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A B S T R A C T

We formally study two bidder first-price, second-price, and all-pay auctions with known values,
deriving the equilibrium payoffs and strategies and showing when all three yield the same
equilibrium payoffs to the bidders. This latter result, the tripartite auction theorem, does not
hold for all auctions, in particular it can fail for symmetric auctions with high stakes and in
auctions with very low stakes.

. Introduction

We examine two bidder first-price, second-price, and all-pay auctions with known values from the point of view of the bidders.
hese auctions are of particular interest in political economy because they provide a simple model of two groups competing over a
olitical prize. In a referendum the proponents and opponents each have a cost of turning out voters and the group that turns out
he most voters wins. This is an example of an all-pay auction because the cost is incurred before the election is decided. Lobbying
ver legislation can be either an all-pay auction in which each group provides lobbying effort and the stronger lobbying effort wins,
r it can be a winner-pay auction in which bribes are offered to politicians and only the winning bribe is paid. In political economy
he interest is not so much in revenue but in who prevails, and the natural measure of how well a group does is the expected
tility of the group: the expected benefit of the prize less the expected cost of the effort needed to obtain it. This is in contrast to
he extensive literature on revenue equivalence (see Vickrey (1961), Myerson (1981) and many others) where the focus is on the
tility (revenue) of the seller and the question is when different types of auctions are the same from the seller point of view. That
iterature, also in contrast to the work here, focuses on private values.

The simplest case to analyze is the second-price auction. If both bidders bid their value then the low value bidder loses and
ays nothing while the high value bidder wins and gets the difference between their own value of the prize and that of their
pponent. We refer to this as the second-price auction utility. The tripartite auction theorem has three parts: the first part asserts
hat equilibrium utility in the second-price auction is the second-price auction utility. The second part asserts that equilibrium utility
n the first-price auction is the second-price auction utility, while the third (and least obvious) part asserts that equilibrium utility
n the all-pay auction is also the second-price auction utility. In other words the tripartite auction theorem is the broad assertion
hat from the bidder point of view the rules of the auction do not matter. We refer to this as a folk theorem because it is well
nown to hold in many particular cases. This result has additional interest because it is known that for a variety of contests with
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random outcomes, such as the Tullock contest, the utility of the bidders is the same as in the all-pay auction.1 The reader interested
in these more general contests, particularly with bid caps, will find an interesting discussion and set of references in Olszewski and
Siegel (2023). The goal of this paper is to specify the conditions under which the tripartite auction theorem does and does not hold,
allowing for a wide range of bidding cost functions. In particular the tripartite auction theorem always holds in the generic case
of what we call standard auctions: either one bidder has a higher willingness to bid or both an have equal willingness to bid and
bidding caps do not bind. Che and Gale (1998) argue that it does not hold in the symmetric case when there are binding bidding
caps and linear cost. We extend their results to general cost functions — and show in addition that this case is the only important
one in which the tripartite auction theorem fails.

The importance of the tripartite auction theorem can be seen in the context of political contests. For example, lobbying might
easily be any one of the three types of auctions: the tripartite auction theorem asserts that from the bidder perspective it does not
matter. Another example is in the Olson (1965) and Becker (1983) observation that in lobbying small special interests seem to win
over larger broader interests, although they have no hope of winning a national election. There are many differences between
lobbying contests and elections: one is that lobbying is typically winner-pay while elections are all-pay. The tripartite auction
theorem tells us that this makes no difference.

We study only two party auctions. It is by no means true that all political contests involve only two parties and multi-bidder
auctions have sometimes been used to model multi-party elections. However, multi-party elections are complicated by the fact that
winning a majority is quite different than winning a plurality and this is not captured in a multi-bidder auction. Hence our focus
on the case of two parties. In addition, we treat each of the two parties as a single decision maker although in political economy
parties are typically made up of many individuals. There is a long tradition in political economy of treating groups as individuals,
and modern models such as those of ethical voters and social mechanisms provide a theoretical underpinning for this approach.2
Social mechanism theory, in particular, shows how particular cost functions for effort provision arise from the underlying mechanism
design problem faced by a group that must overcome the public good problem of inducing individual members to provide effort.3
Here we abstract from that and take the cost of effort provision as given. Hence, the all-pay auctions models here apply to two
parties or coalitions competing in an election and the winner-pays auction to two coalitions proposing bribes for or against some
particular legislation.

As we are interested in auctions arising in political economy with effort provision costs that arise from an underlying public
goods problem for each group, we study general cost functions. We allow bidding caps to reflect the possibility that the parties have
limited resources or face legal restrictions, and we allow head starts (see Siegel (2014)) to reflect the possibility that parties may
have committed or expressive members who will provide effort regardless of strategic considerations. Both of these are common
in the literature on auctions. We also allow the less commonly studied possibility in which there is a fixed cost of entering into
the auction. This arises naturally in the theory of social mechanisms and is essentially the opposite of head starts. The relevance
in political economy can be seen by the example of the copyright lobbies in the USA exerting effort to restrict internet freedom to
prevent ‘‘piracy’’ of their copyrighted works. There is usually no organized opposition, but occasionally there is: in the case of the
‘‘Stop Online Piracy Act’’ organizations such as Wikipedia became involved in coordinating lobbying, and suddenly ordinary people
started phoning and emailing their congress members. The bill quickly disappeared and was never voted on. This makes perfectly
good sense. When the stakes are relatively low, as they are ordinarily, it does not pay to organize a large group of people to oppose
the legislation. When the stakes are high, as they were for the ‘‘Stop Online Piracy Act’’, it does pay to organize a large group of
people to oppose the legislation. This is sensibly modeled by assuming that there is a fixed cost of organizing a lobbing effort and
that it is larger for a large group than a small group.

In addition to studying bidder utility, we study the revenue generation of the different types of auctions and the implications
for welfare. In the case of voting the effort has no social value, but in the case of lobbying the effort may be in the form of transfer
payments to politicians, so revenue generation is of interest. Here we show that with convex cost and asymmetry the winner-pays
auctions generate more revenue than the all-pay auction, and that this result continues to hold provided cost is not ‘‘too concave’’.
This forms a sharp contrast to the results for the symmetric case with linear cost and symmetric uncertain values where Krishna
and Morgan (1997) show that the all-pay auction generates more revenue. In the political economy setting, where the value of the
prize to the parties is not easily kept secret, with linear cost it is only when values are symmetric (or one party is unwilling to bid)
that the all-pay auction does as well as the winner-pays auctions.

This paper is dedicated to the memory of Konrad Mierendorff. Konrad is noted for his work on mechanism design and auctions
in particular. He was particularly interested in the types of constraints, such as deadlines, that are crucial in applied work. He was
extremely precise and focused in his work and always aimed to produce general results and not to simply study special cases. Our
goal in writing this paper is to follow in those footsteps providing precise, focused, and general results and we hope this is a paper
he would have appreciated.

1 See Ewerhart (2017) and Levine et al. (2022).
2 See Feddersen and Sandroni (2006), Coate and Conlin (2004) and Levine and Mattozzi (2020).
3 See Levine et al. (2022).
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2. The model

Two bidders indexed by 𝑘 ∈ {1, 2} compete for a prize worth 𝑉𝑘 > 0 to contestant 𝑘. Each bidder chooses a bid 𝑏𝑘 ≥ 0. We define
𝑐𝑘(𝑏𝑘) to be the cost of 𝑏𝑘 relative to the value of the prize 𝑉𝑘. Without loss of generality we divide the objective function by 𝑉𝑘 so
that the value of the prize is normalized to 1 and so that 𝑐𝑘(𝑏𝑘) is the cost of bidding 𝑏𝑘.

We assume that 𝑐𝑘(𝑏𝑘) ≥ 0 and that 𝑐𝑘(0) = 0. We assume that 𝑐𝑘(𝑏𝑘) is continuous for 𝑏𝑘 > 0 and that it is strictly increasing for
𝑐𝑘(𝑏𝑘) > 0. This allows for head starts where 𝑐𝑘(𝑏𝑘) = 0 for some initial interval of bids and for a fixed cost of entry where 𝑐𝑘(𝑏𝑘)
is discontinuous at 𝑏𝑘 = 0. We define 𝑐𝑘(0+) ≡ lim𝑏𝑘↓0 𝑐𝑘(𝑏𝑘). If 𝑐𝑘(0+) = 0, 𝑐𝑘 is clearly continuous. In the discontinuous case where
𝑐𝑘(0+) > 0 we allow a bid of 0+ which beats 0 and costs 𝑐𝑘(0+) - this corresponds to an infinitesimal bid. We assume 𝑐𝑘(0+) < 1 for at
east one 𝑘 - otherwise no bidding takes place. To avoid a horde of uninteresting special cases we also make the generic assumption
hat 𝑐𝑘(0+) ≠ 1.

On the upper end of 𝑐𝑘(𝑏𝑘), we assume that large enough bids are more costly than the prize, that is, for some 𝑏𝑘 we have
𝑘(𝑏𝑘) > 1. In addition there are bidding caps: 𝑘 cannot bid more than 𝑏𝑘 where 𝑐𝑘(𝑏𝑘) > 0. Note that there is no lack of generality

in this: if 𝑐𝑘(𝑏𝑘) > 1 the bidding caps will not bind.
We will study three types of auctions. In each both bidders submit bids. We will assume that if both cost functions are

iscontinuous and both submit a bid of 0 neither wins the prize. The first two auctions are winner-pays auctions. In a second-price
auction the high bid wins and pays the low bid. In a first-price auction the high bid wins and pays their own bid. In the all-pay auction
both pay their bid and the high bid wins.

To complete the description of the game we must specify the tie-breaking rule. Although we ordinarily think of this as a fixed
exogenous part of the description of the model, in a continuum game with discontinuous payoffs this leads to existence issues.
Suppose, for example, in a first-price auction that one bidder 𝑘 bids 𝑊𝑘 but is unwilling to bid more, while the other bidder −𝑘
is willing to bid a greater amount 𝑊−𝑘. If the tie-breaking rule is that each has a 50–50 chance of winning in case of a tie, then
−𝑘 should not bid 𝑊𝑘, but just a bit more in order to break the tie. Technically there is no number that is ‘‘a bit more’’. What is
needed is a tie-breaking rule suited to the equilibrium: in this case if −𝑘 bids 𝑊𝑘 they should win for sure. Simon and Zame (1990)
provide a general theory of such endogenous tie-breaking rules, prove that equilibria of this sort exist, and that they are the limits
of finite games with exogenous tie-breaking rules. To proceed we define the desire to bid as 𝐵𝑘 as the most the bidder 𝑘 desires to
bid in order to get the prize for sure, that is, 𝑐𝑘(𝐵𝑘) = 1; in the discontinuous case when 𝑐𝑘(0+) > 1 we take 𝐵𝑘 = 0. We define the
willingness to bid as 𝑊𝑘 ≡ min{𝐵𝑘, 𝑏𝑘}, with obvious interpretation. We can now specify the tie-breaking rules. In the second-price
auction the tie-breaking rule is simply that in case of a tie each bidder has a 50% chance of winning. In both the first-price and
all-pay auction there is an exceptional tie-breaking rule at the top and at the bottom: except in these cases, in the event of a tie each
bidder has a 50% chance of winning. The exceptional tie-breaking rule at the top specifies that if 𝑊−𝑘 > 𝑊𝑘 and there is a tie at
𝑏−𝑘 = 𝑏𝑘 = 𝑊𝑘 then −𝑘 wins for sure. This tie-breaking rule reflects the fact that −𝑘 could bid a little higher and win for sure while

would not wish to do so. The exceptional tie-breaking rule at the bottom specifies that if 𝑐𝑘(0+) > 0 and 𝑐−𝑘(0+) = 0 and both bid
0 then 𝑘 loses for sure since −𝑘 can raise the bid at minimal cost and 𝑘 cannot.

Having completed the specification of the game we now define a strategy for bidder 𝑘 as a probability measure 𝐺𝑘 on
0,∞) ∪ {0, 0+} and if ℬ is a measurable set we will write 𝐺𝑘[ℬ] for the probability of the set according to that measure.

Corresponding to this is a cdf, also denoted 𝐺𝑘, on [0,∞) where 𝐺𝑘(0) is the combined probability of {0, 0+}.
Finally, we specify the equilibrium concept. Nash equilibrium is not always adequate for our purposes. We can illustrate the issues

in the first-price auction where one bidder is willing to bid less than the other by introducing the notion of bidder advantage: we
say that bidder 𝑘 is advantaged if 𝑊𝑘 > 𝑊−𝑘 and use the letter 𝑑 for the other bidder who is disadvantaged. It is a Nash equilibrium
for the disadvantaged bidder to bid any amount greater than their willingness to bid but less than the willingness to bid of the
advantaged bidder and for the advantaged bidder to bid the same with the endogenous tie-breaking rule that the advantaged bidder
wins. These equilibria make little sense as it is weakly dominated for the disadvantaged bidder to bid more than their willingness
to bid, and we wish to rule them out.4

Formally, we say that a bid is weakly dominated if there is another bid which does at least as well with respect to all opponents
ids, feasible or not, and better with respect to some such bid. As indicated, we wish to restrict attention to the case in which
idders do not make weakly dominated bids, or what is the same thing, in which they submit only weakly undominated bids. In
continuum game such as an auction there is a technical issue with this assumption, namely that the set of weakly undominated

ids need not be closed: for example bidding the desire to bid 𝐵𝑘 > 0 in a first-price auction is weakly dominated by making the
weakly undominated bid of a bit less since bidding your desire to bid guarantees getting nothing. Players choosing bids from a set
that is not closed leads to existence problems. For this reason we define the set of near weakly undominated bids to be the closure
of the set of weakly undominated bids, which is to say a bid is near weakly undominated if it is either weakly undominated or the
limit of weakly undominated bids. Our equilibrium notion is then Nash equilibrium in near weakly undominated bids.

4 Much of Bernheim and Whinston (1986)’s modeling of menu auctions revolves around doing exactly this.
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3. The tripartite auction theorem

The tripartite auction theorem says that in the three auction formats bidder utility is the same. To make this precise, we first
pecify what we anticipate bidder utility to be in the second-price auction. By the second-price auction utility we mean utility in

a second-price auction in which bidder 𝑘 bids ‘‘their value’’ 𝑊𝑘. This means that an advantaged bidder −𝑑 with 𝑊−𝑑 > 𝑊𝑑 gets
1 − 𝑐−𝑑 (𝑊𝑑 ) – the value of the prize less the cost of matching the bid of the disadvantaged bidder – while the other bidder 𝑑 loses
and gets nothing. If bidders have the same willingness to bid with 𝑊𝑘 = 𝑊−𝑘 = 𝑊 > 0 then each has a half chance of winning and
paying the cost of the bid, so bidder 𝑘 gets (1∕2)(1− 𝑐𝑘(𝑊 )). Finally, when 𝑊𝑘 = 𝑊−𝑘 = 0 both bid zero and by assumption both get
0.

The tripartite auction theorem does not always hold. Our first goal is to specify a large class of auctions in which it does. We say
that an auction is standard if either one bidder is advantaged 𝑊−𝑑 > 𝑊𝑑 or if they have equal willingness to pay 𝑊𝑘 = 𝑊−𝑘 = 𝑊
nd the constraints do not bind so that 𝑊𝑘 = 𝑊−𝑘 = 𝐵𝑘 = 𝐵−𝑘 > 0. We say that entry is partially blocked if both bidders have a
ositive fixed cost of entry and 𝑊𝑑 = 0.

heorem 1 (Tripartite Auction Theorem).
1. In a second-price auction equilibrium utility is the second-price auction utility.
2. In a first-price standard auction where entry is not partially blocked equilibrium utility is the second-price auction utility.
3. In an all-pay standard auction where entry is not partially blocked equilibrium utility is the second-price auction utility.

There is no mystery here about the case where entry is partially blocked. The disadvantaged bidder bids 0 and gets zero. In the
irst-price and all-pay auction the advantaged bidder has to bid 0+, that is, pay the fixed cost, to win and avoid getting nothing

recall that we have assumed it is profitable to do so. By contrast in the second-price auction it is fine to bid 𝑊−𝑑 > 0 as this
s a purely hypothetical bid, and the advantaged bidder wins without actually having to pay the fixed cost. Hence the advantaged
idder does better in the second-price auction.

roof of the tripartite auction theorem

We prove the tripartite auction theorem by characterizing equilibrium strategies and utilities for each type of auction.

heorem 2. In the second-price auction unique equilibrium each bidder bids her willingness to bid 𝑊𝑘, so equilibrium utility is the
econd-price auction utility.

roof. The strategies follow from the fact that in a second-price auction bidding the willingness to bid weakly dominates all other
trategies. The payoffs follow directly; in particular 𝑊𝑘 = 𝑊−𝑘 = 0 implies both have discontinuous cost so when bidding zero the
rize is not awarded. □

We turn to first-price auctions. Let 𝑏𝑘 ≡ inf{𝑏𝑘|𝑐𝑘(𝑏𝑘) > 0}: this is the lowest bid that is not weakly dominated. This is usually
called the head-start.5 Let 𝐺𝑘 be the inf of the support of 𝐺𝑘. We will make use of a Lemma proven as Lemma 1 in Appendix A.

Lemma. In any equilibrium of a first-price auction:
1. Bids by 𝑘 are in the range [𝑏𝑘,min𝑊𝑘].
2. If min𝑊𝑘 > min𝐺𝑘 then one bidder gets zero and the other bidder bids min𝑊𝑘.

Equipped with this Lemma we can characterize equilibrium strategies and utilities in first-price standard auctions.

Theorem 3. In any equilibrium of a first-price standard auction:
1. If 𝑊𝑑 = 0 then the disadvantaged bidder 𝑑 bids 0 and gets nothing while the advantaged bidder −𝑑 bids 0+ and gets 1 − 𝑐−𝑑 (0+). If

−𝑑’s cost is also discontinuous this is not equivalent to the second-price auction where −𝑑 gets 1 − 𝑐−𝑑 (0) > 1 − 𝑐−𝑑 (0+), otherwise it is.
2. If 𝑊−𝑑 > 𝑊𝑑 then −𝑑 bids 𝑊𝑑 and 𝑑 loses for sure and chooses 𝐺𝑑 with support in [𝑏𝑑 ,𝑊𝑑 ] such that it is optimal for −𝑑 to bid 𝑊𝑑 .

One such strategy is to bid 𝑊𝑑 for certain. The advantaged bidder −𝑑 gets 1 − 𝑐−𝑑 (𝑊𝑑 ). Utilities are equivalent to the second-price auction.
3. If 𝑊𝑘 = 𝑊−𝑘 = 𝐵𝑘 = 𝐵−𝑘 one 𝑘 bids min𝑊𝑘 and the other 𝑘 chooses 𝐺𝑘 with support in [𝑏𝑘,𝑊𝑘] such that it is optimal for −𝑘 to bid

min𝑊𝑘. One such strategy is to bid 𝑊𝑘. Both get zero. Utilities are equivalent to the second-price auction.

Proof. We start from the first case: For 𝑊𝑑 = 0 it must be that 𝑐𝑑 (0+) > 1 (since we ruled out it being equal to 1), and by assumption
then 1 > 𝑐−𝑑 (0+). Hence 𝑑 must bid 0. If −𝑑 bids 0 then −𝑑 loses for sure because the prize is not awarded. As 1 > 𝑐−𝑑 (0+) it would
be better to bid 0+ and needlessly costly to bid more, so this is the equilibrium. The payoffs follow directly.

As we have already dealt with case (1) we may assume 𝑊𝑑 > 0. If both bidders bid min𝑊𝑘 this is an equilibrium and we are done.
Suppose instead that one bidder bids 𝐺𝑘 with support in [𝑏𝑘,𝑊𝑘]. If so Lemma 3 (proven in Appendix A) implies min𝐺𝑘 < min𝑊𝑘

5 Some useful facts are these: if 𝑐𝑘(0+) > 0 then 𝑏𝑘 = 0, 𝑏𝑘 > 𝑏𝑘, 𝑊𝑘 ≥ 𝑏𝑘 and if either 𝑐𝑘 is continuous or 𝑐𝑘(0+) < 1 then 𝑊𝑘 > 𝑏𝑘. Also if 𝑊−𝑑 > 𝑊𝑑 it must
e 𝑐 (0+) < 1 (for 𝑐 (0+) ≥ 1 implies 𝑊 = 0).
4
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so from that Lemma one bidder gets zero and the other bids min𝑊𝑘 with probability 1. If 𝑊−𝑑 > 𝑊𝑑 then −𝑑 does not get zero,
so −𝑑 is bidding min𝑊𝑘 which means by the tie-breaking rule that 𝑑 loses for sure. If 𝑊𝑘 = 𝑊−𝑘 = 𝐵𝑘 = 𝐵−𝑘 then whichever 𝑘 bids
min𝑊𝑘 also gets zero. □

We now consider the case of a standard all-pay auction.

heorem 4. In any equilibrium of a standard all-pay auction:
1. If 𝑊𝑑 = 0 the strategies and payoffs are exactly as in the first-price auction.
2. If 𝑊𝑑 ≤ 𝑏−𝑑 bids are 𝑏𝑑 = 𝑏𝑑 and 𝑏−𝑑 = 𝑏−𝑑 , hence 𝑑 gets 0, and −𝑑 gets 1 − 𝑐−𝑑 (𝑊𝑑 ) = 1 − 𝑐−𝑑 (𝑏−𝑑 ) = 1. Utilities are equivalent to

the first-price auction.
3. If 𝑊𝑑 > 𝑏−𝑑 the advantaged bidder −𝑑 gets 1−𝑐−𝑑 (𝑊𝑑 ) and the disadvantaged bidder gets 0. The range (max 𝑏𝑘,min𝑊𝑘) is nonempty,

and in that open interval the strategies are given by 𝐺𝑑 (𝑏𝑑 ) = 1 − 𝑐−𝑑 (𝑊𝑑 ) + 𝑐−𝑑 (𝑏𝑑 ) and 𝐺−𝑑 (𝑏−𝑑 ) = 𝑐𝑑 (𝑏−𝑑 ) while 𝐺𝑘(min𝑊𝑘) = 1. All
emaining probability is on {𝑏𝑑 , 𝑏−𝑑 , 0

+}. The disadvantaged bidder 𝑑 has an atom at 𝑏−𝑑 of size 𝐺
0
𝑑 = 1 − 𝑐−𝑑 (𝑊𝑑 ) + lim𝑏𝑑↓max 𝑏𝑘

𝑐−𝑑 (𝑏𝑑 ).
The advantaged bidder −𝑑 has an atom at 𝑏−𝑑 if 𝑐−𝑑 (𝑏−𝑑 ) is continuous and at 0

+ if not. The size of the atom is 𝐺0
−𝑑 = lim𝑏𝑑↓max 𝑏𝑘

𝑐𝑑 (𝑏𝑑 ).
Utilities are equivalent to the first-price auction.

While the detailed proof of the crucial third case is complex the idea which dates back to Hillman and Riley (1989) is not. They
studied the case of linear cost and no bidding caps, but the case of strictly increasing continuous cost with 𝑊𝑑 < 𝑊−𝑑 , which is
n Levine and Mattozzi (2020) is no more difficult. The idea is to deal first with low bids then with high bids. Low bids have to be
ery near zero, for if not someone is losing almost for sure and bidding a positive amount and would do better to bid zero. The near
ero bidder must be earning zero, and it must be the disadvantaged bidder since the advantaged bidder can insure a positive utility
y bidding a bit more than 𝑊𝑑 . This is the first half of equivalence: the disadvantaged bidder gets nothing. Then we turn to the
igh bids. These have to be near 𝑊𝑑 for if not the disadvantaged bidder can bid close to 𝑊𝑑 and get positive utility. However, the
isadvantaged bidder cannot actually bid 𝑊𝑑 with positive probability since then it would get negative utility. Hence the advantaged
idder must be indifferent to bidding at 𝑊𝑑 and winning for sure, which is exactly what they do in the winner-pays auctions, hence
he equivalence.

roof. In the first case for 𝑊𝑑 = 0 it must be that 𝑐𝑑 (0+) > 1 (since we ruled out it being equal to 1). Hence 𝑑 must bid 0. Given
his, the auction now becomes a first-price auction for −𝑑.

In the second case by weak dominance neither bids more than min𝑊𝑘. If 𝑊−𝑑 > 𝑊𝑑 then for −𝑑 the tie-breaking rule means it
s better to bid 𝑊𝑑 rather than higher because this guarantees a win. Note that here again without the tie-breaking rule 𝑑 might
ot have an optimal bid. Since 𝑏−𝑑 ≥ 𝑊𝑑 > 0 then 𝑐−𝑑 cannot be discontinuous for that would imply 𝑏−𝑑 = 0. Suppose then that
𝑑 ≤ 𝑏−𝑑 and 𝑐−𝑑 (𝑏−𝑑 ) is continuous. The unique equilibrium is 𝑏𝑑 = 𝑏𝑑 and 𝑏−𝑑 = 𝑏−𝑑 , hence 𝑑 gets 0, and −𝑑 gets 1. The third

ase is Proposition 1 in Appendix A. □

xample

To illustrate the key result which is Theorem 4 part (3) consider a symmetric auction with fixed cost 𝑐𝑘(0+) = 1∕4 and
𝑘(𝑏𝑘) = 1∕4 + 𝑏𝑘 and non-binding bid caps. Here willingness to bid for both bidders is 𝑊𝑘 = 3∕4 and neither bidder is advantaged,
oth are disadvantaged. Each gets zero, and the equilibrium strategies are given by the cdf 𝐺𝑘(𝑏𝑘) = 1∕4 + 𝑏𝑘 that is, there is an
tom at 0 of height 1∕4. The expected cost is the probability of bidding of 3∕4 times the expected value of the fixed cost of 1∕4
lus a uniform on [0, 3∕4], which is to say (3∕4)((1∕4) + (3∕8)) = 15∕32. The probability of winning is given by the probability that
he opponent does not bid of which is 1∕4 time the probability of bidding which is 3∕4 plus the probability that both bid times
∕2 since conditional on both bidding each has an equal chance of bidding. This is (1∕4)(3∕4) + (1∕2)(3∕4)(3∕4) = 15∕32, so that the
robability of winning is exactly the expected cost.

. Non-standard auctions

In addition to the generic case of standard auctions we want to allow the non-generic but important case of symmetry. In
articular, we say that an auction is weakly symmetric if 𝑊 ≡ 𝑊𝑘 = 𝑊−𝑘. The weakly symmetric case with non-binding bidding
aps we have already dealt with as these are standard. We say that an auction is weakly symmetric with high stakes if both bidders
ave the same strictly binding bidding cap 𝑏𝑘 = 𝑏−𝑘 with 𝑐𝑘(𝑏𝑘) < 1 for both 𝑘. While weakly symmetric with high stakes auctions
re not generic, they are important. For example, in the theory of voting, bidding caps are naturally interpreted as party size and
ownsian platform competition prior to the election may force equality of party sizes. In the case of all-pay lobbying, as in Che and
ale (1998), the bidding caps are equal because they are established by law and apply equally to each lobbying group.

Not all auctions are standard or weakly symmetric with high stakes. We say that a weakly symmetric auction is special if for one
idder 𝑘 we have 𝑐𝑘(𝑏𝑘) ≤ 1, so that the bidding cap binds, and for the other we have 𝑏−𝑘 ≥ 𝑏𝑘 and 𝑐−𝑘(𝑏𝑘) = 1. Special first-price

auctions are badly behaved: it is an equilibrium for 𝑘 to bid 𝑊𝑘 and for −𝑘 to bid 𝑊𝑘 with probability 1 ≥ 𝜋 > 0 and 𝑊𝑘 − 𝜖 with
robability 1 − 𝜋 where 𝜖 (dependent on 𝜋) is chosen so that for 𝑘 bidding 𝑊𝑘 is at least as good as bidding slightly more than
𝑘 − 𝜖, that is (1 − 𝜋)(1 − 𝑐𝑘(𝑊𝑘 − 𝜖)) ≤ (1 − 𝜋∕2)(1 − 𝑐𝑘(𝑊𝑘)), equivalently

1 − 𝜋 ≤
1 − 𝑐𝑘(𝑊𝑘) .
5

1 − 𝜋∕2 1 − 𝑐𝑘(𝑊𝑘 − 𝜖)
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Hence −𝑘 gets zero while 𝑘 gets (1 − 𝜋∕2)(1 − 𝑐𝑘(𝑏𝑘)), that is any amount between (1∕2)(1 − 𝑐𝑘(𝑏𝑘)) and 1 − 𝑐𝑘(𝑏𝑘). By contrast in the
second-price auction the only equilibrium is for both to bid 𝑊 and for 𝑘 to get (1∕2)(1 − 𝑐𝑘(𝑏𝑘)), so utility equivalence fails rather
badly.

On the other hand, special auctions require the terrible coincidence of one bidder being indifferent between winning and staying
out at the other’s bidding cap so it makes sense to disregard them. The table below outlines the different cases.

Asymmetric 𝑊𝑘 < 𝑊−𝑘 Standard
Weakly 0 = 𝑊𝑘 = 𝑊−𝑘 Trivial
Symmetric 0 < 𝑊𝑘 𝐵𝑘 = 𝐵−𝑘 ≤ min{𝑏𝑘, 𝑏−𝑘} Standard

𝑊𝑘 = 𝑊−𝑘 𝑏𝑘 = 𝑏−𝑘 ≤ min{𝐵𝑘, 𝐵−𝑘} High stakes
and 𝑐𝑘(𝑏𝑘) < 1∕2 for both 𝑘 Very High
and 𝑐𝑘(𝑏𝑘) > 1∕2 for some 𝑘 Medium High
𝐵𝑘 = 𝑏𝑘 ≤ min{𝐵−𝑘, 𝑏−𝑘} Special

We conclude this discussion of types of auction by showing that among auctions satisfying our basic restriction that 𝑐𝑘(0+) = 1
there are no other cases.

Theorem 5. If an auction is neither standard nor special it is weakly symmetric with high stakes.

Proof. Since the auction is not standard the bidders must have equal willingness to bid 𝑊𝑘 = 𝑊−𝑘 = 𝑊 and the constraint must
strictly bind for one of them, that is, for one 𝑘 we have 𝑐𝑘(𝑏𝑘) < 1. This establishes that 𝑊 = 𝑏𝑘. Observe that if 𝑐−𝑘(𝑏𝑘) > 1 then

−𝑘 < 𝑏𝑘 so that weak symmetry is violated. Hence we can have weak symmetry and 𝑐𝑘(𝑏𝑘) < 1 only when 𝑐−𝑘(𝑏𝑘) ≤ 1. Moreover,
we cannot have 𝑏−𝑘 < 𝑏𝑘 as this would violate weak symmetry. Hence, since the auction is not special, 𝑐−𝑘(𝑏𝑘) ≠ 1, so 𝑐−𝑘(𝑏𝑘) < 1.
This means in addition that if 𝑏−𝑘 > 𝑏𝑘 weak symmetry is violated. Hence 𝑏−𝑘 = 𝑏𝑘 = 𝑊 , so the auction is weakly symmetric with
igh stakes. □

. High stakes in weakly symmetric auctions

In this section we show that in weakly symmetric auctions with high stakes the first and second-price auctions are utility
quivalent but the all-pay auction is not. We can further classify these auctions into those for which there are very high stakes
n the sense that 𝑐𝑘(𝑏𝑘) < 1∕2 for both 𝑘 and those in which there are moderately high stakes in the sense that for at least one bidder
𝑘 we have 𝑐𝑘(𝑏𝑘) > 1∕2. In the latter case we make the additional generic assumption that 𝑐𝑘(𝑏𝑘) ∉ {1∕2, (1 + 𝑐𝑘(0+))∕2} for either
𝑘. Our results show that in the very high stakes case the all-pay auction gives lower utility to both bidders than the winner-pays.
The intuition here is the naive one: both have to pay instead of just the winner, so they wind up paying more. By contrast in the
moderately high stakes case one bidder gets zero, less than in the winner-pays auctions, but the other bidder may get either more
or less.

Theorem 6. In weakly symmetric high stakes first or second-price auction there is a unique equilibrium and both bid 𝑏𝑘 = 𝑊 and utility
for 𝑘 is (1∕2)(1 − 𝑐𝑘(𝑊 )).

roof. In the second-price auction the equilibrium strategies are given by Theorem 2.
Turning to the first-price auction, notice that both 𝑘 must get positive utility since by bidding 𝑊 they get at least 1∕2−(1∕2)𝑐𝑘(𝑏𝑘).

In a weakly symmetric high stakes auction this is strictly positive. Hence Lemma 3 (proven in Appendix A) shows that this implies
𝑊 ≤ min𝐺𝑘, that is, neither can bid less than 𝑊 . From the equilibrium strategies each has a 1/2 chance of winning so the payoffs
follow. □

We next turn to the all-pay auction. Our treatment generalizes that of Che and Gale (1998) who study only linear cost functions.
Recall that a weakly symmetric high stakes auction has very high stakes if 𝑐𝑘(𝑏𝑘) < 1∕2 for both 𝑘.

Theorem 7. In a weakly symmetric very high stakes all-pay auction there is a unique equilibrium, both bid 𝑏𝑘 = 𝑊 and utility for 𝑘 is
1∕2 − 𝑐𝑘(𝑊 ).

Proof. Notice that both 𝑘 must get positive utility since by bidding 𝑊 they get at least 1∕2 − 𝑐𝑘(𝑏𝑘) > 0. Lemma 2 in Appendix A
hows that then neither can bid less than 𝑊 . From the equilibrium strategies each has a 1/2 chance of winning so the payoffs
ollow. □

In these auctions, while the all-pay strategies are the same as in the winner-pays auctions, utility is strictly less since the bid has
o be paid even when the auction is lost.

We next study the remaining weakly symmetric high stakes case with moderate stakes in the sense that for one bidder 𝑘 we have
𝑏 ) > 1∕2. In Lemmas 4–6 in Appendix B we characterize the equilibria and payoffs for the moderately high stakes case. For one
6

𝑐𝑘( 𝑘
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part of the result we need the additional generic assumption that 𝑐𝑘(𝑏𝑘) ≠ (1 + 𝑐𝑘(0+))∕2. We define a bid �̃�𝑘 as the unique solution
to 𝑐𝑘(𝑏𝑘) = 2𝑐𝑘(𝑊 ) − 1 if 𝑐𝑘(0+) < 2𝑐𝑘(𝑊 ) − 1 and �̃�𝑘 = 0 otherwise.

A complete characterization of the weakly symmetric moderately high stakes auction with 𝑐𝑘(𝑏𝑘) ∉ {1∕2, (1+𝑐𝑘(0+))∕2} for either
𝑘 can be found as Proposition 2 in Appendix B. It is summarized in the following Corollary:

Corollary 1. In a weakly symmetric moderately high stakes all-pay auction with 𝑐𝑘(𝑏𝑘) ∉ {1∕2, (1+ 𝑐𝑘(0+))∕2} for either 𝑘, a bidder 𝑧 that
gets 0 in the all-pay auction gets strictly less than in the winner-pays auctions. If max �̃�𝑘 > max 𝑏𝑘 there is a unique equilibrium in which −𝑧
ets 𝑐−𝑧(max �̃�𝑘) − (2𝑐−𝑧(𝑊 ) − 1), otherwise −𝑧 gets 𝑐−𝑧(0+) − (2𝑐−𝑧(𝑊 ) − 1).

This follows directly from Proposition 2. Notice that the utility of the favored bidder −𝑧 can be greater than the payoff in the
inner-pays auctions (1∕2)(1 − 𝑐−𝑧(𝑊 )), for example if 𝑐−𝑧(𝑊 ) is close to zero. It can also be less, for example, if �̃�𝑧 = �̃�−𝑧 and both

bidders get zero.

Example revisited

Consider again a symmetric auction with fixed cost 𝑐𝑘(0+) = 1∕4 and 𝑐𝑘(𝑏𝑘) = 1∕4 + 𝑏𝑘 now with a symmetric bid cap of 5∕8 so
that the auction is not standard and has moderately high stakes. Willingness to bid for both bidders remains 𝑊𝑘 = 3∕4. We calculate
2𝑐𝑘(𝑊 ) − 1 = 2((1∕4) + (5∕8)) − 1 = 3∕4 so that �̃�𝑘 = 1∕2. Hence by Corollary 1 there is a unique equilibrium — obviously symmetric,
and according the theorem each gets zero. Note here the failure of the tripartite auction theorem. In the all-pay auction both get
zero. In the winner-pays auctions both bid the cap of 5∕8 and each has a 50% chance of paying that bid and winning the prize
worth one: hence each gets utility 3∕16.

The equilibrium strategies are given in Proposition 2 in Appendix B. In [0, 1∕2) they are given by 𝐺𝑘(𝑏𝑘) = 1∕4 + 𝑏𝑘 with the
remaining probability of 1∕4 at the bid cap of 𝑊 = 5∕8. Notice how in the symmetric moderate stakes auction there is a gap between
(1∕2, 5∕8) in which neither bidder bids, while, as was the case with non-binding bid caps, the fixed cost leads also to an atom at
zero.

6. Revenue and welfare considerations

We turn now to the more standard question in auction theory, that of revenue equivalence. That is, so far we have been
considering the utility of the parties. What happens with the bids? Even for elections, politicians and some others seem to feel
that high turnout, that is, high revenue as measured by the number of votes, is a vindication of democratic ideals or something like
that, or, in the case of politicians, they simply view it in much the same way as athletes who like a larger audience. In the case of
bribes, whether in the form of lavish dinners or high paying low responsibility jobs either for relatives or after the fact, the bids are
to an extent a transfer payment, so the revenue is not entirely lost. Hence, from an efficiency point of view, given that the parties
are indifferent between the different types of auctions, higher expected revenue is welfare improving. Hence we now take the point
of the auctioneer and ask which auction yields the highest expected revenue?

The first-price auction and second-price auction are easily seen to yield the same revenue — this is the standard revenue
equivalence result in the simplest case of known values. If 1 > 𝑐−𝑑 (0+) > 0 and 𝑊𝑑 = 0 the winner incurs a greater cost but
still pays nothing to the auctioneer; in the other cases the winning bid is the same for both auctions, so in all cases the auctioneer
gets min𝑊𝑘. Note that the second-price auction is more efficient than the first-price auction when it avoids an unnecessary fixed
cost. What about the all-pay auction?

To get a bit of intuition recall from Theorem 4 that the equilibrium cdfs in the all-pay auction are roughly given by the opponents
cost plus their utility. If the cost – and so the cdf – is convex then the density is downwards sloping meaning that bids tend to be
low, while if it is concave then the density is upwards sloping meaning that bids tend to be high. Note that we mean convexity or
concavity over the entire range, so in particular convexity rules out the fixed cost jump discontinuity at 0. Hence we might expect
that convexity also means low revenue, while concavity means high revenue. Our next result addresses the convex case and shows
that this intuition is exact.

Theorem 8. In a standard auction
1. if 𝑊𝑑 = 0 or 𝑊𝑑 = 𝑊−𝑑 and 𝑐𝑘(𝑏𝑘) is linear for both 𝑘 then the all-pay auction is expected revenue equivalent to the first-price

auction. Otherwise
2. if 𝑐𝑘(𝑏𝑘) is convex for both 𝑘 then the all-pay auction yields strictly less expected revenue than the first-price auction.

Proof. If 𝑊𝑑 = 0 we already observed in Theorem 4 that the all-pay auction is the same as the first-price auction so certainly yields
the same expected revenue. We treat the remaining cases.

Let 𝛽𝑘be the random variable on [0,𝑊𝑑 ] ∪ {0+} that is the equilibrium bid of 𝑘 in the all-pay auction and let 𝑝𝑘 represent 𝑘’s
equilibrium chance of winning. From Theorem 4 −𝑑 gets 1− 𝑐−𝑑 (𝑊 ) so 1− 𝑐−𝑑 (𝑊 ) = 𝑝−𝑑 −𝐸𝑐−𝑑 (𝛽−𝑑 ). Similarly as 𝑑 gets 0 we have
0 = 𝑝𝑑 − 𝐸𝑐𝑑 (𝛽𝑑 ). Adding these together we see that in equilibrium 𝑐−𝑑 (𝑊𝑑 ) = 𝐸𝑐−𝑑 (𝛽−𝑑 ) + 𝐸𝑐𝑑 (𝛽𝑑 ). Dividing through by 𝑐−𝑑 (𝑊𝑑 ) as
this is certainly positive we can write this as

𝐸𝑐−𝑑 (𝛽−𝑑 )𝑊 +
𝑐𝑑 (𝑊𝑑 ) 𝐸𝑐𝑑 (𝛽𝑑 )𝑊𝑑 = 𝑊𝑑
7

𝑐−𝑑 (𝑊 ) 𝑐−𝑑 (𝑊𝑑 ) 𝑐𝑑 (𝑊𝑑 )
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where we know that 𝑊𝑑 is the revenue from the first-price auction. Moreover, if 𝑐𝑘(𝑏𝑘) is (weakly) convex since 𝑐𝑘(0) = 0 it follow
that 𝑐𝑘(𝑏𝑘) ≥ 𝑐𝑘(𝑊𝑑 )𝑏𝑘∕𝑊𝑑 including for 𝑏𝑘 = 0+ with strict inequality unless 𝑐𝑘(𝑏𝑘) is linear. We may write this as

𝑏𝑘 ≤
𝑐𝑘(𝑏𝑘)
𝑐𝑘(𝑊𝑑 )

𝑊𝑑 (6.1)

so that

𝐸𝛽−𝑑 +
𝑐𝑑 (𝑊𝑑 )
𝑐−𝑑 (𝑊𝑑 )

𝐸𝛽𝑑 ≤ 𝑊𝑑 (6.2)

with strict inequality if either 𝑐𝑘(𝑏𝑘) fails to be linear. Recalling that this is a standard auction, in the symmetric case 𝑐𝑑 (𝑊𝑑 ) =
𝑐−𝑑 (𝑊𝑑 ) and with linear cost this holds with equality which is the second part of (1). Otherwise the inequality is strict. □

What about the concave case? To start with, the reverse result is not true. The inequality (6.1) is reversed so the revenue
nequality (6.2) is reversed reading

𝐸𝛽−𝑑 +
𝑐𝑑 (𝑊𝑑 )
𝑐−𝑑 (𝑊𝑑 )

𝐸𝛽𝑑 ≥ 𝑊𝑑

but while concavity pushes revenue in favor of the all-pay auction, this is not enough because of the term 𝑐𝑑 (𝑊𝑑 )∕𝑐−𝑑 (𝑊𝑑 ) which
s less than one unless the auction is symmetric. Roughly speaking the more asymmetric is the auction the greater the concavity
eeded in cost for the all-pay auction to generate more revenue that the first-price auction. In one important special case we can
ake this trade-off explicit.

We say the −𝑑 has a homogeneous cost advantage over 𝑑 if 𝑐−𝑑 (𝑏−𝑑 ) = 𝜈𝑐𝑑 (𝑏−𝑑 ) with 𝜈 < 1. Define 𝛺 = (1∕𝑊𝑑 ) ∫
𝑊𝑑
0 𝑐𝑑 (𝑏𝑑 )𝑑𝑏𝑑 .

his is a measure of the convexity of 𝑐𝑑 (𝑏𝑑 ). In fact, 𝛺 = 1∕2 if 𝑐𝑑 (𝑏𝑑 ) is linear, 𝛺 > 1∕2 if 𝑐𝑑 (𝑏𝑑 ) is strictly convex, and <1∕2 if 𝑐𝑑 (𝑏𝑑 )
s strictly concave.

heorem 9. In a standard auction if −𝑑 has a homogeneous cost advantage, 𝑏𝑑 = 0 and 𝑐𝑘(𝑏𝑘) is concave for both 𝑘 with 𝑐𝑘(0+) = 0, the
all-pay auction generates more expected revenue than the first-price auction if and only if

𝛺 < 𝜈
1 + 𝜈

𝑐𝑑 (𝑊𝑑 ).

Note that the RHS is no greater than 1∕2. We see from this that there are two forces working against revenue in the all-pay
uction: the RHS is increasing in 𝜈 so less symmetry, meaning smaller 𝜈 requires greater concavity meaning smaller 𝛺. Second, the
HS is increasing in 𝑐𝑑 (𝑊𝑑 ) so that when the constraint binds on 𝑑 and 𝑐𝑑 (𝑊𝑑 ) < 1 greater concavity is also required.

roof. With a homogeneous cost advantage 𝑏𝑑 = 𝑏−𝑑 so both are zero. As we have assumed 𝑐𝑘(0+) = 0. from Theorem 4
𝐺𝑑 [{0}] = 1 − 𝑐−𝑑 (𝑊𝑑 ) and 1 − 𝐺−𝑑 [{𝑊𝑑}] = 𝑐𝑑 (𝑊𝑑 ) and these are the only atoms. Moreover in (0,𝑊𝑑 ) we have 𝐺−𝑑 (𝑏−𝑑 ) =
𝑐𝑑 (𝑏−𝑑 ) and 𝐺𝑑 (𝑏𝑑 ) = 𝑐−𝑑 (𝑏𝑑 ) + 1 − 𝑐−𝑑 (𝑊𝑑 ). Integrating by parts we have 𝐸�̃�−𝑑 = ∫ 𝑊𝑑

0
[

1 − 𝑐𝑑 (𝑏−𝑑 )
]

𝑑𝑏−𝑑 = 𝑊𝑑 − 𝛺𝑊𝑑 and
𝐸�̃�𝑑 = ∫ 𝑊𝑑

0 (𝑐−𝑑 (𝑊𝑑 ) − 𝑐−𝑑 (𝑏𝑑 ))𝑑𝑏𝑑 = 𝑊𝑑𝑐−𝑑 (𝑊𝑑 ) − 𝜈𝛺𝑊𝑑 . Adding up we get

𝐸�̃�−𝑑 + 𝐸�̃�𝑑 =
(

1 −𝛺 + 𝜈𝑐𝑑 (𝑊𝑑 ) − 𝜈𝛺
)

𝑊𝑑

Hence the all-pay auction generates more expected revenue than the first-price auction exactly as stated. □

7. Conclusion

In the spirit of Konrad Mierendorff this paper is a theory paper: it is not about a ‘‘killer-app’’ but rather provides set of tools for
analyzing the important case of two bidder auctions under complete information. The intention, of course, is that these results will
be used in applications, perhaps in ways that we cannot foresee.

Although this is not the purpose of this paper there are economic conclusions to be drawn from these results and we conclude
by mentioning some of these. First, there is a long literature about the fact that small groups have an advantage in lobbying6 -
while the opposite is the case in voting.7 Payments to politicians, when they are not direct cash payments, are typically in the form
of employment contracts after leaving office, book deals, employment for spouses, and so forth8 - and these are only paid by the
winner. Empirically, then, lobbying is typically a winner-pays auction, while, of course, voting is an all-pay auction. In principle
this difference in mechanism might favor either larger or smaller groups: but the results here show that this is not the case — we
have shown that only in very special circumstances do the consequences of the auction mechanism make a difference to the utility
of the bidders. Hence we must look elsewhere to explain why small groups excel at lobbying and large groups in elections. Second:
the reason for the difference in mechanisms should be clear — again, except under special circumstances, the winner-pays auctions
generate more revenue than the all-pay auction, so naturally politicians have an incentive to employ the former rather than the
latter.

6 See Olson (1965).
7 See Levine and Mattozzi (2020)
8 See Levine et al. (2022)
8



European Economic Review 162 (2024) 104656D.K. Levine et al.

L

r
n

i

𝑘

s

P

s
𝐺

b
b

Appendix A. All-pay auction proofs

We first give the key technical result used in the study of first-price auctions, then prove Theorem 4.

emma 1. In any equilibrium of a first-price auction:
1. Bids by 𝑘 are in the range [𝑏𝑘,min𝑊𝑘].
2. If min𝑊𝑘 > min𝐺𝑘 then one bidder gets zero and the other bidder bids min𝑊𝑘.

Proof. By weak dominance 𝑏𝑘 ≤ 𝑊𝑘 and 𝑏𝑘 ≥ 𝑏𝑘. In no case does either bid more than min𝑊𝑘. If 𝑊−𝑑 > 𝑊𝑑 then the tie-breaking
ule means it is better for −𝑑 to bid 𝑊𝑑 than higher because this guarantees a win. Note that without the tie-breaking rule 𝑑 might
ot have an optimal bid. If 𝑊−𝑑 = 𝑊𝑑 this follows from 𝑏𝑘 ≤ 𝑊𝑘. This proves (1).

Suppose min𝑊𝑘 > min𝐺𝑘. If there is a 𝑘 such that 𝑐𝑘(𝑏𝑘) is discontinuous and 𝑘 plays 0 with positive probability, since a 0 bid
yields zero for sure (either because 𝑐−𝑘(0+) = 0 or because both are discontinuous and if both bid zero the prize is not awarded) then
𝑘 gets 0. Suppose on the contrary that a 𝑘 with discontinuous 𝑐𝑘 (if any) does not play zero with positive probability. If min𝐺𝑘 = 0
t cannot be that both have an atom at 0+ since it would be better to bid a bit more. For the same reason, if min𝐺𝑘 > 0 it cannot

be that both have an atom at min𝐺𝑘 > 0. Suppose that −𝑘 has no atom at 0+ if min𝐺𝑘 = 0 or at min𝐺𝑘 > 0. If 𝐺𝑘 > min𝐺𝑘 then
−𝑘 gets zero. If 𝐺𝑘 = min𝐺𝑘 then 𝑘 bidding down to 𝐺𝑘 and −𝑘 having no atom there implies that 𝑘 gets zero. The reason is that

is bidding with positive probability in any interval (𝐺𝑘, 𝑏𝑘] and those bids win with probability at most 𝐺−𝑘(𝑏𝑘) → 0 as 𝑏𝑘 → 𝐺𝑘.
Finally, suppose that 𝑘 gets zero. If −𝑘 bids less than min𝑊𝑘 then 𝑘 would have a bid giving a positive payoff, so −𝑘 must bid min𝑊𝑘
with probability 1. □

We now turn to the proof of the main result about all-pay auctions, Theorem 4. The difficult case is case (3) in which the
disadvantaged bidder is willing to bid more than the head-start of the advantaged bidder. We state the key facts about equilibrium
strategies as a separate Lemma.

Lemma 2. In an all-pay auction with 𝑏−𝑑 < 𝑊𝑑 ≤ 𝑊−𝑑
1. Bids are either min 𝑏𝑘, 0

+ or in the range [max 𝑏𝑘,min𝑊𝑘] and in particular 𝐺𝑘(min𝑊𝑘) = 1.
2. In the non-empty range (max 𝑏𝑘,min𝑊𝑘) there can be no atoms and bidder 𝑘 with 𝑏𝑘 < 𝑏−𝑘 cannot have an atom at 𝑏−𝑘.
3. Unless both have an atom of size 1 at min𝑊𝑘 one of the two bidders must get zero and there is a 𝐺 such that there can be no open

interval with zero probability for either bidder in (max 𝑏𝑘, 𝐺), and [𝐺,min𝑊𝑘) has zero probability. If one does not have an atom at min𝑊𝑘
then 𝐺 = min𝑊𝑘 and in particular each bidder must bid arbitrarily close to max 𝑏𝑘 and min𝑊𝑘.

4. Suppose that 𝑊𝑑 = 𝑊−𝑑 and for one 𝑘 we have 𝑐𝑘(𝑏𝑘) > 1∕2. Then both do not have an atom of size 1 at min𝑊𝑘. If the auction is a
tandard one then both do not have an atom at min𝑊𝑘.

roof. 1. The hypothesis 𝑏−𝑑 < 𝑊𝑑 ≤ 𝑊−𝑑 implies that 𝑊𝑘 > 0 for both 𝑘. This implies 𝑐𝑘(0+) < 1 so 𝑊𝑘 > 𝑏𝑘. By weak dominance
we may assume there are no bids 𝑏𝑘 ∈ [0, 𝑏𝑘) as these are weakly dominated by 𝑏𝑘. By weak dominance we may assume that 𝑏𝑘 ≤ 𝑊𝑘
since 𝑏𝑘 > 𝑊𝑘 is weakly dominated by bidding 0.

After applying weak dominance we are free to apply iterated strict dominance as this does not eliminate any equilibrium
trategies. By strict dominance we may assume that 𝑏𝑘 ≤ 𝑊−𝑘 since 𝑏𝑘 > 𝑊−𝑘 is strictly dominated by 𝑏𝑘−(𝑏𝑘−𝑊−𝑘)∕2. In particular
𝑘(min𝑊𝑘) = 1 as asserted. By strict dominance we may assume there are no bids 𝑏𝑘 for which 𝑏𝑘 < 𝑏𝑘 < 𝑏−𝑘 since 𝑏−𝑘 ≥ 𝑏−𝑘 so that

such bids are costly but losing.
Putting this together, we may restrict bids 𝑏𝑘 to be either min 𝑏𝑘, 0

+ or in the range [max 𝑏𝑘,min𝑊𝑘]. By assumption 𝑊𝑘 > 𝑏−𝑘
for both bidders. Since 𝑊𝑘 > 𝑏𝑘 this implies (max 𝑏𝑘,min𝑊𝑘) is nonempty.

2. In the range (max 𝑏𝑘,min𝑊𝑘) there can be no atoms by the usual argument for all-pay auctions: if there was an atom at 𝑏𝑘 then
idder −𝑘 would prefer to bid a bit more than 𝑏𝑘 rather than a bit less, and since consequently there are no bids by −𝑘 immediately
elow 𝑏𝑘 bidder 𝑘 would prefer to choose the atom at a lower bid. It is also the case that a bidder 𝑘 with 𝑏𝑘 < 𝑏−𝑘 cannot have an

atom at 𝑏−𝑘. If −𝑘 has an atom there, then 𝑘 should increase its atom slightly to break the tie. If −𝑘 does not have an atom there,
then 𝑘 should shift its atom to 𝑏𝑘 since it does not win either way.

3. Assume it is not the case that both bidders have an atom of size 1 at min𝑊𝑘.
Let 𝐺𝑘 ≡ inf{𝑏𝑘|𝐺𝑘

(

(𝑏𝑘,min𝑊𝑘)
)

= 0} - this is basically the highest bid by 𝑘 with positive probability — and 𝐺 = max𝑘 𝐺𝑘. We
observe that in (max𝑘 𝑏𝑘, 𝐺) there can be no open interval with zero probability from either bidder. If bidder 𝑘 has such an interval,
then bidder −𝑘 will not submit bids in that interval since the cost of the bid is strictly increasing so it would do strictly better to
bid at the bottom of the interval. Hence there would have to be an interval in which neither bidder submits bids. But then, for the
same reason, it would be strictly better to lower the bid for bids slightly above the interval. This implies that if 𝐺 > max 𝑏𝑘 each
bidder must bid arbitrarily close to max𝑘 𝑏𝑘.

We can now show that one of the two must get zero. Denote by ℬ ≡ {𝑏𝑑 , 𝑏−𝑑 , 0
+}. If 𝐺 > max 𝑏𝑘 both must bid arbitrarily close

to max 𝑏𝑘. If 𝐺 = max 𝑏𝑘 since both do not have an atom of size one at min𝑊𝑘 one must put positive weight on the set ℬ. If only
one does so they get zero, so we may assume both do so.

Suppose first that max 𝑏𝑘 > 0 or both have continuous cost. From (2) a bidder 𝑘 with 𝑏𝑘 < 𝑏−𝑘 cannot have an atom at 𝑏−𝑘. If
𝑏 = 𝑏 > 0 or both have continuous cost both cannot have an atom at 𝑏 since both would like to bid a bit more.
9
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If 𝐺 > max 𝑏𝓁 since one 𝑘 has an opponent without an atom at max 𝑏𝓁 and (𝐺𝑘,min𝑊𝑘) has zero probability, then bidding down
to max 𝑏𝓁 bidder 𝑘 can get more than zero only if −𝑘 has positive probability of playing less than max 𝑏𝓁 ; this implies that max 𝑏𝓁 = 𝑏𝑘
and that −𝑘 gets zero since her bids below 𝑏𝑘 lose for sure and have positive probability.

If 𝐺 = max 𝑏𝑘 then both must have a positive probability of playing ℬ so for one 𝑘 it must be that 𝑏𝑘 = max 𝑏𝑘 so 𝑘 has an atom
there. This means that −𝑘 does not so loses for sure and gets zero.

Suppose now that max 𝑏𝑘 = 0 and that 𝑘 has a discontinuous cost. If 𝑘 bids 0 with positive probability then 𝑘 gets zero, so we
ay assume this is not the case. Hence if −𝑘 bids 0 with positive probability then −𝑘 gets 0 so we may assume neither has an atom

at 0. They cannot both have an atom at 0+ so one 𝓁 has an opponent without an atom there. If 𝐺 = 0 then 𝓁 should not bid 0+ since
his loses for sure. This implies that 𝓁 has an atom of size 1 at min𝑘 𝑊𝑘 and since −𝓁 does not −𝓁 has a bid that loses for sure, so
annot get more than 0 so −𝓁 must get 0. If 𝐺 > 0 then 𝓁 bidding down to zero must get zero.

This establishes that unless both have an atom of size 1 at min𝑊𝑘 one must get zero.
Suppose that one does not have an atom at min𝑊𝑘. If neither has an atom and 𝐺 < min𝑊𝑘 then each can get a positive utility

by bidding (min𝑊𝑘 +𝐺)∕2, contradicting the fact that one must get zero. If 𝑘 has an atom and −𝑘 does not and 𝐺 < min𝑊𝑘 then 𝑘
should move their atom to a lower bid.

4. Suppose in addition that either 𝑊−𝑑 > 𝑊𝑑 or if 𝑊𝑑 = 𝑊−𝑑 then for one 𝑘 we have 𝑐𝑘(𝑏𝑘) > 1∕2. Then both do not have an
atom of size 1 at min𝑊𝑘. If in fact the auction is a standard one then both to not have an atom at min𝑊𝑘.

Suppose that 𝑊𝑑 = 𝑊−𝑑 and for one 𝑘 we have 𝑐𝑘(𝑏𝑘) > 1∕2. If both have an atom of size one at min𝑊𝑘 then 𝑘 has a negative
utility. So this is ruled out.

If 𝑊−𝑑 > 𝑊𝑑 and −𝑑 has an atom at min𝑊𝑘 then 𝑑 loses for sure so has negative utility. The other standard auction case is
𝑊𝑘 = 𝑊−𝑘 = 𝐵𝑘 = 𝐵−𝑘 so if both have an atom both get negative utility because the probability of winning 𝐵𝑘 is less than one,
while the probability of paying 𝐵𝑘 is one. This shows that in the standard case both do not have an atom. □

We now prove Theorem 4 part (3).

roposition 1. In any equilibrium of a standard all-pay auction: If 𝑊𝑑 > 𝑏−𝑑 the advantaged bidder −𝑑 gets 1 − 𝑐−𝑑 (𝑊𝑑 ) and the
isadvantaged bidder gets 0. The range (max 𝑏𝑘,min𝑊𝑘) is nonempty, and in that open interval the strategies are given by 𝐺𝑑 (𝑏𝑑 ) =
− 𝑐−𝑑 (𝑊𝑑 ) + 𝑐−𝑑 (𝑏𝑑 ) and 𝐺−𝑑 (𝑏−𝑑 ) = 𝑐𝑑 (𝑏−𝑑 ) while 𝐺𝑘(min𝑊𝑘) = 1. All remaining probability is on {𝑏𝑑 , 𝑏−𝑑 , 0

+}. The disadvantaged
idder 𝑑 has an atom at 𝑏−𝑑 of size 𝐺

0
𝑑 = 1 − 𝑐−𝑑 (𝑊𝑑 ) + lim𝑏𝑑↓max 𝑏𝑘

𝑐−𝑑 (𝑏𝑑 ). The advantaged bidder −𝑑 has an atom at 𝑏−𝑑 if 𝑐−𝑑 (𝑏−𝑑 ) is
continuous and at 0+ if not. The size of the atom is 𝐺0

−𝑑 = lim𝑏𝑑↓max 𝑏𝑘
𝑐𝑑 (𝑏𝑑 ). Utilities are equivalent to the first-price auction.

roof. In both cases from Lemma 2 parts (3) and (4) 𝐺 = min𝑊𝑘 so both must bid arbitrarily close to min𝑊𝑘.
If 𝑊−𝑑 > 𝑊𝑑 then −𝑑 can get �̂�−𝑑 = 1 − 𝑐−𝑑 (𝑊𝑑 ) > 0 by bidding 𝑊𝑑 . Hence it must be −𝑑 that gets zero. On the other hand −𝑑

cannot get more than this as they must bid arbitrarily close to 𝑊𝑑 so must get less than or equal this amount. In the symmetric case
ach 𝑘 must bid arbitrarily close to 𝑊𝑘 so cannot get a positive amount.

We now find the equilibrium strategies. From the absence of zero probability open intervals in (max 𝑏𝑘,min𝑊𝑘) it follows that
the indifference condition for the advantaged bidder −𝑑 is

𝐺𝑑 (𝑏−𝑑 ) − 𝑐−𝑑 (𝑏−𝑑 ) = 1 − 𝑐−𝑑 (𝑊𝑑 )

must hold for at least a dense subset. For the disadvantaged bidder we have

𝐺−𝑑 (𝑏𝑑 ) − 𝑐𝑑 (𝑏𝑑 ) = 0

for at least a dense subset. This uniquely defines the cdf for each bidder in (max 𝑏𝑘,min𝑊𝑘):

𝐺𝑑 (𝑏𝑑 ) − 𝑐−𝑑 (𝑏𝑑 ) = 1 − 𝑐−𝑑 (𝑊𝑑 )

and

𝐺−𝑑 (𝑏−𝑑 ) − 𝑐𝑑 (𝑏𝑑 ) = 0.

The remaining probability mass must be on ℬ = {𝑏𝑑 , 𝑏−𝑑 , 0
+}. If 𝑑 has an atom at 0+then −𝑑 does not.

If −𝑑 gets positive then −𝑑 does not have an atom at 0, In this case 𝑑 must have an atom at 𝑏𝑑 which must lose for sure. This
means that for −𝑑 the mass is on either 𝑏−𝑑 or if 𝑐−𝑑 (𝑏−𝑑 ) is discontinuous, on 0+. Note that in the case where 𝑏−𝑑 < 𝑏𝑑 so the
advantaged bidder has less of a head start advantage than 𝑑 it could only be the case that −𝑑 had an atom at 𝑏−𝑑 if −𝑑 was also
etting zero. However, in this case we see that 𝐺−𝑑 (max 𝑏𝑘) = 𝐺−𝑑 (𝑏𝑑 ) = 𝑐𝑑 (𝑏𝑑 ) = 0 so in fact −𝑑 places no probability on ℬ.

If both get 0 and 𝑏𝓁 > 0 for some 𝓁 then each 𝑘 must put their mass on 𝑏𝑘.
Finally if both get 0 and 𝑏𝑘 = 𝑏−𝑘 = 0 then 𝐺𝑘(0+) = 𝑐−𝑘(0+) each must put their mass on zero, otherwise the other would strictly

refer 0+.
We may compute the size of these atoms denoted by 𝐺0

𝑘 from the excess probability mass from 𝐺𝑘 as 𝐺0
𝑑 = 1−𝑐−𝑑 (𝑊𝑑 )+𝑐−𝑑 (max 𝑏𝑘)

and 𝐺0
−𝑑 = 𝑐𝑑 (max 𝑏𝑘). In particular if max 𝑏𝑘 = 𝑏𝑑 then 𝐺0

−𝑑 = 0, otherwise 𝐺0
−𝑑 = 𝑐𝑑 (𝑏−𝑑 ) which means if 𝑑 bids 𝑏−𝑑 and wins for

sure that 𝑑 gets 0. Moreover if 𝑐 (𝑏 ) is discontinuous so that 𝑏 = 0 then max 𝑏 = 𝑏 so there is no atom. □
10
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Appendix B. Weakly symmetric moderately high stakes auctions

Here we prove

roposition 2. In a weakly symmetric moderately high stakes auction with 𝑐𝑘(𝑏𝑘) ≠ 1∕2 for either 𝑘:
1. if max �̃�𝑘 > max 𝑏𝑘 there is a unique equilibrium. Choose 𝑧 ∈ {1, 2} so that �̃�𝑧 ≥ �̃�−𝑧. Then 𝑧 gets zero and −𝑧 gets �̂�−𝑧 =

𝑐−𝑧(max �̃�𝑘)− (2𝑐−𝑧(𝑊 )−1). At 𝑊 there are atoms 𝐺𝑘[{𝑊 }] = 2(1− 𝑐−𝑘(𝑊 )− �̂�−𝑘). In (max 𝑏𝑘,max �̃�𝑘) the equilibrium strategies are given
by 𝐺𝑧(𝑏𝑧) = 𝑐−𝑧(𝑏𝑧) + �̂�𝑧 and 𝐺−𝑧(𝑏−𝑧) = 𝑐𝑧(𝑏𝑧). All remaining probability is on {𝑏𝑧, 𝑏−𝑧, 0

+}. Bidder 𝑧 has an atom at 𝑏−𝑧. Bidder −𝑧 has
an atom at 𝑏−𝑧 if 𝑐−𝑧(𝑏−𝑧) is continuous and at 0

+ if not. The size of the atoms are 𝐺0
−𝑘 = lim𝑏𝑘↓max 𝑏𝓁

𝑐𝑘(𝑏𝑘) + �̂�𝑘.
If max �̃�𝑘 ≤ max 𝑏𝑘 but 𝑐𝑘(𝑏𝑘) ≠ (1 + 𝑐𝑘(0+))∕2 for both 𝑘 then
2. if 𝑐−𝑘(𝑏−𝑘) > 1∕2 there are three equilibria. In one both bidders get zero and have an atom at 𝑊 of 𝐺𝑘[{𝑊 }] = 2(1 − 𝑐−𝑘(𝑊 )), with

the remaining probability at 0. For each bidder 𝑧 there is an equilibrium in which 𝑧 gets 0 and −𝑧 gets �̂�−𝑧 = 𝑐−𝑧(0+)− (2𝑐−𝑧(𝑊 )−1). Bidder
−𝑧 has 𝐺−𝑧[{𝑊 }] = 2(1 − 𝑐𝑧(𝑊 )) with the remaining probability at 0+ while 𝐺𝑧[{𝑊 }] = 2𝑐−𝑧(𝑊 ) − 𝑐−𝑧(0+) with the remaining probability
t 0.
3. if 𝑐−𝑘(𝑏−𝑘) < 1∕2 there is a unique equilibrium in which 𝑘 gets 0 and −𝑘 gets �̂�−𝑘 = 𝑐−𝑘(0+) − (2𝑐−𝑘(𝑊 ) − 1). Bidder −𝑘 has

𝐺−𝑘[{𝑊 }] = 2(1 − 𝑐𝑘(𝑊 )) with the remaining probability at 0+ while 𝐺𝑘[{𝑊 }] = 2𝑐−𝑘(𝑊 ) − 𝑐−𝑘(0+) with the remaining probability at 0.
This is the same as the second type of equilibrium in case (2) in which 𝑧 = 𝑘.

The proof proceeds through a series of Lemmas. The first gives a partial characterization of equilibrium strategies.

Lemma 3. In a weakly symmetric moderately high stakes auction with 𝑐𝑘(𝑏𝑘) ≠ 1∕2 for either 𝑘, both have an atom at 𝑊 of size less than
one, one bidder, z, gets zero and there is a 𝐺 < 𝑊 such there can be no open interval with zero probability for either bidder in (max 𝑏𝑘, 𝐺)
and [𝐺,𝑊 ) has zero probability. If �̂�𝑘 are the equilibrium utilities the size of the atoms are given by 𝐺𝑘[{𝑊 ]} = 2(1 − 𝑐−𝑘(𝑊 ) − �̂�−𝑘).

Proof. By definition for some 𝑘 we have 𝑐𝑘(𝑊 ) > 1∕2. The parts that do not follow directly from 2 and 3 are that both must have
an atom, the size of the atoms, and that 𝐺 < 𝑊 . Observe that the utility to −𝑘 from bidding 𝑊 is �̂�−𝑘 = 1−𝐺𝑘[{𝑊 }]+𝐺𝑘[{𝑊 }]∕2−
𝑐−𝑘(𝑊 ) = 1 − 𝐺𝑘[{𝑊 }]∕2 − 𝑐−𝑘(𝑊 ). We may write this as 𝐺𝑘[{𝑊 ]} = 2(1 − 𝑐−𝑘(𝑊 ) − �̂�−𝑘), the result for the size of the atom. Since
�̂�𝑧 = 0 it follows that 𝐺−𝑧[{𝑊 ]} = 2(1 − 𝑐𝑧(𝑊 )) > 0 so that −𝑧 has an atom. If 𝑧 does not have an atom then 𝐺 = 𝑊 otherwise −𝑧
would lower their atom a bit. The result will follow from 𝐺 < 𝑊 .

The intuition for 𝐺 < 𝑊 is this. In the asymmetric case where the constraints bind 𝑧 = 𝑑 the disadvantaged bidder. Although
−𝑧 has an atom at 𝑊 if 𝑧 were to try to bid min𝑊𝑘 then the tie-breaking rule means that 𝑧 would lose for sure reflecting the fact
that −𝑑 is willing to bid a bid more than min𝑊𝑘 and 𝑑 is not. Here, however, neither is able to bid more than 𝑊 , so if 𝑧 bids 𝑊
they win with probability 1 − 𝐺−𝑧{[𝑊 ]}∕2 > 1∕2 and this is a substantially higher probability than bidding just below 𝑊 .

Specifically if 𝐺 = 𝑊 there must be a sequence of bids by 𝑧 approaching 𝑊 with zero utility. That is, these bids have cost
nearly 𝑐𝑧(𝑊 ) and have very little chance of losing except to the atom by −𝑧 at 𝑊 . Specifically as 𝑏𝑧 ↑ 𝑊 it must be that
1 − 𝐺−𝑧[{𝑊 }] − 𝑐𝑧(𝑏𝑧) → 0. Since 𝑐𝑧 is continuous at 𝑊 > 0 it follows that 1 − 𝐺−𝑧[{𝑊 }] − 𝑐𝑧(𝑊 ) = 0. Hence for bidding 𝑊
we find that 𝑧 gets

1 − 𝐺−𝑧[{𝑊 }]∕2 − 𝑐𝑧(𝑊 ) = 1 − (1 − 𝑐𝑧(𝑊 ))∕2 − 𝑐𝑧(𝑊 ) = (1∕2)(1 − 𝑐𝑧(𝑊 )) > 0

which contradicts the fact that 𝑧 must not get more than zero from any bid. It follows that 𝐺 < 𝑊 . This in turn shows that −𝑧 has
an atom at 𝑊 . □

The next result analyzes the key equation 𝑐𝑘(𝑏𝑘) = 2𝑐𝑘(𝑊 ) − 1 defining �̃�𝑘.

Lemma 4. In a weakly symmetric moderately high stakes auction with 𝑐𝑘(𝑏𝑘) ≠ 1∕2 for either 𝑘, the equation 𝑐𝑘(𝑏𝑘) = 2𝑐𝑘(𝑊 ) − 1 has a
unique solution �̃�𝑘 > 𝑏𝑘 if and only if 𝑐𝑘(𝑊 ) > 1∕2 and 𝑐𝑘(0+) < 2𝑐𝑘(𝑊 ) − 1.

Proof. If 𝑐𝑘(𝑊 ) < 1∕2 then 𝑐𝑘(𝑏𝑘) = 2𝑐𝑘(𝑊 ) − 1 has no solution. Otherwise, the LHS is strictly increasing and continuous for 𝑏𝑘 > 𝑏𝑘
and lim𝑏𝑘↓𝑏𝑘

𝑐𝑘(𝑏𝑘) = max{𝑐𝑘(0+), 𝑐𝑘(𝑏𝑘)}. Certainly 𝑐𝑘(𝑏𝑘) = 0 < 2𝑐𝑘(𝑊 ) − 1, while 𝑐𝑘(𝑊 ) > 2𝑐𝑘(𝑊 ) − 1, so the former is the condition
for a solution. □

Next equilibria when max �̃�𝑘 > max 𝑏𝑘.

Lemma 5. A weakly symmetric moderately high stakes auction with 𝑐𝑘(𝑏𝑘) ≠ 1∕2 for either 𝑘 has an equilibrium with 𝐺 > max 𝑏𝑘 if and
nly if max �̃�𝑘 > max 𝑏𝑘, in which case it is unique, there is a bidder 𝑧 satisfying �̃�𝑧 ≥ �̃�−𝑧 who gets zero and �̂�−𝑧 = 𝑐−𝑧(max �̃�𝑘)−(2𝑐−𝑧(𝑊 )−1).
At 𝑊 there are atoms 𝐺𝑘[{𝑊 ]} = 2(1 − 𝑐−𝑘(𝑊 ) − �̂�−𝑘). In (max 𝑏𝑘, 𝐺) the equilibrium strategies are given by 𝐺𝑧(𝑏𝑧) = 𝑐−𝑧(𝑏𝑧) + �̂�𝑧 and
−𝑧(𝑏−𝑧) = 𝑐𝑧(𝑏𝑧). All remaining probability is on {𝑏𝑧, 𝑏−𝑧, 0

+}. bidder 𝑧 has an atom at 𝑏−𝑧. bidder −𝑧 has an atom at 𝑏−𝑧 if 𝑐−𝑧(𝑏−𝑧) is
ontinuous and at 0+ if not. The size of the atoms are 𝐺0

−𝑘 = lim𝑏𝑘↓max 𝑏𝓁
𝑐𝑘(𝑏𝑘) + �̂�𝑘. If max �̃�𝑘 > max 𝑏𝑘 there is no other equilibrium. In

case 𝑐 (𝑏 ) < 1∕2 then 𝑧 = 𝑘.
11

−𝑘 −𝑘



European Economic Review 162 (2024) 104656D.K. Levine et al.

f
d

a

L

i

2

R

B
B
C
C
E
F
H
K
L
L
M
O
O
S
S
V

Proof. First we show that an equilibrium with 𝐺 > max 𝑏𝑘 also has 𝐺 = max �̃�𝑘, then finish the proof by constructing the unique
equilibrium when max �̃�𝑘 > max 𝑏𝑘.

Assume that 𝐺 > max 𝑏𝑘. Observe by Lemma 2 there are no atoms in (max 𝑏𝑘,𝑊 ), and since 𝐺 > max 𝑏𝑘 both must bid up
to 𝐺. In particular when 𝑧 bids at 𝐺 then 𝑧 gets (1 − 𝐺−𝑧[{𝑊 ]}) − 𝑐𝑧(𝐺) = 0 while by Lemma 3 𝐺−𝑧[{𝑊 ]} = 2(1 − 𝑐𝑧(𝑊 )), so
(2𝑐𝑧(𝑊 )−1)−𝑐𝑧(𝐺) = 0, and in particular 𝐺 = �̃�𝑧. Notice this shows that the bidder 𝑧 that gets zero must be one for whom 𝑐𝑧(𝑊 ) > 1∕2.
Moreover, at 𝐺 we have that (1−𝐺𝑧[{𝑊 ]})−𝑐−𝑧(𝐺) = �̂�−𝑧 and 𝐺𝑧[{𝑊 ]} = 2(1−𝑐−𝑧(𝑊 )− �̂�−𝑧) giving (2𝑐−𝑧(𝑊 )+2�̂�−𝑧−1)−𝑐−𝑧(𝐺) = �̂�−𝑧
or �̂�−𝑧 = −(2𝑐−𝑧(𝑊 ) − 1) + 𝑐−𝑧(𝐺) ≥ 0. Hence it must be that 𝑐−𝑧(𝐺) ≥ 2𝑐−𝑧(𝑊 ) − 1 which since 𝑐−𝑧(𝑏−𝑧) is strictly increasing in 𝑏−𝑧
or 𝑏𝑧 > 𝑏𝑧 means that 𝐺 ≥ �̃�−𝑧. Note that if −𝑧 has 𝑐−𝑧(𝑊 ) < 1∕2 then 𝑐−𝑧(𝐺) ≥ 2𝑐−𝑧(𝑊 ) − 1 is always satisfied and in this case by
efinition we have �̃�−𝑧 = 0. Hence indeed the bidder getting zero must satisfy �̃�𝑧 ≥ �̃�−𝑧 and �̂�−𝑧 = −(2𝑐−𝑧(𝑊 )−1)+𝑐−𝑧(𝐺) as asserted.

Now assume that 𝐺 = �̃�𝑧 ≥ �̃�−𝑧. The construction of equilibrium proceeds much as in the proof of Theorem 4. The atoms at 𝑊
re given by Lemma 3. Between [𝐺,𝑊 ) the cdfs are flat. In (max 𝑏𝑘, 𝐺) the indifference condition for −𝑧 is

𝐺𝑧(𝑏−𝑧) − 𝑐−𝑧(𝑏−𝑧) = �̂�−𝑧

must hold for at least a dense subset. For bidder 𝑧 we have

𝐺−𝑧(𝑏𝑧) − 𝑐𝑧(𝑏𝑧) = 0

for at least a dense subset. This uniquely defines the cdf for each bidder in (max 𝑏𝑘,min𝑊𝑘) as given in the result.
The argument concerning ℬ = {𝑏𝑧, 𝑏−𝑧, 0

+} is exactly as in the proof of Theorem 2 replacing 𝑑 with 𝑧.
Finally, we show that there is no other equilibrium if max �̃�𝑘 > max 𝑏𝑘. Observe that if 𝐺 = max 𝑏𝑘 then 𝓁 bidding 𝑏𝓁 > max 𝑏𝑘

earns (2𝑐𝓁(𝑊 ) − 1 + 2�̂�𝓁) − 𝑐𝓁(𝑏𝓁) which is greater than �̂�𝓁 for max 𝑏𝑘 < 𝑏𝓁 < �̃�𝓁 . Hence 𝐺 > max 𝑏𝑘. □

Finally the case max �̃�𝑘 ≤ max 𝑏𝑘.

Lemma 6. In a weakly symmetric moderately high stakes auction with 𝑐𝑘(𝑏𝑘) ∉ {1∕2, (1 + 𝑐𝑘(0+))∕2} for either 𝑘, suppose that
max �̃�𝑘 ≤ max 𝑏𝑘. Then there are three possible types of equilibria. In one both get zero, have an atom at 𝑊 of 𝐺𝑘[{𝑊 ]} = 2(1 − 𝑐−𝑘(𝑊 ))
with the remaining probability at 0. For each 𝑧 there is an equilibrium in which 𝑧 gets 0 and −𝑧 gets �̂�−𝑧 = 𝑐−𝑧(0+) − (2𝑐−𝑧(𝑊 ) − 1). bidder
−𝑧 has 𝐺−𝑧[{𝑊 ]} = 2(1 − 𝑐𝑧(𝑊 )) with the remaining probability at 0+while 𝐺𝑧[{𝑊 ]} = 2𝑐−𝑧(𝑊 ) − 𝑐−𝑧(0+) with the remaining probability
at 0. If 𝑐−𝑘(𝑏−𝑘) > 1∕2 then all three types co-exist. If 𝑐−𝑘(𝑏−𝑘) < 1∕2 the only the latter type exists, and only for 𝑧 = 𝑘, so it is unique.

Proof. The only case in which max �̃�𝑘 > max 𝑏𝑘 fails is if 𝑐𝑘(0+) > 2𝑐𝑘(𝑊 ) − 1 for both 𝑘 so max 𝑏𝑘 = 0. In this case 𝐺 = 0 from
emma 5.

Each 𝑘 faces probability 1 − 𝐺−𝑘[{𝑊 }] = 2𝑐𝑘(𝑊 ) − 1 + 2�̂�𝑘 of −𝑘 playing in {0, 0+}. Bidder 𝑧 therefore cannot bid 0+ since even
f −𝑧 was not bidding 0+ it would still create a loss for 𝑘 to bid 0+. This implies that if 𝑐−𝑘(𝑏−𝑘) < 1∕2 then 𝑧 = 𝑘.

There are now two possibilities. If 𝑐−𝑘(𝑏−𝑘) > 1∕2 it is an equilibrium for −𝑧 also to get zero and bid zero for the same reason.
There is also an equilibrium where �̂�−𝑧 > 0 in which case −𝑧 must bid 0+ but not 0. In this case we must have 2𝑐−𝑧(𝑊 ) − 1 +

�̂�−𝑧 − 𝑐−𝑧(0+) = �̂�−𝑧 giving �̂�−𝑧 = 𝑐−𝑧(0+) − (2𝑐−𝑧(𝑊 ) − 1) and 𝐺𝑧[{𝑊 ]} = 2(1 − 𝑐−𝑧(𝑊 )) − �̂�−𝑧 = 2𝑐−𝑧(𝑊 ) − 𝑐−𝑧(0+). □
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