.

e then apply this method to the APOGEE data and map the age
istrib ution and age–ab undance correlations across the Galactic 
isc. 
This paper is organized as follows. We have given an overview

f the rele v ant deep-learning methodology in Section 2 . Section 3
escribes the actual machine-learning methods that we use: the
ncoder–decoder used in step (i) of the algorithm in Section 3.1
nd a modified version of the random forest method used in step
ii) in Section 3.2 . We then discuss the data from APOGEE, Kepler ,
nd APOKASC that we use in Section 4 . We give details on the
raining and validation steps of our algorithm in Section 5 and then
escribe the results in Section 6 : in Section 6.1 we show how
ell we can reconstruct asteroseismic power spectra from high-

esolution spectra using the encoder–decoder network, we discuss
he latent space representation of the spectra in Section 6.2 , we
iscuss the derived seismic parameters, ages, and evolutionary state
lassifications in Section 6.3 . The detail of applying our method to
enerate APOGEE age catalogue for APOGEE DR17 is given in
ection 7.1 and spatial age-abundance trends in the Galactic disc
re shown in Section 7.2 . We discuss the implications of our results
nd possible future applications in Section 8 and then conclude in
ection 9 . 

 DEEP  L E A R N I N G  M E T H O D O L O G Y  

n this Section we provide an o v erview of the deep-learning
ethodology that we use in this work: (variational) auto-encoders in
ection 2.1 , encoder–decoder networks in Section 2.2 , and we end
ith a discussion of the rationale behind why we choose to use an

ncoder–decoder in this work in Section 2.3 . 

.1 Variational auto-encoders 

eep learning using artificial neural networks is a versatile and
exible machine-learning method and it has been applied to problems

n both supervised and unsupervised learning with data ranging from
D images, voice recordings, video, and sequences of words (Lecun,
engio & Hinton 2015 ). Auto-encoders are a specific type of neural
etwork primarily developed to learn efficient, low-dimensional
epresentations of input data that allow the input to be faithfully
eproduced. As such, auto-encoders are essentially a non-linear
ersion of Principal Component Analysis (PCA), that is an auto-
ncoder network without any non-linearity (e.g. not using non-
inear acti v ation functions such as Rectified linear units; Nair &
inton 2010 ) using a squared-error loss function are equi v alent

o traditional PCA (Kramer 1991 ). The basic idea of using an
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uto-encoder is having a network that takes an input image, com- 
resses it to a low-dimensional middle layer (the latent space ) in
 sequence of layers ( the encoder ), and finally decompresses this
ow-dimensional representation to reconstruct the input image (the 
ecoder ). The low-dimensional latent space acts as a bottleneck that 
estricts the flow of information through the network and, thus, 
hen trained well forms an efficient representation of the input 
ata. 
Auto-encoders have been used in astronomy in the past for applica- 

ions such as denoising (training on pairs of noisy, near-noiseless, or
ugmented data; e.g. Frontera-Pons et al. 2017 ; Sedaghat & Mahabal 
018 ; Gheller & Vazza 2022 ), dimensionality reduction (e.g. Portillo
t al. 2020 ), and representation learning (e.g. Cheng et al. 2020 for
dentifying strong lenses and de Mijolla et al. 2021 for chemical 
agging). There have, to our knowledge, not been any astronomical 
pplications of the type of encoder–decoder network with cross- 
omain data that we discuss in Section 2.2 below. 
Variational auto-encoders are a type of auto-encoder that incor- 

orates variational inference into the model (Kingma & Welling 
013 ). Variational inference is a maximum-likelihood estimation 
MLE) method for situations in which the probability density is 
 ery comple x, which in our case is the distribution of the latent
ariables that generate the output data. The addition of variational 
nference in practice acts as a regularization that forces the latent 
pace distribution to follow a given statistical distribution. This is 
ften a Gaussian distribution, as any distribution can be described 
s a set of normally distributed variables mapped via a complex 
unction like a neural network. Moreo v er, forcing the latent space
istribution to follow a known statistical distribution also makes 
enerating new samples easier, because we can draw random samples 
rom the latent space distribution and decode them to construction 
utputs. A detailed re vie w of v ariational auto-encoders can be found
n Doersch ( 2016 ). 

Overall, a variational auto-encoder has the following major com- 
onents: 
The encoder: The encoder is a discriminative model that takes 

nput data and compresses it to a latent space of much lower dimen-
ionality. In variational auto-encoders, the encoder predicts the means 
nd variances (in practice the encoder predicts logarithmic variance 
nstead for numerical stability) of each latent-space parameter and 
hen samples from a normal distribution with these parameters to 
btain the final efficient representation. 
The latent Space: The latent space is the layer that is populated by

he latent variables. The latent space is fully unconstrained prior to 
raining and the entire latent-variable representation is learnt during 
raining. Ho we ver, we do need to set the dimension of the latent
pace, analogous to setting the number of principal components to 
se in PCA. 
The decoder: The decoder is a generative model that takes the 

atent variables and generates the (generally much higher dimen- 
ional) output. This is done by starting from the low-dimensional 
epresentation and building it out to the high-dimensional output 
hrough a sequence of steps (layers). In many ways, the decoder does
he opposite of the encoder. 

Variational auto-encoders are trained by minimizing an objective 
unction that is composed of the sum of two loss terms. The first
f these is the reconstruction loss, i.e. a measure of how well the
odel predicts the output. The second is a regularization term that 

hapes the distribution in the latent space, i.e. forcing the latent space
o follow a certain distribution. We have adapted the mean squared 
rror (MSE) as the reconstruction loss and the Kullback–Leibler (KL) 
ivergence as the latent-space regularization loss to force the latent 
pace to follow a Gaussian distribution. The MSE reconstruction loss 
 MSE is given by 

 MSE ( y , ̂  y ) = 

1 

N 

N ∑ 

i= 1 

w i ( ̂  y i − ˆ y i ) 2 , (1) 

here ˆ y i is the predicted output, ˆ y i is the true output, and w i is
 weight for each pixel i in the output. The weight w will be an
rray of ones if no pix el-lev el weighting applied. The KL-divergence
egularization loss J KL is 

 KL ( μ, log σ 2 ) = 

1 

2 

[
−

∑ 

i 

(
log σ 2 

i + 1 
)

+ 

∑ 

i 

exp ( log σ 2 
i ) + 

∑ 

i 

μ2 
i 

]
, (2) 

where ( μi , log σ 2 
i ) are the mean and logarithmic variance in each

atent-space dimension for data point i from the encoder. 

.2 Encoder–decoder networks 

n encoder–decoder network is very similar to an auto-encoder in 
erms of architecture and the same applies to variational encoder–
ecoders with respect to variational auto-encoders. They both con- 
ists of three major components, an encoder, a decoder, and a latent
pace between the encoder and the decoder as we have discussed in
he previous subsection. The major difference between the two is in
he input and output data used by the model. An auto-encoder uses
ata in the same domain (e.g. pairs of images of same objects) for the
nput and output node, while an encoder–decoder network employs 
ata in different domains (e.g. image input and text output). Encoder–
ecoders are commonly used in neural machine translation (e.g. Cho 
t al. 2014 ; Vaswani et al. 2017 ), because different languages (hence
ifferent domains) are just different ways to express the same abstract
deas. 

In our application of an encoder–decoder in this paper, we have
wo domains of data, which are APOGEE high-resolution spectra as 
nputs on the one hand and power spectral density (PSD) derived from 

epler light curves as outputs on the other hand. The goal of using an
ncoder–decoder is to extract the information about the Kepler PSDs 
hat is contained in the APOGEE spectra, that is, the ‘asteroseismic’
nformation that is present in the spectroscopic data. We do not
ecessarily extract the true asteroseismic information from APOGEE 

pectra, but simply any spectral information that is correlated with 
he asteroseismic information. Ho we ver, because Kepler PSDs do 
ot contain abundance information, we emphatically do not extract 
bundance information at the same time (as we will explicitly 
emonstrate below). To be able to successfully construct Kepler 
SDs, we expect that the latent space must contain information on

he asteroseismic parameters νmax and �ν from which the mass can 
e derived using scaling relations (Brown et al. 1991 ; Kjeldsen &
edding 1995 ) as 

M 

M �
� 

( νmax 

νmax , �

)3 ( �ν

�ν�

)−4 ( T eff 

T eff, �

)3 / 2 
, (3) 

here νmax, � and �ν� are the asteroseismic parameters of the Sun. 
hus, because spectra also contain information about T eff , we expect

he latent space to contain information on the stellar mass, from
hich the age can be derived. Note that we do not use the scaling

elations anywhere in our methodology, but we simply use them here
o argue that the encoder–decoder should be able to extract mass
nformation from the high-resolution spectra if it can successfully 
econstruct Kepler PSDs from stellar spectra. 
MNRAS 522, 4577–4597 (2023) 
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.3 Rationale of using an encoder–decoder network 

n this work, we use an encoder–decoder to map high-resolution
nfrared spectra from APOGEE to PSDs derived from Kepler light
urves. This has the following advantages: 

(i) Ability to train on all APOGEE/Kepler pairs: When training the
ncoder–decoder, we do not need labels (i.e. mass or age). Thus, all
hat we require are stars that have both APOGEE spectra and Kepler
ight curves and we can use all o v erlapping observations between the
POGEE spectra and Kepler (or, in the future, TESS ) light curves.
here are many more APOGEE–Kepler pairs than there are reliable
steroseismic measurements of mass and age for those pairs, so this
llows for a large expansion of the available training data. 

(ii) Information extraction: Current data-driven spectroscopic
ges likely rely on proxies like the [C/N] ratio (Ness et al. 2016 ;
ackereth et al. 2019 ) and they may even use information such

s that contained in [ α/Fe]. Ho we ver, the [C/N] ratio is not only
ffected by mass-dependent mixing processes, but instead at least
n part depends on galactic chemical evolution and this adversely
ffects age predictions. However, we have millions of spectra from
urv e ys such as APOGEE and GALAH, so being able to determine
ges without relying on abundance information beside [Fe/H] is
mportant. By using an encoder–decoder, we force the method to
xtract only information necessary to predict the Kepler PSD without
xtracting unnecessary abundance information. Information such as
C/N] is not directly available in PSD, but its component that is due
o stellar mixing may still emerge in the latent space through its
orrelation with mass. 

(iii) Application to large spectroscopic data sets: Once trained,
e can discard the decoder and apply the encoder plus the latent

pace to all available spectroscopic data, which co v er the entire sky.
(iv) Simplicity: The dimensionality of the latent space is orders of
agnitude smaller than that of the spectra and the PSD. Thus, we

an train simpler regression models to predict the age from the latent
pace. Simple models can be trained using only a handful of very
recise ages. 

 M O D E L S  

n this Section we provide details on the encoder–decoder network
hat we use to map APOGEE spectra to Kepler PSDs and on the
egressor that we employ to map the latent space to age. A schematic
 v erview of our methodology is shown in Fig. 1 . The encoder–
ecoder part is implemented as ApokascEncoderDecoder()
sing tensorflow (Abadi et al. 2015 ) in the astroNN package
Leung & Bovy 2019a ). 1 

.1 Encoder–decoder model 

he encoder in our model consists of a convolutional neural network
ith two convolutional layers, a max-pooling layer, and a dense

ayer that outputs the mean and variance for each dimension of
he latent space starting with APOGEE stellar spectra. We use the
eLU acti v ation function throughout the encoder except in the final

ayer where we employ the tanh acti v ation function to prevent
redicting extreme values in the latent space and improve training
tability. The latent space is simply a normal distribution sampler
hat samples latent variables from the output of the encoder. The
ecoder is another convolutional neural network, but with transposed
NRAS 522, 4577–4597 (2023) 

 https:// github.com/henrysky/ astroNN 

p  

s  

A  
onvolutional layers to reconstruct the Kepler PSD as opposed to the
egular convolutional layers used in the encoder. We again use the
eLU acti v ation function throughout the decoder, except in the final

ayer where no acti v ation is applied to the outputs in order not to
imit the range of the reconstruction output. 

The con ventional con volutional layer (LeCun et al. 1989 ) used in
onvolutional neural networks excels in pattern recognition. It works
y learning convolutional filters that recognize certain patterns, hence
he output values are calculated as the dot product between filter
nd the input to the layer by moving the filter kernel across the
nput, which is the usual convolution operation. For the transposed
onvolutional layer (also known as deconvolution), the input value
n the layer determines the filter values that will be written to the
utput. In other words, the input determines the weight of the filters
s opposed to learning the weights as in the usual convolutional
ayers. 

Hyperparameters such as the number of neurons, the dimension
f the latent space, and the optimizer’s learning rate are optimized
y hyperparameter search. For parameters like the latent space
imension, we have an educated guess of what value we want
o use. We know at least three parameters are important to the
econstruction of the PSD: νmax , �ν, as well as the evolutionary
tate. From this minimum number of dimensions, the latent space
imension is increased until there is no increase in the performance
or the validation set. This gives a 5D latent space. 

.2 Probabilistic random forest model 

o map the latent space to stellar age, we employ a version of the
andom forest implementation from scikit-learn (Pedregosa
t al. 2012 ). In scikit-learn , random forests are built with
ndividual trees in the forests in which each tree is built from
ootstrapped samples from the training set; the prediction is simply
he mean of the value returned by each tree in the forest. We have

odified the implementation such that during training, we sample the
nput and output data with their corresponding uncertainty on top of
he bootstrap sampling where the input data uncertainties are taken
irectly from the encoder (i.e. variance predicted by the encoder)
hile the output data uncertainties are given in training set. Each

tar is then weighted by the age uncertainty of the training set by
 

1 /σ 2 
age . At testing time, the predicted age is the mean of all of the

rees and we interpret the standard deviation of the trees as the age
ncertainty. 

 DATA  SETS  A N D  DATA  R E D U C T I O N  

e use spectroscopic data from APOGEE, light curves and derived
SDs from Kepler , and ages for stars in the APOKASC catalogue
erived by Miglio et al. ( 2021b ). We discuss these different data sets
n this section and describe the rele v ant data reduction processes for
ach data set. 

.1 APOGEE 

e use high-resolution spectra from the APO Galactic Evolution
xperiment (APOGEE; Blanton et al. 2017 ; Majewski et al. 2017 ),
pecifically from its seventeenth data release (DR17; Abdurro’uf
t al. 2022 ). APOGEE DR17 is a high signal-to-noise ( > 100 per
ixel typically), high resolution ( R ∼ 22 000) panoptic spectroscopic
urv e y in the near infrared H -band wav elength re gion of 1.5–1.7 μm.
POGEE spectra are the input of our neural network model and we

https://github.com/henrysky/astroNN
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Figure 1. Schematics of the methods and models that we use to obtain spectroscopic ages from a latent-space representation of APOGEE spectra. The top 
panels show the training and inference phase. In step 1 of the training phase, the encoder and decoder act as a single model that takes APOGEE spectra as 
inputs with the objective to reconstruct Kepler PSDs as outputs. In step 2, we train a random forest regressor to determine age from the latent space of the 
encoder–decoder along with T eff and [Fe/H]. During inference, we discard the decoder and use the encoder to compress APOGEE spectra to the latent space, 
and then on through the trained random forest regressor to get the age prediction. The bottom panel specifies the detailed architectures of the encoder and the 
decoder. Both the encoder and the decoder are essentially convolutional neural networks. 
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mploy the same continuum normalization procedure as in Leung &
ovy ( 2019a ). In addition to APOGEE spectra, we use stellar
arameters and elemental abundances derived by the APOGEE
tellar Parameter and Chemical Abundances Pipeline (ASPCAP;
arc ́ıa P ́erez et al. 2016 ). These are not used by the encoder–decoder
art of our model, but we add some of them to the input data given to
he random-forest regressor when mapping the latent space to age.
pecifically, we add the ef fecti ve temperature T eff and the metallicity
Fe/H], because stellar models require these to determine stellar ages
rom asteroseismic observations. We use the ASPCAP parameters
ather than external data-driven stellar parameters and elemental
bundances such as those from Leung & Bovy ( 2019a ) or Ting et al.
 2019 ) that are pro v en to be robust to lower signal-to-noise ratio
pectra, to be consistent with the stellar parameters used to derive
he training ages. 

.2 Kepler 

e use light curves for giant stars obtained by the Kepler telescope
Borucki et al. 2010 ) in the original Kepler field near the Cygnus
nd Lyra constellations, to computer the PSDs that are the output
ode of our encoder–decoder model. To download, manage, and
anipulate Kepler data, we make use of the lightkurve Python

ackage (Lightkurve Collaboration 2018 ). We compute the PSD
rom the observed light curve using the Lomb–Scargle periodogram
Lomb 1976 ; Scargle 1982 ) as implemented in astropy (Astropy
ollaboration 2022 ). We adopt a minimum frequency of 2 μHz and
aximum frequency of 270 μHz (roughly corresponding to half of

he inverse of the Kepler 30 min cadence) with a frequency spacing
f 0 . 009 μHz (roughly corresponding to the inverse of Kepler ’s
.5 yr baseline for our sample). These values are similar to those
sed in the Kepler Light Curves Optimized For Asteroseismology
KEPSEISMIC; Garc ́ıa et al. 2011 ) work. We divide the PSD by
 low-pass background filter largely corresponding to the noise
ackground coming from stellar activity, granulation, and photon
oise; the low-pass filter consist of a moving median filter with a
idth of 0.01 in logarithmic μHz frequency space. 
In this work, we employ the PSD instead of the autocorrelation

unction (ACF) used in w orks lik e McQuillan, Aigrain & Mazeh
 2013 ) and Angus et al. ( 2018 ) for asteroseismic data analysis as
ell and by Ness et al. ( 2018 ) for determining data-driven stellar
arameters. The reason why the latter work prefers to use the ACF
 v er the PSD is the smooth gradient with respect to parameters
uch as age of each pixel in the ACF, which is essential for models
hat require smooth gradients. Although our decoder is a generative

odel for the PSD, we do not use true stellar labels to generate the
SD but instead rely on latent variables. Moreo v er, Blancato et al.
 2020 ) demonstrated that using the PSD rather than the ACF in a
iscriminative model improves performance. In this paper, using the
SD impro v es interpretability of our model compared to the ACF as
e can directly check whether the decoder reconstructs the expected

steroseismic modes in the PSD which will be shown and discussed
n Section 6.1 . 

The PSDs constructed using the method abo v e hav e a large number
f pixels and to reconstruct them with a neural network would require
 large number of parameters that would likely be o v erfit due to the
imited number of APOGEE–Kepler pairs available for training the
ncoder–decoder. Moreo v er, it is unlikely that the stellar spectra
ontain such extremely precise asteroseismic information that they
an predict the PSD at 0 . 009 μHz resolution. The resolution of
nterest for our application is proportional to the large frequency
eparation �ν – the average frequency spacing between modes of
NRAS 522, 4577–4597 (2023) 
djacent radial order of a given angular degree l . In particular, we
ant to resolve mass-dependent variations in �ν at a given νmax .
hese are a few per cent of the �ν expected for a typical star at a
iven νmax (see equation 7 below). Thus, we rebin the PSD using
 logarithmic spacing chosen such that �ν is resolved by about 50
ix els at an y giv en νmax (i.e. on av erage there are 50 pixels between
wo oscillation modes of consecutive overtones of the same angular
egree for stars with any νmax ). This gives 2092 pixels in each power
pectrum. 

The frequency values f i of our final PSDs (that is, the frequency
 i in μHz represented at every pixel i ) are approximately given by

he expression 

 i = 77 . 35 
( i 

2092 

)4 
+ 102 . 55 

( i 

2092 

)3 
+ 68 . 96 

( i 

2092 

)2 
(4) 

+ 18 . 47 
( i 

2092 

)
+ 2 . 00 . 

he exact solution that we use is computed using the following
ecurrence relation 

 i+ 1 = 

0 . 263 μHz 
(
f 0 . 772 

i 

)
50 

+ f i , (5) 

here f 0 is 2 μHz . The maximum deviation between the approxima-
ion and full solution is 0 . 008 μHz while median absolute deviation
s 0 . 002 μHz . 

.3 APOKASC and ages 

or asteroseismic data, we use data from the APOGEE- Kepler Aster-
seismology Science Consortium (APOKASC; Pinsonneault et al.
014 ) catalogue, the Yu et al. ( 2018 ) Kepler red-giant seismology
atalogue, and ages from Miglio et al. ( 2021b ). The APOKASC
atalogue consists stars observed by both the APOGEE surv e y and
he Kepler telescope. We have adopted the second data release of
he catalogue (APOKASC-2; Pinsonneault et al. 2018 ) based on
POGEE DR14 (Abolfathi et al. 2018 ). The APOKASC-2 catalogue

onsist of 6676 giant stars, 85 per cent of which have Kepler light
urves with time baseline of > 3.5 yr. APOKASC first estimates
lobal seismic parameters νmax and �ν from power spectra generated
rom the Kepler light curves using multiple pipelines that suffer from
ifferent systematics and apply different constraints on the model
arameters. To expand the sample size of APOGEE- Kepler pairs,
e cross-match the Yu et al. ( 2018 ) catalogue with APOGEE DR17

o obtain 10 526 stars. We use the union between the APOKASC-2
nd Yu et al. ( 2018 ) catalogue to obtain 10 672 stars with solar-like
scillations. 
The global parameters νmax and �ν are highly correlated and

e adopt the following relation that describes this correction when
ele v ant 

ν = 0 . 263 μHz × ( νmax / μHz ) 0 . 772 , (6) 

hich is a relation that is empirically determined using results
rom the SYD asteroseismic pipeline (Huber et al. 2009 , 2010 ). We
arametrize deviations from this relation for individual stars using
hat we call ‘excess �ν’, defined as 

xcess �ν = �ν
/(

0 . 263 μHz [ νmax / μHz ] 0 . 772 
)
, (7) 

here νmax and �ν are the measured values for a given star.
xcess �ν can be shown to be sensitive to stellar mass using the
steroseismic scaling relations (a re vie w on asteroseismology and
eismic scaling relations can be found in Garc ́ıa & Ballot 2019 ). 

To train the latent-space-to-age part of our model, we adopt
raining ages from Miglio et al. ( 2021b ). Specifically, we use a
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Figure 2. Age measurements from Miglio et al. ( 2021b ) which are used for training in this paper. The left-hand panel shows the distribution of stars in T eff -log g 
space coloured by their seismic classification of red-giant branch (RGB) or red-clump (RC) stars with the marker size corresponding to their mass. The log g 
has a limited range with the majority of the stars lying within 2.5 � log g � 3.3 dex. The right-hand panel show the distribution of stars in [Fe/H]–[ α/Fe] space 
coloured by age. There is an artefact at [ α/Fe] at 0.1 dex to separate α-rich and α-poor population, as Miglio et al. ( 2021b ) separate their analysis into α-rich 
and α-poor stellar samples. 
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ersion of the method from this paper that is updated to use the DR17
SPCAP stellar parameters and abundances as opposed to those 

rom DR16 in the original work. The Miglio et al. ( 2021b ) catalogue
onsist of 3078 evolved stars with measured ages. The distribution 
n the log g –T eff plane and in the [ α/M]–[Fe/H] plane of the sample
s given in Fig. 2 . The Miglio et al. ( 2021b ) method uses a similar
pproach as the APOKASC catalogue to determine masses, radii, 
nd ages using the observed light curves, spectroscopic parameters 
rom APOGEE, and stellar models, but it has small implementation 
ifferences. Miglio et al. ( 2021b ) uses PARAM (da Silva et al. 2006 ;
odrigues et al. 2017 ) to infer masses and ages while APOKASC-2
ses BeSPP (Serenelli et al. 2017 ). Another difference is that Miglio
t al. ( 2021b ) determines the global seismic parameters using peak-
agging (Davies et al. 2016 ), where individual radial-mode ( � = 0)
requencies are fit for a subset of stars to get νmax and �ν, allowing
 better measurement of those parameters. This in turn leads to 
mpro v ed stellar ages. The ages from Miglio et al. ( 2021b ) that we
se have a standard deviation of ∼ 10 per cent compared to ages in 
he APOKASC-2 catalogue. In general, the Miglio et al. ( 2021b ) age
ncertainty is ∼ 5 per cent larger for RGB but ∼ 15 per cent less 
or RC stars when compared to APOKASC-2. 

 T R A I N I N G  A N D  TESTING  

efore training, we further standardize the APOGEE spectra by sub- 
racting the pix el-lev el mean and dividing by the pix el-lev el standard
eviation after the data reduction steps discussed in Section 4.1 . We
estrict output PSDs to have 4 < νmax < 250 μHz to ensure that the
hole p-mode power envelope can be seen as a whole in the PSD with
νmax less than 10 per cent. We restrict the sample of APOGEE- Kepler
airs to those with PSDs with evolutionary state determinations from 

POKASC-2 or Yu et al. ( 2018 ), as this provides a good indication
f the quality of the PSD (some PSDs without evolutionary state 
eterminations have νmax that appear far off visually). We predict 
he logarithmic amplitude of the PSD. The first step of the training
rocess is to train the encoder–decoder (as shown in Fig. 1 ) as a whole
ith 9869 pairs of APOGEE spectra and Kepler PSDs randomly 
elected from all APOKASC pairs. We optimize the model using the
DAM optimizer (Kingma & Ba 2014 ). To accelerate training as well
s to make the training process more stable, we weight pixels near
he observed νmax higher when calculating the objective function in 
quation ( 1 ). We generate a Gaussian normalized to a height of one
or each PSD centred at νmax with a width of twice the �ν expectation
rom equation ( 6 ) and we add this Gaussian to the existing sample
eights for each pixel which were arrays of ones. It is not necessary to
no w νmax in adv ance and apply this pixel-le vel weighting to obtain
onvergence to a good model, but the addition of this weighting
akes the model converge much faster. The introduction of this 
eighting scheme does not prevent our model from learning features 
utside of the p-mode power envelope as shown in the bottom right-
and panel of Fig. 3 . 
After training the encoder–decoder, APOGEE spectra in the 

POKASC sample are run through the trained encoder (but not 
he decoder) to get their latent representations. We then train random
orest models to go from these latent representations to other labels,
rimarily age, but we also predict other quantities from the latent
pace to aid in understanding the latent space; this training step
s shown in the middle panel of Fig. 1 . When predicting chemical
bundances and global seismic parameters from the latent space, 
000 stars are randomly selected to be the training set. When
redicting stellar ages, about 1200 stars are randomly selected among 
he 2000 stars with ages to be the training set. Our fiducial model
redicts age from the latent space augmented with T eff and [Fe/H];
e refer to these as ‘latent space ages’. In practice, we predict

he logarithm of the age and we do not apply any bounds on this
ogarithm. 

 RESULTS  

he ultimate goal of our method is to determine ages from the high-
esolution APOGEE data using the encoder, the latent space, and the
andom-forest regressor from the latent space to age. Because our 
MNRAS 522, 4577–4597 (2023) 
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M

Figure 3. Reconstruction of the power spectral density (PSD) from APOGEE spectra with our encoder–decoder model (orange line) compared to the PSD 

generated directly from the Kepler light curve (blue line) for stars not included in training set, such that the model has never seen those spectrum-PSD pairs 
before (except for the bottom right-hand panel example, which is from the training set). Our encoder–decoder model successfully reconstructs the area of 
interest where the p-mode envelope is. The top left-hand panel demonstrates that even in the case of low νmax , where the amplitude of the p-mode envelope 
relative to the background is low, the model still successfully reconstructs the envelope at approximately the correct frequency location. The bottom two panels 
show two RCs with peculiar PSD reconstructions. The bottom left one shows one RC star that is not included in the training set where the p-mode envelope is 
reconstructed at the correct νmax , but the o v erall shape does not resemble the ground truth PSD. The bottom right-hand panel show an RC star included in the 
training set where the model fails to reconstruct the p-mode envelope at the expected νmax . In general, the neural network correctly identifies and reconstructs 
the p-mode envelope and it does not reconstruct the noise, which is expected as noise is unpredictable from the APOGEE spectra. 
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ethodology consists of multiple important components that build
n each other to provide the final ages, we discuss the results from the
omponents in order in this section. We commence with a discussion
f the performance of the encoder–decoder in reconstructing the PSD
rom spectra in Section 6.1 , then we take a detailed look at the latent
pace in Section 6.2 , as well as describe how well we can predict
ifferent stellar parameters, including age, from the latent space
epresentation of the spectra in Section 6.3 . Finally, we discuss the
pplication of our model to the whole APOGEE DR17 data set to
et ages for a large sample of stars. 

.1 Power spectral density reconstruction 

fter training the encoder–decoder on the APOGEE/ Kepler pairs,
e can directly check the performance of the model by generating

he reconstructed PSDs for spectra in a test set of pairs that was
ot used during the training. We expect that any information in
NRAS 522, 4577–4597 (2023) 
he PSD that is predictable from (or correlates with) the APOGEE
pectra to be present in the output. PSD information that is not
ontained in the APOGEE spectra cannot be obtained by the
ecoder–encoder, instead the model will predict the mean value
f those PSD pixels in the sample to minimize the objective
unction (equation 1 ). Information in the APOGEE spectra that is
ot necessary to reconstruct the PSD will, similarly, not be part
f the latent space (this crucial last point is discussed in detail in 
ection 6.2 ). 
In Fig. 3 , we compare the actual power spectra computed from

epler light curves and the encoder–decoder reconstruction from
he APOGEE spectrum for pairs in the set of APOGEE/ Kepler
airs that are not included in training or validation set and, thus,
he model has never seen those pairs before. The figure includes
tars with large and small νmax and of different evolutionary states.
e see that, o v erall, the encoder–decoder reconstructs the p-mode

nvelope remarkably well. The p-mode envelop is the area of

art/stad1272_f3.eps
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Figure 4. Reconstruction of power spectral densities from a few locations in the latent space. The big panel (top left-hand panel) shows the latent space coloured 
by νmax for the encoder–decoder training sample (i.e. the top right-hand panel of Fig. 5 ). The reconstructed PSDs at the locations of the triangles are shown 
in the six smaller panels, where the colours of the lines correspond to the colour of the triangle markers in the big panel. The four top right-hand panels show 

reconstructions for PSDs with νmax around 190, 110, 40, and 11 μHz . The bottom left-hand panel displays a PSD reconstruction from a region associated with 
the RC. The bottom right-hand panel shows a reconstruction from a region not populated by any real-world APOGEE spectra; this PSD is much noisier than the 
others. All PSD panels have arbitrary units on the y-axis and logarithmic frequency the x-axis. 
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nterest for our purposes, because it contains most of the seismic
nformation rele v ant to age determination. The encoder–decoder 
s also able to reconstruct the locations and heights of individual 
scillation modes to high precision considering the information 
omes from spectroscopic observations that only contain informa- 
ion on the surface condition of stars. Thus, the encoder–decoder 
ppears to have learnt the global seismic properties like νmax 

nd �ν. 
The encoder–decoder is able to reconstruct the p-mode envelope 

ell regardless of the value of νmax . The top left-hand panel of Fig. 3
emonstrates that even for a star with low νmax ( < 20 μHz ), where
he amplitude of the p-mode envelope relative to the background is
ow, the model still successfully reconstructs the envelope with an 
 v erall peak at approximately the correct location and with individual
scillation modes at the approximately correct locations as well (note 
hat the absolute amplitude of the p-modes are higher at low νmax ,
ut lower relative to the background granulation and activity noise 
o PSDs for low νmax stars seem ‘noisier’). In general, the encoder–
ecoder correctly identifies the location of the p-mode envelope and 
f the individual modes for a wide range of stars and reconstructs
hem correctly. The model does not reproduce the noise in the
SD (e.g. the photon noise instrumental systematics, and stochastic 
ranulation), which is expected because the noise is unpredictable 
rom the APOGEE spectra. Increasing the latent space dimension 
rom the five dimensions used by the model does not impro v e
he PSD reconstruction for the testing set. The reconstructions are 
ikely limited by the spectroscopic information available in APOGEE 

pectra. 
The use of a variational method in the encoder–decoder also 

llow us to generate new PSD samples directly from the latent
pace (i.e. without starting from an APOGEE spectrum). In Fig. 4 ,
e show PSDs generated from latent space locations not directly 

ssociated with APOGEE spectra, but within the parameter space 
f the training set, and one location outside of the training set’s
arameter distribution. The PSD samples generated look reason- 
ble across a wide range of νmax , except the one generated in
atent space region associated with the RC, which does not have
he correct envelope shape, and the one (cyan) that is generated
utside of the parameter space of the training set, which is very
oisy. 
MNRAS 522, 4577–4597 (2023) 
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.2 The latent space 

he latent space of the trained encoder–decoder contains the infor-
ation learnt by the encoder in its quest to reconstruct the PSD from

he near-infrared APOGEE spectrum. It consist of the information
hat the model found to be crucial to predicting the PSD. Unlike
hecking the performance of the encoder–decoder as a whole by
alidating the quality of the PSD reconstruction using test data, the
atent space is unsupervised in that we do not use any data to directly
nform or restrict its structure. The only constraint placed on the
atent space is the variational constraint that pushes it towards having
 Gaussian distribution (see Section 2.1 ). Thus, the best we can do
s to study the latent space and make sure that it has properties
hat we expect and desire when going from spectra to PSD: (i)
hat it clearly encodes crucial seismic information such as νmax and
ν and (ii) that it does not contain extraneous spectral information

uch as elemental abundance ratios that are unnecessary for recon-
tructing the PSD but that have galactic evolution correlations with
ge. 

We find that we can satisfactorily predict the PSD using a 5D
atent space. Fig. 5 displays the distribution of the data in the 5D
atent space values for all APOKASC stars whether they are in the
raining set or not (we can use all data, because we are simply trying
o understand what the model has learned as opposed to directly
alidating the model, and the large number of stars in the full sample
akes it easier to spot clear trends). The figure contains four sub-
gures that are colour-coded by (i) the evolutionary state – whether
 star is a red-giant branch (RGB) or a red-clump (RC) star – in the
op, left, (ii) νmax in the top, right, (iii) [Fe/H] in the bottom, left, and
iv) excess �ν in the bottom, right (see equation 7 ). 

In the top, left-hand panel of Fig. 5 , we see that the RC stars in
ed are clearly clustered in most of the latent space dimensions. This
s expected for the following two reasons. First, the PSDs for RC
tars look very different from those of RGB stars due to effects like
ode-mixing (e.g. Grosjean et al. 2014 ; Mosser et al. 2014 ), such

hat one can distinguish RC from RGB with PSDs alone. The effect
f these mixed modes can be more clearly seen when converting
he PSD to an échelle diagram – transforming the PSD to a 2D
mage by stacking parts of the PSD separated by the large frequency
eparation �ν – such as those shown in Metcalfe et al. ( 2014 ).
econdly, pure spectroscopic separation of RC and RGB stars is also
ossible (e.g. Bovy et al. 2014 ; Hawkins, Ting & Walter-Rix 2018 ;
ing, Hawkins & Rix 2018 ; He, Luo & Chen 2022 ) and it is possible

o obtain samples of RC stars with very high purity ( 5 per cent
ontamination) at low completeness. In the latent space, the RC
luster is not entirely separated from the RGB cluster, showing that
here is a fundamental limit on the spectroscopic separability of the
C and the RGB for stars at the edges of both clusters. A clean

eismic separation of RGB and RC requires the use of the period
pacings expected from gravity modes (Bedding et al. 2011 ). Because
e are not primarily interested in classifying RC/RGB stars, we do
ot pursue that here, but a better spectroscopic classification may be
ossible using a similar encoder–decoder approach applied to period
pacings. 

The latent space colour-coded by νmax in the top, right-hand panel
f Fig. 5 shows a smooth colour gradient in some of the latent space
imensions. This is not surprising, as we have already demonstrated
hat our model can reconstruct power spectra fairly well in Fig. 3 as
iscussed in Section 6.1 . The parameter νmax scales with the acoustic
ut-off frequency νac , which in turn scales with surface parameters
uch as T eff and log g (Stello et al. 2009 ) that can easily be determined
rom APOGEE spectra. 
NRAS 522, 4577–4597 (2023) 
When colour-coding the latent space by [Fe/H] in the bottom, left-
and panel of Fig. 5 , we find no strong trend, even though there are
umerous [Fe/H] lines in the APOGEE spectrum and [Fe/H] is one
f the easiest parameters to obtain from APOGEE spectra. There is
nformation in the PSD that potentially correlates with metallicity.
 or e xample, Corsaro et al. ( 2017 ) demonstrates that the amplitude
f the granulation activity is significantly affected by metallicity.
o we ver, we are not sensitive to this, because we explicitly remove

he background level of the PSD as discussed in Section 4.2 . If
he model is working as expected, we should not see metallicity
nformation in the latent space and this is exactly what we see in
he bottom, left-hand panel of Fig. 5 . We perform a more detailed
ssessment of the amount of abundance information in the latent
pace in Section 6.3 below. 

The bottom, right-hand panel of Fig. 5 colour-codes the latent
pace by excess �ν, which is the basic seismic parameter that is
ost sensitive to stellar mass. Excess �ν manifests itself in the
SD as small shifts in the separations of the oscillation modes
ompared to the expectation from equation ( 7 ). We see clear trends
ith excess �ν in the latent space, indicating that the encoder has

earnt to extract seismic information related to mass and to predict
he detailed location of the oscillation peaks, rather than simply
enerating visually good-looking power spectra. 
To further understand the latent space, we show in Fig. 6 the

acobian of the fourth dimension z[3] of the latent space with respect
o each pixel in the APOGEE spectra (i.e. how changes in each pixel
n the APOGEE spectra affects the value of z[3]) for RGB stars with
ow νmax and high νmax . Regions like the hydrogen lines (the Brackett
eries) in the APOGEE spectral range are known to be sensitive to
og g and we see that z[3] for RGB stars with low νmax is sensitive to
he hydrogen lines, while this is not the case for stars with high νmax .
verall though, there is no one region in the infrared spectrum that

ontains the seismic information encoded in the latent space, instead
t appears to be spread throughout the APOGEE spectral range. 

.3 Abundances, seismic parameters, and ages 

s we discussed in Section 3.2 , we use a modified version of the
andom forest method to map from the latent space to physical
arameters such as abundances and stellar ages. Our primary goal is
o determine ages from the latent space, but we also train random-
orest regressors to determine abundances, seismic parameters, and
he evolutionary state to better understand the information content
f the latent space. We train separate random forest models for all of
hese cases. 

Stellar parameters and abundances: To quantitatively determine
he abundance information content of the latent space, we train
ifferent random forest regressors to predict [Fe/H], [ α/M], [N/H],
nd [C/N] from the latent space. We compare these predictions to
he APOGEE ASPCAP values in Fig. 7 . We see in particular that
he latent space is entirely unable to predict [ α/M], as the latent-
pace prediction is simply the mean of the sample regardless of the
rue [ α/M]. Thus, the latent space has no information about [ α/M].
his in turn means that when we use the latent space to determine
ges, these ages are entirely uninformed by [ α/M]. The [Fe/H] and
N/H] abundances show a small trend that still falls short of the
-to-1 trend and the information in the latent space about these
bundances is small. While there is only a weak trend in [N/H]
and similarly, in [C/H]), the latent space does appear to be able to
redict [C/N]. This is consistent with the fact that the [C/N] ratio is
 good mass proxy for giants (Masseron & Gilmore 2015 ; Martig
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Figure 5. This figure shows the latent space prediction of our encoder–decoder model running through all the APOGEE spectra in the encoder–decoder training 
set and coloured by different labels (taken from external catalogues, not predicted by our neural networks). The top left-hand panel shows the latent space 
coloured by evolutionary state, with blue markers for RGB stars and red markers for RC stars. RC stars clearly cluster together in most of the latent space 
dimension. The top right-hand panel show the same latent space but coloured by νmax . Smooth trends in νmax are clearly seen in most of the dimensions, which 
is expected as the encoder–decoder is able to reconstruct the PSD so well as shown in Fig. 3 . The bottom right-hand panel displays the latent space coloured 
by excess �ν, demonstrating that the model indeed learns the tiny shift in those oscillation peaks related to stellar mass instead of just generating visually 
good-looking PSDs. The bottom left-hand panel shows the latent space coloured by [Fe/H]. There is no clear [Fe/H] trend in any dimension, showing that the 
model did not learn [Fe/H]. This figure is discussed in detail in Section 6.2 . 
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t al. 2016 ), because mass correlates with the seismic parameters. 
o we ver, the precision to which the latent space can predict [C/N]

s still much worse than the precision to which it can be measured
rom the APOGEE spectra directly ( ∼0.05 dex). Thus, the [C/N]
rediction here is not limited by how well one can determine [C/N]
irectly, but is instead limited by the fact that the encoder–decoder 
id not actually learn [C/N] directly. Rather, it learns other seismic
arameters that correlate with [C/N]. In addition to the abundances, 
e check how well we can reco v er T eff from the latent space alone
s T eff is needed by traditional asteroseismic age determination. We 
eco v er T eff from the latent space at a precision of ∼110 K, similar
o the precision to which one can reco v er T eff from simply predicting
t from log g for giants. So the latent space does not contain much
nformation on T eff . 

Global seismic parameters: We check how accurately we can 
redict the global seismic parameters νmax �ν and excess �ν from 
MNRAS 522, 4577–4597 (2023) 
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Figure 6. Jacobian of the second dimension z[1] of the latent space for each pixel in the spectra (i.e. how changes in each pixel in the APOGEE spectrum 

changes the value of z[3]) for RGB stars with low νmax (blue line; 15 μHz � νmax � 20 μHz ) and high νmax (orange dashed line; 180 μHz � νmax � 220 μHz ) 
using the encoder part only in the encoder–decoder model. There are a few regions, especially around the hydrogen lines (the Brackett series) in the green and 
red regions of the APOGEE spectra that are known to be sensitive to log g , with large sensitivity for the low νmax RGB stars but little sensitivity for the high 
νmax RGB stars in this particular latent space dimension. Overall, the information about the latent space appears to be spread over the entire spectrum. 

Figure 7. Latent-space abundance predictions. This figure shows density plots on a logarithmic scale of APOGEE abundance prediction from the latent space 
compared to the ground truth for [Fe/H], [ α/M], [N/H], [C/N], from left to right, respectively, with the o v erall scatter around the one-to-one line shown in the top 
left of each panel. It is clear that the latent space contains no information on [ α/M], a small amount of information on [N/H] and [Fe/H], and some information 
on [C/N]. 
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he latent space. A comparison between the seismic parameters taken
rom the APOKASC catalogue and those predicted from the latent
pace is shown in Fig. 8 . It is clear that in all three cases we can
redict the global seismic parameters to high fidelity from the latent
pace. Comparing to previous work on getting data-driven seismic
arameters from PSDs, our work here has a comparable accuracy,
lthough the nature of the previous work is very different. For
NRAS 522, 4577–4597 (2023) 
xample, Ness et al. ( 2018 ) predicts νmax and �ν at an accuracy
evel of ∼ 15 per cent from the autocorrelation function (ACF) of
he light curve using a very simple but interpretable polynomial

odel. Hon, Stello & Zinn ( 2018 ) develops a ‘quick-look’ deep
earning method using convolutional neural networks to detect the
resence of solar-like oscillations from 2D images of PSDs and
hen estimate νmax at a level of ∼ 5 per cent . It is worth noting
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Figure 8. Latent-space seismic parameter predictions. This figure shows density plots on a logarithmic scale of the global seismic parameters predicted using 
the latent space compared to the ground truth for νmax in the left-hand panel, �ν in the middle panel, and excess �ν in the right-hand panel. These stars are 
not contained in the training set for the latent space model, but some are contained in the encoder–decoder training set. The red points show additional stars not 
included in the training set for either the latent space model or the encoder–decoder model; these red points follow approximately the same distribution as the 
density plot. We are able to determine the important seismic parameters from the latent space to high precision. 

Figure 9. Latent-space RC-versus-RGB classification. This figure shows the 
confusion matrix of a naive random forest model trained on the evolutionary 
state predicting whether a given APOGEE star is an RC or RGB star based on 
the latent space only. The model performs very well, only misclassifying ∼
10 per cent of the stars. The RC misclassification rate (RC being misclassified 
as RGB) is ∼ 4 per cent while the RGB misclassification rate is ∼ 8 per cent . 
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hat converting a PSD to a low-resolution 2D image results in 
he loss of positional information of the oscillation modes, thus 

aking the performance worse than it could in principle be. Hence, 
t is not surprising that our seismic parameter predictions from 

pectra are comparable to those from previous data-driven methods 
pplied to PSDs. Comparing to the values from APOKASC, our 
redictions for νmax and �ν are at the accuracy level of ∼ 10 per cent
nd ∼ 7 per cent using the latent space while APOKASC’s νmax 

nd �ν precisions are at ∼ 0 . 02 per cent and ∼ 0 . 17 per cent ,
especti vely. This sho ws that the PSDs contains far more precise
eismic information than can be obtained from the APOGEE 

pectra. 
Evolutionary state classification: We saw in Fig. 5 that RC and 

GB stars cluster separately in the latent space, which means that 
e should be able to classify giants as RC or RGB stars using

he latent space. Thus, we train a naive random forest classifier
o perform this classification using the latent space. The confusion 

atrix of the resulting classification is shown in Fig. 9 . Unlike works
uch as Bovy et al. ( 2014 ) and Ting et al. ( 2018 ), our classifier
oes not aim at high purity at the expense of completeness, so it
s expected that our purity is lower, while our completeness should
e higher. Overall, we are able to obtain good classification results
ased on the latent space, only misclassifying ∼ 10 per cent of 
he stars. We see that our classifier is indeed able to obtain high
ompleteness (only ∼ 4 per cent of RC stars are misclassified 
s RGB stars) at the expense of somewhat higher contamination 
 ∼ 11 per cent ) than obtained in studies that focus on purity.

e can impro v e the classification’s performance along all axes
y ∼1 to 2 per cent by augmenting the latent space with T eff 

nd [Fe/H]. 
Ages: Finally, we check how well we can predict age, which is the

rimary goal of this study. To obtain our fiducial age determinations,
e augment the latent space with T eff and [Fe/H], because these

re the spectroscopic parameters that a traditional asteroseismic age 
etermination needs in addition to quantities derived from the light 
urves (i.e. νmax and �ν) and we have shown above that they are
ot available in the latent space. In Fig. 10 , we compare the ages
hat we obtain in this way with the ages from Miglio et al. ( 2021b ).

e see that we are able to predict ages well o v er the entire age
ange of the sample: the predicted ages cluster around the one-to-
ne line. The o v erall bias is ∼ 3 per cent with an o v erall dispersion
f ∼ 22 per cent . Ho we v er, the accurac y of our age predictions
epend strongly on the evolutionary state: for RC stars, which 
re generally younger than RGB stars (ages typically in the range
–5 Gyr), have highly accurate age predictions with a scatter of
nly ≈ 11 per cent . For RGB stars, on the other hand, the age
ccuracy is worse with a scatter of ≈ 22 per cent . Nevertheless, 
his number represents a clear impro v ement to other data-driv en
pectroscopic ages including those from Mackereth et al. ( 2019 ),
hich uses a Bayesian neural network that is directly trained on
POKASC ages to obtain an age precision of ∼ 30 per cent , and

hose from Lu et al. ( 2022 ), which uses the Cannon (Ness et al.
015 ; Casey et al. 2016 ). Compared to Mackereth et al. ( 2019 ),
e also do not observe any plateauing at ∼8 Gyr, but we are

nstead able to obtain precise ages for old stars. Additionally, unlike
he previous methods, we have demonstrated abo v e that our ages
re not informed by information coming from abundance ratios 
ike [ α/M], because this information is not contained in the latent
MNRAS 522, 4577–4597 (2023) 
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Figure 10. Latent-space age predictions. This figure shows the age prediction 
for stars based on the latent space augmented by T eff and [Fe/H] compared 
to the ground-truth value from Miglio et al. ( 2021b ) for stars in the test set. 
Points are coloured by the uncertainty in the Miglio et al. ( 2021b ) age with the 
marker shape indicating whether a star is an RC (triangle) or RGB (circle) star. 
The model is only trained on ∼1200 stars selected randomly from Miglio et al. 
( 2021b ). Stars with very low ground truth uncertainty around 0–5 Gyr old are 
RC stars and we are able to predict these ages to high precision. The standard 
deviation around the one-to-one line for RC and RGB stars separately are 
given in the top left-hand corner and are ∼ 11 per cent and ∼ 22 per cent , 
respectively. 
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pace. We also obtain uncertainties on our predicted ages from the
andom forest regressor. To check the quality of these uncertainties,

e compute the distribution of ( ̂  y − y) 
/ √ 

σy 
2 + σ ˆ y 

2 , where y is

he ground truth age, ˆ y is the model age, and σ y and σ ˆ y are
heir respective uncertainties. If the uncertainties are correct, this
istribution should be a standard normal distribution. Instead, we find
hat the distribution is normal with a width ∼0.75, indicating that we
re o v erestimating the uncertainty in our predicted ages. We provide
urther discussion of the predicted latent-space ages in Section
NRAS 522, 4577–4597 (2023) 

.1 below. 

Table 1. Data Model of nn latent age dr17.csv that is available her
dr17.csv.gz which is the data file generated from this paper, row-matched to

rows in total while 308 119 stars with latent representation computed with a
are represented by NaN . We recommend to use a latent space age uncertainty
(see Section 6.3 and Section 7.1 for discussion). 

Label Physical Units Sources Descr

apogee id n/a APOGEE DR17 APOG
telescope n/a APOGEE DR17 Telesc
field n/a APOGEE DR17 APOG
STARFLAG n/a APOGEE DR17 APOG
ASPCAPFLAG n/a APOGEE DR17 APOG
z0 n/a This paper 1st di
z1 n/a This paper 2nd d
z2 n/a This paper 3rd di
z3 n/a This paper 4th di
z4 n/a This paper 5th di
LogAge log 10 (Gyr) This paper Logar
LogAge Error log 10 (Gyr) This paper Logar
Age Gyr This paper Laten
Age Error Gyr This paper Laten
 T H E  A P O G E E  D R 1 7  LATENT-SPACE  AG E  

ATA L O G U E  A N D  T H E  AG E  S T RU C T U R E  O F  

H E  M I L K Y  WAY  DISC  

.1 Age catalogue 

e have applied our models to the whole APOGEE DR17 catalogue
o obtain latent space ages and produce a publicly available catalogue.
irst, we compute the latent-space representation of APOGEE DR17
tars using the trained encoder–decoder for stars within the parameter
pace of the training set, that is, for stars with 1.5 < log g <
.6 and SNREV > 30, where SNREV is an alternative signal-to-
oise measurement recommended by APOGEE that takes detector
ersistence issues in account. This allows 308 119 stars to have their
atent representation computed. To compute latent space ages, we
urther restrict the sample to stars with T eff and [Fe/H] available as
equired by our pipeline, as well as lying in the same 2.5 < log g
 3.6 range as the Miglio et al. ( 2021b ) training set used in this
ork. A data model and download link are available in Table 1 . For

cience analyses, we recommend using stars with no STARFLAG
nd ASPCAPFLAG flag set as well as requiring a latent space age
ncertainty less than 40 per cent. 
When compared to our previous work (Mackereth et al. 2019 )

f data-driven spectroscopic ages with neural networks as shown in
ig. 11 , the latent space ages from this work extend to significantly
lder ages for old stars, because unlike in our previous work, the
atent space ages do not exhibit a plateau at around 8 Gyr. Otherwise
he two works are quite consistent with each other with a scatter of
5 per cent. When plotting [Fe/H] − [ α/M] coloured by latent space
ge as well as latent space age versus [ α/M] as shown in Fig. 12 , our
atent space age shows the expected trends of low [ α/M] sequence
tars being young and high [ α/M] sequence stars being old. The
ldest stars in the low [ α/M] sequence are as old as the youngest
igh [ α/M] sequence stars. Although we have a number of young
igh [ α/M] stars, some of them can be remo v ed by further restricting
og g > 2.55 dex instead of 2.5 dex to a v oid the edge of training
et parameter space and using our recommended σage < 40 per cent
nstead of the 50 per cent used in the figure for completeness. 

For the purpose of studying spatial age–abundance trends in the
ilky Way disc in the next subsection we use the spectrophotometric

istances from Leung & Bovy ( 2019b ) and convert from heliocentric
e https:// github.com/henrysky/ astroNN ages/ blob/main/ nn latent age 
 the official allStar-dr17-synspec rev1.fits with 733 901 
 subset of 142 257 stars with latent space age measured. Missing data 
 cut of 40 per cent, stars without any STARFLAG and ASPCAPFLAG 

iptions 

EE ID 

ope used for APOGEE observation ( apo25m or lco25m) 
EE field name 
EE star flag bitmask 
EE ASPCAP flag bitmask 

mension of latent representation 
imension of latent representation 
mension of latent representation 
mension of latent representation 
mension of latent representation 
ithmic latent space age 
ithmic latent space age uncertainty 
t space age 
t space age uncertainty 

 universita di bologna user on 26 Septem
ber 2024
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Figure 11. Latent-space ages compared to spectroscopic ages from astroNN 

(Mackereth et al. 2019 ). This figure shows the logarithmic density of a 
comparison of the latent-space ages from this work to the spectroscopic 
ages obtained using a Bayesian neural network trained directly on APOGEE 

spectra without physical constraints against using abundance information. 
The o v erall scatter between these ages predictions is ∼ 25 per cent . Unlike 
the previous ages, the latent-space ages do not plateau around 8 Gyr . 
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o Galactocentric coordinates assuming R 0 = 8.23 kpc and v � = 

49 . 44 km s −1 (Leung et al. 2023 ) and z � = 20.8 pc (Bennett &
ovy 2019 ). Orbital parameters are calculated using galpy (Bovy 
015 ) using the standard MWPotential2014 potential. 

.2 The age structure of the Milky Way disc 

s a first application of our new age catalogue, we present a brief
nvestigation into spatial age-abundance trends in the Milky Way 
isc here. In Fig. 12 , the left-hand panel shows the [Fe/H]–[ α/M]
istribution coloured by mean latent space age in each bin. We see a
lear separation between old high and young low [ α/M] sequences. 
he right-hand panel shows the age–[ α/M] distribution coloured by 
ngular momentum L z with the cyan dashed line representing the 
edian relation between age and [ α/M]; the [ α/M] scatter around

his relation is ≈0.05 dex for any age. The overall trend is a slowly
ncreasing [ α/M] with age for the low [ α/M] sequence and a steeper
rend when transitioning to the high [ α/M] sequence, similar to what
s seen for local samples (Haywood et al. 2013 ). The trend with
ngular momentum shows that the [ α/M]-age trend is steeper in the
igh-angular momentum, outer disc than it is in the inner disc. 
In the right-hand panel of Fig. 12 , we also see that there are young,

igh [ α/M] stars with ages ∼6 Gyr, similar to previous works (e.g.
hiappini et al. 2015 ; Martig et al. ( 2015 )), which are likely high
 α/M] stars with unusual elemental abundance ratios (e.g. Hekker & 

ohnson 2019 ) that seem to be o v ermassiv e (and thus appear young)
ue to binary stellar evolution (Zhang et al. 2021 ; Jofre et al. 2023 ).
t is worth noting that when we adopt the definition of young, high
 α/M] stars with a flat cut of [ α/M] > 0.15 dex and age younger than
 Gyr used in previous literature (e.g. Martig et al. 2015 ), we find that
 per cent of the high [ α/M] sequence population is young. This can
e compared to ≈ 6 per cent in Martig et al. ( 2015 ) and Zhang et al.
 2021 ). Further restricting to log g > 2.55 dex, the fraction of young
igh [ α/M] stars approaches 7 per cent. Alternatively, defining high
 α/M] as [ α/M] > 0.18 dex, similar to values adopted in asteroseismic
nalyses, the fraction is 6 per cent. These results are interesting,
ecause there are no young high [ α/M] stars in our training set,
et we reco v er similar fractions of them as independent, previous
nalyses. 

The spatial distribution of stars in Galactocentric radius R and 
ertical height z is shown in Fig. 13 . We clearly see the vertical
aring of the disc in age with radius. The outer disc is uniformly
ounger than ≈ 5 Gyr . 
The age-[Fe/H]-[ α/M] distribution of stars in Galactocentric radius 

 and vertical height | z| bins is displayed in Fig. 14 . The dashed black
ine that we use to separate the low and high [ α/M] stars is given by
he combination of the following equations 

 α/ M] > −0 . 2211 × [Fe / H] + 0 . 0442 dex , 

 α/ M] > 0 . 05 dex (8) 

e see that the high [ α/M] sequence is old wherever it appears, with
ge declining from ≈ 12 Gyr at its low-metallicity end to ≈ 8 Gyr at
ts high-metallicity end; the smattering of young high [ α/M] stars is
niformly mixed up with these, again demonstrating that these are 
ikely anomalously massive rather than anomalously young stars. 
he low [ α/M] stars are generally younger than 8 Gyr . While the
ge–abundance trends seen in this figure are generally what has 
een found before, the precision of our ages for a large sample
f stars sharpens the picture significantly compared to previous 
ork. 
A more detailed view of the age distribution and its o v erall radial

nd abundance trends is presented in Fig. 15 . While the giant sample
elected by our cuts does not sample age uniformly, calculations 
imilar to those in Section 5 of Bovy et al. ( 2014 ) show that the
elative age bias of ≈2 to 5 Gyr to ≈ 10 Gyr is a factor of ≈2.5,
ith the age bias being relatively flat between 1 and 5 Gyr and

hen slowly decreasing towards larger ages. Given this, the overall 
ge distribution in the left-hand panel is indicative of a roughly
niform intrinsic age distribution, or a flat star-formation history. 
lso from the left-hand panel, we see that the inner disc is more
eavily weighted towards old ages, while the outer disc barely 
 xtends be yond 5 Gyr (see also the rightmost panels of Fig. 14 ).
he middle and right-hand panels split these radial age trends by
 α/M] abundance, defining high and low [ α/M] sequences using the
eparation from equation ( 8 ). The age distribution of the high [ α/M]
opulation is approximately the same regardless of radius and peaks 
t ≈ 10 Gyr . Accounting for the age bias, there is a tail towards
ounger ages, but most of these are actually the likely anomalously
assive high [ α/M] stars discussed abo v e. Fig. 14 demonstrates that

he high [ α/M] sequence ends at ≈ 8 Gyr . The low [ α/M] sequence
as a clear radial age trend, with the inner disc being older than
he outer disc. Regardless of radius, the low [ α/M] disc is younger
han ≈ 9 Gyr , or likely younger than ≈ 8 Gyr once we account for
ge errors (we, ho we ver, do not attempt a deconvolution of the age
istribution in the first look here). This all indicates that the high
nd low [ α/M] sequences formed at different times, with the high
 α/M] sequence corresponding to the first ≈ 4 Gyr of the disc’s
xistence and the low [ α/M] sequence corresponding to the last

8 Gyr . There does not appear to be a large hiatus between the two,
lthough properly understanding the transition would require proper 
econvolution of the age distribution and a good understanding of the
nomalous young high [ α/M] stars. A similar picture has emerged
MNRAS 522, 4577–4597 (2023) 
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Figure 12. Ages inferred from the latent space model applied to the whole APOGEE DR17 data set. After various quality cuts of spectral signal-to-noise ratio 
SNREV > 30, latent space age σage < 50 per cent , 2.5 < log g < 3.3, which is the range co v ered by the training set, as well as cutting on the STARFLAG and 
ASPCAPFLAG flags, ∼56 000 giants are included in both panels. The left-hand panel displays the [Fe/H]–[ α/M] bimodality coloured by average latent space 
age in each bin. The right-hand panel shows the latent space age versus [ α/M] coloured by average angular momentum L z in each bin, with a cyan dashed line 
representing the median age–[ α/M] relation. Both panels clearly demonstrate that high [ α/M] sequence stars are significantly older than low [ α/M] sequence 
stars. In the right-hand panel, there is a very small population of young ( � 6 Gyr) [ α/M]-enriched stars that is not presented in the training set (see Fig. 2 ) and 
that was previously observed using asteroseismic ages, but not usually in data-driven spectroscopic ages. 

Figure 13. Spatial distribution of stars in APOGEE DR17 in Galactocentric 
radius R and vertical height z coloured by median latent space age. The spatial 
distribution clearly shows the vertical flaring in age of the disc with radius. 
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reviously from observations near the Sun (e.g. Haywood et al. 2013 ;
onaca et al. 2020 ). 

 DISCUSSION  

.1 Latent space ages 

n the previous section and in Fig. 10 , we have demonstrated that
e can obtain precise ages from the latent space augmented by
 eff and [Fe/H]. To understand how important each of these three

ngredients is to the prediction of the age, we have tested a few
NRAS 522, 4577–4597 (2023) 
ther combinations of these ingredients. In Fig. 16 , we use a three
eparate models to predict age. The first model, shown in the left-hand
anel, uses the latent space only, the second model, in the middle,
ses the latent space and T eff , and the third model, in the right-
and panel, uses the latent space and [Fe/H]. These three models
llow us to assess the relative importance of the latent space and the
ugmented parameters in the age prediction. The age predictions in
ll three of these models are significantly worse than our fiducial
atent-space age. Interestingly, the predicted age plateaus at ∼8 Gyr
imilar to what we observed in Mackereth et al. ( 2019 ) when directly
redicting ages from APOGEE spectra. When only using the latent
pace, the age prediction still follows the one-to-one relationship
elatively well, albeit with large scatter, indicating that the seismic
nformation in the latent space is rich enough to provide a rough
stimate of the age. While the scatter in the predicted ages decreases
hen adding T eff and [Fe/H] separately, it is clear from comparing the
iddle and right-hand panels to the left-hand panel that the addition

f these parameters separately does not qualitatively improve the age
rediction o v er that from the latent space alone. Thus, adding both
 eff and [Fe/H] to the latent space is crucial to the good performance

n Fig. 10 . 
In Fig. 16 , it is clear that RC stars get good ages regardless of

hich combination of latent space, T eff , and [Fe/H] we use. This
s a direct consequence of the scaling relations combined with the
act that RC stars have a narrow range of absolute magnitudes. The
ass scaling relation in equation ( 3 ) can be expressed in terms of

he luminosity instead of T eff as shown in equation (7) of Miglio
t al. ( 2012 ). Because of the narrow luminosity spread of RC stars
Paczy ́nski & Stanek 1998 ), good ages for RC stars can thus be
btained with seismic data only assuming no significant mass-loss.
his means that we can obtain good RC ages just using the latent
pace. 
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Figure 14. The age-[Fe/H]-[ α/M] distribution of stars in the Milky Way disc. This figure – similar to fig. 4 in Hayden et al. ( 2015 ) – shows the [Fe/H]-[ α/M] 
distrib ution colour -coded by age of stars in spatial R - z bins spanning 3 kpc < R < 13 kpc in Galactic radius and | z| < 2 kpc in height from the Galactic midplane. 
The dashed line roughly divides the high- and low-[ α/M] sequences and is the same for all subplots. It is clear that the high-[ α/M] sequence is older than the 
low-[ α/M] sequence with little age o v erlap between the two. 

Figure 15. Stellar age distributions in the Milky Way. Each panel in this figure displays the age distribution stars across the entire disc (‘All’) and those in the 
inner and outer discs, defined as 3 kpc < R < 6 kpc and 10 kpc < R < 13 kpc , respectively. The left-hand panel shows all stars, regardless of their abundances, 
while the middle and right-hand panels split the stars into high [ α/M] and low [ α/M] using the dashed line in Fig. 14 . The left-hand panel demonstrates that 
outer disc stars are significantly younger than inner disc stars. The middle panel shows that high [ α/M] stars are old, but extend down to ages of 5 Gyr . The 
right-hand panel demonstrates that low [ α/M] sequence stars are young across the disc and do not exceed 9 Gyr (accounting for uncertainties, the low [ α/M] 
upper age cut-off is ≈8 Gyr). 
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That not using both T eff and [Fe/H] degrades the age predictions is
xpected, because traditional asteroseismic age pipelines require at 
east the following parameters to predict the age: seismic information 
typically in the form of νmax and �ν), T eff , and [Fe/H]. This is
ecause we can obtain the stellar mass using the seismic information 
nd T eff (equation 3 ) and converting mass to age mostly relies on
he [Fe/H]-dependent main-sequence lifetime of the star. While we 
xpect the latent space to contain all the seismic information that 
an be extracted from the APOGEE spectra, it does not contain T eff 

s we have discussed in Section 6.3 or [Fe/H] as we have shown in
ig. 5 . Thus, it is not surprising that the age precision degrades when
ropping one of T eff and [Fe/H]. 
Finally, we investigate how the latent space ages change when 

e also include [ α/M] in the prediction. Fig. 17 shows the age
rediction for a model that includes [ α/M] directly in addition to
he latent space, T eff , and [Fe/H]. Although including [ α/M] does
MNRAS 522, 4577–4597 (2023) 
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Figure 16. Latent space age prediction using different combinations of parameters. The left-hand panel shows the prediction based on the latent space only 
without any additional parameters. The middle panel displays the prediction based on the latent space augmented with T eff and the right-hand panel’s age is 
based on the latent space with [Fe/H]. These can be compared to our fiducial latent space ages, which are based on the latent space augmented with both T eff 

and [Fe/H] and for which this comparison is shown in Fig. 10 . In all three cases, the age prediction is significantly worse that in our fiducial model, with much 
larger scatter compared to the ground-truth ages and with a plateau arising at old ages ( � 10 Gyr). 

Figure 17. The impact of including [ α/M] in the latent-space age model. This 
figure is similar to the left-hand panel of Fig. 12 , but the latent space age here is 
obtained with model using the combination of the latent space, T eff , [Fe/H], 
and [ α/M]. The additional [ α/M] on top of the other parameters smooths 
the [ α/M] bi-modality plot significantly compared to the left-hand panel of 
Fig. 12 , with additionally artifacts appearing at [ α/M] ∼ 0.13 dex because 
of the [ α/M] selection from our training set (see Fig. 2 ). This demonstrates 
that including [ α/M] information in spectroscopic age determination strongly 
impacts the derived age–abundance trends. 
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ot cause age to correlate much more strongly with [ α/M], the
nclusion of [ α/M] does significantly smooth the age trend in the
Fe/H]–[ α/M] space while only improving the performance of our
odel by about 2 per cent . Therefore, even though [ α/M] is also a

arameter sometimes used by stellar models to get ages, we choose
ot to include [ α/M] to a v oid the adverse effects that result from its 
nclusion. 

Our current latent space age model suffer from the limitations
f the age, because the model can only be applied to new stars in
he same parameter space as that co v ered by the training sets of
he encoder–decoder and the age. In this case, the most limiting
actor is the narrow 2.5 < log g < 3.6 range of the age training
et. 
NRAS 522, 4577–4597 (2023) 

w  
.2 Application with TESS and beyond 

he NASA Transiting Exoplanet Survey Satellite ( TESS ) mission is
n all-sky survey that allows for the detection of solar-like oscillations
n at least an order of magnitude more giants than Kepler (Silva
guirre et al. 2020 ; Hon et al. 2021 ; Mackereth et al. 2021 ; Hon

t al. 2022 ). Compared to Kepler or even the K2 mission (Howell
t al. 2014 ), TESS light curves are typically much shorter and less
recise, making it more difficult to do precise asteroseismology. 
We can exploit the flexibility of the encoder–decoder model

o include TESS light curves. To train our method, we require
airs of APOGEE spectra and light curves that cover a larger
arameter space than that spanned by the training set of the ages
i.e. we cannot train the latent space → age regression with stars
utside of the parameter space of the training set of the encoder–
ecoder; the parameter space spanned by the training set of the
ncoder–decoder is much larger than that of the latent space age).
ncluding light curves from TESS can help enlarge the parame-
er space with stars with a wider range of chemical abundance
atterns from different parts of the Galaxy, especially stars with
ow metallicity ( � −1.5 dex) that are not abundant in the Kepler 
eld. 
Data-driven models, and in particular deep neural networks, are

usceptible to small changes in the data. For example, a trained
eural network to predict abundances from spectra cannot typically
e applied to data taken by different instruments, even if they cover
he same wavelength range. Also, it is difficult to train a model on syn-
hetic data (e.g. synthetic spectra) and then apply it to observational
ata (e.g. observed spectra); often this type of analysis will show
 ‘synthetic gap’ between the synthetic and true data that adversely
ffects the performance of the method (e.g. Fabbro et al. 2018 ). In the
pplication at hand here, TESS and Kepler have different instrumental
oise properties, different photometric precision, different observing
adences, etc. Naively combining TESS and Kepler light curves
ill likely make our model worse (see e.g. Hon et al. 2021 for a
iscussion of the difference between TESS and Kepler for machine
earning models). Making use of better algorithms to generate the
SD (e.g. the multitaper algorithm of Patil et al. 2022 ) may result

n more uniform PSDs derived from observational data. We could
lso use different styles of transfer learning that can map data taken
ith different instruments onto a uniform scale (e.g. O’Briain et al.
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021 ). F or e xample, we could employ another encoder–decoder to
ap TESS PSDs to Kepler PSDs trained on o v erlapping observations

etween TESS and Kepler . Future missions like PLATO (Rauer et al.
014 ) and HAYDN (Miglio et al. 2021a ) will also have their own
hotometric precisions, baselines, and cadences and would therefore 
lso benefit from such an approach. 

.3 Prospects for SDSS-V 

he Milky-Way Mapper (MWM) in SDSS-V is an ongoing panoptic 
urv e y similar to the APOGEE surv e y that uses the same spectro-
raph, but combines it with a robotic focal plane system (FPS)
ith 300 robotic fibre positioners allowing flexible, high-cadence 

argeting and obtaining high target densities in a small field of
iew (Pogge et al. 2020 ). The Galactic Genesis Surv e y (GGS)
rogramme within MWM will produce a densely sampled panoptic 
pectroscopic stellar map co v ering a large volume of the Milky
ay by targeting very luminous giants with low log g (typically 

ower log g than APOGEE observations). As we have discussed in 
ig. 12 and Section 8.1 , currently the latent space age model only
pplies to the parameter space co v ered by the ages of Miglio et al.
 2021b ), with the major limitation coming from the narrow range
f log g present in that sample. Because many stars in GGS have
ower log g than this, our model will not be directly applicable to
GS/MWM observations. In particular, the log g limitation makes it 
ifficult to reach the bulge with current APOGEE-like observations 
see Fig. 13 ). 

The minimum useful frequency we can obtain from the Lomb–
cargle PSD of Kepler light curves is about 3 μHz and this minimum
as been adopted by many previous papers (e.g. Hon et al. 2018 ;
ess et al. 2018 ). While we might be able to determine νmax 

own to this minimum frequency, realistically we can only obtain 
recise determinations of additional global seismic parameters as 
ν at �ν � 7 μHz . This cut-off corresponds to giants with log g
1.8 dex using standard scaling relations. Aside from the fact that 

he estimating mass and age using the empirical scaling relations 
ight break down at very low νmax , the minimum frequency sets
 lower log g limit on applying our encoder–decoder methodology 
o luminous giant stars. The log g limitation along with the lack of
ow-metallicity stars in the Kepler field currently makes it difficult 
o train and apply our method to obtain age estimates for interesting
bjects such as the Gaia–Enceladus merger remnant (Helmi et al. 
018 ), which shows up in APOGEE in significant numbers only at
ow log g and low metallicity. 

.4 Using alternati v e mass measurements to train 

he two-component nature of our methodology, where we first 
xtract seismic information that contains mass information into the 
atent space using the encoder–decoder and we then map the latent 
pace to age, means that we have flexibility in how we train the latent
pace → age regression. In the second step, we do not need to use
ges derived from the PSDs used to train the encoder–decoder, but 
e could instead use ages obtained from other parts of the sky (e.g.

he TESS continuous viewing zone), as long as the age sample has
imilar stellar populations as the sample used to train the encoder–
ecoder, because we need the latent-space representation of the age 
ample. We do not even need to use seismic ages at all in the second
tep, although we do so here because currently asteroseismology is 
he only method that provides precise ages for large-ish samples of
tars. As we have shown in this work, we only need about a thousand
ccurate age measurements as the training set for the latent space
ge. 

Because we can convert mass to age relatively precisely along 
he giant branch, we could use alternative mass determinations to 
rain the latent space age. For example, we could use stars in a
luster with masses determined using stellar evolution models and 
e could even require that they return the same age for all stars in the

luster. We could also make use of masses determined for eclipsing
inaries using Kepler’s laws, as these allow mass determinations at 
he few per cent level compared with the ∼ 8 per cent masses for
iants from asteroseismology. That these methods can obtain such 
ighly accurate masses and ages has been demonstrated by Brogaard 
t al. ( 2012 ) in estimating a cluster’s age using binary members
s well as by Gaulme et al. ( 2013 ) and Brogaard et al. ( 2018 ) in
stimating age with eclipsing binary systems. 

As long as we can get APOGEE spectra for giants with such
lternative mass measurements, we can include them in the training 
o go from the latent space to age, because we can determine their
atent space parameters using the encoder (we do not need the
ecoder). Precise astrometry from Gaia can potentially detect tens of 
housands of resolved wide binaries from which precise masses can 
e determined (e.g. Andrews, Chanam ́e & Ag ̈ueros 2017 ; Kochoska
t al. 2017 ; Mowlavi et al. 2017 ; El-Badry, Rix & Heintz 2021 ; Gaia
ollaboration 2022 ) for an all-sky sample. 

 C O N C L U S I O N S  

e are living in an era of abundance asteroseismic and spectroscopic
ata. Surv e ys such as TESS and the upcoming PLATO mission (Rauer
t al. 2014 ) will allow for large sets of ages for giant stars to be
etermined, which are essential for Galactic archaeology. At the same 
ime, even larger spectroscopic surveys are ongoing, like SDSS-V 

nd the upcoming 4MOST (de Jong et al. 2012 ) surv e y, which collect
tellar spectra densely sampled across the sky and co v ering large parts
f the Milky Way disc and halo. Thus, being able to determine ages
sing spectroscopic data allows for detailed investigations into our 
alaxy’s formation and evolution. 
In this paper, we have applied a well-developed methodology 

n deep learning called a variational encoder–decoder to create 
 data-driven model that can determine more precise ages from 

POGEE spectra compared to other data-driven methods by lever- 
ging available asteroseismic data, provided that there is a large 
ample of spectrum–light-curve pairs (which do not require age 
eterminations). We train a model on ∼10 000 pairs of APOGEE
pectra and Kepler light curves to reduce the dimensionality of 
POGEE spectra while simultaneously extracting mass and age 

nformation without contamination from abundance information 
eside [Fe/H]. Reducing the dimensionality of APOGEE spectra 
n a latent space is crucial for being able to train an age model,
ecause precise giant ages are rare and it is, therefore, difficult to
rain a complex model to infer spectroscopic age. We then trained a
imple random forest model to determine ages from the latent space
f the encoder–decoder model. 
We showed that we are able to reduce the dimensionality of

POGEE spectra to just five dimensions for the purpose of re-
onstructing the rele v ant information in the light-curve’s PSD. The
ecoder is able to reconstruct the PSD in the region where pressure
odes are located. From the resulting latent space, we are able to

nfer ages precise to ∼ 22 per cent by training only with ∼1200 stars
ith good ages using the latent space augmented by T eff and [Fe/H];

or red clump stars we approach a precision of ∼ 10 per cent . We
ave applied our methods to the whole APOGEE DR17 catalogue 
MNRAS 522, 4577–4597 (2023) 
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or stars that fall within the parameter set of the training data. The
esulting latent space ages are o v erall consistent with the data-driven
pectroscopic ages from Mackereth et al. ( 2019 ), except that old stars
re much older (there is no plateau at the old end as in previous work)
nd the [ α/M] rich stars are significantly older than the oldest [ α/M]
oor stars. Because our latent space does not include information on
 α/M] and only weak information about other abundance ratios, our
atent space ages are independent of abundance ratios, yet we will
btain precise ages. 
Using the APOGEE DR17 age catalogue that we create in this

aper, we have mapped the age-abundance distribution across the
adial range spanned by the Galactic disc. We find that the high
 α/M] sequence has the same age distribution at an y radius, e xtending
rom ages of ≈ 12 Gyr to ≈ 8 Gyr ; at younger ages, we find a small
raction of young, high [ α/M] stars similar to what has previously
een found. The low [ α/M] disc is younger than ≈ 8 Gyr everywhere,
ith a radial gradient in the oldest low [ α/M] stars: the outer disc

 R � 10 kpc ) is almost entirely low [ α/M] and younger than ≈ 5 Gyr .
he high and low [ α/M] discs appear to be temporally separated, with

he high [ α/M] disc representing the early evolution of the disc that
ransition to the later low [ α/M] evolution ≈ 8 Gyr ago. 

The PSD reconstruction provided by our encoder–decoder has
nteresting applications of its own. F or e xample, it can be used
s a ‘sanity check’ for the light curve, because we can quickly
heck whether the directly observed PSD deviates greatly from that
econstructed from the APOGEE spectra. Any deviations could be
ue to observational or reduction issues in the light curves or they
ould result from information in the PSD that is not predictable from
hotospheric observations like stellar spectra. Examples of the latter
re mode mixing or strong internal magnetic fields (e.g. Fuller et al.
015 ). 
In the near future, the all-sky TESS light curves provide a

reat opportunity to expand this model especially with the two
cliptic continuous viewing zones. Proposed mission like PLATO
nd HAYDN (Miglio et al. 2021a ) can provide even more accurate
ges to use in the latent space age training set, as can more
etailed asteroseismic modelling of individual modes in current data
e.g. Montalb ́an et al. 2021 ). More generally, advances in machine
earning using artificial neural network allows more opportunities
or training with cross-domain data with fe w av ailable labels. In
stronomy, it is very common to have observations across multiple-
omain, for example in multimessenger astronomy (e.g. the famous
ultimessenger gra vitational wa v e ev ent GW170817; Abbott et al.

018 ). Many of the objects on the sky are observed in multiple
arge-scale surv e ys; stellar spectra and light curv es as an e xample in
his paper. The large amount of o v erlap between surv e ys in different
omains can be exploited using methods such as the one used in this
aper, because they contain more information than using one survey
n one domain alone. 
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