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A B S T R A C T   

Domino scenarios triggered by fire pose severe risks to workers, assets, and the environment. Accurate quanti-
tative models are needed to support mitigation actions addressing the prevention of fire escalation, especially 
considering sensitive targets such as atmospheric tanks containing large quantities of dangerous substances. A 
novel approach based on neural networks was developed, allowing the accurate quantification of the time-to- 
failure (TTF) of atmospheric tanks exposed to external fires accounting for mitigation actions. Data from a 
lumped parameter model were used to train and assess neural networks’ performance. The toolbox of models 
obtained provides the TTF of atmospheric tanks both in the case of unmitigated fire scenarios and considering 
safety barriers and protection measures, such as water deluges and fire monitors. Model predictions are fast, 
accurate, and supplemented with confidence intervals. The comparative analysis demonstrated the better per-
formance of the model developed compared to simplified correlations widely used in the literature to predict 
TTF. The approach developed, based on the integration of neural networks in consequence analysis tools, shows 
significant potential for the advancement of a quantitative assessment of domino scenarios, providing accurate 
and user-friendly tools for a quick evaluation of domino fire scenarios under both mitigated and unmitigated 
conditions.   

1. Introduction 

Fires are the most frequent type of accident in chemical facilities [1]. 
Fire scenarios have inherent characteristics that can jeopardize the 
safety of workers and nearby residents while also causing severe eco-
nomic losses [2]. In addition, fire scenarios are a frequent cause of 
domino effects, triggering cascading events escalating into more severe 
accidents. Some of the most severe accidents in the last two decades 
indicate that fires play a leading role in domino scenarios [3,4]. 
Remarkable examples are the accident that occurred in 2007 at the 
Valero refinery in Sunray, Texas, accounting for approximately $50 
million in property damage and four injuries [5], the fires and explo-
sions that occurred in 2009 in Jaipur, India, causing 13 deaths and more 
than 200 injuries [6], and the accident that took place in 2019 in 
Houston, USA, where 14 naphtha tanks burned for three days causing 
property damage exceeding $150 million [7]. Domino scenarios are 

described as low-probability high-impact (HILP) events and involve 
chains of events triggered by an initial incident, leading to a cascading 
effect with potentially severe consequences and elevating the potential 
for major accidents [8,9]. The risk of domino effects escalates as 
chemical plants become more concentrated and densely packed, 
emphasizing the critical importance of proactive safety measures and 
risk assessments to prevent such cascading incidents [10,11]. 

Flammable substances are often stored in large atmospheric tanks 
[2], which may contain up to 80000 m3 of hazardous liquids. Domino 
scenarios involving storage tanks are considered particularly critical due 
to the quantity of the substance involved and the spatial vicinity be-
tween tanks in storage facilities. For this reason, it is vital to evaluate the 
response of atmospheric tanks when a fire occurs in their proximity. 

When exposed to thermal loads, the tank shell is expected to undergo 
substantial deformation caused by thermal stresses and internal pressure 
build-up, which can lead to failure [12,13]. For these reasons, passive (e. 
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g., thermal insulation) and active devices (e.g., fixed water or foam 
sprays and water deluge systems) that mitigate the effect of the fire [14] 
are frequently implemented. The time between the start of the fire and 
the possible failure of the tank, namely the time-to-failure (TTF), is thus 
influenced by the design features of the tank (e.g., diameter, height, and 
shell thickness), by operating parameters (e.g., filling degree, substance 
density, and vapor pressure), by the fire scenario (e.g., thermal radiation 
and view factor), and by the performance of passive and active safety 
systems installed. 

The quantification of the TTF is critical for estimating the probability 
of failure and, eventually, for quantifying the risk associated with 
escalation resulting in domino scenarios. Hence, there is a compelling 
need to issue methods for the quantification of the TTF of atmospheric 
tanks considering (i) fire characteristics, (ii) tank characteristics, and 
(iii) safety barriers. Rigorous modelling through coupled computational 
fluid dynamics (CFD) and finite element modelling (FEM) can be used to 
evaluate the structural response of tanks exposed to external fire [15]. 
For example, Iannaccone et al. [16] and Scarponi et al. [17] used CFD 
modelling to simulate the pressure and temperature profiles of LNG and 
LPG pressurized tanks. Masum Jujuly et al. [18] simulated the effect of a 
pool fire caused by LNG spill on multiple targets. A model for the dy-
namic evaluation of the fire response of steel storage tanks integrating 
CFD and FEM analysis was presented by [19]. Similar approaches were 
proposed by Wang et al. [20] and Jianfeng Yang et al. [21]. However, 
the expertise in setting up the simulations and the substantial compu-
tational resources required to run them hinder their widespread appli-
cation. In current practice, CFD and FEM simulations need substantial 
data, and model validation is challenging and time-consuming within 
risk assessment studies. When considered, it is usually applied only for 
the deterministic analysis of single critical scenarios. To overcome this 
issue, Gubinelli [22] proposed a lumped model called RADMOD to es-
timate the TTF of atmospheric tanks exposed to external fires. 

The limited computational resources required to run RADMOD 
simulations result in a significant reduction of simulation time than in 
FEM simulations. However, the computational time required still makes 
this approach not suitable for advanced applications, such as dynamic 
risk analysis [23,24] and dynamic probabilistic risk assessment [25], 
which often require the simulation of a large number of scenarios for the 
quantification of accident paths. To overcome this limitation, Landucci 
et al. [26] used the results of RADMOD simulations to develop a 
simplified analytical correlation that explicitly correlates the de-
pendency of the TTF on the heat load and tank volume. Recently, Yang 
et al. [27] proposed an improved correlation where parameters were 
fitted on results from CFD and FEM simulations. 

To the best of the authors’ knowledge, the methodologies proposed 
by Landucci et al. [26] and Yang et al. [27] are the only methods 
currently available capable of rapidly estimating the TTF of tanks 
exposed to external fire. Requiring limited computational resources is 
crucial for model integration into frameworks for the dynamic risk 
analysis of fire-induced scenarios – as those proposed, e.g., by [28–33] – 
which all rely on the abovementioned correlations for the estimation of 
the TTF. However, notwithstanding the popularity of the approach 
proposed by Landucci et al. [26], the following limitations must be 
acknowledged [34–36]:  

• The correlations above were derived from limited datasets based on a 
predefined set of tank geometries, which could restrict their gener-
alization capabilities;  

• The error in the TTF with respect to the original dataset values is 
relatively high, especially considering scenarios with large TTFs;  

• They do not provide the confidence level of predictions;  
• They tend to produce over-conservative results;  
• Only a single study attempted to incorporate the influence of safety 

barriers into the simplified correlations for the TTF [37], still 
suffering from the limitations listed above. 

In this context, Artificial Intelligence (AI) and Machine Learning 
(ML) present intriguing opportunities to address some of the limitations 
mentioned above. In fact, advanced ML algorithms can learn directly 
from failure data to develop predictive models that balance accuracy 
with the use of computational results and the time required to run 
simulations. In the framework of safety and reliability, the application of 
ML is a relatively new yet promising area of research [38]. Recent 
studies have seen a surge in research on fault detection and diagnosis 
[39,40], anomaly detection [41,42], system prognosis [43,44], reli-
ability analysis [45,46], and risk analysis [47]. In particular, when 
considering system prognosis, numerous studies have proposed the use 
of ML to estimate the Remaining Useful Life (RUL) of degrading 
equipment, including lithium batteries [48], bearings (J. [49]), induc-
tion motors [43], turbofans [50], wind turbines [51]. 

However, a significant gap is still present in the literature concerning 
the application of ML for the prediction of the impact of fires on atmo-
spheric tanks. Actually, recent studies have explored the use of ML 
techniques to develop surrogate models based on data from Computa-
tional Fluid Dynamics (CFD) and Finite Element Method (FEM) simu-
lations [52,53]. For instance, Li et al. [54] applied a graph neural 
network to predict the overpressure resulting from simulated Boiling 
Liquid Expanding Vapor Explosions (BLEVE). Similarly, Ye and Hsu [55] 
used CFD and FEM data to model 1200 fire scenarios in a steel roof 
structure with fixed geometry and then employed this data to train a 
Long Short-Term Memory (LSTM) Neural Network to predict structural 
displacement. However, to the best of the authors’ knowledge, there is a 
notable lack of research specifically targeting the estimation of the TTF 
of atmospheric tanks exposed to external fires using ML. Only one recent 
contribution, concurrent with our research, proposes a ML-based 
method to estimate the structural integrity of tanks under fire condi-
tions [56]. Yet, this method primarily focuses on calculating failure 
probability rather than directly estimating TTF, and does not consider 
the effect of mitigation barriers. 

The present study has developed a novel approach to bridge the 
aforementioned gaps. Neural networks (NN) were used to quantify the 
TTF of atmospheric tanks exposed to external fires. Simulated data from 
the RADMOD model were used to build an extensive dataset containing 
4896 scenarios with different tank geometries and fire characteristics. 
The influence of safety barriers and safety systems is included in the 
model, considering a comprehensive set of protection measures char-
acterized by various activation times and effectiveness. A model toolbox 
was obtained, allowing the estimation of the TTF of both unmitigated 
scenarios and considering the effect of different protection measures. 
Hyperparameters fine-tuning was performed to ensure optimal perfor-
mance and good generalization capabilities. 

Furthermore, to enhance the model output and account for predic-
tion uncertainties, a model-agnostic approach was applied to estimate 
confidence intervals. By this approach, the model returns a single-point 
prediction for the TTF and a range of values with a specified confidence 
level. This comprehensive output captures the inherent uncertainty in 
the data and the model, providing a more informative and robust 
assessment. The novel contributions of this study can be summarized as 
follows:  

• the proposed NN-based toolbox represents an innovative, user- 
friendly, and computationally inexpensive approach for the estima-
tion of the TTF of atmospheric tanks exposed to external fires;  

• the approach allows for the explicit modelling of the impact of safety 
barriers, enabling a detailed and accurate analysis of their effec-
tiveness in various scenarios; 

• the use of a comprehensive dataset encompassing various tank ge-
ometries, fire characteristics, and barrier configurations improves 
model robustness and generalizability;  

• confidence intervals are provided to enhance model interpretability, 
robustness, and credibility. 
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A comparative analysis between the models developed in this study 
and the simplified correlations proposed by Landucci et al. [26] and 
Yang et al. [27] shows that the new models have a better performance. 

The paper is organized into five sections, including this introductory 
paragraph. Section 2 outlines the methodology, addressing data gener-
ation and preprocessing, developing the NN models and their evalua-
tion, fine-tuning hyperparameters, and generating confidence intervals. 
Section 0 presents the results, showcasing the performance obtained by 
the models and providing a comparative analysis with similar ap-
proaches found in the literature. Results are discussed in Section 4, and 
conclusions are drawn in Section 5. The models developed are included 
in the Supplementary materials and are freely available for use by re-
searchers ("TTF_unmitigated.dill" and "TTF_mitigated.dill", "TTF_deluge. 
dill"). Also, a quick guide ("Model Configuration and Usage.pdf") is 
provided to prepare a Python environment for importing and using the 
models. 

2. Methodology 

The methodology used to build the NN models is schematized in 
Fig. 1. First, a lumped parameter model known as RADMOD [22] was 
used to create two datasets (step 1 in Fig. 1): one containing failure data 
related to unmitigated fire scenarios (D ) and the other incorporating 
the effect of protective measures (D ). These datasets were then 

preprocessed and split into two parts (step 2 in Fig. 1). The first part (i.e., 
D train and D train in Fig. 1) was used to train the models, while the second 
part (i.e., D eval and D eval in Fig. 1) was used to evaluate their prediction 
performance. Subsequently, the models’ hyperparameters were 
fine-tuned through a grid-search procedure to ensure optimal perfor-
mance (step 5 in Fig. 1). The resulting optimized models, namely M ∗ and 
M ∗, can be utilized to predict the TTF of unmitigated and mitigated fire 
scenarios. In addition, a reference version of the model M ∗ is offered to 
account for the influence of a standard generic water deluge system, 
useful in preliminary screening activities (step 6 in Fig. 1). Finally, a 
procedure for estimating confidence intervals was implemented to 
provide more informed judgments based on the confidence level asso-
ciated with the predictions (step 7 in Fig. 1). A detailed description of 
each step of the methodology is provided in the following. 

2.1. Simulated failure data 

Two series of simulations were carried out to generate failure data 
for different atmospheric tanks subject to various fire conditions. The 
first set of simulations focused on unmitigated scenarios, while the 
second set concentrated on mitigated scenarios. 

A widely used lumped parameter model, known as RADMOD [22], 
was applied to simulate the behaviour of atmospheric and pressurized 
tanks under fire exposure. Several studies are available in the literature 

Figure 1. Flowchart of the proposed methodology. D train and D train indicate the training datasets that contain respectively unmitigated and mitigated fire scenarios. 
Similarly, D eval and D eval represent unmitigated and mitigated scenarios used to evaluate the models. M ∗ and M ∗ indicate the models for the prediction of un-

mitigated and mitigated TTFs. M ∗ represents the simplified model that considers a single standard protection measure (water deluge), introduced as a case study. 
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in which this lumped model is applied in the assessment of the TTF for 
atmospheric tanks exposed to fire (e.g., [21,31,34,56–58]). RADMOD 
partitions the computational domain into two fluid nodes (the liquid and 
vapor) and two solid nodes (the liquid-wetted wall and the vapor-wetted 
wall). It requires specific design (shell diameter, height, and thickness), 
operational (filling level), and external (heat flux) parameters as inputs. 
The outputs of the simulations are node temperatures, tank pressure 
(accounting for the liquid head), axial stress, yield stress, and the 
equivalent von Mises stress in the steel structure. A detailed description 
of the RADMOD is reported in [22,26]. The RADMOD model thus retains 
a limited computational complexity, providing results having an accu-
racy comparable to that of more complex models. Even if RADMOD 
shares all the limitations of lumped models, and in particular the 
impossibility to consider liquid stratification and local temperature 
gradients on the steel shell, its application to the simulation of the TTF of 
large atmospheric tanks containing high boiling point liquids exposed to 
external fires provides sufficiently accurate results, as shown in Fig. 2, 
showing the results of the model validation against TTF results obtained 
using finite element analysis (FEM). 

The simulation of fire scenarios requires the definition of a set of 
parameters to describe (i) the tank design and operating parameters, (ii) 
the characteristics of the external fire, and (iii) the mitigation measures. 
Table 1 presents a summary of these parameters, along with the corre-
sponding values utilized in the simulations. 

The first three parameters in Table 1 define the geometry of the tank. 
Their values are taken from Table A-2a of API 650: "Welded Steel Tanks 
for Oil Storage" [59], which defines the shell-plate thickness of 
typical-sized tanks for oil storage. The table includes a comprehensive 
list of 136 tank sizes, each characterized by specific values of shell 
diameter, height, and thickness. 

The fourth parameter, filling level, in Table 1 defines the tank filling 
level, for which three different values were considered: 20%, 50%, or 
80%. Therefore, a total of 408 reference tanks were considered for the 
simulation, each defined by a set of geometric and filling parameters. 
The internal pressure and temperature were initialized to 1 bar and 
20◦C, respectively. The substance inside the tank was modelled as 
benzene, a liquid at 20◦C with a density of 878 kg/m3 and a vapor 
pressure of 9913 Pa [60]. 

The fifth parameter, total heat flux, in Table 1 describes the fire 
conditions defined by the heat flux to the tank wall. Twelve distinct heat 
flux values were considered, ranging from 10 kW/m2 to 125 kW/m2. 
The lower bound, 10 kW/m2, corresponds to the radiation threshold at 
which the TTF of atmospheric equipment exceeds 30 minutes, providing 
adequate time for effective mitigation without incurring in critical 
damage [57]. Conversely, the upper bound, 125 kW/m2, represents a 
credible heat flux value to a target in severe tank fire scenarios, able to 
cause target damage in a limited time span, so that effective mitigation is 
not credible. Thus, the region between the lower and upper bound ra-
diation values identified is that where the accuracy of TTF estimation is 
more critical in order to assess the time available for effective mitigation 
and the actual risk of escalation leading to domino effect. 

The combination between reference tanks and the fire characteristics 
led to the definition of 4896 simulated fire scenarios using the RADMOD 
model. The results were collected in dataset D , which comprises 4896 
rows (i.e., number of fire scenarios) and 6 columns; the first 5 columns 
represent the features of the fire scenario (i.e., diameter, thickness, 
height, filling level, and total heat flux), while the last column indicates 
the TTF calculated by the RADMOD model. 

An additional set of simulations was performed to incorporate the 
effects of mitigation measures on the same fire scenarios as defined 
above. Specifically, the last two parameters in Table 1 define the effect 
of the safety barriers adopted to mitigate the impact of the fire. The 
"activation time" represents the time required to activate the barrier, and 
the "damping factor" indicates the reduction in the total heat load caused 
by the activation of the safety barrier. Therefore, the net incident radi-
ation at time t can be calculated as 

q(t) =
{

q if t < ta
q(1 − α) if t ≥ ta

, (1) 

Where q(t) indicates the net incident radiation on the tank wall at 
time t, q represents the total heat flux defined in Table 1, ta indicates the 
barrier activation time, and α ∈ [0, 1] is the damping factor. Therefore, 
the effect of the mitigation measures is to reduce by a factor α the net 
incident radiation after ta seconds. Activation time and dumping values 
were chosen based on reference values for automatic devices, such as 
fixed water sprays. Specifically, activation times are randomly sampled 
between 30s and 90s, while dumping factors are sampled between 0.2 
and 0.8. Each of the 4896 fire scenarios described earlier was associated 
with a specific barrier configuration (i.e., ta and α), and RADMOD was 
used to simulate the mitigated scenarios. Results were collected in 
dataset D , which contains the TTF values of mitigated scenarios cor-
responding to the fire scenarios in dataset D . Therefore, the D dataset 
contains the same number of rows as D , but it has two more columns, 

Figure 2. Comparison between the TTF obtained from RADMOD and the TTF 
obtained from FEM analysis for atmospheric tanks of various volumes [26]. 

Table 1 
The set of variables that defines a fire scenario and their values used in the simulations. * indicates that the values are taken from Table A-2a of API 650 (American 
Petroleum Institute, 2021)   

Parameter Values 

Tank (geometric) External diameter* [m] 20 values between 3 and 66 
Wall thickness* [m] 38 values between 0.005 and 0.012 
Height* [m] 10 values between 1.8 and 18 

Tank (loading) Filling level [%] {20, 50, 80} 
Fire Total heat flux [kW/m2] {10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 125} 
Mitigation measures Activation time [s] Randomly sampled between 30 and 90  

Damping factor Randomly sampled between 0.2 and 0.8  
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respectively reporting the activation time and the damping factor of the 
mitigation measures. 

2.2. Data preparation and preprocessing 

The two datasets described in the previous section served as the basis 
for the application of the methodology. However, before developing the 
machine learning (ML) models, the datasets needed to be preprocessed 
to arrange the data in a suitable format and facilitate the upcoming 
analysis. The datasets were split into two parts. The first part was used to 
train the ML models, while the second was used to evaluate their per-
formance. The dataset D was split into D train and D eval, where the 
former comprises 80% of the scenarios included in D , and the latter 
contains the remaining observations. Similarly, D was split into D train 

and D eval, respectively comprising 80% and 20% of the events in D .

Finally, data were normalized to have zero mean and unit standard 
deviation. Specifically, a value x in the j-th column of the dataset is 
normalized as 

z =
x − μj

σj
(2) 

Where z indicates the normalized value, μj represents the mean of 
column j and σj is the standard deviation of column j. This procedure, 
called Z-score normalization, is a widely used data preprocessing tech-
nique that has been demonstrated to improve the generalization and 
convergence of neural networks [61]. It is worth mentioning that only 
the features of fire scenarios were normalized (i.e., the TTF was not 
normalized). In addition, the normalization of the evaluation datasets 
was performed using the mean and standard deviation of the training 
datasets to avoid any information leakage between training data and 
evaluation data. 

2.3. Model training 

The datasets D train and D train were used to develop two distinct 
neural network models. The first model, trained on D train, aims at pre-
dicting the TTF of unmitigated fire scenarios. The second model, trained 
on D train, aims at predicting the TTF of mitigated scenarios. The models 
were developed using Keras version 2.11.0 in Python version 3.10.11. 

In this study, Fully-Connected Feed-Forward Neural Networks (FC- 
FFNNs) were used to model the relationship between scenario features 
and the TTF. FC-FFNNs were preferred over other conventional regres-
sion models (e.g., Linear regression, Support Vector Regression) due to 
their excellent abstraction and generalization capabilities [61,62]. In 
addition, FC-FFNNs offer a good balance between simplicity and effec-
tiveness, making them an ideal choice over more advanced and complex 
algorithms. In fact, FC-FFNNs are less computationally demanding, 
making them suitable when computational resources are limited or for 
tasks that do not require complex models. FC-FFNNs also tend to 
generalize well and are less prone to overfitting, especially with limited 
data. Their training is more straightforward, involving fewer hyper-
parameters, which saves time and effort in model development. A 
schematic representation of an FC-FFNN is presented in Fig. 3. 

FC-FFNNs are directed acyclic graphs that comprise an input layer 
(orange in Fig. 3), one or more hidden layers (blue in Fig. 3), and one 
output layer (green in Fig. 3). Each layer comprises one or more units 
(circles in Fig. 3), which are real-valued entities. The units of the input 
layer are the features of an observation (e.g., the parameters in Table 1). 
In contrast, the units of the hidden layers, also called hidden units or 
hidden neurons, are calculated through a nonlinear transformation of 
the linearly combined units in the previous layers [62]. Specifically, a 
generic layer Zi ∈ RM×1 with M neurons is computed as follows: 

Zi = σ(Wi⋅Zi− 1 + bi), (3) 

Where σ is the rectified linear unit (ReLu) function [63], Wi ∈ RN×M 

is the matrix of the weights, Zi− 1 ∈ RN×1 is the layer preceding Zi, and 
bi ∈ RM×1 is the vector of the biases. Weights and biases are learnable 
parameters that are tuned during training. The network’s last layer is the 
output layer (green in Fig. 3), representing the response variable (i.e., 
the TTF). Therefore, the NN aims at identifying the function f that ap-
proximates the relationship between features and response: 

y ≈ f (x) (4) 

The function f comprises a set θ of learnable parameters, namely the 
weights and the biases introduced in Eq. (3). Such parameters are 
randomly initialized and eventually tuned during the training procedure 
to minimize the error between the model’s predictions and the actual 
value of the TTF. The training dataset (i.e., D train or D train) are used to 
train the models. Specifically, examples of both features and related 
TTFs are fed to the model. The model uses the features to calculate the 
predicted TTF, which is compared to the actual TTF, and the resulting 
error is back-propagated to update the learnable parameters θ. The 
procedure is iterative and aims to find the best set of hyperparameters, 
θ∗, that minimizes the error between predicted TTFs (ỹ) and true TTFs 
(y), 

θ∗ = argmin
θ

[l (y, ỹ(θ))], (5) 

Where l indicates the “loss”, a function that measures the error be-
tween predictions and true responses. In this study, the mean squared 
error (MSE), defined as MSE = 1/N

∑N
i=1(yi − ỹi)

2, is used as a loss 
function, where N ∈ N is the number of scenarios included in the 
training datasets. The MSE is a differentiable loss function, which helps 
with network convergence. However, it is highly susceptible to the 
presence of outliers, as they have the potential to heavily distort the 
squared differences between predicted and actual values, resulting in 
inflated error measurements. In the datasets utilized for this study, 
outliers are not present, thereby making the MSE an appropriate choice 
as a loss metric. 

As mentioned earlier, D train or D train are utilized to construct two 
independent models, namely M and M , where their parameters are 
optimized to predict the TTF of unmitigated and mitigated fire sce-
narios, respectively. Assuming a successful training procedure, the 

Figure 3. A schematization of an FC-FFNN with three hidden layers. The input 
of the model (i.e., the features) is depicted in orange. Hidden layers (Zi) and 
units (Zj

i) are represented in blue. The model output (i.e., the response) is 
depicted in green. 
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models should be capable of predicting the TTF of fire scenarios con-
tained in D train or D train with minimal error. However, there is no 
guarantee that the models will maintain the same level of accuracy when 
considering new fire scenarios. Hence, evaluating the models using in-
dependent scenarios is crucial to ensure their ability to generalize the 
knowledge acquired during training to previously unseen events. The 
evaluation procedure will be described in the following section. 

2.4. Model evaluation 

The trained models are evaluated on their ability to predict the TTF 
of scenarios included in D eval and D eval. The features of the fire sce-
narios included in D eval are fed to the model M , which predicts the TTFs 
based on the knowledge extracted from D train. Similarly, the model M is 
evaluated on D eval. It is worth noting that only the features of fire sce-
narios are fed to the model during the evaluation phase, as opposed to 
the training phase, where both features and TTFs were used. 

The evaluation of the models involves the calculation of performance 
metrics to quantify the quality of predictions. In this study, we utilize the 
following metrics:  

• Coefficient of determination (R2)

R2 = 1 −

∑M
i=1(yi − ỹi)

2

∑M
i=1(yi − μ)2 (6)  

Where, M ∈ N is the number of fire scenarios included in the 
evaluation dataset, yi and ỹi are respectively the true and predicted 
TTF values, and μ is the mean of the true TTFs.  

• Root mean squared error (RMSE) 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
M

∑M

i=1
(yi − ỹi)

2

√
√
√
√ (7)   

Typically, the coefficient of determination assumes values between 
0 and 1, although negative values are possible when the model performs 
worse than a constant function that simply predicts the mean of the data. 
Values of R2 close to 1 are often interpreted as a good quality of the fit, 
which is generally true. However, it is important to remark that there 
may be specific circumstances in which large R2 values do not neces-
sarily guarantee the usefulness of the regression model [64]. 

For this reason, the RMSE is also considered to overcome the limi-
tations of R2. The RMSE may be interpreted as the square root of the 
variance of the residual. Therefore, it indicates how spread out these 
residuals are. This metric is bounded below by 0 but has no upper bound. 
Values of RMSE close to 0 indicate good prediction performances. 
However, it must be noted that RMSE shares the same units as the 
response variable (e.g., "seconds" for TTF). Therefore, when evaluating 
model performance, it is essential to consider the magnitude of the 
response variable in comparison to the RMSE. Often, to remove the ef-
fect of scale and enable a fair comparison between models trained on 
different tasks, the RMSE is normalized using the mean of the response 
variable. This normalized version is usually defined as the normalized 
RMSE (NRMSE): 

NRMSE =
RMSE

μ (8) 

If the objective is to compare the performance of two or more models 
on the same task, the RMSE can be used directly. In such cases, the 
model with the lowest RMSE is considered to outperform the other 
models. 

2.5. Hyperparameters tuning 

The procedures described in Sections 2.3 and 2.4 illustrate how to 
train and evaluate the models M and M for predicting the TTF of un-
mitigated and mitigated scenarios. However, no details about the 
network hyperparameters have been provided. The hyperparameters of 
a NN may be defined as non-trainable parameters that define its struc-
ture and behaviour during training [65]. For example, the number of 
hidden layers and neurons per layer are hyperparameters that can 
significantly influence the model’s performance. Unfortunately, select-
ing the right set of hyperparameters is mainly guided by background 
knowledge and experimentation [66], and there is no "golden rule" to 
define an optimal set of hyperparameters in hindsight. 

In this study, a "grid-search" procedure [67] was used to tune the 
network hyperparameters. This procedure involves (i) defining a search 
space for each parameter, (ii) training and evaluating one model for 
each unique combination of hyperparameters, and (iii) comparing the 
performance of the models and selecting the best set of 
hyperparameters. 

The search space is defined by specifying the range or discrete values 
for each hyperparameter under consideration. In this study, we focus on 
three hyperparameters: the number of layers, the number of neurons per 
layer, and the learning rate (LR). The number of layers and neurons 
defines the network structures, as discussed in Section 2.3. The Learning 
Rate is a key parameter determining the step size at which the model 
updates its parameters during training. A large learning rate increases 
the convergence speed but raises the risk of the model diverging and 
failing to converge to an optimal solution. The search space used in this 
study is defined in Table 2. 

The combination of the hyperparameters leads to the definition of 
5600 model configurations, each characterized by several layers, one or 
more neurons per layer, and one learning rate. The grid search algorithm 
systematically evaluates the model performance for every possible 
combination within the defined search space. Specifically, each model 
configuration is used to train and assess the models M and M as 
described in Sections 2.3 and 2.4. The training procedure was conducted 
with 300 epochs, which indicates the number of iterations made by the 
model over the training dataset. The selected number of epochs repre-
sents a good balance between computational complexity and model 
accuracy. A larger number of epochs would significantly increase the 
computation time, while fewer epochs may penalize the complex models 
with low learning rates because they typically require more training 
samples to perform adequately. 

As a result, every model configuration is associated with an RMSE 
value that reflects its performance in predicting the TTF for unmitigated 
events, as well as another RMSE value for predicting mitigated TTFs. The 
model that obtains the lowest RMSE on D eval identifies the best 
configuration for the prediction of unmitigated TTFs, while the model 
that obtains the lowest RMSE on D eval identifies the best configuration 
for the prediction of mitigated TTFs. The two tasks (i.e., prediction of the 
TTF for unmitigated and mitigated scenarios) are treated independently 
because there is no guarantee that the best model for the prediction of 
unmitigated TTFs will also show superior performance on the prediction 
of mitigated TTFs [68]. 

The grid search procedure creates two models optimized for pre-
dicting the TTF of unmitigated and mitigated scenarios. The first model, 
namely M ∗, takes as an input the first five parameters in Table 1, while 
the second model, namely M ∗, requires the complete set of parameters. 

Table 2 
The search space used in the grid-search procedure.  

Hyperparameter Values 

Number of layers {1, 2, 3, 4} 
Number of neurons per layer {2, 52, 102, 152, 202, 252, 302} 
Learning Rate {0.01, 0.001}  
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It is worth mentioning that the selection of the search space in 
Table 2 has been mainly guided by background knowledge, and it is not 
meant to identify the best model in absolute terms. In fact, there are 
additional hyperparameters that may require training, such as the 
choice of the activation function (σ in Eq. (3)), and other parameters not 
covered in this study, including batch size, regularization layers, and 
optimizers [65]. Nonetheless, the search space in Table 2 encompasses 
the parameters that the authors consider as the most crucial for 
addressing the specific task at hand, striking a balance between model 
performance and computational efficiency as the inclusion of additional 
hyperparameters in the search space can lead to a significant increase in 
computational requirements. 

2.6. Definition of a standard protection measure 

The model M ∗for evaluating mitigated scenarios, requires defining 
the activation time and damping factor of the protection measure, as 
discussed in Section 2.1. These characteristics are site-specific and 
depend on the particular fire detection and protection systems imple-
mented. Therefore, there might be instances where they cannot be easily 
obtained. For these reasons, a third model was developed to predict the 

TTF of mitigated scenarios, namely M ∗, which considers a reference 
protection measure with standard activation time and damping factor. 
The model is intended to provide a rough estimate of the potential effect 
of mitigation systems based on the performance of a reference active 
barrier widely used in the current industrial practice. The model was 
obtained from M ∗ selecting the activation time and the damping factor 
of a water deluge system. The activation time was set to 1 minute, which 
included 30 seconds to detect the fire and 30 seconds to activate water 
delivery to the nozzles [69]. The damping factor is set to 0.2, which 
corresponds to a single row of nozzles, as reported by Lowesmith et al. 
[70] and in accordance with the simulations carried out by Wu et al. 
[71]. 

The third model offers a generic reference estimation of the TTF for 
mitigated tanks, based on the standard performance of water deluges. 
The model only intends to provide preliminary results when activation 
times and damping factors of the actual mitigation barriers are un-
available, e.g., when considering installing protection measures in a 
preliminary design phase. If the actual activation times and damping 
factors are known, model M must be used since it provides far more 
accurate data. 

2.7. Predictions and confidence intervals 

The optimized models M ∗ and M ∗, can predict the TTF of unmiti-
gated and mitigated scenarios. Furthermore, the specialized model M ∗

can be used to simulate the effect of a standard water deluge system. 
However, in most practical applications, predicting a confidence inter-
val rather than a single precise value for the TTF is often preferable. This 
is because confidence intervals provide a range of potential values that 
captures the uncertainty and variability associated with the prediction. 
In fact, if a fire scenario differs significantly from those used during 
training, it is reasonable to expect larger uncertainties associated with 
the prediction of the TTF. In such cases, it becomes crucial to 
acknowledge the potential uncertainties and incorporate a larger con-
fidence interval in the prediction. 

This study used a model-agnostic method called "jacknife+" to esti-
mate predictive confidence intervals [72]. The confidence interval 
produced by jacknife+ can be summarized as follows. Let Xi and yi 
respectively indicate the features and the response variable of the i-th 
observation in a training dataset that comprises n samples. The confi-
dence interval of a new observation Xn+1 is defined as: 

Ĉn,α =
[

q̂−

n,α
{

μ̂ − i(Xn+1) − RLOO
i

}
, q̂+

n,α
{

μ̂ − i(Xn+1) − RLOO
i

}]
, (9)  

where Ĉn,α indicates the confidence interval in the form [TTFmin, 
TTFmax], α ∈ [0, 1] indicates the uncertainty of the confidence interval, 
q̂ −

n,α[•] and q̂+

n,α[•] respectively represents the α and 1- α quantiles, μ̂− i is 
the regression model fitted on all the examples in the training database 
except the i-th observation, and RLOO

i = [yi − μ̂− i(Xi)] is the residual of the 
i-th observation. A detailed description of the theoretical foundations 
and implementation of the method can be found in the original reference 
[72] and the Python library description [73]. In summary, the jacknife+
method extends the traditional jacknife resampling technique [74] by 
addressing algorithm instability, offering robust coverage guarantees 
without requiring any assumptions apart from having independent and 
identically distributed samples. 

Therefore, incorporating the jacknife+ method, the output of the 
models M ∗, M ∗, and M ∗ includes not only the predicted TTF but also the 
corresponding minimum and maximum TTF values, indicating that the 
true TTF is expected to lie between these two values with a confidence 
level of 95%. 

3. Results 

The best model configurations identified by the grid-search proced-
ure (see Section 2.5) are shown in Table 3. The table reports the 
determination coefficient, R2, and the root mean squared error, RMSE, 
that may be considered as the main performance metrics of the model. 
The results reported in Table 3 indicate that the model for predicting 
unmitigated scenarios (M ∗) achieves lower RMSE and larger R2 than the 

model that predicts mitigated scenarios (M ∗ and M ∗). However, the 
TTFs of mitigated scenarios are expected to be higher than those of 
unmitigated scenarios. Therefore, the RMSE was normalized to remove 
the effect of scale and to allow a fair comparison between the models. 

Figs. 4 and 5 provide illustrative examples of the model output, 
intended to exemplify the potential use of the unmitigated (M ∗) and 

mitigated (M ∗, M ∗) models, and to demonstrate their accuracy and 
robustness under different working conditions. A reference tank con-
taining benzene at 20◦C and 1 atm, with diameter = 6 m, height = 14.4 
m, shell thickness = 0.005 m, filling level = 20 %, and a total heat flux =
50 kW/m2 is used for the analysis. It is important to remark that both the 
tank geometry and the fire radiation considered were not included in the 
training sets. 

Each plot in Figs. 4 and 5 shows the effect of a single feature of the 
scenario (see Table 1) while holding the others constant. In particular, in 
Fig. 4, the TTF values obtained using model M ∗ for unprotected tanks 
are reported with respect to thermal radiation (a), shell diameter (b), 
shell thickness (c), tank height (d), and filling degree (e). The shell 
thickness of the reference tank was increased to 0.01 m in Fig 4b in order 
to ensure physical integrity across the whole range of shell diameters. As 
shown in the figure, the model predicted values (predicted TTF) show a 
good agreement with the results of the RADMOD model (true TTF) 
across the entire feature space. The relatively small confidence intervals 
indicate low uncertainty in the predictions. The computation time 
required to perform one prediction is approximately 23.7 milliseconds 
for both models. 

Table 3 
Best model configurations for the prediction of mitigated and unmitigated TTFs. 
R2 and RMSE are calculated according to Eq. (6) and (7), NRMSE is calculated 
according to Eq. (8).  

Model Layers Neurons R2 RMSE 
[s] 

NRMSE 

M ∗ (unmitigated) 2 {152, 52} 0.9999 1.66 0.006 

M
∗ and M

∗

(mitigated) 

3 {102, 152, 
2} 

0.9925 71 0.124  
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Figure 4. TTF values calculated by model M ∗ for an unmitigated tank with diameter = 6 m, height = 14.4 m, shell thickness = 0.005 m, filling level = 20 %, 
containing benzene initially at 20◦C and 1 bar, exposed to a total heat flux = 50 kW/m2. Each plot examines the effect of a specific tank feature while holding the 
others constant: (a) total heat flux, (b) diameter, (c) thickness, (d) height, and (e) filling degree. 
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The analysis of mitigated model results is shown in Fig. 5. Specif-
ically, Fig. 5.a illustrates the TTF values versus the damping factor 
calculated considering an activation time of 40 seconds. Fig. 5b shows 
the effect of activation time considering a safety barrier with damping 
factor equal to 0.4. Also in this case a good agreement with simulated 
data is present, even if confidence intervals are larger, indicating that 
the model M ∗ is associated with higher uncertainties. Fig. 5c compares 
the TTF values calculated by the model M ∗ for an unmitigated tank, and 

model M ∗ that considers the reference water deluge system introduced 
in section 2.6. As shown in the figure, the presence and activation of the 
water deluge results in a relevant increase of TTF values (up to 27 %) 
with respect to the values calculated for unmitigated tanks. The differ-
ence is larger for lower values of heat radiation and rapidly decreases as 
the heat load increases. The trend can be attributed to the intensified 
influence of higher heat loads before barrier activation (i.e., during the 
initial 60 seconds), rapidly pushing the tank closer to its mechanical 
limits and thus diminishing the benefits of the water deluge system. 

Figs. 4 and 5 evidence the strong non-linear correlation among the 
TTF and thermal radiation, corroborating the findings from Landucci 
et al. [26]. Thus, the effect on the TTF of the dynamic behaviour of 

thermal radiation induced by the presence of mitigation systems and by 
environmental facts is complex. Models based on the thermal dose 
concept, as that of Zhou et al. [75], were proposed to capture such ef-
fects, but the discussion of such approaches falls out of the scope of the 
present paper. 

The analysis of mitigated model results is shown in Fig. 5. Specif-
ically, Fig. 5a illustrates the TTF values versus the damping factor 
calculated considering an activation time of 40 seconds. Fig. 5b shows 
the effect of activation time considering a safety barrier with damping 
factor equal to 0.4. Also in this case a good agreement with simulated 
data is present, even if confidence intervals are larger, indicating that 
the model M ∗ is associated with higher uncertainties. Fig. 5c compares 
the TTF values calculated by the model M ∗ for an unmitigated tank, and 

model M ∗ that considers the reference water deluge system introduced 
in section 2.6. As shown in the figure, the presence and activation of the 
water deluge results in a relevant increase of TTF values (up to 27 %) 
with respect to the values calculated for unmitigated tanks. The differ-
ence is larger for lower values of heat radiation and rapidly decreases as 
the heat load increases. The trend can be attributed to the intensified 
influence of higher heat loads before barrier activation (i.e., during the 

Figure 5. TTF values calculated by model M ∗ (a, b,c) and model M ∗ (d) for a mitigated tank with diameter = 6 m, height = 14.4 m, shell thickness = 0.005 m, filling 
level = 20 %, total heat flux = 50 kW/m2, activation time = 40 s, damping factor = 0.4, and containing benzene initially at 20◦C and 1 bar. Panels a and b examine 
the effect of the damping factor (a) and activation time (b) while holding the other tank characteristics constant. Panel c illustrates the combined effect of varying the 
activation time and the total heat flux. Panel d shows the comparison of the TTF for an unmitigated fire and a fire mitigated by water deluges. 
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initial 60 seconds), rapidly pushing the tank closer to its mechanical 
limits and thus diminishing the benefits of the water deluge system. 

Fig. 5c shows the combined effect of the heat radiation intensity and 
of the barrier activation time on the TTF. As expected, the results 
confirm that the TTF increases as the activation time of the barrier de-
creases. The effect is more relevant at high values of the heat radiation, 
where the TTF is lower and the activation time approaches the TTF of 
the unmitigated scenario. Nevertheless, when the activation time equals 
the TTF of the unmitigated fire scenarios, the mitigated and unmitigated 
TTF values coincide (since actually the mitigation starts after tank fail-
ure). This observation also underscores a good agreement between the 
mitigated and unmitigated models, as they produce comparable TTF 
values when the barrier activation time coincides with the unmitigated 
TTF. 

To gain further insights into the performance of the models, the 
distribution of residuals was calculated for both models M ∗ and M ∗. The 
results are illustrated in Fig. 6a and Fig. 6b, respectively. 

Residuals represent the difference between actual and predicted 
TTFs of the fire scenarios in the evaluation dataset. Fig. 6a shows that 
most residuals of the model M ∗ are smaller than 10 seconds in absolute 
terms. Only one prediction returned a residual of -15 seconds. Also, the 
distribution appears centered around 0, with most residuals between -5 
and +5 seconds. Similarly, Fig. 6b shows that most residuals of the 
model M ∗ are close to 0, but the distribution appears more skewed to-
ward negative values, with three outliers around -973, -673, and -378 
seconds. 

A comprehensive analysis was conducted to compare the model 
performance M ∗, with the simplified correlations proposed by Landucci 
et al. [26] and Yang et al. [27]. The models were tested based on the 
ability to predict the TTFs of the unmitigated fire scenarios included in 
D eval dataset (see section 2.2). A comparison between the RMSE values 
obtained by the model M ∗ and the correlations by Landucci et al. [26] 
and Yang et al. [27] is shown in Table 4. The results show that while the 
model of Yang et al. [27] has a slightly better performance than that of 
Landucci et al. [26], the new model developed outperforms the previous 
approaches. Specifically, it reduces the Root Mean Square Error (RMSE) 
by an order of magnitude compared to the correlations by Landucci et al. 
[26] and Yang et al. [27]. 

A comparison between the three models is offered in Fig. 7, show-
casing ’predicted versus actual’ plots the new model developed in the 

present study to that of Landucci et al. [26] (Fig. 7a) and of Yang et al. 
[27] (Fig. 7b). 

The results confirm that the model proposed in this study aligns 
remarkably well with the RADMOD data, exhibiting a high accuracy in 
reproducing RADMOD results. On the contrary, the correlations pro-
posed by Landucci et al. [26] and Yang et al. [27] result in larger errors, 
in particular when high values of TTFs are considered. 

4. Discussion 

The results presented above indicate that the models developed in the 
present study effectively predict the time-to-failure (TTF) of atmospheric 
tanks exposed to external fire, using a minimal set of input data and 
requiring a reduced computational effort. This approach provides safety 
practitioners and researchers with models that are not only user-friendly 
and accurate but also highly interpretable. Additionally, the seamless 
integration of safety barriers within this framework represents a notable 
advancement in the risk assessment of fire-induced domino scenarios. 

The results indicate that the models show a relatively good perfor-
mance. However, model M ∗ (that considers unprotected tanks) exhibits 

a higher robustness and accuracy with respect to models M ∗ and M ∗

(that consider the effect of safety barriers), as confirmed by the smaller 
confidence intervals in Fig. 4 and by the distributions of the residuals 
shown in Fig. 6. The better performance of the model predicting the TTF 
values for unmitigated fire scenarios can be attributed to the challenge 
of predicting the effects of safety barriers with variable activation times 
and damping factors. This complexity demands a more sophisticated 
approach to accurately capture the impact of safety measures, as evi-
denced by the need for additional layers and neurons per layer, as shown 
in Table 3. 

Figure 6. Residuals of the model M ∗(a) and M ∗(b). Residuals are calculated as the difference between the true TTF and the predicted TTF of fire scenarios included 
in the evaluation datasets. 

Table 4 
Comparison between RMSE values obtained by the model 
presented in this study and state-of-the-art correlations. 
Only the events include D eval were considered in the 
analysis.  

Approach RMSE [s] 

The present study 1.66 
Landucci et al. [26] 162.9 
Yang et al. [27] 106.4  
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The results presented in Figs. 4 and 5 provide some key insights into 
the factors influencing the TTF in the given scenarios. The analysis 
shows that the total heat flux, along with the shell diameter and thick-
ness, have a great influence on the TTF. Conversely, the height of the 
tank and its filling degree have a less significant, almost negligible, 
impact. Considering the effect of safety barriers, Fig. 5 suggests that the 
damping factor exerts a more substantial influence than the activation 
time. It is imperative to stress that a careful and accurate assessment of 
the activation time, particularly in comparison to the TTF in unmitigated 
fire scenarios, is a key determinant of the barrier effectiveness. 

The NN model addressing the simulation of unmitigated scenarios 
(M ∗) outperforms the simplified correlations reported in the literature 
[21,26], which are not conceived to capture the dynamics of the fire 
scenarios. Also, the simplified correlations do not consider the effect of 
the tank filling degree. In contrast, the proposed models may be easily 
tailored to the specific case of interest, is accurate, and provides results 
rapidly, requiring limited computational resources. Thus, the NN models 
are excellent candidates for dynamic frameworks to assess safety bar-
riers and the risk generated by potential escalations resulting in domino 
scenarios. 

Despite these promising results, it is important to acknowledge some 
limitations of the NN models developed and some potential areas for 
future improvements. Firstly, the models were trained using data from a 
simplified lumped model (i.e., RADMOD), which may, in turn, introduce 
errors in estimating the TTF values. Incorporating more rigorous TTF 
data, such as those obtained from large-scale experimental set-ups and/ 
or validated CFD and FEM models, could enhance the performance of 
the NN models. In this context, the approach shown in the present study 
demonstrates the potential of coupling first principles modelling and ML 
for the construction of metamodels that can offer fast and reliable pre-
dictions, thereby decreasing the computational burden of techniques 
requiring many simulations. 

Another limitation that needs to be pinpointed is the larger uncer-
tainty associated with the TTF calculated from the model considering 
mitigated scenarios with respect to those obtained from the model 
considering unprotected tanks. Future work should focus on exploring a 
more extensive set of data and hyperparameters, including regulariza-
tion layers, on enhancing the performance of M ∗. 

In addition, it is crucial to emphasize that the models developed in 
this study are intended as surrogate tools to calculate the Time to Failure 

(TTF) and are not meant to replace comprehensive dynamic risk analysis 
procedures. Fire spread and evolution are intricate phenomena shaped 
by a multitude of factors. Actually, both environmental aspects, as at-
mospheric conditions and the tank position relative to the fire, and 
human factors, such as individual behaviours and the timeliness and 
efficacy of emergency response, influence the fire scenario. The factors 
that influence the fire intensity, such as the type of ignited substance, air 
transmissivity, and view factor must be considered in models addressing 
the simulation of the fire scenario. To this end, several literature models 
provide correlations that can be used to link environmental aspects to 
the total incident radiation (e.g. see [76]). Furthermore, comprehensive 
frameworks are available to address the dynamic evolution of fire sce-
narios also considering emergency response [30,77]. Such models pro-
vide the intensity of the thermal radiation and the duration of the fire, 
that are input parameters to the models developed in the present study, 
focusing on the improved estimation of TTF also considering mitigation 
measures. Environmental and human factors shall thus be considered 
upstream, prior to the application of the models developed, allowing for 
a more targeted and effective integration into the overall risk assessment 
process. 

Finally, it is worth mentioning that the models proposed in this study 
are not specifically designed to provide conservative predictions, as 
indicated by the residuals in Fig. 6. The figure shows that the errors are 
likely to be both negative or positive, meaning that the predicted TTF is 
not always guaranteed to be smaller than the true TTF. This behaviour is 
at least in part mitigated by the confidence intervals, which offer an 
estimation of the uncertainty affecting the TTF. The confidence interval 
allows a better understanding of the robustness of the predictions, 
allowing more informed judgments based on the level of confidence 
associated with the prediction. 

Despite the abovementioned limitations, this study provides accurate 
and user-friendly tools, enabling a straightforward evaluation of fire 
scenarios under mitigated and unmitigated conditions. The toolbox of 
developed models may thus significantly benefit the assessment of 
domino scenarios triggered by the fire. The model’s capabilities in 
predicting TTFs for atmospheric tanks and considering the effect of 
mitigation systems provide new opportunities to enhance the risk 
assessment and safety evaluation of cascading events leading to domino 
effects. From a practitioners’ viewpoint, the availability of a toolbox of 
user-friendly models, able to incorporate the effect of mitigation mea-
sures without the need of a specific expertise, provides a crucial support 

Figure 7. Comparison between the performance of the model M ∗ (blue), the simplified correlations proposed by Landucci et al. [26] (a) and the correlation proposed 
by Yang et al. [27] (b). Displayed TTFs refer to unmitigated scenarios included in the D eval dataset (see Section 2) 
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to risk-informed decision-making in displaying safety barriers and safety 
systems aimed to prevent escalation and domino effect. 

5. Conclusions 

This study is pioneering in proposing using Neural Networks to es-
timate the TTF of atmospheric tanks exposed to external fires, also 
considering the effect of mitigative actions. A model toolbox was 
developed, including NN-based modes allowing the TTF calculation for 
unprotected tanks and for tanks protected by active and/or passive 
safety barriers. The models consider the effect of various types of safety 
measures and safety systems in terms of activation time and effective-
ness in reducing the heat load, thus allowing the simulation of a wide 
range of safety barriers. The models require only a minimal set of input 
parameters, thus resulting user-friendly and straightforward to 
configure. The predictions are fast and accurate, making the models 
suitable for the dynamic analysis of domino scenarios. The newly 
developed NN-based models outperform the simplified correlations used 
in the current practice to estimate TTF, allowing a more accurate 
calculation of TTF values. Overall, the method demonstrates the po-
tential of coupling digital simulations and ML models to decrease the 
computational burden, enabling faster and more efficient predictions in 
complex accident scenarios. 
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