

# Alma Mater Studiorum Università di Bologna Archivio istituzionale della ricerca

Earthquakes Parameters from Citizen Testimonies: A Retrospective Analysis of EMSC Database

This is the final peer-reviewed author's accepted manuscript (postprint) of the following publication:

Published Version:

Gianfranco Vannucci, Paolo Gasperini, Laura Gulia, Barbara Lolli (2023). Earthquakes Parameters from Citizen Testimonies: A Retrospective Analysis of EMSC Database. SEISMOLOGICAL RESEARCH LETTERS, 95(2A), 969-996 [10.1785/0220230245].

Availability:

This version is available at: https://hdl.handle.net/11585/960394 since: 2024-02-22

Published:

DOI: http://doi.org/10.1785/0220230245

Terms of use:

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/). When citing, please refer to the published version.

(Article begins on next page)

| 1  | Earthquakes parameters from citizen testimonies. A retrospective analysis of EMSC database                                   |
|----|------------------------------------------------------------------------------------------------------------------------------|
| 2  |                                                                                                                              |
| 3  |                                                                                                                              |
| 4  | Gianfranco Vannucci <sup>1*</sup> , Paolo Gasperini <sup>2,1</sup> , Laura Gulia <sup>2</sup> and Barbara Lolli <sup>1</sup> |
| 5  |                                                                                                                              |
| 6  | <sup>1</sup> Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna                                              |
| 7  | <sup>2</sup> Dipartimento di Fisica e Astronomia, Università di Bologna                                                      |
| 8  |                                                                                                                              |
| 9  | * Corresponding author                                                                                                       |
| 10 |                                                                                                                              |
| 11 | <b>Declaration of Competing Interests:</b>                                                                                   |
| 12 | The authors acknowledge there are no conflicts of interest recorded.                                                         |
| 13 |                                                                                                                              |
| 14 |                                                                                                                              |

15 Abstract

16

We aim to compute macroseismic parameters (location and magnitude) using the BOXER code for the first time on the citizen testimonies, i.e., individual intensity data points (IDPs) at the global scale collected and made available by the LastQuake system of the European-Mediterranean Seismological Centre (EMSC).

21 IDPs available for different earthquakes are selected to eliminate those that are geographically 22 inconsistent with most data, then they are clustered spatially based on various methods. For each 23 cluster with at least 3 IDPs, a macroseismic data point (MDP), corresponding to an intensity value 24 assessed for given localities as in classical macroseismic studies, is computed by various central 25 tendency estimators (average, median, trimmed averages). Finally, macroseismic parameters are 26 obtained by MDP distribution using two location methods of BOXER code. For each earthquake, we 27 used raw and corrected intensities and 132 different combinations of grouping methods, estimators 28 and BOXER methods.

29 We assigned a ranking to the combinations that best reproduce instrumental parameters and used 30 such a ranking to select preferred combinations for each earthquake. We analysed retrospectively the reliability of the parameters as a function of time and space. The results are essentially identical using 31 32 original and corrected intensities and show higher reliability for BOXER's method 1 than for method 33 0, they are dependent on the geographical area and generally improves over time and with the number 34 of IDPs collected. These findings are useful for future real-time analyses and for evaluating the location and magnitude of earthquakes whenever a sufficient number of IDPs are available and with 35 36 a distribution such that MDPs can be derived, and the BOXER method applied.

37

# 39 Introduction

40

41 The macroseismic intensity, i.e. the quantification of the severity of the ground motion, based on 42 earthquake effects on humans, objects, natural environment and buildings, is a tool for studying preinstrumental earthquakes used for seismic hazard assessment and seismic risk mitigation. The 43 44 intensity assessed by macroseismic experts or other methods (e.g. Vannucci et al., 2015) through 45 macroseismic scales (e.g. MCS -Sieberg, 1912, 1932-, EMS -Grünthal et al., 1998-) is quantified 46 using a damage scenario at the scale of localities and their geographic distribution allows to assess 47 reliable epicentre location and magnitude, using various software codes (e.g. Bakun and Wentworth 48 1997; Gasperini et al. 1999, 2010; Pettenati and Sirovich 2003; Musson and Jiménez 2008). Gasperini 49 et al. (2010) have shown how macroseismic intensities make it possible to calculate location, magnitude and, in the most favourable cases (e.g., earthquakes with magnitude  $\geq$  5.7), also the 50 51 orientation of the source, with an accuracy comparable to instrumental methods. Vannucci et al. 52 (2019) also demonstrated that if the intensities are well distributed and quickly available after the 53 occurrence of the earthquake, they can constrain well the macroseismic source and provide useful 54 information to civil protection and stakeholders even before reliable instrumental data be available. 55 Therefore, the macroseismic intensities do not only provide information on pre-instrumental 56 earthquakes but also on contemporary ones by taking advantage of the geographic abundance of 57 information coming from different localities that are much denser than the instrumental stations. Such 58 data also provide a direct check of the theoretical models of energy propagation (like SHAKEMAP, 59 see data and resource section) for local calibration of expected effects.

Presently, the development of specific software applications allows to collect and elaborate testimonies of the shaking felt by individual citizen. Indeed, since several years, community intensities are collected by different agencies e.g. "Did you feel it?" (DYFI, Wald et al., 1999, 2011, Dewey et al., 2000), of the U.S. Geological Survey (USGS), "Hai sentito il terremoto?" (HSIT, Tosi et al., 2015) of the Istituto Nazionale di Geofisica e Vulcanologia (INGV), New Zealand GeoNet

65 questionnaires (GeoNet, Goded et al., 2018), LastQuake system (Bossu et al., 2015, 2018) of the 66 European-Mediterranean Seismological Centre (EMSC). These data are collected at different spatial scales, and with different methodologies. In particular, individual data points (IDPs), i.e. 67 68 macroseismic intensity according to the European Macroseismic Scale (EMS98, Grünthal, 1998) and 69 assessed by each eyewitness citizen, are collected and made available by LastQuake system. The IDP 70 database is based on a worldwide community of people, whose number increases over time. Our aim 71 is to use this basic information to develop methods to compute the location and the magnitude of the 72 earthquake.

73 Through the LastQuake system EMSC collected 1874376 IDPs (with intensity  $\geq$  2) of 51359 74 global earthquakes (with magnitude ranging between 0.4 and 8.4) from 2012 to February 2023 (Fig. 1). Such data are freely available at EMSC website (see data and resources section). The number of 75 76 collected IDPs generally increased over time (Fig. S1 in supplementary material) as the popularity of 77 the application increased and the users became more and more involved in such activity (Bossu et al., 78 2017). Each collected IDP provides latitude, longitude, raw (R) and corrected (i.e. revaluated) 79 intensity (C). The raw intensity is assessed through the selection by each citizen/observer of 80 thumbnails that best represent the observed seismic effects, i.e. by the correspondence between 81 eyewitness observations and felt scenario representations, while the corrected intensity is computed, 82 according to Bossu et al. (2017), to best reproduce DYFI intensities for a reference dataset of 17 83 earthquakes.

The number of collected intensities is a decreasing function of their value: the higher the intensity, the lower the number of reports, since higher intensities are generally limited to the areas close to the source (near field), while lower intensities occur at longer geographical distances (far field), with larger numbers of people and reports. This trend is generally valid for raw intensities except for the extreme intensities 2 and 12 (Fig. 1).

Based on the geometric spreading of seismic energy, the effects of the earthquake should "ideally"
propagate in any direction from the epicentre. However, cities and citizens are not evenly distributed

91 throughout the territory and the distribution of IDPs suffers sometimes from the lack of coverage in 92 uninhabited areas. In general, the greater the earthquake magnitude the wider the area of effects and 93 the higher the number of felt reports, but both the number and the distribution of IDPs are subject to 94 a number of factors: geomorphological ones (presence of seas, lakes, mountains, deserts), 95 demographic ones (variable population density, presence or absence of cities), technological ones 96 (internet coverage) and political ones (free or equitable access to internet, e.g. Hough and Martin 97 2021).

98 The lack of IDPs in the epicentral area for earthquakes of strong magnitude and destructive effects 99 could even be due just to the strength of such effects (e.g., destruction of buildings, infrastructures 100 and casualties) that might prevent the people to pay attention to the reports so leaving empty the 101 epicentral zone ("doughnut effect") (Bossu et al., 2018). The IDPs may be absent where restrictive 102 policies on the use of smartphone applications are in force (e.g., in China, North Korea etc., see Fig. 103 1). Hence, in some regions of the world where earthquakes are known to occur but where there are 104 only a few IDPs (Fig. 1), the distribution of IDPs can be uneven: IDPs are not well distributed around 105 the epicentre so that the maximum azimuthal gap of IDPs with respect to the epicentre is larger than 106 180 degrees.

107 Another factor to consider is the presence of some IDPs that are inconsistent with the distribution 108 of the most of other ones. These anomalous IDPs can be divided into two types: "intensity outliers" 109 and "geographic outliers".

Intensity outliers are IDPs for which the assigned intensity values appear significantly inconsistent with respect to the other ones in the neighbour. They can be due to a) the wrong judgement by the citizen who has emphasised the effects for emotional reasons or misjudgement, in most cases overestimating the macroseismic intensity; b) misreporting of intensity with the selection of the last of the available thumbnails in LastQuake system, which might also explain the unreasonably high frequency observed for the degree 12 of the raw intensity (Fig. 1).

116 Geographic outliers are IDPs located in areas far from the instrumental epicentre. They could be 117 due to various reasons: a) reports sent from a computer (not a smartphone) for which there is a wrong 118 reporting of the geographical position due to the link to fixed network servers located up to tens of 119 kilometres away from the observing site; b) use of Virtual Private Network (VPN) with geo-location 120 up to thousands of kilometres away; c) persons reporting an earthquake and its intensity on behalf of 121 others, so associating the information with the geo-referenced location of the reporting smartphone; 122 d) bad association between felt report and event; e) shocks due to other causes (e.g. quarry blasts). 123 Geographic outliers, if present, are generally a small fraction of the total number of IDPs. Their 124 presence in most cases enlarges the area covered by testimonies. During periods of intense seismicity 125 (seismic sequences), the IDPs can be erroneously attributed to another shock occurred almost 126 simultaneously but located at long distance, generating intensity and geographical outliers. However, 127 only very few earthquakes show a totally inconsistent association between instrumental epicentre and 128 location of IDPs, i.e., IDPs are located too far from the epicentre and cannot represent its effects, 129 making these earthquakes unreliable and unusable for further analyses. The number of these 130 unreliable epicentre-IDPs associations decreased in the course of time, probably owing to the 131 increasing consciousness of people submitting their reports and to a more careful use of the 132 application by the users.

133 Crowdsourcing projects such as DYFI (Wald et al., 2011) and HSIT (Tosi et al., 2015) collect 134 intensities by citizens based on written questionnaires and have already approached the problem of 135 outliers by grouping single reports and derive intensities at geographical localities as commonly done 136 in standard macroseismic surveys. Geographical outliers can be detected on the basis of empirical 137 magnitude-distance relationships, evidencing intensities at anomalous distances from the epicentre, 138 while possible intensity outliers can be filtered out from the felt scenario by imposing an intensity 139 threshold (e.g. <11, as in Bossu et al. 2017). This can be justified by considering that the assessment 140 of very heavy damage or destruction by citizens involved in them is unlikely because they usually do 141 not pay attention to sending smartphone reports while they are in danger of life. Following this

approach, EMSC always consider degrees 11 and 12 as outliers and provides corrected intensities by
eliminating these values. However, the remaining, high, intensities (e.g. 8, 9, 10), which define very
severe and general damage, may also be unreliable, thus representing anomalous intensity values
anyway.

Both DYFI and HSIT join individual IDPs using ZIP codes and municipal territories to obtain the MDPs, but, his is not possible for LastQuake data because they are provided at a global scale where such geographical subdivisions are not available.

149

#### 150 Method: from IDP to macroseismic parameters

151

The distribution of IDPs provides a reasonable indication at a glance of the area of the effects and of 152 153 the possible epicentre location. To compute the earthquake parameters such as location and 154 magnitude, we use the BOXER code (Gasperini et al., 1999, 2010), a software widely used for 155 macroseismic analysis for present (e.g., Vannucci et al., 2019) and past earthquakes (e.g., Rovida et 156 al., 2020). However, the use of single IDP is too sensitive to the presence of outliers and then it is 157 preferable to use instead Macroseismic Data Points (MDPs), i.e., intensities assigned to clusters of 158 IDPs. We adopt the term MDP in analogy to an intensity value assessed for given localities as in 159 classical macroseismic studies, although it has a different origin. Therefore, the quantitative 160 computation of macroseismic parameters follows two main steps (Fig. 2): first, the grouping of IDPs 161 and the assessment of intensity on MDPs; second, the processing of MDPs to compute location and 162 magnitude of the earthquake by BOXER.

163 Starting from the IDP distribution, we use an original code to constrain the area within which to 164 select IDPs and outside which to eliminate geographic outliers. The IDPs are grouped using different 165 grouping methods. If the number of IDPs in each cluster is larger than a given minimum threshold 166 (e.g. 3, 5), the MDP intensities are computed by various statistical estimators of central tendency as 167 for example the average, the median and the trimmed mean, so reducing the effects of intensity outliers. All MDP intensities are finally processed by the BOXER code to obtain macroseismic
 parameters and their uncertainties (Fig. 2).

170 In this retrospective analysis of the EMSC database we clustered IDPs to derive MDPs both using171 raw and corrected intensities.

We discarded all intensities 2 and 12 thus reducing the range of the raw intensities to the interval 172 173 from 3 to 11. This because even for true intensity estimates made by macroseismic experts, intensity 174 2 corresponds to a so weak perception of ground shaking (felt by very few people in particularly 175 receptive conditions indoors) that it might remain unobserved in most cases, and it is also difficult to 176 be distinguished from degree 3 (felt by few people indoors). For example, Bakun and Wentworth 177 (1997), for their location and sizing method, choose to aggregate the degree 2 with degree 3, while Tosi et al. (2015) considered degree 2 equivalent to "not-felt" (degree 1) for HSIT data. We therefore 178 179 preferred to simply discard degree 2, even considering the lower reliability of our intensities based 180 on citizen testimonies. On the other hand, true intensities 12 were really never observed.

181

#### 182 a) Classification of EMSC events

To select IDPs useful for computations and statistical retrospective analyses, we must firstly eliminate possible geographical outliers. In this retrospective analysis, we use the known instrumental epicentre and magnitude to constrain the geographic area of IDP coverage by a Maximum Distance Prediction Equation (MDPE, Fig. 3), an empirical function, aimed at discarding only the furthest geographical outliers, that links the magnitude of an event with the maximum distance of IDPs with respect to epicentre:

189

$$MDPE = a + b * M + \exp(c * M)$$
(1)

where M is the magnitude and a=50, b=70, c=0.9 are fixed coefficients defined empirically by a trialand-error procedure. The purpose is a quick preliminary selection of IDPs, deleting those located at distances longer than that predicted by the MDPE (Fig. 3) in order to significantly reduce the time required to assess the MDPs, considering the retrospective analysis of thousands of earthquakes of the EMSC dataset. The maxima and minima of the latitudes and longitudes of the IDPs within the MDPE radius defines a rectangular area for next elaborations (solid black lines in Fig. 3). For the sake of clarity, the application of the MDPE equation 1 and the filtering of geographical outliers is only done for this retrospective analysis, whereas for event by event future near real-time analyses the procedure requires no filter and knowledge of location and instrumental magnitude (see Appendix A for more details).

- 200 We classify the earthquakes considering if:
- a) the epicentre is located inland or offshore;
- b) the epicentre is located in or out the defined rectangular area;
- 203 c) there are geographic outliers. Consequently, we assign a two-character code: the first one indicating
- 204 whether the epicentre is inland or offshore (L or S, respectively), while the second one is:
- 205 1: if the epicentre is inside the area, without outliers;
- 206 2: if the epicentre is inside the area, with outliers;
- 207 3: if the epicentre is outside the area, without outliers;
- 208 4: if the epicentre is outside the area, with outliers.
- 209 We provide in Figure 4 a scheme of the 8 main categories, identified by various codes (e.g., L1, L4,
- 210 S3, ...), some real examples of earthquakes classified following the previous scheme are plotted in
- 211 Fig. S2 of the supplementary material.
- 212
- **b)** From IDPs to MDPs: Data clustering
- 214 This procedure (see details in Appendix A) is structured in three steps (Fig. 5):
- 215
- A) definition of spatial areas or clusters where grouping IDPs;
- B) evaluation of the occurrence of IDPs in each spatial area or cluster;
- 218 C) assessment of MDPs.
- 219

220 Step A ("IDPs in/out" in Fig. 5): IDPs available for each earthquake can be clustered using 221 different methods: within a given radius (RA), over a square grid (SQ), over a hexagonal grid (HE), 222 within a radius and over a square grid (RS, i.e. RA+SQ), within a radius and over a hexagonal grid 223 (RH, i.e. RA+HE) or by DBSCAN (DB) method (see Appendix for details of each of such methods). 224 For the first 5 methods, fixed geometries are used to constrain the clustering areas, whereas for DB 225 method, the shape and the size of clustering areas can vary with the distribution of the data. We use 226 a partitioning approach in which each IDP is assigned to only one cluster and cannot be shared by 227 more clusters as in "hierarchical clustering" method (e.g., Amorese et al., 2015).

Step B ("Occurrence" in Fig. 5): each cluster of IDPs collects intensities. The minimum number of IDPs to calculate a MDP intensity in an area/cluster could be taken in analogy with agencies that collect and provide "crowdsourced" intensities: 5, like HSIT (Tosi et al., 2015) and 3, like DYFI (Wald et al., 2011). Areas/clusters with a number of IDPs lower than the threshold are not evaluated and the MDPs are not assessed. After several tests with different thresholds, we decided to use 3 IDPs (as done by DYFI).

234 Step C ("MDPs" in Fig. 5): on the IDPs in each area/cluster, we apply various statistical estimators 235 of central tendency to derive both location (geographical coordinates) and the final MDP intensity of 236 each cluster. We use the average (mnsa), the median (mdna) and the trimmed mean with four different 237 intervals of the distribution of the sorted intensity values: 10%-90% (mn10), 15%-85% (mn15), 20%-238 80% (mn20), 25%-75% (mn25). Note that trimmed means are computed only if the tails of the 239 distributions have at least one IDP, otherwise the simple average is used. The use of central tendency 240 estimators reduces the effects intensity outliers because these are averaged with other IDPs in the 241 clustering area and do not influence the final MDP intensity assessment too much. The approach 242 followed is more conservative compared to HSIT and DYFI by preserving the intensities assessed by 243 citizens as much as possible.

MDPs available are therefore the results of the combination of grouping and central tendency methods using both raw (R) and corrected (C) intensities. Consequently, even the computed MDPs are hereinafter and analogously indicated as raw or corrected.

To calculate MDP, we used a minimum threshold of 3 IDPs, deleting geographical outliers and using the intensity in the range 3-11 degrees (3-10 for corrected intensities). Hence, the initial number of 51359 earthquakes in the EMSC dataset reduces to 22761 (Table S1 of the supplementary material). The selected earthquakes whose instrumental epicentre is located inland are about 2/3 of the total, covering a wide range of magnitudes. It is important to note that a threshold of 5 IDPs would immediately eliminate further 4291 earthquakes and that only 2603 earthquakes have more than 100 IDPs while 20159 earthquakes have IDPs ranging between 3 and 100 (panel B of Table S1).

254

255 c) From MDPs to macroseismic parameters

256 The BOXER code (Gasperini et al., 1999, 2010) calculates macroseismic parameters such as 257 epicentre, magnitude and their uncertainties using available MDPs. Among the different computation 258 methods available in the code, we use only the n. 0 and n. 1, hereinafter indicated as BOXER-0 and 259 BOXER-1 (or Bx0 and Bx1), respectively. Method 0 computes the epicentre as the barycentre of the 260 sites with most severe effects. Method 1 computes the centre of the entire intensity distribution by a 261 minimisation of squared residuals of an attenuation function (Pasolini et al., 2008). BOXER-0 can 262 locate even the earthquakes with only one MDP whereas BOXER-1 needs more than one MDP (we set a minimum of 5 MDPs) with the obvious consequence of reducing the total number of events for 263 264 which macroseismic parameters can computed. However, the latter method allows in most favourable 265 cases to assessing the epicentre also for earthquakes located offshore or in uninhabited areas. 266 Macroseismic magnitude can also be estimated by different methods, depending on the number and 267 the distribution of MDPs. The classical method described in Gasperini et al. (1999) uses both the 268 epicentral intensity I0 and the average distances R<sub>1</sub> of various classes of intensities I. However, as the 269 I0 computed by questionnaire data is usually unreliable, we modified the original algorithm to only

use the R<sub>I</sub>. In any case, at least 4 MDPs are required (two intensity classes with two MDPs each) to compute a magnitude. The alternative methods described by Gasperini et al. (2010), based on a linear relation between I0 and M cannot be used in the present work for the poor reliability of I0, as well the new method described in Gasperini et al. (2010) because it was found to systematically underestimate the magnitudes.

275

# 276 **Results and discussion**

277

In Table 1 we show the distribution of the number of earthquakes as a function of the number of MDPs using both raw and corrected intensities. For ~7600 of the 22761 initial earthquakes, we do not even have a single MDP. Consequently, the earthquakes with at least one MDP for which we can provide the location are ~15000 (Table 1). Hence, only 2/3 of the events can be compared with instrumental locations to quantify the ability of BOXER code to provide reliable macroseismic parameters.

For each earthquake of the dataset with at least 3 IDPs (22761 earthquakes), we combined 11 different grouping methods and 6 different central tendency estimators to assess MDPs (Appendix and Table A1). Moreover, macroseismic locations and magnitudes are computed by 2 methods (BOXER-0 and BOXER-1). Hence, in total, we have 132 different alternative combinations of methods to test. The minimum threshold of 3 IDPs for locate an earthquake is a minimum but not sufficient condition because it is necessary that they all belong to the same clustering area to have a single MDP.

The comparison between macroseismic epicentres and magnitudes with instrumental data provides an estimate of the reliability of the computed parameters for different combinations both using raw and corrected intensities. Instrumental locations and magnitudes of each earthquake are taken from the EMSC webservice. In particular magnitudes are homogenized to Mw by using empirical formulas at the global scale of Lolli et al. (2014). For each earthquake it is possible to evaluate the combinations

of methods which separately minimize the distance between macroseismic and instrumental epicentre and the difference between the macroseismic and instrumental magnitude, but they are generally different for different earthquakes.

However, we can establish a ranking of combinations by counting the number of earthquakes for which each combination best reproduces the instrumental parameters. To objectively compile such ranking, we consider datasets of earthquakes for which both the epicentre and the magnitude can be computed using all combinations. Such datasets include 1144 and 1082 earthquakes for raw and corrected intensities, respectively.

For each earthquake, we assign a score 3 to the combination of methods having, separately, the minimum epicentral distance and the minimum absolute magnitude difference, a score of 1 to all combinations with distances and differences within 5% of the minimum ones and no greater than 1 km and 0.2 m.u. and a score of 0 for all the other cases. We used such nonparametric approach (instead of, for example, the total root mean square error) because we are unsure that macroseismic locations and magnitudes are normally distributed, even considering the possible presence of intensity outliers in some earthquakes.

311 Such scores are reported in Table 2 for raw intensities (and in Table S2 of the supplementary 312 material for corrected intensities). Neither for localization distances nor for differences in magnitude, 313 there is a combination which clearly overperforms all the other ones and which we can choose as the 314 "preferred" one to use prospectively.

The best performing combinations are different for epicentral location and magnitude and for raw and corrected intensities. For epicentral location from raw intensities (Tables 2 and 3), the first 43 combinations in the ranking use BOXER method 1 and the first 5 the grouping method DB2. For corrected intensities (Tables S2 and S3 in the supplementary material) the first 27 use BOXER method 1 and 4 of the first 5 use the grouping method DB2.

For magnitude estimation, the results are less coherent. Using the raw intensities (Tables 2 and 4),in the highest rankings we have an alternation of both BOXER methods and different grouping

methods with a certain prevalence of BOXER-1 and grouping methods RA and DB. Using corrected
intensities (Tables S2 and S4 in the supplemental material), the first 11 combinations use BOXER-1
while the preferred grouping methods varies from DB to RA and RH.

325 The better agreement of BOXER-1 with respect to BOXER-0, concerning the distance from the 326 instrumental epicentre and the good performance of the grouping method DB2 can be immediately 327 evidenced by plotting (Fig. 6) the values of Tables 2 and S2 for the raw and corrected intensities, 328 respectively: the greater the distance of each combination from the centre of each Radar plot the 329 higher the score obtained by the combination. We also observe a prevalence of the median as central 330 tendency estimator that minimise the difference with the instrumental data for various grouping and 331 BOXER combinations. About the difference in magnitude, the values are similar to each other, 332 showing the lowest values for the DB2 grouping method but there is not a clear prevalence of one 333 BOXER or central tendency estimator method with respect to the others.

In general, not all earthquakes can be located and sized by the best performing combination, hence, to determining the parameters for as many earthquakes as possible, even combinations other than the "top" ranking one must be used. To verify which combinations are mostly useful, we compute epicentres and magnitudes in our complete datasets of 22761 earthquakes, using the combinations with higher ranking that are able, separately, to compute such parameters.

339 In the bottom sections of Tables 3 and 4 for raw intensities, we report the numbers of earthquakes 340 located (15103) and sized (5703) by each combination according to such procedure. Note that the 341 total number of located earthquakes is about  $\sim 2/3$  of the 22761 earthquakes, while magnitudes can 342 only be estimated for  $\sim 1/5$  of the earthquakes. This because, for the location, one MDP is sufficient, 343 while for the magnitude, at least 4 MDPs are needed. Hence, it is not possible to locate 7658 and to 344 size 17058 earthquakes. The results for corrected intensities are shown in Tables S3 and S4 of the 345 supplementary material, with similar values for earthquakes located (15100) and sized (5625), and 346 not-located (7661) and not-sized (17136).

347 For raw intensities (Table 2), combinations using BOXER-1 and BOXER-0 can locate ~1/3 and 348  $\sim 2/3$  of the 15103 earthquakes, respectively. In detail, 3321 (22%) earthquakes can be located using 349 the "top" scoring combination (DB2-20% trimmed average-BOXER-1), other 1816 (12%) 350 earthquakes can be located by different combinations using BOXER-1. Overall, BOXER-1 locates at best 5137 earthquakes i.e. all the events that have number of MDPs ≥5. BOXER-0 locates 9966 351 352 earthquakes, 6409 (42.4%) of which by the combination "3500RH3-average", 1864 (12.3%), by the 353 "2000RA-median" 1633 (10.8%) by the "DB2- 20% trimmed average". The latter three combinations correspond to the 44<sup>th</sup>, 66<sup>th</sup>, 69<sup>th</sup> positions in the ranking, respectively (Table 3). Overall, 17 354 355 combinations are used to locating 15103 earthquakes.

356 The situation is similar for corrected intensities (Table S2 of the supplementary material) where 357 3319 (22%) earthquakes can be located by the same top scoring combination for raw intensities, 1756 (11.6%) by other combinations using BOXER-1, 10025 (66.4%) by combinations using BOXER-0. 358 359 Overall, BOXER-1 locates 5075 earthquakes of 5134 earthquakes with the number of MDPs  $\geq$ 5 360 (Table 1). Also, for corrected intensities, 17 combinations locate 15100 earthquakes. Excluding the 361 top scoring combination (DB2-20% trimmed average-BOXER-1), median and average are generally 362 used for locating earthquakes (Table 3), in agreement with the highest-ranking values in Table 2 and 363 Figure 6.

364 For raw intensities (Table 4), combinations using BOXER-1 and BOXER-0 assign the magnitude 365 at best to 3767 and 1936 events, respectively (i.e.  $\sim 2/3$  and  $\sim 1/3$  of the total of 5703 earthquakes). 366 This preference for BOXER-1 is even more pronounced with corrected intensities (Table S4 of 367 supplementary material) with 4959 (88%) of the total of 5625 events, whereas combinations with 368 BOXER-0 assess the magnitude at best for only 666 events (12%). Using raw intensities (Table 4), 369 3060 (53.7%) magnitudes can be determined by the top scoring combination (DB2-10% trimmed 370 mean-BOXER-1), other 707 (12.4%) by combinations using BOXER-1, 1936 (34.4%) by 371 combinations using BOXER-0. In all 71 combinations are used to compute the 5703 magnitudes. Using corrected intensities, 2984 (53%) magnitudes can be determined by the top scoring 372

373 combination (DB2-mean-BOXER-1), other 1965 (35.1%) by combinations using BOXER-1, 666
374 (11.8%) by combinations using BOXER-0. In all 83 combinations are used to compute 5625
375 magnitudes. Note that all the grouping, central tendency and BOXER methods are necessary to
376 compute epicentres of magnitudes for all earthquakes.

377 From a first analysis of the correspondence between macroseismic and instrumental parameters in 378 Fig. 7, it is quite evident a geographical heterogeneity: a fairly good agreement is observed in Europe 379 and North America and some greater discrepancy in other areas of the World. For this reason, we will 380 analyse the results not only at a global scale but also for the 5 macro-areas indicated in Fig. 7: Europe 381 (EU), Asia and Oceania (AO), North America (US), South America (SA), Africa (AF). It is obvious 382 to relate the agreement and disagreement between macroseismic and instrumental parameters with 383 the number of IDPs available in the different areas. In fact, the larger number of IDPs in the EU and 384 US with greater density and continuity (Fig. 1) corresponds to a higher average number of MDPs in 385 the same areas for each analysed earthquake (Table 5 for raw and corrected intensities). Such larger 386 number of MDPs per earthquake therefore manages to better constrain location and macroseismic 387 magnitude, improving the agreement with the instrumental data at the global scale (see Fig. S3 and 388 cTable S5 of the supplementary material).

389 Both at the global scale and for different macro-areas, we calculated the frequency histograms in 390 various ranges of distances and magnitude differences (Fig. 8 with numerical values in Tables S6 and 391 S8 of the supplementary material for raw intensities and Fig. S4, Tables S8 and S9 of the 392 supplementary material for corrected ones). The lower the values, the better the fit of macroseismic 393 to instrumental values. All earthquakes (a) have also been divided into categories or subsets, 394 depending on whether they are located inland (L) or offshore (S), have the maximum gap between 395 available MDPs and epicentre less than 180 degrees (g), and, for epicentral distance only, have at 396 least 3 MDP(n). We do not consider the latter subdivision for magnitudes because the minimum 397 number of MDPs for computing them is 4. As well, for a gap <180 degrees, 3 MDPs are required at least. This comparison between macroseismic and instrumental parameters is displayed in Fig. 8 bothin terms of number of events and of percentage of the total number.

400 Both for the distance and for the difference in magnitude, at the global scale, the earthquakes 401 located on land (L) are  $\sim 2/3$  of the total (a) while  $\sim 1/3$  are located offshore (S). The agreement is 402 generally better for the former ones than for the latter ones and improves by a few percentage points 403 by only considering earthquakes with at least 3 MDPs (n). The agreement further improves for 404 earthquakes with maximum azimuthal gap lower than 180 degrees, which number, however, is about 405 1/4 of the total for the location and to about one half for the magnitude. For about 30% of earthquakes, 406 the distance exceeds 50 km and for about 15% of them it exceeds 100 km. Only 40% of the 407 earthquakes have magnitude differences less than 0.6 m.u. This indicates a certain difficulty of the 408 macroseismic magnitudes in reproducing the instrumental ones.

Analysing the results by macro-areas, the correspondence between macroseismic and instrumental data shows significant variations: ~2/3 of the earthquakes are concentrated in Europe, while the other macro-areas have about 1200-2200 earthquakes with location and 400-700 with magnitude except for the African area having about 200 events (Fig. 8). Compared to the data at a global scale, a clearly better agreement between macroseismic and instrumental parameters is observed for the EU and the US areas and a worse agreement for AO, SA and AF (Fig. 8).

415 It is also clear that events in the sea (S) have worse agreement with the instrumental data than all 416 the other datasets (a, L, n, g). Compared to the whole dataset (a), the trend of improvement of the 417 agreement is evident for the subsets L, n and g. It follows that the number of MDPs (n), possibly well 418 distributed around the epicentre (g), are factors that improve the quality of the final macroseismic 419 data, making the calculated parameters more reliable. Increasing more and more the number of IDPs 420 and then of MDPs is a goal and a mean to obtain realistic estimates of macroseismic parameters. The 421 use of corrected intensities leads to results substantially similar to those calculated with raw 422 intensities, with some slight improvements at the shortest distances and smaller magnitude difference 423 (Fig. S5 of the supplementary material).

424 To show the evolution over time of the agreement between macroseismic and instrumental data, 425 we subdivided the results by year, from 2012 to 2022 (excluding 2023 which has only two months of 426 data). Fig. 9 shows the overall results of the distance and magnitude difference at a global scale, both 427 in terms of number of earthquakes and of percentage. For each year, the earthquakes are divided into 428 subsets (SaLng for distance and SaLg for magnitude difference) analogously to Fig. 8. It is possible 429 to observe how the number of events whose macroseismic parameters are estimated increases over 430 time, except for year 2022 in which it decreases. The agreement between macroseismic and 431 instrumental parameters remains similar to each other even within the subsets of earthquakes.

432 Over time, the distances and the differences in magnitude decrease: in 2020-2022 for the subsets "L", "n" and "g", the percentage of earthquakes located within 10 km from the instrumental epicentre 433 434 is about 20-30%, about 30-50% within 20 km, about 50-70% within 30 km and about 80% within 50 435 km. For the differences in magnitude, a slight percentage improvement over time is observed with 436 about 25-40% of the earthquakes of the subsets "L" and "g" within about 0.3 m.u. and about 65% of 437 events within 0.6 m.u. The trend of improvement over time is even more visible considering events 438 beyond certain values (e.g. 100 km away and 1 degree of magnitude) which halves their percentages 439 compared to the first few years. It should also be noted that some years like 2016 and 2017 have 440 percentages in line or even better in terms of agreement than most recent years.

441 The temporal behaviour in the different macro-areas compared to the global scale (Fig. 9) shows 442 different results both in terms of percentage and of the number of earthquakes. For Europe (Fig. 10), 443 it can be observed that the number of earthquakes slightly decreases in 2018 and in 2022, but increases 444 the percentage of earthquakes that have relatively shorter distances and smaller magnitude 445 differences. Furthermore, over the years we can note a marked decrease in the percentages of 446 earthquakes with distances longer than 100 km and magnitude differences greater than 1 degree (Fig. 447 10). In the other macro-areas (AO, US, SA, AF), we have about 1/3 of the total number of earthquakes 448 analysed. For certain years and/or certain subsets of earthquakes, the small number of events available 449 makes the statistics scarcely significant. The North America (US) area has similar or even slightly

450 better agreement than that of Europe with the exception of years 2012 and 2013 when the statistics 451 are insignificant due to the low number of events (Figs. S6 and S7 of the supplementary material for raw and corrected intensities, respectively). In the other macro-areas (Figs. S8 and S9 of the 452 453 supplementary material) the percentage of well localized events and well assigned magnitudes also 454 drops significantly due to the reduced number of MDPs per earthquake (Table 5). Using the corrected 455 intensity gives similar results (Figs. S10-S15 of Supplementary Material). For the sake of clarity, we 456 also provide in Appendix B an example of the entire procedure from IDPs to macroseismic parameters 457 for the 2020/09/19 California earthquake (06:38 UTC, M=4.5).

458

# 459 Conclusions

460

461 We analysed the database of individual intensities provided by citizens (1874376 IDPs) collected 462 and made available online by the EMSC for 51359 earthquakes. The database provides two intensity 463 values: raw and corrected (i.e. eliminating intensities >10 and applying an empirical formula to the 464 raw data, according to Bossu et al., 2017). On both the raw and corrected datasets we applied various 465 methods for grouping the IDPs. We tested the combinations of 11 clustering methods and 6 central 466 tendency estimators (mean, median, trimmed means with various trimming intervals) to derive a 467 MDP intensity for each cluster with at least 3 IDPs. The MDPs thus available were processed with 468 methods 0 and 1 of the BOXER code (Gasperini et al., 2010). Therefore, for each event there are 132 469 possible combinations of methods, for each type of intensity, which allow to compute epicentre and 470 macroseismic magnitude. The threshold of at least 3 IDPs for deriving an MDP, significantly lowers 471 the number of earthquakes for which macroseismic parameters can actually be calculated. 472 Furthermore, at least 4 MDPs are required for the calculation of magnitude. Therefore, it is possible 473 to compute an epicentre and a magnitude for ~15000 and ~5700 earthquakes, respectively.

The calculated macroseismic parameters can be compared with the instrumental ones to evaluate the reliability of the entire methodology. To identify the combination that minimizes the difference

476 with the instrumental data, separately for distance and magnitude, we selected about a thousand 477 earthquakes for which the parameters could be calculated for all the possible combinations. A score 478 was assigned to each combination based on its ability to well reproduce the instrumental parameters 479 of each earthquake. This systematic approach shows similar score values for several combinations of 480 methods, especially concerning the difference in magnitude. Considering the distance alone, 481 however, the better overall results are obtained by BOXER-1 compared to BOXER-0. The score 482 assigned to the different combinations for all earthquakes defines a ranking that can be used to select 483 the most preferable ones in a prospective view.

Since not all earthquakes can be located and sized by the best performing combination, other combinations must also be used to determine the parameters for as many earthquakes as possible. In particular most earthquakes can only be located using BOXER-0 because it requires less MDPs than BOXER-1 to be applied.

In addition to the complete dataset of available earthquakes (a), we also considered subsets of events with epicentre located on land (L), offshore (S), with number of MDPs $\geq$ 3 (n) and with azimuthal gap between MDPs and instrumental epicentre < 180 degrees (g).

491 The analyses we brought, not only at a global scale but also for 5 macro-areas (Europe, Asia and 492 Oceania, North America, South America, Africa), show substantially similar results between raw and 493 corrected intensities. The distribution of available earthquakes shows a clear concentration in Europe 494 with  $\sim 2/3$  of the total data. In general, the fit between macroseismic and instrumental parameters 495 shows an increasing trend from the dataset of earthquakes located offshore (S) up to the dataset of 496 earthquakes with a gap (g) of less than 180 degrees, with intermediate results for other datasets (a, L, 497 n). Moreover, compared to the global scale, some macro-areas (Europe, North America) have a better 498 fit than others (Asia and Oceania, South America, Africa). We can argue that the larger numbers of 499 MDPs per earthquake that we have in Europe and North America, has a role in improving the 500 agreement with instrumental parameters. In the practice, future near real-time analyses will take advantage of knowing the macro-area where an event occurs to give a preliminary assessment of the
likely reliability of calculated parameters.

503 Analysing the results as a function of time and macro-areas, we can observe increasing trends for 504 subsets as well as for the complete dataset, except for certain areas or certain years for which the low 505 number of events makes the statistics poorly significant. With the increase over time of the number 506 of MDP available per earthquakes, an improvement of the fit between macroseismic and instrumental 507 parameters is generally observed. In certain areas such as Europe and North America, 60-70% of the 508 events are localized within about 30 km from the instrumental epicentre with a magnitude difference 509 <0.6 m.u. and, above all, there is a strong reduction over time of extreme differences (more than 100 510 km of distance or >1 of magnitude). In other areas however the agreement is still not so good probably 511 due to the still low number of MDPs. It is therefore desirable to continue to increase the number of 512 IDPs and to overcome the economic and political barriers which today exclude large areas of the 513 Earth from the possibility of providing such information.

Finally, the reporting of IDPs could also be influenced by the thumbnails representing the different scenarios associated with various degrees used in the LastQuake system. In particular, the types of houses and furniture depicted in them are more similar to European and North American environments than to those of other macro-areas and this makes it more difficult to apply the EMS98 scale to the damage scenario.

519 The processing performed by applying the BOXER code to the IDPs data in an original way is 520 essential and preparatory for future applications in near real-time. When, for an event, EMSC starts 521 collecting IDPs from citizens, an automatic procedure can be run. If the number of IDPs is enough to 522 allow their grouping into MDPs it will be possible to assess location and magnitude with BOXER 523 following a preferential ranking order. The greater the number of MDPs, the greater the reliability of 524 the result. In particular, we believe that the threshold of 5 MDPs allowing the application of the 525 BOXER-1 method is a discriminating element in order to give greater reliability to the results. 526 Obviously, further comparative tests of the results at time intervals will have to be conducted,

- 527 exploiting the delay time information with respect to the time T0 origin of the event, but all this will
- 528 be the subject of further specific work and is beyond the scope of the present purposes.

| 531 | Data and resources                                                                               |
|-----|--------------------------------------------------------------------------------------------------|
| 532 |                                                                                                  |
| 533 | Boxer code: freely available at: https://emidius.mi.ingv.it/boxer/                               |
| 534 |                                                                                                  |
| 535 | Cities500.txt database, available at https://www.geonames.org                                    |
| 536 |                                                                                                  |
| 537 | DYFI, "Did you feel it?", available at http://earthquake.usgs.gov/earthquakes/dyfi/              |
| 538 |                                                                                                  |
| 539 | IDPs, individual intensities data points are downloaded by EMSC via webservices,                 |
| 540 | (www.seismicportal.eu/testimonies-ws/). e.g.: http://www.seismicportal.eu/testimonies-           |
| 541 | ws/api/search?unids=20210629_0000012&includeTestimonies=true_(last accessed January 2023).       |
| 542 |                                                                                                  |
| 543 | EMSC – European Seismological Centre, https://emsc.csem.org/                                     |
| 544 |                                                                                                  |
| 545 | GHSL database, available at https://ghsl.jrc.ec.europa.eu/index.php (last accessed January 2023) |
| 546 |                                                                                                  |
| 547 | GeoNames database, available at https://www.geonames.org (last accessed February 2022)           |
| 548 |                                                                                                  |
| 549 | GeoNet New Zealand questionnaires, available at https://www.geonet.org.nz                        |
| 550 |                                                                                                  |
| 551 | HSIT, "Hai sentito il terremoto?", available at http://www.haisentitoilterremoto.it/             |
| 552 |                                                                                                  |
| 553 | SHAKEMAP -A Tool for Earthquake Response, available at                                           |
| 554 | https://earthquake.usgs.gov/data/shakemap/                                                       |
| 555 |                                                                                                  |

556 Supplementary material for this article includes figures and tables that provide further information 557 and details of the main text. Moreover, similar elaborations, plots and figures are given for the 558 "corrected" intensities in as for the "raw" intensities in the main text.

559

# 561 Acknowledgements

- 562 This paper benefitted from funding provided by the H2020 EU project RISE n. 821115 and Istituto
- 563 Nazionale di Geofisica e Vulcanologia-Sezione di Bologna. We thank Rémy Bossu and Matthieu
- 564 Landès for data, discussion and suggestions in the preparation and drafting of the article.

| 566 | References |
|-----|------------|
|     |            |

Amorese, D., R. Bossu, and G. Mazet-Roux (2015). Automatic clustering of macroseismic intensity
data points from internet questionnaires: Efficiency of the partitioning around medoids (PAM),
Seismol. Res. Lett. 86, no. 4, 1171–1177.

570

571 Bakun, W. H., and C. M., Wentworth (1997). Estimating earthquake location and magnitude from
572 seismic intensity data, Bull. Seismol. Soc. Am., 87/6, 1502-1521.

573

Bossu, R., M. Laurin, G. Mazet-Roux, F. Roussel, and R. Steed (2015). The importance of
smartphones as public earthquake-information tools and tools for the rapid engagement with
eyewitnesses: A case study of the 2015 Nepal earthquake sequence, Seismol. Res. Lett. 86, 6, 1587–
1592

578

Bossu, R., F. Roussel, L. Fallou, M. Landès, R. Steed, G. Mazet-Roux, A. Dupont, L. Frobert, and L.
Petersen (2018). LastQuake: From rapid information to global seismic risk reduction, Int. J. Disast.
Risk Reduc. 28, 32-42.

582

Bossu, R., M. Landès, F. Roussel, R. Steed, G. Mazet-Roux, S. S. Martin, and S. Hough (2017).
Thumbnail-based questionnaires for the rapid and efficient collection of macroseismic data from
global earthquakes, Seismol. Res. Lett. 88, 1, 72-81.

586

587 Dewey, J., D. Wald, and L. Dengler (2000). Relating conventional USGS modified Mercalli 588 intensities to intensities assigned with data collected via the Internet, Seismol. Res. Lett. 71, 264.

| 590 | Ester M., H.P. Kriegel, J. Sander, and X. Xiaowei (1996). A Density-Based Algorithm for                |
|-----|--------------------------------------------------------------------------------------------------------|
| 591 | Discovering Clusters in Large Spatial Databases with Noise. KDD'96: Proceedings of the Second          |
| 592 | International Conference on Knowledge Discovery and Data Mining, 226–231                               |
| 593 |                                                                                                        |
| 594 | Florczyk, A., C. Corbane, M. Schiavina, M. Pesaresi, L. Maffenini, M. Melchiorri, P. Politis, F. Sabo, |
| 595 | S. Freire, D. Ehrlich, T. Kemper, P. Tommasi, D. Airaghi, and L. Zanchetta (2019). GHS Urban           |
| 596 | Centre Database 2015, multitemporal and multidimensional attributes, R2019A. European                  |
| 597 | Commission, Joint Research Centre (JRC)PID: https://data.jrc.ec.europa.eu/dataset/53473144-b88c-       |
| 598 | 44bc-b4a3-4583ed1f547e, https://ghsl.jrc.ec.europa.eu/ghs_stat_ucdb2015mt_r2019a.php                   |
| 599 |                                                                                                        |
| 600 | Gasperini, P., F. Bernardini, G. Valensise, and E. Boschi (1999). Defining seismogenic sources from    |
| 601 | historical earthquake felt reports. Bull. Seismol. Soc. Am. 89, 94-110.                                |
| 602 |                                                                                                        |
| 603 | Gasperini, P., G. Vannucci, D. Tripone, and E. Boschi (2010). The location and sizing of historical    |
| 604 | earthquakes using the attenuation of macroseismic intensity with distance. Bull. Seismol. Soc. Am.     |
| 605 | 100, 2035-2066, doi: /10.1785/0120090330.                                                              |
| 606 |                                                                                                        |
| 607 | Goded T., N. Horspool, S. Canessa, A. Lewis, K. Geraghty, A. Jeffrey, and M. Gerstenberger (2018),     |
| 608 | New macroseismic intensity assessment method for New Zealand web questionnaires, Seismol. Res.         |
| 609 | Lett., 89(2A), 640-652, doi.org/10.1785/0220170163.                                                    |
| 610 |                                                                                                        |
| 611 | Grünthal, G. (ed.) (1998). European macroseismic scale 1998, Conseil de l'Europe. Cahiers du Centre    |
| 612 | Européen de Géodynamique et de Séismologie,13, Luxembourg, 99 pp.                                      |
| 613 |                                                                                                        |
| 614 | Hough, S. E., and S. S. Martin (2021), Which earthquake accounts matter?, Seismol. Res. Lett., 92      |

615 (2A), 1069-1084, doi.org/10.1785/0220200366.

- 617 International Seismological Centre (2022), On-line Bulletin, https://doi.org/10.31905/D808B830618
- Lolli B., P. Gasperini, and G. Vannucci (2014). Empirical conversion between teleseismic
  magnitudes (mb and Ms) and moment magnitude (Mw) at the Global, Euro-Mediterranean and Italian
  scale, Geophys. J. Int., 199, 805-828, doi: 10.1093/gji/ggu264
- 622
- Musson, R.M.W., and M.J Jiménez (2008). Macroseismic Estimation of Earthquake Parameters. NA4
  Deliverable D3, NERIES Project.
- 625
- Pasolini, C., D. Albarello, P. Gasperini, V. D'Amico, and B. Lolli (2008). The attenuation of seismic
  intensity in Italy part II: modeling and validation. Bull. Seismol. Soc. Am. 98, 692-708.
  Doi.org/10.1785/0120070021.
- 629
- Pettenati, F., and L. Sirovich (2003). Tests of source-parameter inversion of the U.S. Geological
  Survey intensities of the Whittier Narrows, 1987 earthquake. Bull. Seismol. Soc. Am., 93, 47-60.
- Rovida, A., M. Locati, R. Camassi, B. Lolli, and P. Gasperini (2020). The Italian earthquake
  catalogue CPTI15, Bull. Earthq. Eng., 18, 2953-2984, doi: 10.1007/s10518-020-00818-y.
- 635
- 636 Sieberg, A. (1912): Über die makroseismische Bestimmung der Erdbebenstärke. Ein Beitrag zur
  637 seismologische Praxis, G.Gerlands Beiträge zur Geophysik, 11 (2-4), 227-239 (in German).
- 638
- 639 Sieberg, A. (1932): Erdebeben, in Handbuch der Geophysik, Vol. 4, (B. Gutenberg Ed.), 552-554 (in
  640 German).
- 641

- Tosi, P., P. Sbarra, V. De Rubeis, and C. Ferrari (2015), Macroseismic intensity assessment method
  for web-questionnaires. Seism. Res. Lett, 86, 985-990, doi: 10.1785/022014022.
- 644
- Vannucci G., D. Tripone, P. Gasperini, G. Ferrari, and B. Lolli (2015). Automated assessment of
  macroseismic intensity from written sources using the Fuzzy sets. Bulletin of Earthquake
  Engineering, 13, 2769-2803, doi:10.1007/s10518-015-9759-5
- 648
- Vannucci G., P. Gasperini, B. Lolli, and L. Gulia (2019). Fast characterization of sources of recent
  Italian earthquakes from macroseismic intensities. Tectonophysics 750, 70-92, doi:
  10.1016/j.tecto.2018.11.002
- 652
- Wald, D. J., V. Quitoriano, L. Dengler, and J. W. Dewey (1999). Utilization of the Internet for rapid
  community intensity maps, Seismol. Res. Lett. 70, 87–102.
- 655
- 656 Wald, D.J., V. Quitoriano, B. Worden, M. Hopper, and J.W. Dewey (2011). USGS "Did You Feel
- 657 It?" Internet-based macroseismic intensity maps. Annals Geophys., 54, 6; doi: 10.4401/ag-5354

| 659 | Authors' addresses                                                                                 |
|-----|----------------------------------------------------------------------------------------------------|
| 660 |                                                                                                    |
| 661 | Gianfranco Vannucci                                                                                |
| 662 | Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Viale Berti Pichat 6/2, 40127  |
| 663 | Bologna, Italy, email: gianfranco.vannucci@ingv.it                                                 |
| 664 |                                                                                                    |
| 665 | Paolo Gasperini                                                                                    |
| 666 | Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, |
| 667 | Italy, email: paolo.gasperini@unibo.it                                                             |
| 668 |                                                                                                    |
| 669 | Laura Gulia                                                                                        |
| 670 | Dipartimento di Fisica e Astronomia, Università di Bologna, Viale Berti Pichat 6/2, 40127 Bologna, |
| 671 | Italy, email: <u>laura.gulia@unibo</u> .it                                                         |
| 672 |                                                                                                    |
| 673 | Barbara Lolli                                                                                      |
| 674 | Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Viale Berti Pichat 6/2, 40127  |
| 675 | Bologna, Italy, email: <u>barbara.lolli@ingv.it</u>                                                |
| 676 |                                                                                                    |
|     |                                                                                                    |

Tables

680Table 1 – number of earthquakes (n. Eqks) as a function of the number of MDPs. The last rows (in

681 bold) show the cumulative number of earthquakes with MDPs numbers  $\ge 1, \ge 3, \ge 5$ .

|           | n. Eqks  |           |  |  |  |  |
|-----------|----------|-----------|--|--|--|--|
|           | Raw Int. | Corrected |  |  |  |  |
| n. MDPs   |          | Int.      |  |  |  |  |
| 0         | 7658     | 7661      |  |  |  |  |
| 1         | 4940     | 4940      |  |  |  |  |
| 2         | 2550     | 2551      |  |  |  |  |
| 3         | 1473     | 1477      |  |  |  |  |
| 4         | 1003     | 998       |  |  |  |  |
| 5         | 742      | 742       |  |  |  |  |
| 6         | 516      | 515       |  |  |  |  |
| 7         | 424      | 426       |  |  |  |  |
| 8         | 369      | 367       |  |  |  |  |
| 9         | 279      | 280       |  |  |  |  |
| 10        | 256      | 255       |  |  |  |  |
| 11-15     | 763      | 762       |  |  |  |  |
| 16-20     | 430      | 430       |  |  |  |  |
| 21-30     | 439      | 440       |  |  |  |  |
| 31-50     | 380      | 378       |  |  |  |  |
| 51-75     | 207      | 207       |  |  |  |  |
| 76-100    | 104      | 104       |  |  |  |  |
| 101-150   | 101      | 101       |  |  |  |  |
| 151-200   | 46       | 47        |  |  |  |  |
| 201-500   | 66       | 65        |  |  |  |  |
| 501-1000  | 12       | 12        |  |  |  |  |
| 1001-2000 | 3        | 3         |  |  |  |  |
| all       | 22758    | 22758     |  |  |  |  |
| >=1       | 15103    | 15100     |  |  |  |  |
| >=3       | 7613     | 7609      |  |  |  |  |
| >=5       | 5137     | 5134      |  |  |  |  |

685 Table 2 – Scores (see text) obtained, using raw intensities, by the 132 combinations for both the 686 distances between macroseismic and instrumental locations (Di, upper part of the table) and the 687 differences between macroseismic and instrumental magnitudes (dM, lower part of the table). The 688 comparison refers to the dataset of common earthquakes (n.eqks) for which the parameters can be 689 calculated by all the combinations of methods. Grouping methods are indicated (see Appendix) as a 690 function of population density (den), clustering method (MG) and grid/radius of the area (size), while 691 central tendency estimators are indicated by acronyms: average (mean), median (mdna) and trimmed 692 averages with 10%, 15%, 20% and 25% of tail trimming: (mn10, mn15, mn20, mn25, respectively). 693 Bx0 and Bx1 indicate BOXER methods 0 and 1 respectively. Results for corrected intensities are 694 reported in Table S2 of the supplementary material.

695

| Dset:   |     |      |      |      |      |     | Raw | inten | sities |      |     |     |     |
|---------|-----|------|------|------|------|-----|-----|-------|--------|------|-----|-----|-----|
| Α       |     | den  | 2000 | 3500 | 5500 |     |     |       | 3500   | 3500 |     |     |     |
| n.eqks: |     | MG   | RA   | RA   | RA   | SQ  | SQ  | HE    | RS     | RH   | DB  | DB  | DB  |
| 1144    |     | size |      |      |      | 1   | 2   | 2     | 3      | 3    | 0.5 | 1   | 2   |
| 114     |     | mean | 56   | 61   | 54   | 45  | 45  | 43    | 51     | 86   | 36  | 46  | 51  |
|         |     | mdna | 70   | 55   | 52   | 64  | 56  | 42    | 62     | 54   | 51  | 49  | 60  |
|         | D0  | mn10 | 42   | 46   | 45   | 36  | 36  | 38    | 50     | 52   | 35  | 43  | 40  |
|         | Bx0 | mn15 | 42   | 42   | 47   | 30  | 37  | 47    | 52     | 48   | 36  | 53  | 41  |
|         |     | mn20 | 54   | 62   | 43   | 59  | 34  | 52    | 53     | 59   | 39  | 40  | 67  |
| Di      |     | mn25 | 53   | 63   | 48   | 58  | 38  | 45    | 54     | 67   | 44  | 48  | 54  |
| DI      |     | mean | 103  | 88   | 126  | 98  | 87  | 100   | 93     | 127  | 92  | 96  | 129 |
|         | Bx1 | mdna | 106  | 91   | 119  | 112 | 93  | 97    | 100    | 109  | 79  | 78  | 144 |
|         |     | mn10 | 97   | 92   | 114  | 78  | 99  | 91    | 75     | 121  | 87  | 85  | 116 |
|         |     | mn15 | 92   | 97   | 90   | 87  | 81  | 75    | 72     | 90   | 74  | 85  | 145 |
|         |     | mn20 | 84   | 94   | 74   | 78  | 67  | 86    | 68     | 107  | 78  | 81  | 146 |
|         |     | mn25 | 82   | 101  | 92   | 79  | 75  | 88    | 90     | 101  | 86  | 77  | 130 |
|         |     | mean | 324  | 318  | 324  | 318 | 273 | 291   | 285    | 231  | 312 | 267 | 246 |
|         |     | mdna | 330  | 342  | 309  | 300 | 258 | 258   | 258    | 234  | 300 | 252 | 279 |
|         | D0  | mn10 | 297  | 282  | 315  | 288 | 282 | 306   | 243    | 279  | 285 | 297 | 303 |
|         | Bx0 | mn15 | 285  | 297  | 309  | 303 | 294 | 267   | 246    | 252  | 330 | 237 | 315 |
|         |     | mn20 | 303  | 342  | 318  | 300 | 297 | 225   | 240    | 243  | 300 | 282 | 240 |
| dM      |     | mn25 | 288  | 258  | 303  | 285 | 309 | 252   | 246    | 261  | 291 | 270 | 258 |
| uivi    |     | mean | 324  | 285  | 318  | 273 | 240 | 249   | 294    | 264  | 255 | 246 | 315 |
|         |     | mdna | 294  | 258  | 282  | 285 | 249 | 222   | 258    | 324  | 237 | 285 | 324 |
|         | Bx1 | mn10 | 306  | 318  | 366  | 255 | 273 | 249   | 264    | 291  | 222 | 279 | 384 |
|         | DXI | mn15 | 273  | 315  | 288  | 246 | 276 | 276   | 270    | 297  | 243 | 276 | 357 |
|         |     | mn20 | 315  | 312  | 249  | 270 | 285 | 246   | 258    | 330  | 270 | 285 | 279 |
|         |     | mn25 | 261  | 297  | 285  | 255 | 255 | 234   | 258    | 321  | 264 | 252 | 291 |

696

Table 3 - Upper part: ranking order of the 132 combinations of methods based on distance scores in Table 2 (upper part) for raw intensities. Lower part: numbers of events for which macroseismic parameters can be computed by each combination, following the order of the ranking. "nd" indicates the number of earthquakes which cannot be located or sized by any combination. Acronyms as in Table 2. Results for corrected intensities in Table S3 of the supplementary material.

703

|                 |     |      |      |      |      |     | Raw | inten | sities |      |     |     |      |
|-----------------|-----|------|------|------|------|-----|-----|-------|--------|------|-----|-----|------|
| Dset:           |     | den  | 2000 | 3500 | 5500 |     |     |       | 3500   | 3500 |     |     |      |
| A               |     | MG   | RA   | RA   | RA   | SQ  | SQ  | HE    | RS     | RH   | DB  | DB  | DB   |
|                 |     | size |      |      |      | 1   | 2   | 2     | 3      | 3    | 0.5 | 1   | 2    |
|                 |     | mean | 81   | 75   | 87   | 110 | 109 | 113   | 97     | 44   | 129 | 105 | 96   |
|                 |     | mdna | 66   | 82   | 94   | 71  | 80  | 115   | 74     | 85   | 95  | 99  | 76   |
|                 | Bx0 | mn10 | 118  | 106  | 107  | 126 | 127 | 123   | 98     | 92   | 130 | 112 | 121  |
|                 | DXU | mn15 | 116  | 117  | 103  | 132 | 125 | 104   | 93     | 100  | 128 | 89  | 119  |
| Di              |     | mn20 | 83   | 73   | 114  | 78  | 131 | 91    | 90     | 77   | 122 | 120 | 69   |
|                 |     | mn25 | 88   | 72   | 102  | 79  | 124 | 108   | 84     | 70   | 111 | 101 | 86   |
| n eqks:<br>1144 |     | mean | 16   | 40   | 7    | 22  | 42  | 20    | 29     | 6    | 32  | 26  | 5    |
| 1144            | Bx1 | mdna | 15   | 34   | 9    | 12  | 28  | 23    | 19     | 13   | 54  | 57  | 3    |
|                 |     | mn10 | 24   | 33   | 11   | 58  | 21  | 35    | 61     | 8    | 43  | 47  | 10   |
|                 |     | mn15 | 30   | 25   | 37   | 41  | 52  | 60    | 65     | 38   | 64  | 48  | 2    |
|                 |     | mn20 | 49   | 27   | 63   | 56  | 68  | 46    | 67     | 14   | 55  | 51  | 1    |
|                 |     | mn25 | 50   | 18   | 31   | 53  | 62  | 39    | 36     | 17   | 45  | 59  | 4    |
|                 |     | mean | -    | -    | -    | -   | -   | -     | -      | 6409 | -   | -   | -    |
|                 |     | mdna | 1864 | -    | -    | -   | 3   | -     | 20     | -    | -   | -   | -    |
|                 | D0  | mn10 | -    | -    | -    | -   | -   | -     | -      | -    | -   | -   | -    |
| D               | Bx0 | mn15 | -    | -    | -    | -   | -   | -     | -      | -    | -   | -   | -    |
| Di              |     | mn20 | -    | -    | -    | -   | -   | 37    | -      | -    | -   | -   | 1633 |
| n eqks:         |     | mn25 | -    | -    | -    | -   | -   | -     | -      | -    | -   | -   | -    |
| 15103<br>nd:    |     | mean | -    | -    | 49   | -   | -   | 127   | -      | 1040 | 12  | 10  | -    |
| 7658            |     | mdna | 116  | -    | -    | 232 | -   | -     | 148    | -    | -   | -   | -    |
| /030            | D-1 | mn10 | -    | -    | -    | -   | 76  | -     | -      | -    | -   | -   | -    |
|                 | Bx1 | mn15 | -    | -    | -    | -   | -   | -     | -      | -    | -   | -   | -    |
|                 |     | mn20 | -    | -    | -    | -   | -   | -     | -      | -    | -   | -   | 3321 |
|                 |     | mn25 | -    | 6    | -    | -   | -   | -     | -      | -    | -   | -   | -    |

704

706 Table 4 - As in Table 3 for magnitude difference (dM) scores and raw intensities. Results for corrected

707 intensities in Table S4 of the supplementary material.

| _ | ~  | ~ |
|---|----|---|
| 7 | () | x |
| 1 | υ  | υ |

|              |     |      |      |      |      |     | Raw | inten | sities |      |     |     |      |
|--------------|-----|------|------|------|------|-----|-----|-------|--------|------|-----|-----|------|
| Dset:        |     | den  | 2000 | 3500 | 5500 |     |     |       | 3500   | 3500 |     |     |      |
| Α            | Α   |      | RA   | RA   | RA   | SQ  | SQ  | HE    | RS     | RH   | DB  | DB  | DB   |
|              |     | size |      |      |      | 1   | 2   | 2     | 3      | 3    | 0.5 | 1   | 2    |
|              |     | mean | 10   | 15   | 11   | 17  | 77  | 49    | 56     | 129  | 25  | 86  | 116  |
|              |     | mdna | 6    | 5    | 28   | 39  | 94  | 96    | 100    | 128  | 36  | 106 | 70   |
|              | Bx0 | mn10 | 41   | 66   | 23   | 54  | 69  | 31    | 120    | 72   | 57  | 40  | 33   |
|              | DXU | mn15 | 65   | 43   | 29   | 34  | 48  | 85    | 117    | 108  | 7   | 125 | 24   |
| dM           |     | mn20 | 32   | 4    | 18   | 37  | 42  | 130   | 123    | 121  | 38  | 68  | 122  |
| n eqks:      |     | mn25 | 55   | 95   | 35   | 64  | 27  | 105   | 118    | 91   | 50  | 81  | 92   |
| 1144         | Bx1 | mean | 12   | 60   | 16   | 80  | 124 | 109   | 47     | 87   | 101 | 114 | 21   |
| 1144         |     | mdna | 46   | 99   | 67   | 58  | 112 | 132   | 93     | 13   | 126 | 62  | 9    |
|              |     | mn10 | 30   | 19   | 2    | 102 | 78  | 110   | 89     | 51   | 131 | 71  | 1    |
|              |     | mn15 | 79   | 20   | 53   | 113 | 76  | 75    | 84     | 45   | 119 | 74  | 3    |
|              |     | mn20 | 22   | 26   | 111  | 83  | 59  | 115   | 98     | 8    | 82  | 61  | 73   |
|              |     | mn25 | 90   | 44   | 63   | 103 | 104 | 127   | 97     | 14   | 88  | 107 | 52   |
|              |     | mean | 36   | 3    | 5    | 157 | 7   | 15    | 19     | 2    | 7   | 2   | 1    |
|              |     | mdna | 180  | 88   | 1    | 8   | 7   | 27    | 13     | 14   | 13  | 1   | 28   |
|              | Bx0 | mn10 | 3    | -    | 1    | -   | 1   | 134   | 1      | 38   | 1   | 16  | 13   |
| 13.4         | BXU | mn15 | 2    | 1    | 2    | 19  | 29  | 11    | 9      | 3    | 504 | -   | 79   |
| dM           |     | mn20 | 4    | 196  | 1    | 11  | 7   | 1     | -      | -    | -   | 13  | -    |
| n eqks:      |     | mn25 | -    | -    | -    | -   | 158 | 2     | 2      | 39   | -   | -   | 1    |
| 5703<br>nd:  |     | mean | -    | -    | -    | -   | -   | -     | 25     | -    | -   | -   | 2    |
| nd:<br>17058 |     | mdna | -    | -    | -    | -   | -   | -     | 5      | 58   | -   | 1   | 29   |
| 1/038        | D-1 | mn10 | 2    | -    | 156  | -   | -   | -     | -      | 2    | -   | -   | 3060 |
|              | Bx1 | mn15 | -    | -    | -    | -   | -   | 3     | 2      | 10   | -   | -   | 44   |
|              |     | mn20 | 3    | -    | -    | -   | -   | -     | -      | 359  | -   | 2   | -    |
|              |     | mn25 | -    | -    | -    | -   | -   | -     | -      | 4    | -   | -   | -    |

709

- Table 5 Average number of MDPs per earthquake (nMDPs/Eqk) at global scale and for macro-areas
  (as in Fig. 7) using raw and corrected intensities. Values for distance (Di) and difference of magnitude
  (dM) are shown.

| n. MDPs/E | qk | Global<br>(W) | Europe<br>(EU) | Asia, Oceania<br>(AO) | North America<br>(US) | South America<br>(SA) | Africa<br>(AF) |
|-----------|----|---------------|----------------|-----------------------|-----------------------|-----------------------|----------------|
| Raw       | Di | 5.1           | 5.6            | 3.8                   | 6.5                   | 3.2                   | 4.4            |
| Int       | dM | 11.4          | 11.7           | 9.4                   | 13.9                  | 8.9                   | 7.5            |
| Corrected | Di | 5.1           | 5.5            | 3.8                   | 6.5                   | 3.2                   | 4.4            |
| Int       | dM | 11.5          | 11.9           | 9.6                   | 14.2                  | 9.1                   | 7.8            |

718 **List of Figures Captions** 719 720 Figure 1 - Top panel: In colours, numbers of IDPs on a regular grid with mesh of 1 degree both in 721 latitude and longitude. In black, seismicity from the revised catalogue of International Seismological 722 Centre (ISC, 2022), with M>3 in the time span 2013-2020. Bottom panels: frequency distribution over intensity bin of 0.5 degrees of IDPs of the EMSC database. Raw intensities and corrected ones 723 724 (Bossu et al., 2017) in red and blue colours, respectively. 725 726 Figure 2 - procedure used from IDPs to assessment of macroseismic parameters. 727 Figure 3 - example of geographical (circled in red) and intensity outliers (with raw intensity=12, 728 729 circled in blue), for the 2013/04/16 10:44 M=7.8 earthquake, number of IDPs: 408. The black dashed 730 circle indicates the Maximum Distance Prediction Equation (MDPE) used to delete farthest IDPs and 731 define the area (solid black line) of minimum and maximum latitude and longitude of selected IDPs. 732 The black star indicates the instrumental epicentre. 733 Figure 4 - scheme of classification of the distribution of IDPs. The star indicates the instrumental 734 735 epicentre, the circular dashed black line is a circle with MDPE radius, the rectangular black line 736 delimits the area of location of usable IDPs, i.e. the minimum and maximum latitude and longitude 737 of usable IDPs, without any geographic outliers (circled in red colour). 738 739 Figure 5 - Methods of clustering of IDPs into MDPs through three steps: column A: IDPs available are grouped (or not) following the various methods; column B: for each area of grouping the 740 741 occurrence of a sufficient number of IDPs is assessed (numbers in green) or not (numbers in red); 742 column C: IDPs are used to compute a combined intensity (MDPs), indicated with different colours

and symbols, for selected area/clusters (in white colours) and by using different central tendencyestimators.

745

Figure 6 - Radar diagrams of the data represented in Tables 2 and S2 for Distance (Di, upper part) and difference of magnitude (dM, lower part) for BOXER-0 (Bx0) and BOXER-1 (Bx1). The light grey areas refer to BOXER-0 and the dark grey ones to BOXER-1. Coloured symbols (small circles) refer to central tendency estimators used to compute MDPs, plotted as a function of methods used to cluster raw IDPs (codified as in Table 2). The number of earthquakes (and then the agreement with instrumental data) increases from the centre of each circle outwards.

752

Figure 7 - Plot of distance (Di, lower panel, 15103 earthquakes) and magnitude difference of (dM,
upper panel, 5703 earthquakes) between "preferred" macroseismic parameters and instrumental data
for raw intensity. Five zones (EU=Europe, AO=Asia and Oceania, US=Nord America, SA= South
America, AF=Africa) are shown.

757

758 Figure 8 - Statistical results of the comparison between macroseismic and instrumental parameters 759 (represented in Fig. 7). Plots display numbers of event (N) and percentages (%) for magnitude 760 differences (dM, upper panel) and distances (Di, lower panel). Columns refer to global scale (W) and 761 different macro-areas (EU=Europe, AO=Asia and Oceania, US=Nord America, SA= South America, 762 AF=Africa). The columns of each zone (see the legend in lowest left corner) indicate, from left to 763 right, the earthquakes located offshore (S), all the earthquakes (a), earthquakes located inland (L), earthquakes with the number of MDPs  $\geq 3$  (n) and earthquakes with azimuthal gap < to 180 degrees 764 765 (g). The area in grey highlights the macro-areas with respect to the global area (W). The scales of the numbers of earthquakes (N) are different for the global area (left) and the macro-areas (right). 766

767

Figure 9 - Same as in Figure 8, at the global scale and for different years.

770 Figure 10 - Same as in Figure 9 for Europe.

## Figures





Figure 1 - Top panel: In colours, numbers of IDPs on a regular grid with mesh of 1 degree both in
latitude and longitude. In black, seismicity from the revised catalogue of International Seismological
Centre (ISC, 2022), with M>3 in the time span 2013-2020. Bottom panels: frequency distribution
over intensity bin of 0.5 degrees of IDPs of the EMSC database. Raw intensities and corrected ones
(Bossu et al., 2017) in red and blue colours, respectively.



- 782 Figure 2 procedure used from IDPs to assessment of macroseismic parameters.
- 783
- 784
- /01
- 785
- 786



787

Figure 3 - example of geographical (circled in red) and intensity outliers (with raw intensity=12, circled in blue), for the 2013/04/16 10:44 M=7.8 earthquake, number of IDPs: 408. The black dashed circle indicates the Maximum Distance Prediction Equation (MDPE) used to delete farthest IDPs and define the area (solid black line) of minimum and maximum latitude and longitude of selected IDPs. The black star indicates the instrumental epicentre.



Figure 4 - scheme of classification of the distribution of IDPs. The star indicates the instrumental epicentre, the circular dashed black line is a circle with MDPE radius, the rectangular black line delimits the area of location of usable IDPs, i.e. the minimum and maximum latitude and longitude of usable IDPs, without any geographic outliers (circled in red colour).



801

Figure 5 - Methods of clustering of IDPs into MDPs through three steps: column A: IDPs available are grouped (or not) following the various methods; column B: for each area of grouping the occurrence of a sufficient number of IDPs is assessed (numbers in green) or not (numbers in red); column C: IDPs are used to compute a combined intensity (MDPs), indicated with different colours

- and symbols, for selected area/clusters (in white colours) and by using different central tendency
- 807 estimators.



810

Figure 6 - Radar diagrams of the data represented in Tables 2 and S2 for Distance (Di, upper part) and difference of magnitude (dM, lower part) for BOXER-0 (Bx0) and BOXER-1 (Bx1). The light grey areas refer to BOXER-0 and the dark grey ones to BOXER-1. Coloured symbols (small circles) refer to central tendency estimators used to compute MDPs, plotted as a function of methods used to cluster raw IDPs (codified as in Table 2). The number of earthquakes (and then the agreement with instrumental data) increases from the centre of each circle outwards.



Figure 7 - Plot of distance (Di, lower panel, 15103 earthquakes) and magnitude difference of (dM,
upper panel, 5703 earthquakes) between "preferred" macroseismic parameters and instrumental data
for raw intensity. Five zones (EU=Europe, AO=Asia and Oceania, US=Nord America, SA= South
America, AF=Africa) are shown.



Figure 8 - Statistical results of the comparison between macroseismic and instrumental parameters (represented in Fig. 7). Plots display numbers of event (N) and percentages (%) for magnitude differences (dM, upper panel) and distances (Di, lower panel). Columns refer to global scale (W) and

| 830 | different macro-areas (EU=Europe, AO=Asia and Oceania, US=Nord America, SA= South America,              |
|-----|---------------------------------------------------------------------------------------------------------|
| 831 | AF=Africa). The columns of each zone (see the legend in lowest left corner) indicate, from left to      |
| 832 | right, the earthquakes located offshore (S), all the earthquakes (a), earthquakes located inland (L),   |
| 833 | earthquakes with the number of MDPs $\geq 3$ (n) and earthquakes with azimuthal gap < to 180 degrees    |
| 834 | (g). The area in grey highlights the macro-areas with respect to the global area (W). The scales of the |
| 835 | numbers of earthquakes (N) are different for the global area (left) and the macro-areas (right).        |
| 836 |                                                                                                         |





840 Figure 9 - Same as in Fig. 8, at the global scale and for different years.







846 Appendix A - method for grouping IDPs and compute MDPs

847

848 The transformation from IDPs to MDPs implies a delimitation of the IDPs in a felt area and in some 849 cases a selection of IDPs discarding the out-of-area data.

For retrospective statistical analyses or to derive relationships from available IDPs, the area is limited to the threshold distance defined by MDPE (eq. 1). The use of such a filter does not change or modify the number of MDPs that are actually calculated, as it only eliminates isolated IDPs (i.e. geographic outliers), but it does significantly reduce the calculation time required to create the subsequent geographic grids (for more than 15,000 earthquakes) on which to check cell by cell the relative occurrence of IDPs. IDPs available for each earthquake can be clustered or not in areas by 6 different methods (Fig. 5):

- 857 1. radius (RA)
- 858 2. square grid (SQ)
- 859 3. hexagonal grid (HE)
- 4. radius and square grid (RS, i.e. RA+SQ)
- 5. radius and hexagonal grid (RH, i.e. RA+HE)
- 862 6. DBSCAN method (DB)

863 In details:

864 RA method uses georeferenced localities (from a database) as cluster centres. Starting from 1) the identification location, the radius constrains a representative surface of the location. IDPs 865 866 can be in or out of the "city-equivalent" area. We use a database of global localities (i.e. the 867 open source cities500.txt, see data and resource section) that also provide the number of 868 inhabitants for each locality, however without population density information. Even if some 869 databases as GHS Urban Centre Database (Florczyk et al., 2019, from GHSL (see data and resource section) collects open source information of the areas in km<sup>2</sup> only 13,000 cities in 870 871 the World as collected. By setting a population density (e.g. 2000, 3500, 5500

872 inhabitants/km<sup>2</sup>) it is possible derive a "city-equivalent" area, i.e. a spatial area roughly 873 proportional to the number of inhabitants. The radius is computed as  $\sqrt{(area/\pi)}$ . IDPs 874 located within the radius from the locality belong (IN) to the locality or not (OUT). Within 875 each area, the clustering of IDPs starts with the localities with the smallest number of 876 inhabitants and continues by grouping the remaining IDPs following the localities with 877 increasing numbers of inhabitants.

878 2, 3) SQ and HE methods use a regular equal-areal grid with squared and hexagonal mesh,
879 respectively. The centre of development of the grid is fixed to the average of coordinates of
880 all IDPs inside the area.

4, 5) RS (RA+SQ) and RH (RA+HE) methods combine the method of clustering 1 with 2 and 3
respectively: first the RA method is applied, then remaining IDPs are grouped by the SQ or
HE method. This approach overcomes in certain cases the simplification of equating the
locality area to a circle based on a fixed population density and allows to retrieve information
about IDPs outside of RAs but in a sufficient number so that to compute residual MDPs over
grid.

887 DB (Density-Based Spatial Clustering of Applications with Noise-DBSCAN, Ester et al., 6) 888 1996) is a method based on the grouping of IDPs located less than an arbitrary distance that 889 successively can aggregate neighbour clusters and IDPs. If an IDP is close to another one (that 890 is it is located at a distance, or "EPS" radius smaller than a given value) the two IDPs are 891 grouped together in the same aggregation area. However, if one of aggregated IDPs is close 892 to another IDP at a distance smaller than the EPS radius, then the latter IDP is joined together 893 the aggregation area to which the former IDP belongs. This technique proceeds in a chain by 894 joining IDPs to the cluster and is able to discover clusters of arbitrary shape. IDPs at a distance 895 greater than the EPS radius from all the IDPs of the cluster are external or belong to other, distinct, aggregation areas. 896

For each grouping method (1-6) setting parameter (e.g. population density, grid side or EPS distance) constrain the areas for IDP grouping. We derived MDPs using various combinations of grouping methods and central tendency estimators and varying the reference settings. In particular (Table A1) we used:

901 - three population densities of 2000, 3500 and 5500 inhabitants/km<sup>2</sup> using the RA method;

- 902 regular equidimensional grids with side of the mesh of 1 and 2 km for squared cells (SQ) and 2
  903 km for hexagonal cells (HE);
- 904 a population density of 3500 inhabitants/km<sup>2</sup> and side of the grid of 3 km both for RS and RH
  905 methods
- 906 three eps radii (0.5, 1, 2 km) for DB methods

907 The methods for assessing MDPs are not equivalent to each-other in terms of computing time. In 908 table A1 the last column gives a raw evaluation of the computational speed of the method (high, 909 average, low speed and relative comparison with "+" and "-" symbols). Grouping methods based on 910 SQ and HE grids require more computer time than RA or DB (Table A1) methods. The RS and RH 911 methods are intermediate between the previous approaches. The construction of grids requires a 912 complete coverage of the whole area and the smaller the size of the grid side, the longer the time to 913 construct the grid and therefore to search for IDPs within each cell. The tessellation with hexagonal 914 cells, due to a higher complexity, is more time-consuming than that with square cells. RS and RH 915 methods use grids with sides slightly wider than SQ and HE ones, so they are faster than SQ and HE 916 methods. In any case, the higher the level of detail one wants to achieve as spatial coverage, the more 917 the time needed to perform computations. The DB methods (Fig. 5) is independent of external data, like 918 locality databases, or of grid tessellation and is based only on the available information (location and 919 intensity) of the IDPs.

We tested for the all the earthquakes of the EMSC dataset the combinations of different grouping methods and settings. To simplify the discussion of analyses and statistics we then selected some settings only indicated in Table A1. Combinations can be represented by combining acronyms:

923 "3500RH3-mean" uses both the radius (R) of "city-equivalent" area, based on a population density of 924 3500 inhabitants/km2 and hexagonal cells (H) of side 3 km as grouping method and the median to 925 derive the MDP intensity, while "2000RA-mdna" uses a radius (R) with population density of 2000 926 inhabitants/km2 and the median.

927 Other methods of data clustering (e.g. based on polylines of the limit urban areas at different sites) 928 are not available on a global scale with the same quality: some countries may have these data even for 929 small locations while others do not. Note that determining whether or not an IDP falls within a polyline 930 is a time-consuming calculation.

931 For future near real-time analyses the instrumental location and magnitude of events are unknown 932 when IDPs are made available since the event time (T0). The IDPs collected at the subsequent time 933 steps (T1, T2, Tn...) directly define the maximum and minimum latitude and longitude of the survey 934 area because the analysis of only one event at a time does not create problems of excessive calculation 935 time. All the IDPs (even the geographical outliers) will be tested to verify their occurrence in the 936 grouping areas for the assessment of the MDPs. In any case, geographic outliers are generally isolated 937 (i.e. below the expected threshold (3) of minimum IDP occurrence to assign an MDP) and do not 938 contribute to the creation of MDPs.

939

|          | Intensities: raw                             | (R), corrected (C) |                  |            |  |  |  |  |  |  |  |  |
|----------|----------------------------------------------|--------------------|------------------|------------|--|--|--|--|--|--|--|--|
| Grouping |                                              |                    |                  |            |  |  |  |  |  |  |  |  |
| methods  | methods (mean, mdna, mn10, mn15, mn20, mn25) |                    |                  |            |  |  |  |  |  |  |  |  |
|          | Population                                   | Side of cells (gr) | EPS radius (eps) | Speed test |  |  |  |  |  |  |  |  |
|          | density (Den)                                | (in km)            | (in km)          |            |  |  |  |  |  |  |  |  |
|          | (inhabitants/km <sup>2</sup> )               |                    |                  |            |  |  |  |  |  |  |  |  |
| RA       | 2000, 3500, 5500                             |                    |                  | Fast       |  |  |  |  |  |  |  |  |
| SQ       |                                              | 1, 2               |                  | Slow+      |  |  |  |  |  |  |  |  |
| HE       |                                              | 2                  |                  | Slow-      |  |  |  |  |  |  |  |  |
| RS       | 3500                                         | 3                  |                  | Medium+    |  |  |  |  |  |  |  |  |
| RH       | 3500                                         | 3                  |                  | Medium-    |  |  |  |  |  |  |  |  |
| DB       |                                              |                    | 0.5, 1, 2        | Fast       |  |  |  |  |  |  |  |  |

Table A1 - Summary of grouping methods and settings used to derive MDPs from IDPs. The speed test

941 is a relative indication of the processing time of MDPs from slowest to fastest, with further intermediate

- 942 levels (+, -). In total, 11 rouping Methods, 6 central tendency estimators, 2 type of Intensity (R and C)
- 943 are used for comparative analyses on the EMSC earthquakes.

## 945 Appendix B – example of the procedure from IDPs to Macroseismic parameters

946

To better represent the procedure from the IDPS to the choice of preferred macroseismic parameters
of an earthquake, we show as an example, the earthquake of 19 September 2020 6:38 UTC, Lat: 34.02,
Lon: -118.08, Mw=4.5) referred to the raw intensities only.

For this event, EMSC provides 2192 IDPs (Fig. B.1). The grouping of IDPs into MDPs involves selecting IDPs by discarding geographical outliers (not present in the example, however) and grouping them into MDPs using clustering methods and central tendency estimators for a total of 66 possible MDP distributions (see also Appendix A and Table A.1 for details).

Fig. B.2 shows the MDPs obtained by applying 11 grouping methods and the median as the central tendency distribution. For each group of 66 combinations, the BOXER provides location and magnitude with methods 0 and 1, giving a total of 132 locations and magnitudes. Fig. B.3 (with numerical values in Table B.1) shows the epicentres and the differences in magnitude with respect to the instrumental values. Most of the macroseismic epicentres are very close to the true instrumental one (the maximum distance is about 19 km) generally with small differences in magnitude (the overall range is between -0.3 and 1.5 m.u.).

To choose a preferred location and magnitude, we applied the ranking order (Tables 3 and 4). For the example earthquake, macroseismic parameters are available for all 132 possible combinations (Table B.1), so the first ranked combination was chosen for both distance (DBSCAN with eps 2 km, trimmed mean 20 and BOXER-1, Table 3) and magnitude (DBSCAN with eps 2 km, trimmed mean 10 and BOXER-1, Table 4). The macroseismic preferred solution is located at latitude: 33.9829, longitude: -118.0443, with magnitude: 4.62 (Fig. B.3). The distance with respect to instrumental epicentre is 5.28 km and the difference of magnitude 0.1 m.u.



- 969 Figure B.1: Plot of 2692 IDPs (raw intensities) of the event of 2020/09/19. The star represents the
- 970 instrumental epicentre.



Figure B.2: MDPs for 11 different grouping methods (RA, SQ, HE, RS, RH, DB and relative
settings, see Appendix A and in Table A1) and the median as central tendency estimator. The star
represents the instrumental epicentre.



Figure B.3: Macroseismic parameters (location and difference of magnitude with respect to
instrumental one) with BOXER-0 and BOXER-1 for a total of 132 different MDPs distributions. The
preferred solution following the ranking order is indicated (numerical values in Table B.1).

| BX  | Lon           | Lat         |                | Di    | dM     | n    |      |     | gr/eps |      |
|-----|---------------|-------------|----------------|-------|--------|------|------|-----|--------|------|
| mth | (deg+km)      | (deg+km)    | М              | (km)  | (m.u.) | MDPs | Den  | MGs | (km)   | CTEs |
| _   | -118.1107±3.6 | 34.0106±2.4 | 4.49±.22       | 3.02  | -0.01  | -    |      |     |        | mnsa |
|     | -118.1012±2.7 | 34.0185±2.4 | 4.65±.24       | 1.96  | 0.15   |      |      |     |        | mdna |
|     | -118.1027±3.4 | 34.0200±2.6 | 4.49±.22       | 2.09  | -0.01  |      |      |     |        | mn10 |
|     | -118.1057±3.0 | 34.0224±2.2 | 4.5±.22        | 2.38  | 0      | 171  | 2000 |     |        | mn15 |
|     | -118.0968±3.5 | 34.0214±2.7 | 4.49±.19       | 1.55  | -0.01  |      |      |     |        | mn20 |
|     | -118.1075±3.4 | 34.0197±2.4 | 4.49±.19       | 2.54  | -0.01  |      |      |     |        | mn25 |
|     | -118.1308±3.8 | 34.0290±2.8 | 4.52±.23       | 4.79  | 0.02   |      |      |     |        | mnsa |
|     | -118.1101±3.6 | 34.0097±2.8 | 4.32±.26       | 3     | -0.18  |      |      |     |        | mdna |
|     | -118.1212±3.4 | 34.0162±4.4 | 4.39±.24       | 3.82  | -0.11  |      |      |     |        | mn10 |
|     | -118.1247±3.6 | 34.0241±3.7 | 4.4±.24        | 4.14  | -0.1   | 146  | 3500 | RA  | -      | mn15 |
|     | -118.1268±3.7 | 34.0051±3.5 | 4.38±.25       | 4.62  | -0.12  |      |      |     |        | mn20 |
|     | -118.1318±3.8 | 34.0057±2.7 | 4.37±.25       | 5.03  | -0.13  |      |      |     |        | mn25 |
|     | -118.162±3.9  | 34.0311±4.1 | 4.49±.24       | 7.65  | -0.01  |      |      |     |        | mnsa |
|     | -118.1302±3.2 | 33.9933±2.7 | $4.46 \pm .50$ | 5.5   | -0.04  |      |      |     |        | mdna |
|     | -118.1334±3.6 | 33.9983±4.3 | 4.49±.22       | 5.48  | -0.01  | 10(  | 5500 |     |        | mn10 |
|     | -118.1328±3.6 | 33.9983±4.3 | 4.49±.22       | 5.44  | -0.01  | 126  | 5500 |     |        | mn15 |
|     | -118.1011±3.4 | 33.9812±3.7 | 4.41±.28       | 4.73  | -0.09  |      |      |     |        | mn20 |
|     | -118.1108±3.9 | 33.9877±3.5 | 4.44±.36       | 4.58  | -0.06  |      |      |     |        | mn25 |
|     | -118.2493±2.9 | 34.0989±1.0 | 4.42±.19       | 17.9  | -0.08  |      |      |     |        | mnsa |
| 0   | -118.1518±    | 34.1158±    | 4.3±.24        | 12.54 | -0.2   |      |      |     |        | mdna |
|     | -118.2493±2.9 | 34.0989±1.0 | 4.43±.19       | 17.89 | -0.07  | 184  |      |     | 1      | mn10 |
|     | -118.2647±2.3 | 34.0972±1.1 | 4.38±.19       | 19.06 | -0.12  | 164  |      |     | 1      | mn15 |
|     | -118.1518±    | 34.1158±    | 4.34±.23       | 12.54 | -0.16  |      |      |     |        | mn20 |
|     | -118.1518±    | 34.1158±    | 4.33±.23       | 12.54 | -0.17  |      |      | SQ  |        | mn25 |
|     | -118.1938±3.1 | 34.0475±1.6 | 4.58±.13       | 10.93 | 0.08   |      | -    | зų  |        | mnsa |
|     | -118.1567±3.4 | 34.0089±1.5 | 4.57±.12       | 7.17  | 0.07   |      |      |     |        | mdna |
|     | -118.2±2.8    | 34.0354±1.5 | 4.57±.14       | 11.2  | 0.07   | 347  |      |     | 2      | mn10 |
|     | -118.2043±2.8 | 34.0289±1.6 | 4.55±.14       | 11.5  | 0.05   | 547  |      |     | 2      | mn15 |
|     | -118.1676±3.7 | 34.0091±1.6 | 4.59±.12       | 8.16  | 0.09   |      |      |     |        | mn20 |
|     | -118.1631±3.7 | 34.0111±1.6 | 4.58±.12       | 7.73  | 0.08   |      |      |     |        | mn25 |
|     | -118.1771±2.0 | 34.0511±1.5 | 4.58±.14       | 9.6   | 0.08   |      |      |     |        | mnsa |
|     | -118.1386±3.1 | 34.0058±1.3 | 4.55±.12       | 5.63  | 0.05   |      |      |     |        | mdna |
|     | -118.1544±2.4 | 34.0388±1.6 | 4.58±.14       | 7.17  | 0.08   | 356  |      | HE  |        | mn10 |
|     | -118.1554±2.7 | 34.0448±1.8 | 4.54±.13       | 7.47  | 0.04   | 550  | -    | IIL |        | mn15 |
|     | -118.1274±3.3 | 33.9897±1.5 | 4.54±.13       | 5.52  | 0.04   |      |      |     |        | mn20 |
|     | -118.1371±3.0 | 33.9966±1.5 | 4.54±.13       | 5.87  | 0.04   |      |      |     |        | mn25 |
|     | -118.1647±3.0 | 34.0423±1.8 | 4.54±.14       | 8.19  | 0.04   |      |      |     |        | mnsa |
|     | -118.1364±4.3 | 33.9753±8.0 | 4.58±.12       | 7.19  | 0.08   | 358  | 3500 | RS  | 3      | mdna |
|     | -118.1776±2.7 | 34.0368±2.0 | 4.52±.14       | 9.18  | 0.02   |      |      |     |        | mn10 |

|   | -118.1722±2.4                           | 34.0366±2.1                | 4.5±.14                         | 8.7   | 0     |         |      |    |     | mn15         |
|---|-----------------------------------------|----------------------------|---------------------------------|-------|-------|---------|------|----|-----|--------------|
|   | -118.1364±4.3                           | 33.9753±8.0                | 4.55±.13                        | 7.19  | 0.05  |         |      |    |     | mn20         |
|   | -118.1364±4.3                           | 33.9753±8.0                | 4.55±.13                        | 7.19  | 0.05  |         |      |    |     | mn25         |
|   | -118.1652±3.2                           | 34.0490±2.5                | 4.55±.17                        | 8.49  | 0.05  |         |      |    |     | mnsa         |
|   | -118.1441±3.4                           | 34.0276±1.8                | 4.47±.19                        | 5.97  | -0.03 |         |      |    |     | mdna         |
|   | -118.1475±3.9                           | 34.0330±2.4                | 4.55±.17                        | 6.38  | 0.05  | • • • • |      |    |     | mn10         |
|   | -118.1458±3.9                           | 34.0370±2.7                | 4.56±.17                        | 6.35  | 0.06  | 268     | 3500 | RH | 3   | mn15         |
|   | -118.1423±5.3                           | 34.0055±2.4                | 4.49±.19                        | 5.96  | -0.01 |         |      |    |     | mn20         |
|   | -118.1446±5.0                           | 34.0076±2.3                | 4.5±.19                         | 6.12  | 0     |         |      |    |     | mn25         |
|   | -118.2151±4.1                           | 34.1075±3.9                | 4.48±.19                        | 15.8  | -0.02 |         |      |    |     | mnsa         |
|   | -118.1953±4.0                           | 34.0920±2.6                | 4.34±.24                        | 13.3  | -0.16 |         |      |    |     | mdna         |
|   | -118.2152±4.1                           | 34.1075±3.9                | 4.49±.19                        | 15.81 | -0.01 | 170     |      |    | 0.5 | mn10         |
|   | -118.1897±4.7                           | 34.1010±4.4                | 4.49±.20                        | 13.54 | -0.01 | 179     |      |    | 0.5 | mn15         |
|   | -118.1953±4.0                           | 34.0920±2.6                | 4.39±.23                        | 13.3  | -0.11 |         |      |    |     | mn20         |
|   | -118.1953±4.0                           | 34.0920±2.6                | 4.39±.24                        | 13.3  | -0.11 |         |      |    |     | mn25         |
|   | -118.191±2.8                            | 34.0133±3.8                | 4.6±.17                         | 10.26 | 0.1   |         |      |    |     | mnsa         |
|   | -118.1405±4.6                           | 34.0022±3.4                | 4.41±.21                        | 5.91  | -0.09 |         |      |    |     | mdna         |
|   | -118.1668±3.6                           | 34.0107±4.0                | 4.65±.17                        | 8.07  | 0.15  | 241     | _    | DB | 1   | mn10         |
|   | -118.1669±3.6                           | 34.0107±4.0                | 4.63±.17                        | 8.08  | 0.13  | 241     | -    | DD | 1   | mn15         |
|   | -118.1355±5.7                           | 33.9773±4.0                | 4.62±.15                        | 6.98  | 0.12  |         |      |    |     | mn20         |
|   | -118.1354±5.4                           | 33.9726±3.8                | 4.62±.15                        | 7.34  | 0.12  |         |      |    |     | mn25         |
|   | -118.1115±6.5                           | 33.9731±1.3                | 4.61±.32                        | 5.96  | 0.11  |         |      |    |     | mnsa         |
|   | -118.061±8.2                            | 34.0041±11.8               | 4.65±.23                        | 2.48  | 0.15  |         |      |    |     | mdna         |
|   | -118.1119±6.5                           | 33.9731±1.3                | 4.62±.32                        | 5.99  | 0.12  | 128     |      |    | 2   | mn10         |
|   | -118.112±6.4                            | 33.9725±1.3                | 4.61±.31                        | 6.05  | 0.11  | -       |      |    |     | mn15         |
|   | -118.0366±13.9                          | 33.9725±20.3               | 4.61±.29                        | 6.63  | 0.11  |         |      |    |     | mn20         |
|   | -118.0368±13.9                          | 33.9728±20.3               | 4.6±.29                         | 6.59  | 0.1   |         |      |    |     | mn25         |
|   | -118.0934±2.3                           | 34.0103±2.7                | $4.49\pm.23$                    | 1.64  | -0.01 |         |      |    |     | mnsa         |
|   | -118.0959±2.1<br>-118.08±2.2            | 34.0307±2.6                | 4.66±.29                        | 1.89  | 0.16  |         |      |    |     | mdna         |
|   |                                         | 34.0264±4.1                | $4.5\pm.22$                     | 0.72  | ÷     | 171     | 2000 |    |     | mn10         |
|   | -118.0786±2.3<br>-118.0801±2.4          | 34.0249±3.5<br>34.0314±3.2 | 4.51±.23<br>4.5±.25             | 0.56  | 0.01  |         |      |    |     | mn15<br>mn20 |
|   | $-118.0801\pm2.4$<br>-118.1013 $\pm2.3$ | 34.0367±2.7                | $4.5\pm.23$<br>$4.5\pm.26$      | 2.7   | 0     |         |      |    |     | mn25         |
|   | $-118.1013\pm2.3$<br>$-118.1202\pm3.2$  | 34.0522±3.4                | $4.5 \pm .20$<br>$4.55 \pm .24$ | 5.16  | 0.05  |         |      |    |     |              |
|   | -118.1267±3.1                           | 34.0573±2.9                | 4.34±.26                        | 5.98  | -0.16 |         |      |    |     | mnsa<br>mdna |
|   | -118.1176±3.2                           | 34.0552±3.9                | 4.42±.25                        | 5.23  | -0.08 |         |      |    |     | mn10         |
|   | $-118.1344\pm4.1$                       | 34.0659±3.2                | 4.43±.26                        | 7.15  | -0.07 | 146     | 3500 | RA | -   | mn15         |
|   | $-118.1441\pm4.3$                       | 34.0597±3.2                | 4.39±.26                        | 7.38  | -0.11 |         |      |    |     | mn20         |
|   | $-118.1683 \pm 3.7$                     | 33.9997±3.0                | 4.36±.26                        | 8.45  | -0.14 |         |      |    |     | mn25         |
| 1 | $-118.1394 \pm 3.8$                     | 34.0625±3.2                | 4.51±.30                        | 7.23  | 0.01  |         |      |    |     | mnsa         |
|   | $-118.1114\pm2.5$                       | 34.0323±3.4                | 4.47±.50                        | 3.2   | -0.03 |         |      |    |     | mdna         |
|   | $-118.1567 \pm 3.0$                     | 34.0008±2.8                | 4.49±.30                        | 7.39  | -0.01 |         |      |    |     | mn10         |
|   | -118.1608±3.0                           | 34.0008±2.7                | 4.49±.30                        | 7.75  | -0.01 | 126     | 5500 |    |     | mn15         |
|   | $-118.1143\pm3.2$                       | 34.0493±3.4                | 4.4±.24                         | 4.54  | -0.1  |         |      |    |     | mn20         |
|   | -118.1164±3.4                           | 34.0479±3.7                | 4.39±.27                        | 4.57  | -0.11 |         |      |    |     | mn25         |
|   | -118.1637±2.1                           | 34.1082±2.9                | 4.55±.21                        | 12.48 | 0.05  |         |      |    |     | mnsa         |
|   | -118.1542±1.6                           | 34.1147±1.5                | 4.3±.24                         | 12.55 | -0.2  |         |      |    |     | mdna         |
|   | -118.1628±2.0                           | 34.1088±2.6                | 4.55±.21                        | 12.48 | 0.05  | 104     |      | 50 | 1   | mn10         |
|   | -118.176±2.7                            | 34.1026±6.6                | 4.5±.21                         | 12.75 | 0     | 184     | -    | SQ | 1   | mn15         |
|   | -118.1533±1.7                           | 34.1142±1.6                | 4.33±.23                        | 12.46 | -0.17 |         |      |    |     | mn20         |
|   | -118.1534±1.7                           | 34.1144±1.5                | 4.32±.23                        | 12.49 | -0.18 |         |      |    |     | mn25         |

| - |               |                   | Ĩ              |       |       | 1   | 4    | 1    |     |      |
|---|---------------|-------------------|----------------|-------|-------|-----|------|------|-----|------|
|   | -118.099±2.0  | 34.033±2.8        | 4.63±.15       | 2.27  | 0.13  |     |      |      |     | mnsa |
|   | -118.1007±2.1 | 34.0123±2.5       | 4.6±.13        | 2.09  | 0.1   |     |      |      |     | mdna |
|   | -118.102±2.1  | 34.0239±2.7       | $4.62 \pm .15$ | 2.07  | 0.12  | 347 |      |      | 2   | mn10 |
|   | -118.1023±2.0 | 34.0278±2.8       | 4.61±.16       | 2.23  | 0.11  | 517 |      |      | -   | mn15 |
|   | -118.1121±2.3 | 34.0272±2.9       | 4.62±.13       | 3.06  | 0.12  |     |      |      |     | mn20 |
|   | -118.1142±2.3 | 34.0316±2.9       | 4.6±.14        | 3.4   | 0.1   |     |      |      |     | mn25 |
|   | -118.1206±2.1 | 34.052±2.4        | 4.6±.16        | 5.17  | 0.1   |     |      |      |     | mnsa |
| L | -118.1109±2.1 | 34.0143±2.2       | 4.56±.16       | 2.92  | 0.06  |     |      |      |     | mdna |
|   | -118.0914±1.9 | 34.0193±2.5       | 4.57±.15       | 1.06  | 0.07  | 356 | -    | HE   | 2   | mn10 |
|   | -118.1056±2.0 | 34.0341±2.9       | 4.55±.15       | 2.84  | 0.05  | 550 |      | 11L  | 2   | mn15 |
| _ | -118.1114±2.1 | 34.0096±2.0       | 4.54±.14       | 3.12  | 0.04  |     |      |      |     | mn20 |
|   | -118.1269±2.2 | 34.0191±2.3       | 4.54±.14       | 4.33  | 0.04  |     |      |      |     | mn25 |
|   | -118.1092±2.1 | 34.0056±1.8       | 4.54±.17       | 3.13  | 0.04  |     |      |      |     | mnsa |
|   | -118.1342±2.5 | 34.051±3.0        | 4.56±.13       | 6.07  | 0.06  |     |      |      |     | mdna |
|   | -118.1014±2.0 | 34.0014±1.7       | 4.53±.17       | 2.86  | 0.03  | 358 | 3500 | RS   | 3   | mn10 |
|   | -118.1186±2.4 | 34.0058±1.7       | 4.51±.18       | 3.89  | 0.01  | 550 | 5500 | KS   | 5   | mn15 |
|   | -118.1226±2.4 | 34.0526±2.7       | 4.54±.14       | 5.34  | 0.04  |     |      |      |     | mn20 |
|   | -118.1348±2.3 | 34.0542±2.6       | 4.53±.14       | 6.32  | 0.03  |     |      |      |     | mn25 |
|   | -118.1092±3.5 | 34.0141±3.0       | 4.53±.20       | 2.77  | 0.03  |     |      |      |     | mnsa |
|   | -118.1257±2.5 | 34.0375±2.1       | 4.47±.19       | 4.63  | -0.03 |     |      |      |     | mdna |
|   | -118.1139±2.8 | 34.0213±3.9       | 4.54±.19       | 3.13  | 0.04  | 268 | 3500 | 0 RH | 3   | mn10 |
|   | -118.1209±3.3 | 34.0185±4.0       | $4.55 \pm .20$ | 3.78  | 0.05  | 200 |      |      |     | mn15 |
|   | -118.1385±2.7 | 34.0154±2.5       | 4.5±.20        | 5.42  | 0     |     |      |      |     | mn20 |
|   | -118.1407±2.8 | 34.0219±2.6       | 4.51±.19       | 5.6   | 0.01  |     |      |      |     | mn25 |
|   | -118.154±3.0  | 34.1121±4.4       | 4.56±.23       | 12.3  | 0.06  |     |      |      |     | mnsa |
|   | -118.1536±2.7 | 34.1112±3.2       | 4.38±.24       | 12.2  | -0.12 |     |      |      | 0.5 | mdna |
|   | -118.151±2.8  | 34.1116±4.2       | 4.57±.22       | 12.1  | 0.07  | 179 |      |      |     | mn10 |
|   | -118.151±2.9  | 34.1124±4.0       | 4.54±.22       | 12.18 | 0.04  | 1/9 |      |      | 0.5 | mn15 |
|   | -118.1516±2.8 | 34.1098±3.5       | 4.43±.23       | 11.97 | -0.07 |     |      |      |     | mn20 |
|   | -118.1521±2.8 | 34.1103±3.4       | $4.43 \pm .24$ | 12.04 | -0.07 |     |      |      |     | mn25 |
|   | -118.0917±2.5 | 34.0065±3.2       | 4.61±.18       | 1.85  | 0.11  |     |      |      |     | mnsa |
|   | -118.1157±2.7 | 34.0076±3.0       | 4.41±.20       | 3.56  | -0.09 |     |      |      |     | mdna |
|   | -118.0806±2.6 | $34.0043 \pm 2.8$ | 4.66±.19       | 1.74  | 0.16  | 241 |      |      | 1   | mn10 |
|   | -118.0917±2.5 | 34.0117±3.0       | $4.65 \pm .20$ | 1.42  | 0.15  | 241 | -    | DB   | 1   | mn15 |
|   | -118.1091±2.8 | 34.0011±2.8       | 4.62±.19       | 3.41  | 0.12  |     |      |      |     | mn20 |
|   | -118.1164±2.9 | 33.9924±2.6       | 4.62±.20       | 4.55  | 0.12  |     |      |      |     | mn25 |
|   | -118.0483±2.9 | 33.9885±2.9       | 4.59±.30       | 4.56  | 0.09  |     | ]    |      |     | mnsa |
|   | -118.0378±3.7 | 33.9972±3.4       | 4.65±.46       | 4.64  | 0.15  |     |      |      |     | mdna |
| F | -118.0481±2.9 | 33.9853±2.7       | 4.62±.27       | 4.86  | 0.12  | 1   |      |      |     | mn10 |
|   | -118.0469±2.8 | 33.9844±2.6       | 4.6±.28        | 5     | 0.1   | 128 |      |      | 2   | mn15 |
| F | -118.0443±2.7 | 33.9829±2.5       | 4.61±.27       | 5.28  | 0.11  |     |      |      |     | mn20 |
|   | -118.0407±4.7 | 33.9799±4.3       | 4.6±.29        | 5.74  | 0.1   |     |      |      |     | mn25 |
|   |               | 1 0.1 1           | · · · · ·      |       | OVED  | I   |      |      |     | -    |

Table B1. Numerical values of the data in Fig. B.3 for BOXER method (Bx mth) 0 and 1, 11 grouping
methods (MGs) and used settings (Den, gr/eps as in Table A.1) e 6 central tendency estimators (CTEs).
Macroseismic latitudes, longitudes and magnitudes also report the uncertainties values computed by
BOXER. Distance (Di) and difference of magnitude (dM) with respect to instrumental values are

- 987 indicated. The preferred data (BOXER-1, DBSCAN with eps 2 km, trimmed mean 20 for location and
- 988 mean 10 for magnitude) in bold characters.

| 1  | Supplementary material of:                                                                                                   |
|----|------------------------------------------------------------------------------------------------------------------------------|
| 2  | Earthquakes parameters from citizen testimonies. A retrospective analysis of EMSC database                                   |
| 3  |                                                                                                                              |
| 4  |                                                                                                                              |
| 5  | Gianfranco Vannucci <sup>1*</sup> , Paolo Gasperini <sup>2,1</sup> , Laura Gulia <sup>2</sup> and Barbara Lolli <sup>1</sup> |
| 6  |                                                                                                                              |
| 7  | <sup>1</sup> Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna                                              |
| 8  | <sup>2</sup> Dipartimento di Fisica e Astronomia, Università di Bologna                                                      |
| 9  |                                                                                                                              |
| 10 | * Corresponding author                                                                                                       |
| 11 |                                                                                                                              |
| 12 | <b>Declaration of Competing Interests:</b>                                                                                   |
| 13 | The authors acknowledge there are no conflicts of interest recorded.                                                         |
| 14 |                                                                                                                              |
| 15 |                                                                                                                              |
| 16 |                                                                                                                              |
| 17 |                                                                                                                              |

## 18 Description of the Supplemental Material

19

20 This supplementary material contains figures and tables that provide further information and

- 21 details of the main text. Moreover, similar elaborations, plots and figures are given for the "corrected"
- 22 intensities in as for the "raw" intensities in the main text.
- 23



Figure S1 - IDPs occurrence per year over a grid of 1x1 degree both in latitude and longitude infunction of the year



29 Figure S2 - examples of earthquakes classified following the scheme of Fig. 4. If no MDPE radius

- 30 is shown all the IDPs are selected, without geographic outliers.

| 2 | c |
|---|---|
| J | S |

| <u> </u>                | Ν           | Epicentre DISTANCE from Coast Line (km) |           |             |          |           |           |            |            |                                     |  |  |
|-------------------------|-------------|-----------------------------------------|-----------|-------------|----------|-----------|-----------|------------|------------|-------------------------------------|--|--|
| <b>A)</b>               | Eqks        | ≤2                                      |           | >2,≤5       | >5       | 5,≤10     | >1        | 0,≤50      | >5         | 0                                   |  |  |
| L1                      | 9042        | -                                       |           | -           |          | -         |           | -          | -          |                                     |  |  |
| L2                      | 1333        | -                                       |           | -           |          | -         |           | -          | -          |                                     |  |  |
| L3                      | 5499        | -                                       |           | -           |          | -         |           | -          | -          |                                     |  |  |
| L4                      | 166         | -                                       |           | -           |          | -         |           | -          | -          |                                     |  |  |
| TOT L                   | 16040       | -                                       |           | -           |          | -         |           | -          | -          |                                     |  |  |
| <b>S</b> 1              | 1972        | 128                                     |           | 289         |          | 343       |           | 948        | 26         |                                     |  |  |
| S2                      | 386         | 34                                      |           | 75          |          | 68        |           | 135        | 74         |                                     |  |  |
| <b>S</b> 3              | 4140        | 69                                      |           | 187         |          | 318       |           | 100        | 146        |                                     |  |  |
| S4                      | 223         | 6                                       |           | 16          |          | 26        |           | 83         | 92         |                                     |  |  |
| TOT S                   | 6721        | 237                                     |           | 567         |          | 755       |           | 266        | 189        |                                     |  |  |
| L+S                     | 22761       | 237                                     |           | 567         |          | 755       | 3         | 266        | 189        | 96                                  |  |  |
| <b>B</b> )              | Ν           |                                         |           | s Usable    |          | 0         |           |            | re (degre  | es)                                 |  |  |
| Dj                      | Eqks        |                                         | ≥100,     | ≥5,         |          | -0.0      | >90,      | >120,      | >180,      | • < 0                               |  |  |
|                         | -           | ≥300                                    | <300      | <100        | ≥3, <5   | ≤90       | ≤120      | ≤180       | ≤360       | 360                                 |  |  |
| L1                      | 9042        | 519                                     | 901       | 6869        | 753      | 2110      |           | 3240       | 2359       | 0                                   |  |  |
| L2                      | 1333        | 263                                     | 280       | 780         | 10       | 521       | 215       | 330        | 267        | 0                                   |  |  |
| L3                      | 5499        | 6                                       | 41        | 3444        | 2008     | 0         | 0         | 0          | 5447       | 52                                  |  |  |
| L4                      | 166         | 2                                       | 12        | 119         | 33       | 0         | 0         | 0          | 165        | 1                                   |  |  |
| TOT L                   | 16040       | <b>790</b>                              | 1234      | 11212       | 2804     | 2631      | 1548      | 3570       | 8238       | 53                                  |  |  |
| S1<br>S2                | 1972<br>386 | 80<br>79                                | 186<br>86 | 1558<br>214 | 148<br>7 | 205<br>80 | 233<br>48 | 784<br>118 | 750<br>140 | $\begin{array}{c} 0\\ 0\end{array}$ |  |  |
| S2<br>S3                | 4140        | 18                                      | 80<br>81  | 214 2730    | 1311     | 0         | 40        | 110        | 4102       | 37                                  |  |  |
| 53<br>S4                | 223         | 13                                      | 36        | 153         | 21       | 0         | 0         | 1          | 222        | 0                                   |  |  |
| TOTS                    | <b>6721</b> | <u>190</u>                              | 389       | 4655        | 1487     | 285       | 281       | <u> </u>   | 5214       | 37                                  |  |  |
| $\frac{1015}{L+S}$      | 22761       | 980                                     | 1623      | 15867       | 4291     | 203       |           | 4474       | 13452      | <u> </u>                            |  |  |
| $\overline{\mathbf{C}}$ | Ν           |                                         |           |             |          | ITUDE     |           |            |            |                                     |  |  |
| C)                      | Eqks        | 0-1                                     | 1-2       | 2-3         | 3-4      | 4-5       | 5-6       | 6-7        | 7-8        | 8-9                                 |  |  |
| L1                      | 9042        | 20                                      | 677       | 1710        | 3484     | 2313      | 716       | 102        | 20         | 0                                   |  |  |
| L2                      | 1333        | 13                                      | 48        | 127         | 308      | 425       | 293       | 93         | 25         | 1                                   |  |  |
| L3                      | 5499        | 6                                       | 173       | 1289        | 2059     | 1391      | 532       | 44         | 5          | 0                                   |  |  |
| L4                      | 166         | 2                                       | 3         | 17          | 37       | 59        | 35        | 13         | 0          | 0                                   |  |  |
| TOT L                   | 16040       | 41                                      | 901       | 3143        | 5888     | 4188      | 1576      | 252        | 50         | 1                                   |  |  |
| <b>S</b> 1              | 1972        | 0                                       | 1         | 242         | 775      | 598       | 283       | 55         | 15         | 3                                   |  |  |
| S2                      | 386         | 0                                       | 0         | 21          | 92       | 102       | 94        | 61         | 13         | 3                                   |  |  |
| <b>S</b> 3              | 4140        | 0                                       | 0         | 451         | 1189     | 1452      | 845       | 181        | 21         | 1                                   |  |  |
| S4                      | 223         | 0                                       | 0         | 5           | 18       | 80        | 83        | 29         | 7          | 1                                   |  |  |
| TOT S                   | 6721        | 0                                       | 1         | 719         | 2074     | 2232      | 1305      | 326        | 56         | 8                                   |  |  |
| L+S                     | 22761       | 41                                      | 902       | 3862        | 7962     | 6420      | 2881      | 578        | 106        | 9                                   |  |  |

Table S1: Occurrence of the 22,761 EMSC earthquakes with number of IDPs ≥3, after deleting
geographic outliers and using IDPs in the intensity range of 3-11 degrees. Occurrences are shown for
8 categories of classification: inland (L), offshore (S) and classification number 1-4, see Fig. 4.
Occurrence in function of: minimum distance (for S-earthquakes only) of instrumental epicentre from
the coast line (panel A), number of usable IDPs and the maximum gap between IDPs and epicentre

- 40 (panel B), range of magnitude (panel C). The offshore/inland location of the instrumental epicentre
  41 is established through the high-resolution polylines of the Global Self-consistent Hierarchical High-
- 42 resolution Geography (GSHHG, see data and resource section).

| Dse    | et: |      |      |      |      | С   | orrect | ted int | tensiti | es   |     |     |     |
|--------|-----|------|------|------|------|-----|--------|---------|---------|------|-----|-----|-----|
| Α      |     | den  | 2000 | 3500 | 5500 |     |        |         | 3500    | 3500 |     |     |     |
| n eq   |     | MG   | RA   | RA   | RA   | SQ  | SQ     | HE      | RS      | RH   | DB  | DB  | DB  |
| 108    | 32  | size |      |      |      | 1   | 2      | 2       | 3       | 3    | 0.5 | 1   | 2   |
|        |     | mean | 62   | 61   | 49   | 48  | 58     | 50      | 78      | 69   | 54  | 40  | 66  |
|        |     | mdna | 59   | 49   | 56   | 58  | 61     | 55      | 65      | 71   | 65  | 58  | 87  |
|        | Bx0 | mn10 | 56   | 54   | 46   | 42  | 41     | 64      | 62      | 72   | 53  | 48  | 61  |
|        | DAU | mn15 | 51   | 56   | 45   | 50  | 56     | 53      | 64      | 81   | 49  | 51  | 66  |
|        |     | mn20 | 46   | 61   | 53   | 49  | 54     | 65      | 64      | 75   | 49  | 46  | 65  |
| Dist — |     | mn25 | 45   | 58   | 44   | 50  | 55     | 54      | 68      | 63   | 52  | 49  | 65  |
|        |     | mean | 89   | 106  | 104  | 76  | 71     | 91      | 81      | 123  | 90  | 77  | 129 |
|        |     | mdna | 126  | 116  | 139  | 78  | 81     | 99      | 88      | 93   | 76  | 65  | 138 |
|        | Bx1 | mn10 | 72   | 84   | 85   | 66  | 89     | 65      | 85      | 114  | 81  | 69  | 126 |
|        |     | mn15 | 83   | 72   | 86   | 52  | 75     | 83      | 91      | 104  | 91  | 84  | 145 |
|        |     | mn20 | 72   | 82   | 85   | 86  | 69     | 77      | 91      | 96   | 68  | 74  | 111 |
|        |     | mn25 | 81   | 83   | 86   | 79  | 59     | 73      | 96      | 99   | 73  | 84  | 116 |
|        |     | mean | 228  | 261  | 279  | 249 | 234    | 285     | 237     | 252  | 222 | 240 | 309 |
|        |     | mdna | 300  | 252  | 288  | 228 | 252    | 267     | 252     | 243  | 216 | 267 | 279 |
|        | Bx0 | mn10 | 270  | 264  | 267  | 279 | 243    | 231     | 249     | 255  | 213 | 225 | 267 |
|        | DXU | mn15 | 267  | 276  | 279  | 234 | 249    | 267     | 267     | 261  | 240 | 237 | 264 |
|        |     | mn20 | 273  | 297  | 288  | 246 | 255    | 231     | 258     | 288  | 252 | 246 | 273 |
| dM     |     | mn25 | 300  | 285  | 300  | 270 | 249    | 294     | 234     | 270  | 249 | 291 | 306 |
| ulvi   |     | mean | 306  | 291  | 327  | 270 | 252    | 273     | 228     | 282  | 264 | 252 | 360 |
|        |     | mdna | 255  | 276  | 294  | 249 | 300    | 297     | 258     | 300  | 267 | 282 | 261 |
|        | Bx1 | mn10 | 267  | 348  | 300  | 285 | 243    | 285     | 261     | 318  | 279 | 240 | 342 |
|        |     | mn15 | 306  | 321  | 288  | 246 | 273    | 273     | 249     | 351  | 282 | 240 | 333 |
|        |     | mn20 | 288  | 264  | 285  | 279 | 225    | 216     | 294     | 327  | 267 | 252 | 285 |
|        |     | mn25 | 285  | 327  | 267  | 267 | 249    | 255     | 312     | 285  | 228 | 294 | 261 |

46 Table S2 - as in Table 2 for Corrected intensities.

|                 |     |      |      |      |      | С   | orrec | ted int | tensiti | es   |     |     |      |
|-----------------|-----|------|------|------|------|-----|-------|---------|---------|------|-----|-----|------|
| Dse             | t:  | den  | 2000 | 3500 | 5500 |     |       |         | 3500    | 3500 |     |     |      |
| Α               |     | MG   | RA   | RA   | RA   | SQ  | SQ    | HE      | RS      | RH   | DB  | DB  | DB   |
|                 |     | size |      |      |      | 1   | 2     | 2       | 3       | 3    | 0.5 | 1   | 2    |
|                 |     | mean | 85   | 88   | 117  | 123 | 94    | 113     | 48      | 66   | 102 | 132 | 72   |
|                 |     | mdna | 90   | 119  | 99   | 92  | 87    | 100     | 73      | 64   | 75  | 93  | 28   |
|                 | Bx0 | mn10 | 96   | 103  | 126  | 130 | 131   | 82      | 84      | 62   | 108 | 122 | 89   |
|                 | DXU | mn15 | 112  | 97   | 128  | 114 | 98    | 106     | 81      | 42   | 118 | 111 | 70   |
| D:a4            |     | mn20 | 124  | 86   | 107  | 121 | 104   | 79      | 80      | 55   | 116 | 125 | 74   |
| Dist            |     | mn25 | 127  | 95   | 129  | 115 | 101   | 105     | 68      | 83   | 110 | 120 | 76   |
| n eqks:<br>1082 | Bx1 | mean | 25   | 12   | 14   | 53  | 63    | 23      | 43      | 7    | 24  | 51  | 4    |
| 1082            |     | mdna | 6    | 8    | 2    | 49  | 44    | 16      | 27      | 19   | 52  | 77  | 3    |
|                 |     | mn10 | 59   | 35   | 34   | 71  | 26    | 78      | 33      | 10   | 46  | 65  | 5    |
|                 |     | mn15 | 39   | 61   | 30   | 109 | 54    | 40      | 21      | 13   | 20  | 37  | 1    |
|                 |     | mn20 | 60   | 41   | 32   | 29  | 67    | 50      | 22      | 17   | 69  | 56  | 11   |
|                 |     | mn25 | 45   | 38   | 31   | 47  | 91    | 57      | 18      | 15   | 58  | 36  | 9    |
|                 |     | mean | 980  | -    | -    | -   | -     | -       | 33      | -    | -   | -   | -    |
|                 |     | mdna | -    | -    | -    | -   | -     | -       | -       | -    | -   | -   | 8509 |
|                 | Bx0 | mn10 | -    | -    | -    | -   | -     | -       | -       | -    | -   | -   | -    |
| D'-4            | DXU | mn15 | -    | -    | -    | -   | -     | -       | -       | 428  | -   | -   | -    |
| Dist            |     | mn20 | -    | -    | -    | -   | -     | 75      | -       | -    | -   | -   | -    |
| n eqks:         |     | mn25 | -    | -    | -    | -   | -     | -       | -       | -    | -   | -   | -    |
| 15100<br>nd:    |     | mean | -    | -    | -    | -   | -     | -       | -       | 835  | -   | -   | -    |
| 7661            |     | mdna | 235  | 6    | 142  | -   | -     | 300     | -       | -    | -   | -   | -    |
| /001            | Bx1 | mn10 | -    | -    | -    | -   | 93    | -       | -       | -    | -   | -   | -    |
|                 | DXI | mn15 | -    | -    | -    | -   | -     | -       | -       | -    | 56  | -   | 3319 |
|                 |     | mn20 | -    | -    | -    | -   | -     | -       | -       | -    | -   | -   | -    |
|                 |     | mn25 | -    | -    | -    | -   | -     | -       | 89      | -    | -   | -   | -    |

50 Table S3 - Same as Table 3 for corrected intensities.

|                 |     |      |      |      |      | С   | orrect | ted int | tensiti | es   |     |     |      |
|-----------------|-----|------|------|------|------|-----|--------|---------|---------|------|-----|-----|------|
| Dse             | t:  | den  | 2000 | 3500 | 5500 |     |        |         | 3500    | 3500 |     |     |      |
| Α               |     | MG   | RA   | RA   | RA   | SQ  | SQ     | HE      | RS      | RH   | DB  | DB  | DB   |
|                 |     | size |      |      |      | 1   | 2      | 2       | 3       | 3    | 0.5 | 1   | 2    |
|                 |     | mean | 125  | 79   | 51   | 104 | 119    | 35      | 117     | 91   | 129 | 112 | 12   |
|                 |     | mdna | 20   | 96   | 30   | 126 | 93     | 67      | 97      | 111  | 130 | 72  | 46   |
|                 | Bx0 | mn10 | 62   | 78   | 74   | 47  | 109    | 121     | 102     | 88   | 132 | 127 | 68   |
|                 | DXU | mn15 | 69   | 53   | 48   | 118 | 98     | 64      | 65      | 82   | 114 | 116 | 76   |
| dM              |     | mn20 | 56   | 22   | 32   | 108 | 87     | 122     | 85      | 33   | 92  | 106 | 55   |
|                 |     | mn25 | 17   | 36   | 19   | 61  | 103    | 25      | 120     | 60   | 99  | 29  | 14   |
| n eqks:<br>1082 | Bx1 | mean | 13   | 28   | 6    | 59  | 90     | 57      | 123     | 44   | 75  | 94  | 1    |
| 1082            |     | mdna | 86   | 52   | 24   | 101 | 21     | 23      | 84      | 16   | 73  | 45  | 81   |
|                 |     | mn10 | 63   | 3    | 18   | 39  | 110    | 40      | 80      | 10   | 50  | 113 | 4    |
|                 |     | mn15 | 15   | 9    | 31   | 107 | 58     | 54      | 105     | 2    | 43  | 115 | 5    |
|                 |     | mn20 | 34   | 77   | 42   | 49  | 128    | 131     | 26      | 7    | 66  | 95  | 37   |
|                 |     | mn25 | 38   | 8    | 70   | 71  | 100    | 89      | 11      | 41   | 124 | 27  | 83   |
|                 |     | mean | 2    | -    | 2    | 1   | 2      | 44      | 3       | 12   | -   | 1   | 69   |
|                 |     | mdna | 20   | 2    | 2    | 2   | 19     | 11      | 5       | 10   | 1   | 8   | 15   |
|                 | Bx0 | mn10 | 5    | 1    | -    | 10  | 2      | 1       | 2       | 9    | -   | 2   | 5    |
| 11/1            | BXU | mn15 | 1    | 5    | 6    | -   | 7      | 11      | 22      | 10   | 1   | -   | 3    |
| dM              |     | mn20 | -    | 7    | -    | -   | 26     | 1       | 10      | 49   | 10  | -   | 1    |
| n eqks:         |     | mn25 | 58   | -    | 4    | 9   | -      | 57      | -       | 9    | 1   | 20  | 70   |
| 5625<br>nd:     |     | mean | 51   | -    | 3    | 1   | -      | -       | -       | -    | -   | -   | 2984 |
| 17136           |     | mdna | -    | -    | 2    | -   | 186    | 86      | 1       | 25   | -   | 1   | -    |
| 1/150           | D1  | mn10 | -    | 105  | -    | 52  | -      | 2       | -       | 19   | -   | 1   | 16   |
|                 | Bx1 | mn15 | 13   | 1    | -    | -   | 3      | 1       | -       | 1062 | 10  | -   | 13   |
|                 |     | mn20 | -    | -    | -    | 7   | -      | -       | 2       | 62   | 2   | -   | -    |
|                 |     | mn25 | -    | 13   | -    | -   | -      | -       | 231     | -    | -   | 4   | -    |

55 Table S4 - Same as Table 4 for corrected intensities.

| N MDPs    |        | Raw intensity | 7         | Corrected intensity |         |           |  |  |  |  |  |  |
|-----------|--------|---------------|-----------|---------------------|---------|-----------|--|--|--|--|--|--|
| IN IVIDES | N eqks | Di (km)       | dM (m.u.) | N eqks              | Di (km) | dM (m.u.) |  |  |  |  |  |  |
| =1        | 6627   | 62.97         | -         | 6587                | 63.81   | -         |  |  |  |  |  |  |
| 1-3       | 2980   | 57.01         | -         | 3188                | 53.44   | -         |  |  |  |  |  |  |
| 3-5       | 1894   | 46.52         | 0.81      | 1865                | 44.90   | 0.82      |  |  |  |  |  |  |
| 5-9       | 1978   | 45.52         | 0.77      | 1922                | 45.97   | 0.76      |  |  |  |  |  |  |
| 9-19      | 1046   | 43.67         | 0.55      | 956                 | 45.17   | 0.59      |  |  |  |  |  |  |
| 19-29     | 244    | 50.06         | 0.52      | 245                 | 47.76   | 0.50      |  |  |  |  |  |  |
| 29-99     | 222    | 42.12         | 0.46      | 225                 | 44.44   | 0.44      |  |  |  |  |  |  |
| 59-99     | 66     | 37.76         | 0.37      | 66                  | 35.28   | 0.34      |  |  |  |  |  |  |
| >99       | 46     | 30.03         | 0.39      | 46                  | 30.48   | 0.34      |  |  |  |  |  |  |



Table S5: number of earthquakes (N eqks), average distance (Di) and average absolute difference of





Figure S3: Plot of the values in Table S5: average distance (Di) and average absolute difference of
magnitude (dM) for raw (R) and corrected (C) intensities as a function of the number of MDPs (N
MDPs).



70 Figure S4 - as in Fig. 8 for corrected intensities.



73 Figure S5 - as in Fig. 7 for corrected intensities.

| Di<br>Raw          |            | Global<br>(W) |              |               |            |            |              | Curop        | e           |            | As       |            | nd O       | cean     | ia       | North America<br>(US) |            |            |          |          |          | South America<br>(SA) |          |          |        |          | Africa<br>(AF) |        |          |         |  |
|--------------------|------------|---------------|--------------|---------------|------------|------------|--------------|--------------|-------------|------------|----------|------------|------------|----------|----------|-----------------------|------------|------------|----------|----------|----------|-----------------------|----------|----------|--------|----------|----------------|--------|----------|---------|--|
|                    | G          |               | <u>`</u>     |               |            | G          |              | <u>(EU)</u>  |             |            | G        |            | <u>AO)</u> |          |          | G                     |            | \          | ,        |          | G        |                       |          |          |        | G        |                |        |          |         |  |
| N                  | S          | a             | L            | n             | <u>g</u>   | S          | a            | L            | n           | g          | S        | a          | L          | n        | g        | S                     | a          | L          | n        | <u>g</u> | S        | a                     | L        | n        | g      | S        | a              | L      | n        | g       |  |
| 0-10               | 458        | 3180          | 2722         | 1527          | 729        | 365        | 2488         | 2123         | 1220        | 600        | 29       | 100        | 71         | 41       | 15       | 39                    | 492        | 453        | 223      | 109      | 21       | 92                    | 71       | 38       | 5      | 4        | 8              | 4      | 5        | 0       |  |
| 10-20<br>20-30     | 607<br>496 | 2904          | 2297<br>1560 | 1369          | 537<br>249 | 441<br>321 | 2281<br>1570 | 1840<br>1249 | 1117<br>676 | 466        | 43       | 148        | 105        | 58       | 17       | 21                    | 295<br>141 | 274<br>120 | 134      | 47       | 78       | 146<br>172            | 68<br>77 | 46<br>51 | 7<br>4 | 24       | 34             | 10     | 14<br>17 | 0       |  |
| 20-30<br>30-40     | 496        | 2056<br>1372  | 960          | 858<br>560    | 249        | 268        | 959          | 691          | 396         | 216<br>164 | 36<br>33 | 144<br>150 | 108<br>117 | 50<br>64 | 11<br>14 | 21<br>12              | 85         | 73         | 64<br>40 | 17<br>16 | 95<br>64 | 172                   | 75       | 40       | 4<br>5 | 23<br>35 | 29<br>39       | 6<br>4 | 20       | 1       |  |
| 40-50              | 349        | 915           | 566          | 404           | 121        | 208        | 530          | 324          | 233         | 93         | 36       | 155        | 119        | 71       | 11       | 6                     | 60         | 54         | 29       | 11       | 62       | 128                   | 66       | 41       | 3      | 38       | 41             | 3      | 30       | 3       |  |
| 50-60              | 237        | 665           | 428          | 300           | 106        | 125        | 357          | 232          | 171         | 77         | 47       | 150        | 103        | 60       | 17       | 3                     | 27         | 24         | 16       | 3        | 39       | 103                   | 64       | 37       | 6      | 23       | 28             | 5      | 16       | 3       |  |
| 60-70              | 249        | 549           | 300          | 210           | 69         | 144        | 277          | 133          | 110         | 50         | 31       | 123        | 92         | 33       | 7        | 7                     | 28         | 21         | 16       | 6        | 52       | 105                   | 53       | 36       | 5      | 15       | 16             | 1      | 15       | 1       |  |
| 70-80              | 179        | 405           | 226          | 148           | 49         | 86         | 183          | 97           | 73          | 33         | 37       | 96         | 59         | 30       | 8        | 1                     | 19         | 18         | 8        | 3        | 48       | 98                    | 50       | 32       | 5      | 7        | 9              | 2      | 5        | 0       |  |
| 80-90              | 132        | 354           | 222          | 127           | 52         | 58         | 149          | 91           | 60          | 37         | 44       | 122        | 78         | 42       | 8        | 2                     | 14         | 12         | 8        | 2        | 27       | 66                    | 39       | 16       | 5      | 1        | 3              | 2      | 1        | 0       |  |
| 90-100             | 150        | 320           | 170          | 109           | 25         | 55         | 138          | 83           | 52          | 17         | 50       | 95         | 45         | 30       | 6        | 3                     | 15         | 12         | 8        | 1        | 41       | 71                    | 30       | 19       | 1      | 1        | 1              | 0      | 0        | 0       |  |
| 100-110            | 110        | 270           | 160          | 104           | 31         | 36         | 101          | 65           | 48          | 23         | 44       | 81         | 37         | 29       | 2        | 2                     | 16         | 14         | 10       | 2        | 28       | 70                    | 42       | 16       | 3      | 0        | 2              | 2      | 1        | 1       |  |
| 110-120            | 72         | 214           | 142          | 76            | 37         | 23         | 88           | 65           | 35          | 25         | 23       | 57         | 34         | 17       | 5        | 4                     | 19         | 15         | 8        | 2        | 22       | 45                    | 23       | 15       | 4      | 0        | 5              | 5      | 1        | 1       |  |
| 120-130            | 92         | 214           | 122          | 71            | 22         | 28         | 88           | 60           | 30          | 13         | 38       | 67         | 29         | 23       | 6        | 2                     | 16         | 14         | 8        | 2        | 23       | 41                    | 18       | 10       | 1      | 1        | 2              | 1      | 0        | 0       |  |
| 130-140            | 76         | 198           | 122          | 71            | 28         | 18         | 78           | 60           | 27          | 21         | 37       | 60         | 23         | 24       | 5        | 1                     | 14         | 13         | 6        | 2        | 20       | 46                    | 26       | 14       | 0      | 0        | 0              | 0      | 0        | 0       |  |
| 140-150            | 59         | 152           | 93           | 44            | 16         | 5          | 45           | 40           | 17          | 9<br>5     | 29       | 49         | 20         | 13       | 5        | 1                     | 13         | 12         | 6        | 1<br>0   | 24       | 43                    | 19       | 8        | 1      | 0        | 2<br>3         | 2      | 0        | 0       |  |
| 150-160<br>160-170 | 55<br>44   | 135<br>108    | 80<br>64     | 48<br>39      | 16<br>9    | 6          | 34<br>32     | 28<br>23     | 11<br>13    | 5          | 34<br>17 | 58<br>37   | 24<br>20   | 22<br>10 | 8<br>1   | 0                     | 4          | 8<br>4     | 3<br>3   | 1        | 14<br>18 | 31<br>34              | 17<br>16 | 12<br>12 | 3<br>1 | 0        | 3              | 3<br>1 | 1        | 0<br>0  |  |
| 170-180            | 39         | 87            | 48           | 24            | 9          | 2          | 52<br>14     | 12           | 6           | 4          | 21       | 35         | 14         | 9        | 2        | 0                     | 8          | 8          | 1        | 1        | 16       | 34                    | 14       | 8        | 2      | 0        | 0              | 0      | 0        | 0       |  |
| 180-190            | 38         | 82            | 44           | 17            | 4          | 6          | 18           | 12           | 5           | 2          | 20       | 35         | 15         | 8        | 2        | 2                     | 6          | 4          | 1        | 0        | 10       | 22                    | 12       | 3        | 0      | 0        | 1              | 1      | 0        | 0       |  |
| 190-200            | 26         | 66            | 40           | 22            | 6          | 5          | 21           | 16           | 6           | 3          | 13       | 23         | 10         | 9        | 2        | 1                     | 7          | 6          | 2        | Ő        | 7        | 15                    | 8        | 5        | 1      | Ő        | 0              | 0      | Ő        | Ő       |  |
| >200               | 293        | 857           | 564          | 261           | 66         | 43         | 217          | 174          | 50          | 36         | 178      | 390        | 212        | 137      | 22       | 9                     | 35         | 26         | 8        | 0        | 61       | 203                   | 142      | 64       | 8      | 2        | 12             | 10     | 2        | 0       |  |
| %                  | S          | a             | L            | n             | g          | S          | a            | L            | n           | g          | S        | a          | L          | n        | g        | S                     | a          | L          | n        | g        | S        | a                     | L        | n        | g      | S        | a              | L      | n        | g       |  |
| 0-10               | 11         | 21            | 25           | 24            | 31         | 16         | 26           | 29           | 28          | 32         | 3        | 5          | 5          | 5        | 9        | 28                    | 37         | 38         | 37       | 48       | 3        | 5                     | 8        | 7        | 7      | 2        | 3              | 6      | 4        | 0       |  |
| 10-20              | 15         | 19            | 21           | 21            | 23         | 20         | 24           | 25           | 26          | 25         | 5        | 7          | 8          | 7        | 10       | 15                    | 22         | 23         | 22       | 21       | 10       | 9                     | 7        | 9        | 10     | 14       | 14             | 16     | 11       | 0       |  |
| 20-30              | 12         | 14            | 14           | 13            | 10         | 14         | 16           | 17           | 16          | 11         | 4        | 7          | 8          | 6        | 6        | 15                    | 11         | 10         | 11       | 8        | 12       | 10                    | 8        | 10       | 6      | 13       | 12             | 10     | 13       | 9       |  |
| 30-40              | 10         | 9             | 9            | 9             | 8          | 12         | 10           | 9            | 9           | 9          | 4        | 7          | 9          | 8        | 8        | 9                     | 6          | 6          | 7        | 7        | 8        | 8                     | 8        | 8        | 7      | 20       | 17             | 6      | 16       | 9       |  |
| 40-50              | 8          | 6             | 5            | 6             | 5          | 9          | 5            | 4            | 5           | 5          | 4        | 7          | 9          | 9        | 6        | 4                     | 5          | 5          | 5        | 5        | 8        | 8                     | 7        | 8        | 4      | 22       | 17             | 5      | 23       | 27      |  |
| 50-60              | 6          | 4             | 4            | 5             | 4          | 6          | 4            | 3            | 4           | 4          | 6        | 1          | 8          | 8        | 10       | 2                     | 2          | 2          | 3        | 1        | 5        | 6                     | 1        | 7        | 9      | 13<br>9  | 12<br>7        | 8      | 13       | 27<br>9 |  |
| 60-70<br>70-80     | 6<br>4     | 4<br>3        | 3            | 3<br>2        | 3<br>2     | 6<br>4     | 3<br>2       | 2            | 3           | 3<br>2     | 4        | 6          | /          | 4        | 4<br>5   | 5                     | 2          | 2          | 3        | 3        | 7<br>6   | 6<br>6                | 6<br>5   | 6        | 7      | 9        | /              | 2      | 12<br>4  | 9       |  |
| 80-90              | 3          | 2             | 2            | 2             | 2          | 3          | 2            | 1            | 1           | 2          | 5        | 6          | 6          | 5        | 5        | 1                     | 1          | 1          | 1        | 1        | 4        | 4                     | 1        | 3        | 7      | 4        | 4              | 3      | 4        | 0       |  |
| 90-100             | 4          | 2             | 2            | $\frac{2}{2}$ | 1          | 2          | 1            | 1            | 1           | 1          | 6        | 4          | 3          | 4        | 3        | 2                     | 1          | 1          | 1        | 0        | 5        | 4                     | 3        | 4        | 1      | 1        | 0              | 0      | 0        | 0       |  |
| 100-110            | 3          | 2             | 1            | $\frac{2}{2}$ | 1          | 2          | 1            | 1            | 1           | 1          | 5        | 4          | 3          | 4        | 1        | 1                     | 1          | 1          | 2        | 1        | 4        | 4                     | 5        | 3        | 4      | 0        | 1              | 3      | 1        | 9       |  |
| 110-120            | 2          | 1             | 1            | 1             | 2          | 1          | 1            | 1            | 1           | 1          | 3        | 3          | 3          | 2        | 3        | 3                     | 1          | 1          | 1        | 1        | 3        | 3                     | 2        | 3        | 6      | 0        | 2              | 8      | 1        | 9       |  |
| 120-130            | 2          | 1             | 1            | 1             | 1          | 1          | 1            | 1            | 1           | 1          | 5        | 3          | 2          | 3        | 3        | 1                     | 1          | 1          | 1        | 1        | 3        | 2                     | 2        | 2        | 1      | 1        | 1              | 2      | 0        | 0       |  |
| 130-140            | 2          | 1             | 1            | 1             | 1          | 1          | 1            | 1            | 1           | 1          | 4        | 3          | 2          | 3        | 3        | 1                     | 1          | 1          | 1        | 1        | 3        | 3                     | 3        | 3        | 0      | 0        | 0              | 0      | 0        | 0       |  |
| 140-150            | 1          | 1             | 1            | 1             | 1          | 0          | 0            | 1            | 0           | 0          | 3        | 2          | 2          | 2        | 3        | 1                     | 1          | 1          | 1        | 0        | 3        | 3                     | 2        | 2        | 1      | 0        | 1              | 3      | 0        | 0       |  |
| 150-160            | 1          | 1             | 1            | 1             | 1          | 0          | 0            | 0            | 0           | 0          | 4        | 3          | 2          | 3        | 5        | 1                     | 1          | 1          | 1        | 0        | 2        | 2                     | 2        | 2        | 4      | 0        | 1              | 5      | 0        | 0       |  |
| 160-170            | 1          | 1             | 1            | 1             | 0          | 0          | 0            | 0            | 0           | 0          | 2        | 2          | 2          | 1        | 1        | 0                     | 0          | 0          | 1        | 0        | 2        | 2                     | 2        | 2        | 1      | 0        | 0              | 2      | 1        | 0       |  |
| 170-180            | 1          | 1             | 0            | 0             | 0          | 0          | 0            | 0            | 0           | 0          | 3        | 2          | 1          | 1        | 1        | 0                     | 1          | 1          | 0        | 0        | 2        | 2                     | 2        | 2        | 3      | 0        | 0              | 0      | 0        | 0       |  |
| 180-190            | 1          | 1             | 0            | 0             | 0          | 0          | 0            | 0            | 0           | 0          | 2        | 2          | 1          | 1        | 1        | 1                     | 0          | 0          | 0        | 0        | 1        | 1                     | 1        | 1        | 0      | 0        | 0              | 2      | 0        | 0       |  |
| 190-200            | 1          | 0             | 0            | 0             | 0          | 0          | 0            | 0            | 0           | 0          | 2        | 1          | 1          | 1        | 1        | 1                     | 1          | 1          | 0        | 0        | 1        | 1                     | 1        | 1        | 1      | 0        | 0              | 0      | 0        | 0       |  |
| >200               | 7          | 6             | 5            | 4             | 3          | 2          | 2            | 2            | 1           | 2          | 21       | 18         | 16         | 18       | 13       | 7                     | 3          | 2          | 1        | 0        | 8        | 12                    | 15       | 12       | 11     | 1        | 5              | 16     | 2        | 0       |  |

Table S6 - numerical parameter of histograms in Fig. 8 for distance (Di) and raw intensities: global and zones as in Fig. 7.

| dM                 |          |            | obal      |          |          |           | rope       |          | Asi     | a and    |          | ania   | Ν      |           | merio      | ca     | So     | outh A    |        | ica    | Africa  |         |            |         |  |
|--------------------|----------|------------|-----------|----------|----------|-----------|------------|----------|---------|----------|----------|--------|--------|-----------|------------|--------|--------|-----------|--------|--------|---------|---------|------------|---------|--|
| Raw                |          | ()         | N)        |          |          | <b>(E</b> | <b>U</b> ) |          |         | (A       | 0)       |        |        | <b>(U</b> | <b>S</b> ) |        |        | <b>(S</b> | A)     |        |         | (A      | <b>F</b> ) |         |  |
| Ν                  | S        | a          | L         | g        | S        | a         | L          | g        | S       | a        | L        | g      | S      | a         | L          | g      | S      | a         | L      | g      | S       | a       | L          | g       |  |
| 0-0.1              | 194      | 876        | 682       | 416      | 152      | 667       | 515        | 337      | 6       | 39       | 33       | 10     | 13     | 119       | 106        | 57     | 19     | 45        | 26     | 11     | 4       | 6       | 2          | 1       |  |
| 0.1-0.2            | 126      | 567        | 441       | 269      | 91       | 406       | 315        | 214      | 9       | 52       | 43       | 22     | 4      | 60        | 56         | 27     | 21     | 44        | 23     | 4      | 1       | 5       | 4          | 2       |  |
| 0.2-0.3            | 113      | 512        | 399       | 240      | 75       | 375       | 300        | 190      | 15      | 43       | 28       | 16     | 7      | 63        | 56         | 32     | 15     | 28        | 13     | 1      | 1       | 3       | 2          | 1       |  |
| 0.3-0.4            | 114      | 451        | 337       | 190      | 82       | 326       | 244        | 155      | 9       | 36       | 27       | 12     | 4      | 53        | 49         | 20     | 17     | 33        | 16     | 3      | 2       | 3       | 1          | 0       |  |
| 0.4-0.5            | 93       | 450        | 357       | 188      | 57       | 326       | 269        | 152      | 10      | 36       | 26       | 9      | 6      | 52        | 46         | 21     | 13     | 29        | 16     | 6      | 7       | 7       | 0          | 0       |  |
| 0.5-0.6            | 97       | 368        | 271       | 162      | 77       | 290       | 213        | 145      | 5       | 28       | 23       | 7      | 3      | 32        | 29         | 10     | 8      | 14        | 6      | 0      | 4       | 4       | 0          | 0       |  |
| 0.6-0.7            | 71       | 314        | 243       | 119      | 41       | 226       | 185        | 100      | 12      | 34       | 22       | 6      | 3      | 27        | 24         | 9      | 13     | 24        | 11     | 4      | 2       | 3       | 1          | 0       |  |
| 0.7-0.8            | 81       | 341        | 260       | 124      | 50       | 240       | 190        | 104      | 8       | 40       | 32       | 12     | 1      | 24        | 23         | 4      | 10     | 24        | 14     | 3      | 12      | 13      | 1          | 1       |  |
| 0.8-0.9            | 62       | 265        | 203       | 98       | 37       | 176       | 139        | 67       | 4       | 32       | 28       | 15     | 3      | 28        | 25         | 8      | 4      | 15        | 11     | 8      | 14      | 14      | 0          | 0       |  |
| 0.9-1              | 45       | 217        | 172       | 77       | 19       | 143       | 124        | 57       | 9       | 32       | 23       | 10     | 2      | 21        | 19         | 8      | 8      | 13        | 5      | 1      | 7       | 8       | 1          | 1       |  |
| 1-1.1              | 44       | 182        | 138       | 55       | 22       | 136       | 114        | 45       | 4       | 15       | 11       | 4      | 0      | 11        | 11         | 4      | 9      | 11        | 2      | 2      | 9       | 9       | 0          | 0       |  |
| 1.1-1.2<br>1.2-1.3 | 51       | 166        | 115       | 46       | 20       | 100       | 80         | 35       | 6       | 24       | 18<br>17 | 5      | 3      | 9         | 8<br>7     | 0<br>3 | 12     | 21        | 9      | 6      | 12<br>4 | 12<br>4 | 0<br>0     | 0<br>0  |  |
| 1.2-1.3            | 36<br>28 | 140<br>105 | 104<br>77 | 31<br>32 | 10<br>12 | 81<br>66  | 71<br>54   | 23<br>21 | 15<br>5 | 32<br>18 | 17       | 4<br>3 | 3      | 10<br>9   | 8          | 3<br>4 | 4<br>7 | 13<br>9   | 9<br>2 | 3      | 4       | 4       | 0          | 1       |  |
| 1.3-1.4            | 31       | 105        | 75        | 32<br>19 | 12       | 66        | 53         | 19       | 7       | 21       | 13       | 0      | 0      | 3         | 3          | 4      | 6      | 11        | 5      | 0      | 5       | 5       | 0          | 0       |  |
| 1.4-1.5            | 29       | 100        | 73        | 25       | 13       | 62        | 50         | 24       | 7       | 21       | 14       | 1      | 1      | 3         | 2          | 0      | 5      | 10        | 5      | 0      | 4       | 3       | 0          | 0       |  |
| 1.5-1.0            | 29       | 82         | 61        | 16       | 5        | 49        | 30<br>44   | 14       | 6       | 17       | 13       | 1      | 0      | 2         | 2          | 0      | 6      | 10        | 3      | 1      | 4       | 4       | 0          | 0       |  |
| 1.7-1.8            | 23       | 92         | 69        | 26       | 11       | 57        | 46         | 23       | 6       | 24       | 18       | 2      | 1      | 2         | 1          | 0      | 3      | 7         | 4      | 0      | 2       | 2       | 0          | 1       |  |
| 1.8-1.9            | 16       | 60         | 44        | 16       | 5        | 41        | 36         | 12       | 7       | 11       | 4        | 2      | 0      | 3         | 3          | 1      | 4      | 5         | 1      | 1      | 0       | 0       | 0          | 0       |  |
| 1.9-2              | 13       | 56         | 43        | 11       | 5        | 25        | 20         | 4        | 7       | 20       | 13       | 4      | 0      | 3         | 3          | 1      | 1      | 8         | 7      | 2      | Ő       | 0       | Ő          | 0       |  |
| 2-2.5              | 59       | 164        | 105       | 41       | 15       | 70        | 55         | 29       | 32      | 61       | 29       | 9      | 1      | 3         | 2          | 2      | 8      | 27        | 19     | 1      | 3       | 3       | Ő          | 0       |  |
| 2.5-3              | 18       | 55         | 37        | 13       | 8        | 19        | 11         | 9        | 8       | 26       | 18       | 4      | 0      | 1         | 1          | 0      | 2      | 9         | 7      | 0      | 0       | 0       | Ő          | Õ       |  |
| > 3                | 14       | 33         | 19        | 10       | 3        | 11        | 8          | 7        | 8       | 13       | 5        | 2      | 0      | 0         | 0          | Õ      | 3      | 9         | 6      | 1      | 0       | Õ       | 0          | Õ       |  |
| %                  | S        | a          | L         | g        | S        | a         | L          | g        | S       | a        | L        | g      | S      | a         | L          | g      | S      | a         | L      | g      | S       | a       | L          | g       |  |
| 0-0.1              | 14       | 15         | 16        | 19       | 18       | 17        | 16         | 19       | 3       | 6        | 7        | 6      | 24     | 22        | 22         | 27     | 10     | 11        | 12     | 19     | 4       | 5       | 17         | 13      |  |
| 0.1-0.2            | 9        | 10         | 10        | 12       | 11       | 10        | 10         | 12       | 4       | 8        | 9        | 14     | 7      | 11        | 12         | 13     | 11     | 11        | 10     | 7      | 1       | 4       | 33         | 25      |  |
| 0.2-0.3            | 8        | 9          | 9         | 11       | 9        | 9         | 10         | 11       | 7       | 6        | 6        | 10     | 13     | 12        | 12         | 15     | 8      | 7         | 6      | 2      | 1       | 3       | 17         | 13      |  |
| 0.3-0.4            | 8        | 8          | 8         | 9        | 10       | 8         | 8          | 9        | 4       | 5        | 6        | 8      | 7      | 10        | 10         | 9      | 9      | 8         | 7      | 5      | 2       | 3       | 8          | 0       |  |
| 0.4-0.5            | 7        | 8          | 8         | 8        | 7        | 8         | 9          | 9        | 5       | 5        | 6        | 6      | 11     | 10        | 10         | 10     | 7      | 7         | 7      | 10     | 7       | 6       | 0          | 0       |  |
| 0.5-0.6            | 7        | 6          | 6         | 7        | 9        | 7         | 7          | 8        | 2       | 4        | 5        | 4      | 6      | 6         | 6          | 5      | 4      | 3         | 3      | 0      | 4       | 4       | 0          | 0       |  |
| 0.6-0.7            | 5        | 6          | 6         | 5        | 5        | 6         | 6          | 6        | 6       | 5        | 5        | 4      | 6      | 5         | 5          | 4      | 7      | 6         | 5      | 7      | 2       | 3       | 8          | 0       |  |
| 0.7-0.8            | 6        | 6          | 6         | 6        | 6        | 6         | 6          | 6        | 4       | 6        | 7        | 8      | 2      | 4         | 5          | 2      | 5      | 6         | 6      | 5      | 12      | 12      | 8          | 13      |  |
| 0.8-0.9            | 5        | 5          | 5         | 4        | 5        | 4         | 4          | 4        | 2       | 5        | 6        | 9      | 6      | 5         | 5          | 4      | 2      | 4         | 5      | 14     | 14      | 13      | 0          | 0       |  |
| 0.9-1              | 3        | 4          | 4         | 3        | 2        | 4         | 4          | 3        | 4       | 5        | 5        | 6      | 4      | 4         | 4          | 4      | 4      | 3         | 2      | 2      | 7       | 7       | 8          | 13      |  |
| 1-1.1              | 3 4      | 3          | 3         | 2<br>2   | 32       | 3         | 4          | 3        | 23      | 2        | 2        | 3      | 0      | 2<br>2    | 2<br>2     | 2<br>0 | 5      | 3         | 1      | 3      | 9       | 8       | 0          | 0       |  |
| 1.1-1.2            |          | 3          | 3         | 2        | 2        | 3         | 3          | 2        | 3       | 4        | 4        | 3      | 2      | 2         |            | 0      | 6      | 5         | 4      | 10     | 12      | 11      | 0          | 0       |  |
| 1.2-1.3            | 3<br>2   | 2          | 2<br>2    | 1        | 1        | 2<br>2    | 2<br>2     | 1        | 2       | 5        | 4        | 3      | 6      | 2         | 1          | 1      | 2      | 3         | 4      | 2      | 4       | 4       | 0          | 0       |  |
| 1.3-1.4<br>1.4-1.5 | 2        | 2          | 2         | 1        | 2        | 2         | 2          | 1        | 2<br>3  | 3<br>3   | 3<br>3   | 2<br>0 | 2<br>0 | 2         | 2          | 2<br>0 | 4      | 2<br>3    | 2      | 5<br>0 | 3<br>5  | 5       | 0<br>0     | 13<br>0 |  |
| 1.4-1.5            | 2        | 2          | 2         | 1        | 2        | 2         | 2          | 1        | 3       | 3        | 3        | 0      | 2      | 1         | 1          | 0      | 3      | 3<br>2    | 2      | 0      | 5<br>4  | 4       | 0          | 0       |  |
| 1.5-1.6            | 2        | 2<br>1     | ے<br>1    | 1        | 1        | 2<br>1    | 2<br>1     | 1        | 3       | 3        | 3<br>2   | 1      | 0      | 0         | 0          | 0      | 3      | 2         | 2      | 2      | 4       | 4<br>1  | 0          | 0       |  |
| 1.0-1.7            | 2        | 2          | 2         | 1        | 1        | 1         | 1          | 1        | 3       | 5<br>1   | ∠<br>∕   | 1      | 2      | 0         | 0          | 0      | 2      | 2         | 2      | 0      | 2       | + 2     | 0          | 13      |  |
| 1.8-1.9            | 1        | 1          | 1         | 1        | 1        | 1         | 1          | 1        | 3       | 2        |          | 1      | 0      | 1         | 1          | 0      | 2      | 1         | 0      | 2      | 0       | 0       | 0          | 0       |  |
| 1.9-2              | 1        | 1          | 1         | 0        | 1        | 1         | 1          | 0        | 3       | 3        | 3        | 3      | 0      | 1         | 1          | 0      | 1      | 2         | 3      | 3      | 0       | 0       | 0          | 0       |  |
| 2-2.5              | 4        | 3          | 2         | 2        | 2        | 2         | 2          | 2        | 16      | 9        | 6        | 6      | 2      | 1         | 0          | 1      | 4      | 6         | 9      | 2      | 3       | 3       | 0          | 0       |  |
| 2.5-3              | 1        | 1          | 1         | 1        | 1        | 0         | 0          | 1        | 4       | 4        | 4        | 3      | 0      | 0         | 0          | 0      | 1      | 2         | 3      | 0      | 0       | 0       | 0          | 0       |  |
| > 3                | 1        | 1          | 0         | 0        | ,<br>,   | Ő         | Ő          | 0        | 1       | 2        | 1        | 1      | ő      | Ő         | Ő          | Ő      | 2      | 2         | 2      | 2      | ő       | õ       | ŏ          | Ő       |  |

Table S7 - numerical parameter of histograms in Fig. 8 for difference of magnitude (dM) and raw intensities: global and zones as in Fig. 7.

| Di                 |            | Global     |              |            |            |            | E          | Curop      | e          |          | As       | ia ar      | nd Oo       | cean     | ia       | I      | Nort     | h An         |          | a      | S        | outh       | Am       | eric     | a       | Africa   |          |        |          |          |
|--------------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|----------|----------|------------|-------------|----------|----------|--------|----------|--------------|----------|--------|----------|------------|----------|----------|---------|----------|----------|--------|----------|----------|
| Corr.              |            |            | <b>(W)</b>   |            |            |            |            | (EU)       |            |          |          | (          | <b>AO</b> ) |          |          |        |          | <b>(US</b> ) | )        |        |          | (          | (SA)     |          |         |          | (        | (AF)   | )        |          |
| Ν                  | S          | a          | $\mathbf{L}$ | n          | g          | S          | a          | L          | n          | g        | S        | a          | L           | n        | g        | S      | a        | L            | n        | g      | S        | a          | L        | n        | g       | S        | a        | L      | n        | g        |
| 0-10               | 458        | 3152       | 2694         | 1453       | 726        | 374        | 2462       | 2088       | 1164       | 600      | 28       | 103        | 75          | 39       | 14       | 30     | 497      | 467          | 224      | 112    | 22       | 83         | 61       | 23       | 0       | 4        | 7        | 3      | 3        | 0        |
| 10-20              | 623        | 3003       | 2380         | 1383       | 535        | 454        | 2359       | 1905       | 1134       | 457      | 42       | 148        | 106         | 59       | 22       | 25     | 300      | 275          | 135      | 47     | 79       | 161        | 82       | 41       | 9       | 23       | 35       | 12     | 14       | 0        |
| 20-30              | 501        | 2051       | 1550         | 844        | 258        | 331        | 1584       | 1253       | 662        | 226      | 41       | 146        | 105         | 51       | 13       | 15     | 135      | 120          | 59       | 14     | 90       | 158        | 68       | 56       | 4       | 24       | 28       | 4      | 16       | 1        |
| 30-40              | 390        | 1345       | 955<br>548   | 534<br>284 | 180        | 250        | 927<br>516 | 677        | 381        | 150      | 30       | 154        | 124         | 63       | 15       | 9      | 77       | 68           | 34       | 11     | 68<br>62 | 150        | 82       | 37       | 4       | 33       | 37       | 4<br>4 | 19<br>25 | 03       |
| 40-50<br>50-60     | 348<br>243 | 896<br>665 | 548<br>422   | 384<br>287 | 112<br>106 | 197<br>128 | 516<br>349 | 319<br>221 | 221<br>159 | 80<br>79 | 44<br>42 | 146<br>145 | 102<br>103  | 67<br>50 | 16<br>11 | 8<br>4 | 61<br>30 | 53<br>26     | 29<br>17 | 9<br>8 | 63<br>43 | 133<br>111 | 70<br>68 | 42<br>40 | 4<br>7  | 36<br>26 | 40<br>30 | 4      | 25<br>21 | 3<br>1   |
| 60-70              | 245<br>245 | 560        | 315          | 215        | 66         | 128        | 282        | 143        | 139        | 45       | 34       | 143        | 94          | 35       | 8        | 5      | 28       | 20           | 13       | 6      | 43<br>50 | 103        | 53       | 38       | 5       | 17       | 30<br>19 | 2      | 18       | 2        |
| 70-80              | 176        | 398        | 222          | 143        | 56         | 89         | 184        | 95         | 76         | 39       | 34       | 96         | 62          | 30       | 10       | 2      | 16       | 14           | 8        | 0      | 45       | 93         | 48       | 24       | 6       | 6        | 9        | 3      | 5        | 1        |
| 80-90              | 150        | 367        | 217          | 139        | 38         | 65         | 152        | 87         | 60         | 30       | 47       | 118        | 71          | 43       | 6        | 2      | 19       | 17           | 10       | 0      | 35       | 75         | 40       | 25       | 2       | 1        | 3        | 2      | 1        | 0        |
| 90-100             | 133        | 310        | 177          | 97         | 26         | 45         | 127        | 82         | 42         | 17       | 45       | 97         | 52          | 35       | 7        | 6      | 23       | 17           | 13       | 2      | 36       | 62         | 26       | 7        | 0       | 1        | 1        | 0      | 0        | 0        |
| 100-110            | 104        | 261        | 157          | 91         | 39         | 32         | 99         | 67         | 45         | 28       | 40       | 77         | 37          | 25       | 4        | 1      | 11       | 10           | 4        | 3      | 31       | 71         | 40       | 15       | 2       | 0        | 3        | 3      | 2        | 2        |
| 110-120            | 81         | 227        | 146          | 89         | 32         | 25         | 85         | 60         | 35         | 21       | 31       | 73         | 42          | 29       | 7        | 3      | 18       | 15           | 6        | 1      | 22       | 47         | 25       | 19       | 3       | 0        | 4        | 4      | 0        | 0        |
| 120-130            | 85         | 196        | 111          | 56         | 13         | 24         | 77         | 53         | 21         | 10       | 36       | 63         | 27          | 21       | 2        | 2      | 13       | 11           | 7        | 1      | 22       | 41         | 19       | 7        | 0       | 1        | 2        | 1      | 0        | 0        |
| 130-140            | 71         | 193        | 122          | 55         | 23         | 16         | 75         | 59         | 22         | 17       | 34       | 57         | 23          | 18       | 4        | 1      | 14       | 13           | 3        | 1      | 20       | 47         | 27       | 12       | 1       | 0        | 0        | 0      | 0        | 0        |
| 140-150            | 59         | 152        | 93           | 48         | 18         | 5          | 47         | 42         | 18         | 11       | 31       | 54         | 23          | 16       | 5        | 1      | 14       | 13           | 7        | 1      | 22       | 35         | 13       | 7        | 1       | 0        | 2        | 2      | 0        | 0        |
| 150-160            | 59         | 126        | 67           | 35         | 12         | 12         | 40         | 28         | 11         | 7        | 31       | 52         | 21          | 16       | 3        | 1      | 3        | 2            | 0        | 0      | 15       | 28         | 13       | 8        | 2       | 0        | 3        | 3      | 0        | 0        |
| 160-170            | 50         | 108        | 58           | 32         | 12         | 10         | 30         | 20         | 11         | 6        | 21       | 42         | 21          | 7        | 2        | 0      | 4        | 4            | 3        | 1      | 19       | 32         | 13       | 11       | 3       | 0        | 0        | 0      | 0        | 0        |
| 170-180<br>180-190 | 38<br>32   | 90<br>79   | 52<br>47     | 30<br>20   | 9<br>4     | 5<br>3     | 18<br>13   | 13<br>10   | 8<br>5     | 3<br>3   | 17<br>19 | 30<br>34   | 13<br>15    | 9<br>8   | 4        | 0      | 11<br>6  | 10<br>6      | 4<br>2   | 1<br>0 | 15<br>10 | 31<br>25   | 16<br>15 | 9<br>5   | 0       | 0        | 1        | 1      | 0        | 0<br>0   |
| 190-200            | 32<br>27   | 69         | 47           | 20<br>24   | 7          | 6          | 23         | 10         | 10         | 5        | 13       | 22         | 9           | 6        | 2        | 1      | 9        | 8            | 2        | 0      | 7        | 15         | 8        | 6        | 0       | 0        | 0        | 0      | 0        | 0        |
| >200               | 285        | 852        | 567          | 255        | 63         | 39         | 218        | 179        | 52         | 32       | 178      | 390        | 212         | 140      | 22       | 9      | 34       | 25           | 6        | 0      | 57       | 198        | 141      | 54       | 9       | 2        | 12       | 10     | 3        | 0        |
| %                  | S          | a          | L            | n          | g          | S          | a          | L          | n          | g        | S        | a          | L           | n        | g        | S      | a        | L            | n        | g      | S        | a          | L        | n        | g       | S        | a        | L      | n        | g        |
| 0-10               | 11         | 21         | 25           | 23         | 31         | 17         | 25         | 28         | 27         | 32       | 3        | 5          | 6           | 5        | 8        | 24     | 38       | 39           | 38       | 51     | 3        | 5          | 7        | 5        | 0       | 2        | 3        | 5      | 2        | 0        |
| 10-20              | 15         | 20         | 22           | 22         | 23         | 20         | 24         | 26         | 27         | 24       | 5        | 7          | 8           | 8        | 12       | 20     | 23       | 23           | 23       | 22     | 10       | 9          | 9        | 8        | 14      | 13       | 15       | 19     | 11       | 0        |
| 20-30              | 12         | 14         | 14           | 14         | 11         | 15         | 16         | 17         | 16         | 12       | 5        | 7          | 8           | 7        | 7        | 12     | 10       | 10           | 10       | 6      | 12       | 9          | 7        | 12       | 6       | 14       | 12       | 6      | 13       | 10       |
| 30-40              | 9          | 9          | 9            | 9          | 8          | 11         | 10         | 9          | 9          | 8        | 4        | 7          | 9           | 8        | 8        | 7      | 6        | 6            | 6        | 5      | 9        | 9          | 9        | 8        | 6       | 19       | 16       | 6      | 15       | 0        |
| 40-50              | 8          | 6          | 5            | 6          | 5          | 9          | 5          | 4          | 5          | 4        | 5        | 7          | 8           | 9        | 9        | 6      | 5        | 4            | 5        | 4      | 8        | 8          | 8        | 9        | 6       | 21       | 17       | 6      | 20       | 30       |
| 50-60              | 6          | 4          | 4            | 5          | 5          | 6          | 4          | 3          | 4          | 4        | 5        | 1          | 8           | 7        | 6        | 3      | 2        | 2            | 3        | 4      | 6        | 1          | 1        | 8        | 11      | 15       | 13       | 6      | 17       | 10       |
| 60-70<br>70-80     | 6<br>4     | 4<br>3     | 3            | 3<br>2     | 3<br>2     | 6<br>4     | 3          | 2          | 3<br>2     | 2<br>2   | 4<br>4   | 6          | 7<br>5      | 5<br>4   | 4        | 4<br>2 | 2        | 2            | 2        | 3<br>0 | 6<br>6   | 6<br>5     | 6        | 8<br>5   | 8<br>10 | 10<br>3  | 8        | 3<br>5 | 14<br>4  | 20<br>10 |
| 80-90              | 4          | 2<br>2     | 2            | 2          | 2          | 3          | 2          | 1          | 2<br>1     | 2        | 6        | 4          | 5<br>5      | 4<br>6   | 6<br>3   | 2      | 1        | 1            | 2        | 0      | 5        | 4          | 3        | 5        | 3       | 1        | 4        | 3      | 4        | 0        |
| 90-100             | 3          | 2          | 2            | 2          | 1          | 2          | 1          | 1          | 1          | 1        | 5        | 4          | 4           | 5        | 4        | 5      | 2        | 1            | 2        | 1      | 5        | 4          | 3        | 1        | 0       | 1        | 0        | 0      | 0        | 0        |
| 100-110            | 3          | 2          | 1            | 1          | 2          | 1          | 1          | 1          | 1          | 2        | 5        | 4          | 3           | 3        | 2        | 1      | 1        | 1            | 1        | 1      | 4        | 4          | 4        | 3        | 3       | 0        | 1        | 5      | 2        | 20       |
| 110-120            | 2          | 2          | 1            | 1          | 1          | 1          | 1          | 1          | 1          | 1        | 4        | 3          | 3           | 4        | 4        | 2      | 1        | 1            | 1        | 0      | 3        | 3          | 3        | 4        | 5       | Ő        | 2        | 6      | 0        | 0        |
| 120-130            | 2          | 1          | 1            | 1          | 1          | 1          | 1          | 1          | 0          | 1        | 4        | 3          | 2           | 3        | 1        | 2      | 1        | 1            | 1        | Ő      | 3        | 2          | 2        | 1        | 0       | 1        | 1        | 2      | Ő        | Ő        |
| 130-140            | 2          | 1          | 1            | 1          | 1          | 1          | 1          | 1          | 1          | 1        | 4        | 3          | 2           | 2        | 2        | 1      | 1        | 1            | 1        | 0      | 3        | 3          | 3        | 2        | 2       | 0        | 0        | 0      | 0        | 0        |
| 140-150            | 1          | 1          | 1            | 1          | 1          | 0          | 0          | 1          | 0          | 1        | 4        | 2          | 2           | 2        | 3        | 1      | 1        | 1            | 1        | 0      | 3        | 2          | 1        | 1        | 2       | 0        | 1        | 3      | 0        | 0        |
| 150-160            | 1          | 1          | 1            | 1          | 1          | 1          | 0          | 0          | 0          | 0        | 4        | 2          | 2           | 2        | 2        | 1      | 0        | 0            | 0        | 0      | 2        | 2          | 1        | 2        | 3       | 0        | 1        | 5      | 0        | 0        |
| 160-170            | 1          | 1          | 1            | 1          | 1          | 0          | 0          | 0          | 0          | 0        | 3        | 2          | 2           | 1        | 1        | 0      | 0        | 0            | 1        | 0      | 2        | 2          | 1        | 2        | 5       | 0        | 0        | 0      | 0        | 0        |
| 170-180            | 1          | 1          | 0            | 0          | 0          | 0          | 0          | 0          | 0          | 0        | 2        | 1          | 1           | 1        | 2        | 1      | 1        | 1            | 1        | 0      | 2        | 2          | 2        | 2        | 2       | 0        | 0        | 0      | 0        | 0        |
| 180-190            | 1          | 1          | 0            | 0          | 0          | 0          | 0          | 0          | 0          | 0        | 2        | 2          | 1           | 1        | 1        | 0      | 0        | 1            | 0        | 0      | 1        | 1          | 2        | 1        | 0       | 0        | 0        | 2      | 0        | 0        |
| 190-200            | 1          | 0          | 0            | 0          | 0          | 0          | $0 \\ 2$   | $0 \\ 2$   | 0          | 0        | 2        | 1          | 1           | 1        | 1        | 1<br>7 | 1        | 1            | 0        | 0      | 1 7      | 1          | 1        | 1        | 0       | 0        | 0        | 0      | 0        | 0        |
| >200               | 7          | 6          | <u> </u>     | 4          | 3          | 2          |            | 2          | 1          | 2        | 21       | 18         | 16          | 18       | 12       | /      | 3        | 2            | 1        | 0      | /        | 12         | 15       | 11       | 14      | 1        | 5        | 16     | 2        | 0        |

Table S8 - as in Table S6 for corrected intensities and histograms in Fig. S4.

| dM<br>Corr.        |            |            | bal        |            | Europe<br>(EU) |            |            |            |        |          | Ocea       | ania     | N       |            | Americ    | ea       | So       | outh A   |           | ica      |    | Africa<br>(AF) |         |         |  |  |
|--------------------|------------|------------|------------|------------|----------------|------------|------------|------------|--------|----------|------------|----------|---------|------------|-----------|----------|----------|----------|-----------|----------|----|----------------|---------|---------|--|--|
|                    | G          | `````      | N)         |            | G              | ```        | /          |            | G      | <u>`</u> | <u>(0)</u> |          | C       | <b>(</b> U | /         |          | C        |          | <u>A)</u> |          | C  | · · ·          | /       |         |  |  |
| N                  | <b>S</b>   | <u>a</u>   | L          | <u>g</u>   | S              | <u>a</u>   | <u>L</u>   | <u> </u>   | S      | <u>a</u> |            | <u>g</u> | S       | <u>a</u>   | L         | g        | S        | <u>a</u> | L         | <u> </u> | S  | a              | L       | ĝ       |  |  |
| 0-0.1<br>0.1-0.2   | 192<br>131 | 887<br>563 | 695<br>432 | 459<br>269 | 155<br>102     | 675<br>434 | 520<br>332 | 368<br>226 | 7<br>7 | 51<br>29 | 44<br>22   | 18<br>8  | 12<br>6 | 117<br>70  | 105<br>64 | 64<br>31 | 15<br>12 | 39<br>25 | 24<br>13  | 9<br>3   | 3  | 5<br>5         | 2<br>1  | 0       |  |  |
| 0.1-0.2<br>0.2-0.3 | 92         | 453        | 432<br>361 | 269<br>219 | 60             | 434<br>334 | 332<br>274 | 172        | 11     | 29<br>36 | 22         | °<br>15  | 6       | 70<br>54   | 48        | 26       | 12       | 23<br>24 | 13        | 5<br>6   | 4  | 5              | 1       | 0       |  |  |
| 0.2-0.3            | 112        | 433<br>524 | 412        | 219        | 73             | 376        | 303        | 185        | 10     | 51       | 41         | 17       | 7       | 54<br>59   | 48<br>52  | 20       | 18       | 32       | 13        | 3        | 4  | 6              | 2       | 2       |  |  |
| 0.4-0.5            | 112        | 444        | 333        | 185        | 69             | 315        | 246        | 150        | 17     | 50       | 33         | 12       | 7       | 50         | 43        | 21       | 15       | 26       | 11        | 2        | 3  | 3              | 0       | 0       |  |  |
| 0.5-0.6            | 88         | 356        | 268        | 149        | 63             | 263        | 200        | 122        | 5      | 31       | 26         | 12       | 2       | 25         | 23        | 9        | 15       | 30       | 15        | 5        | 3  | 7              | 4       | 1       |  |  |
| 0.6-0.7            | 95         | 333        | 238        | 128        | 57             | 203        | 167        | 100        | 12     | 36       | 24         | 12       | 6       | 41         | 35        | 12       | 12       | 24       | 12        | 4        | 8  | 8              | 0       | 0       |  |  |
| 0.7-0.8            | 74         | 295        | 221        | 115        | 49             | 215        | 166        | 98         | 4      | 21       | 17         | 5        | 1       | 26         | 25        | 8        | 11       | 23       | 12        | 3        | 9  | 10             | 1       | 1       |  |  |
| 0.8-0.9            | 55         | 249        | 194        | 98         | 24             | 176        | 152        | 82         | 4      | 28       | 24         | 9        | 1       | 11         | 10        | 4        | 10       | 18       | 8         | 2        | 16 | 16             | 0       | 1       |  |  |
| 0.9-1              | 52         | 225        | 173        | 69         | 25             | 151        | 126        | 54         | 8      | 33       | 25         | 8        | 1       | 14         | 13        | 3        | 10       | 19       | 9         | 4        | 8  | 8              | 0       | 0       |  |  |
| 1-1.1              | 43         | 197        | 154        | 58         | 24             | 139        | 115        | 46         | 6      | 26       | 20         | 6        | 1       | 16         | 15        | 3        | 4        | 8        | 4         | 3        | 8  | 8              | 0       | 0       |  |  |
| 1.1-1.2            | 46         | 151        | 105        | 40         | 15             | 100        | 85         | 33         | 13     | 24       | 11         | 3        | 2       | 8          | 6         | 2        | 12       | 15       | 3         | 2        | 4  | 4              | 0       | 0       |  |  |
| 1.2-1.3            | 27         | 116        | 89         | 27         | 8              | 66         | 58         | 20         | 3      | 20       | 17         | 4        | 1       | 7          | 6         | 1        | 9        | 17       | 8         | 2        | 6  | 6              | 0       | 0       |  |  |
| 1.3-1.4            | 25         | 121        | 96         | 37         | 12             | 81         | 69         | 28         | 5      | 23       | 18         | 6        | 2       | 3          | 1         | 1        | 3        | 11       | 8         | 2        | 3  | 3              | 0       | 0       |  |  |
| 1.4-1.5            | 25         | 104        | 79         | 20         | 10             | 63         | 53         | 15         | 9      | 23       | 14         | 3        | 1       | 8          | 7         | 2        | 2        | 7        | 5         | 0        | 3  | 3              | 0       | 0       |  |  |
| 1.5-1.6            | 26         | 90         | 64         | 17         | 5              | 52         | 47         | 14         | 8      | 18       | 10         | 2        | 1       | 5          | 4         | 0        | 9        | 11       | 2         | 0        | 3  | 4              | 1       | 1       |  |  |
| 1.6-1.7            | 28         | 78         | 50         | 20         | 11             | 44         | 33         | 14         | 11     | 21       | 10         | 4        | 0       | 1          | 1         | 0        | 5        | 11       | 6         | 1        | 1  | 1              | 0       | 1       |  |  |
| 1.7-1.8            | 17         | 78         | 61         | 21         | 10             | 49         | 39         | 18         | 3      | 18       | 15         | 2        | 1       | 3          | 2         | 0        | 3        | 8        | 5         | 1        | 0  | 0              | 0       | 0       |  |  |
| 1.8-1.9            | 18         | 62         | 44         | 18         | 3              | 30         | 27         | 14         | 9      | 18       | 9          | 1        | 1       | 5          | 4         | 2        | 2        | 6        | 4         | 1        | 3  | 3              | 0       | 0       |  |  |
| 1.9-2              | 12         | 46         | 34         | 10         | 4              | 17         | 13         | 7          | 3      | 16       | 13         | 1        | 0       | 1          | 1         | 0        | 5        | 12       | 7         | 2        | 0  | 0              | 0       | 0       |  |  |
| 2-2.5              | 62         | 162        | 100        | 40         | 16             | 68         | 52         | 27         | 32     | 60       | 28         | 11       | 1       | 4          | 3         | 1        | 8        | 25       | 17        | 1        | 5  | 5              | 0       | 0       |  |  |
| 2.5-3              | 19         | 53         | 34         | 9          | 7              | 17         | 10         | 7          | 12     | 27       | 15         | 1        | 0       | 1          | 1         | 1        | 0        | 8        | 8         | 0        | 0  | 0              | 0       | 0       |  |  |
| > 3                | 15         | 38         | 23         | 12         | 6              | 17         | 11         | 9          | 7      | 12       | 5          | 2        | 0       | 0          | 0         | 0        | 2        | 9        | 7         | 1        | 0  | 0              | 0       | 0       |  |  |
| %                  | S          | a          | L          | g          | S              | a          | L          | g          | S      | a        | L          | g        | S       | a          | L         | g        | S        | a        | L         | g        | S  | a              | L       | g       |  |  |
| 0-0.1              | 14         | 16         | 16         | 20         | 19             | 17         | 17         | 20         | 3      | 8        | 9          | 11       | 20      | 22         | 22        | 30       | 8        | 10       | 11        | 16       | 3  | 5              | 17      | 0       |  |  |
| 0.1-0.2            | 10         | 10         | 10         | 12         | 13             | 11         | 11         | 12         | 3      | 4        | 5          | 5        | 10      | 13         | 14        | 14       | 6        | 6        | 6         | 5        | 4  | 5              | 8       | 13      |  |  |
| 0.2-0.3            | 7          | 8          | 8          | 10         | 7              | 9          | 9          | 10         | 5      | 5        | 5<br>9     | 9        | 10      | 10         | 10        | 12       | 6        | 6        | 6         | 11       | 4  | 5              | 8       | 0       |  |  |
| 0.3-0.4            | 8          | 9<br>8     | 10<br>8    | 10         | 9<br>9         | 10         | 10         | 10         | 5<br>8 | 8<br>7   | 9          | 10       | 12      | 11         | 11<br>9   | 11       | 9        | 8        | 7<br>5    | 5        | 4  | 5              | 17      | 25      |  |  |
| 0.4-0.5<br>0.5-0.6 | 8          | 8<br>6     | 8<br>6     | 8<br>7     | 8              | 8          | 8          | 8          | 8<br>2 | 5        | 6          | 7<br>7   | 12<br>3 | 9<br>5     | 9<br>5    | 10<br>4  | 8        | 6<br>7   | 3<br>7    | 4<br>9   | 3  | 3<br>6         | 0<br>33 | 0       |  |  |
| 0.3-0.8            | 07         | 6          | 6          | 6          | 8<br>7         | 6          | 6<br>5     | 6          | 6      | 5        | 5          | 7        | 3<br>10 | 8          | 3<br>7    | 4        | 6        | 6        | 6         | 9<br>7   | 8  | 07             | 0       | 13<br>0 |  |  |
| 0.7-0.8            | 5          | 5          | 5          | 5          | 6              | 6          | 5          | 5          | 2      | 3        | 4          | 3        | 2       | 5          | 5         | 4        | 6        | 6        | 6         | 5        | 9  | 9              | 8       | 13      |  |  |
| 0.7-0.8            | 4          | 4          | 5          | 4          | 3              | 5          | 5          | 5          | 2      | 4        | 5          | 6        | 2       | 2          | 2         | 2        | 5        | 4        | 4         | 4        | 16 | 15             | 0       | 13      |  |  |
| 0.9-1              | 4          | 4          | 4          | 3          | 3              | 4          | 4          | 3          | 4      | 5        | 5          | 5        | 2       | 3          | 3         | 1        | 5        | 5        | 4         | 7        | 8  | 7              | 0       | 0       |  |  |
| 1-1.1              | 3          | 4          | 4          | 3          | 3              | 4          | 4          | 3          | 3      | 4        | 4          | 4        | 2       | 3          | 3         | 1        | 2        | 2        | 2         | 5        | 8  | 7              | 0       | 0       |  |  |
| 1.1-1.2            | 3          | 3          | 2          | 2          | 2              | 3          | 3          | 2          | 6      | 4        | 2          | 2        | 3       | 2          | 1         | 1        | 6        | 4        | 1         | 4        | 4  | 4              | 0       | 0       |  |  |
| 1.2-1.3            | 2          | 2          | 2          | 1          | 1              | 2          | 2          | 1          | 1      | 3        | 4          | 2        | 2       | 1          | 1         | 0        | 5        | 4        | 4         | 4        | 6  | 5              | Ő       | ů<br>0  |  |  |
| 1.3-1.4            | 2          | 2          | 2          | 2          | 1              | 2          | 2          | 2          | 2      | 3        | 4          | 4        | 3       | 1          | 0         | 0        | 2        | 3        | 4         | 4        | 3  | 3              | Ő       | ů<br>0  |  |  |
| 1.4-1.5            | 2          | 2          | 2          | 1          | 1              | 2          | 2          | 1          | 4      | 3        | 3          | 2        | 2       | 2          | 1         | 1        | 1        | 2        | 2         | 0        | 3  | 3              | Ő       | ů<br>0  |  |  |
| 1.5-1.6            | 2          | 2          | 2          | 1          | 1              | 1          | 2          | 1          | 4      | 3        | 2          | 1        | 2       | 1          | 1         | 0        | 5        | 3        | 1         | Ő        | 3  | 4              | 8       | 13      |  |  |
| 1.6-1.7            | 2          | 1          | 1          | 1          | 1              | 1          | 1          | 1          | 5      | 3        | 2          | 2        | 0       | 0          | 0         | Õ        | 3        | 3        | 3         | 2        | 1  | 1              | Ő       | 13      |  |  |
| 1.7-1.8            | 1          | 1          | 1          | 1          | 1              | 1          | 1          | 1          | 1      | 3        | 3          | 1        | 2       | 1          | 0         | 0        | 2        | 2        | 2         | 2        | 0  | 0              | 0       | 0       |  |  |
| 1.8-1.9            | 1          | 1          | 1          | 1          | 0              | 1          | 1          | 1          | 4      | 3        | 2          | 1        | 2       | 1          | 1         | 1        | 1        | 1        | 2         | 2        | 3  | 3              | 0       | 0       |  |  |
| 1.9-2              | 1          | 1          | 1          | 0          | 1              | 0          | 0          | 0          | 1      | 2        | 3          | 1        | 0       | 0          | 0         | 0        | 3        | 3        | 3         | 4        | 0  | 0              | 0       | 0       |  |  |
| 2-2.5              | 5          | 3          | 2          | 2          | 2              | 2          | 2          | 1          | 16     | 9        | 6          | 7        | 2       | 1          | 1         | 0        | 4        | 6        | 8         | 2        | 5  | 5              | 0       | 0       |  |  |
| 2.5-3              | 1          | 1          | 1          | 0          | 1              | 0          | 0          | 0          | 6      | 4        | 3          | 1        | 0       | 0          | 0         | 0        | 0        | 2        | 4         | 0        | 0  | 0              | 0       | 0       |  |  |
| > 3                | 1          | 1          | 1          | 1          | 1              | 0          | 0          | 1          | 3      | 2        | 1          | 1        | 0       | 0          | 0         | 0        | 1        | 2        | 3         | 2        | 0  | 0              | 0       | 0       |  |  |

 Table S9 - as in Table S7 for corrected intensities and histograms in Fig. S4.



Figure S6 - as in Fig. 9 for US macro-area.



Figure S7 - as in Fig. 9 for AO macro-area.



Figure S8 - as in Fig. 9 for SA macro-area.



Figure S9 - as in Fig. 9 for AF macro-area.



Figure S10 - as in Fig. 9 for corrected intensities.



Figure S11 - as in Fig. 10 for corrected intensities.



Figure S12 - as in Fig. S6 for corrected intensity.



Figure S13 - as in Fig. S7 for corrected intensities.



Figure S14 - as in Fig. S8 for corrected intensity.



Figure S15 - as in Fig. S9 for corrected intensity.

## **Data and Resources**

GSHHG "Global Self-consistent Hierarchical High-resolution Geography" database, available at www.soest.hawaii.edu/pwessel/gshhg/

EMSC ID, available at https://seismicportal.eu/eventdetails.html?unid= "EMSC ID").