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Abstract
Semantic memory is characterized by a hierarchical organization of concepts based on shared properties. However, this 
aspect is insufficiently dealt with in recent neurocomputational models. Moreover, in many cognitive problems that exploit 
semantic memory, gamma-band synchronization can be relevant in favoring information processing and feature binding. 
In this work, we propose an attractor network model of semantic memory. Each computational unit, coding for a different 
feature, is described with a neural mass circuit oscillating in the gamma range. The model is trained with an original nonsym-
metric Hebb rule based on a presynaptic gating mechanism. After training, the network creates a taxonomy of categories, 
distinguishes between subordinate and superordinate concepts, and discriminates between salient and marginal features. 
Examples are provided concerning a fourteen-animal taxonomy, including several subcategories. A sensitivity analysis 
reveals the robustness of the network but also points out conditions leading to confusion among categories, similar to the 
one observed in dreaming and some neurological disorders. Finally, the analysis emphasizes the role of fast GABAergic 
interneurons and inhibitory-excitatory balance to allow the correct synchronization of features. The model represents an 
original attempt to deal with a hierarchical organization of objects in semantic memory and correlated patterns, still exploit-
ing gamma-band synchronization to favor neural processing. The same ideas, introduced in a more sophisticated multilayer 
network, can deepen our knowledge of semantic memory organization in the brain. Finally, they can open new perspectives 
in quantitatively analyzing neurological disorders connected with distorted semantics.

Keywords  Neurocomputational model · Gamma rhythm · Hebb rule · Phase synchronization · Category formation · 
Feature integration

Introduction

The capacity to recognize objects and recover their contents 
is an essential aspect of our cognitive system, involving the 
so-called “semantic memory.” The common idea is that 
the representation of objects in semantic memory consists 
of a list of features that describe an object’s fundamental 
aspects in a context-independent and impersonal manner 
[1–3]. These features are acquired with time, reflecting a 
long experience in the course of life.

Given the importance of semantics in our cognition and 
the enormous consequences of its damage in daily life, it 

becomes crucial to understand the neural mechanisms 
involved and to formulate mechanistic explanations. Neu-
rocomputational models, inspired by brain functioning, 
can play a relevant role in this domain, proposing possible 
solutions for neurological problems, emphasizing putative 
mechanisms and circuits, and suggesting testable predic-
tions to validate or reject hypotheses. Furthermore, neural 
networks inspired by biology can represent innovative tools 
in artificial intelligence and machine learning, devising new 
technological solutions to old problems.

Indeed, the development of neurocomputational models 
of semantic memory has a long tradition, dating back to the 
early nineties.

Of particular relevance, Rumelhart et al. [4] and Rogers 
and McClelland [5, 6] used a feedforward schema trained 
with backpropagation, with the primary objective of inves-
tigating which representation can develop in the hidden units 
of a multilayer network. This approach was further extended 
by Rogers et al., as described below.
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Conversely, other models, starting from the early nineties, 
were based on attractor dynamics, in which the object repre-
sentation is stored as an equilibrium point of a recurrent net-
work. These provided essential indications of semantic apha-
sia and associative priming [7–10]. Specifically, Cree et al. 
[9] found that distinctive features play a more significant 
role in activating a concept than shared features. O’Connor, 
Cree, and McRae [11] demonstrated that a single layer of 
feature nodes can represent both subordinate and superor-
dinate concepts without needing any a priori hierarchical 
organization. However, these models trained synapses using 
the recurrent backpropagation-through-time algorithm.

Other authors, conversely, used auto-associative networks 
trained with the Hebb rule, as in the classic well-known 
Hopfield model [12]. McRae et al. [13] used an attractor 
network trained with the Hebb rule to investigate the role of 
feature correlation in the organization of semantic memory 
and explained several semantic priming effects. Kawamoto 
[14] demonstrated that attractor basins are crucial to under-
standing priming, deep dyslexia, and ambiguity resolution. 
Miikkulainen and Silberman et al. [15, 16] developed a 
model consisting of two self-organizing maps. Siekmeier 
and Hoffman [17] used the Hebb rule in a Hopfield net-
work to compare semantic priming in normal subjects and 
schizophrenic patients. However, classic Hebb rules produce 
symmetrical synapses and have limitations in discovering a 
hierarchical organization of concepts.

More recent advanced models of semantic memory intro-
duced a multilayer topology inspired by cortical structure 
and function. One of the purposes of these models is to 
reconcile divergent hypotheses in the literature, such as the 
presence of category-specific vs. category-general semantic 
areas (i.e., a sensory-functional vs. a distributed representa-
tion). In particular, Rogers et al. developed a series of mul-
tilayer models, implementing a distributed-plus-hub theory 
of semantic memory, assuming that concepts reflect both 
hub and spoke representations and their interactions. This 
neurocomputational model explains several neuroimaging 
and patient pieces of evidence [18] and indicates how the 
semantic representation changes dynamically with stimu-
lus processing [19]. It is worth noting that these networks 
too are trained with a variant of backpropagation adapted to 
recurrent networks to minimize squared errors.

However, a second multilayer semantic model, which 
exploits the Hebb rule, was developed by Garagnani et al. 
in a series of papers during the last decade [20–22]. Based 
on neuroanatomical studies, the network includes twelve 
cortical areas and their within-area and between-area con-
nectivity. In particular, the model mimics the function of 
primary and secondary sensorimotor regions of the frontal, 
temporal, and occipital cortex, along with a connector hub. 
Hebbian mechanisms for synaptic modification are used 
to study the emergence of associations among word forms 

(phonological/lexical) and the object’s semantic content. The 
results show that cell assemblies are formed after learning, 
reflecting the semantic content, and explain the presence of 
both category-specific and more general semantic processes. 
A version of the model with spiking neurons also analyzes 
high-frequency synchronous oscillations during word pro-
cessing [23, 24]. Interestingly, a recent version [25] also 
analyzes differences between concrete and abstract concepts, 
ascribing the formation of concrete concepts to the pres-
ence of shared features. Conversely, abstract concepts are 
explained by family resemblance among instances.

Despite the significant value of the last models, a few 
relevant aspects of semantic memory still need to be dealt 
with. First, concepts in nature exhibit a strong correlation 
among their features, which can lead to a hierarchical organi-
zation among concepts. Nevertheless, Hebbian mechanisms 
have difficulty finding these organizations (see Mac Rae 
et al. [13] for an excellent critical analysis). Furthermore, 
several authors have argued that not all features are equally 
important in representing the concepts [9]. In particular, 
feature listing tasks [10, 26, 27] show that not all features 
within an object play the same role. While some are salient 
and quickly come to mind when thinking of an object, oth-
ers are marginal and rarely evoked. The Hebbian learning 
procedures used in most previous models neglect these two 
essential aspects of the semantics, using orthogonal object 
representations and assuming that the total object content 
(i.e., all features) is experienced at any step, neglecting the 
probability aspects of our experience and differences in fea-
ture saliency.

A few more recent studies investigated how the Hebb 
rule could be modified in attractor networks to deal with 
correlated patterns and, more generally, to improve storage 
capacity. To overcome the limitations of attractor networks 
in the presence of correlated patterns, Blumenfeld et al. [28] 
introduced a learning rule in which synaptic weight changes 
are facilitated by the novelty (i.e., the difference between 
the present input and stored memories) and demonstrated 
that this rule allows memory representations of correlated 
stimuli depending on the learning order. Tang et al. [29] 
extended the previous work using a more plausible network 
and examining the role of saliency weights (i.e., the pat-
terns are stored with a variable saliency factor). Results 
show that saliency weights can vividly affect the memory 
representations, allowing flexibility of the resulting attrac-
tors. Kropff and Treves [30] introduced a Hebbian rule in 
which the presynaptic threshold reflects the neuron popular-
ity and showed that this rule can store and retrieve sets of 
correlated patterns. It is worth noting that this rule requires 
the extraction of statistical properties; hence, it is inappro-
priate for one-shot learning. Boboeva et al. [31] studied the 
capacity of a Potts network (i.e., a variant of the Hopfield 
network in which neurons have multiple possible discrete 
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states) in the presence of correlated data. They showed that 
correlation reduces the storage capacity. However, when the 
storage capacity is overcome, the network can maintain the 
gross core semantic components, and only fine details are 
compromised. Finally, Pereira and Brunel [32] used a variant 
of the Hebb rule in which the presynaptic and postsynaptic 
terms are described through nonlinear functions of neuron 
activity, and these functions are empirically derived from 
data. Although not directly mentioning correlated patterns, 
the authors showed that this rule, with sigmoidal dependence 
on pre- and postsynaptic firing rates, almost maximizes the 
number of stored patterns.

Extending previous studies, the present work investigates 
the role of Hebbian learning in forming a semantic memory. 
Still, it introduces new aspects: a further analysis of correla-
tion among patterns, according to a hierarchical category 
structure, and a probabilistic experience so that features 
in an object are perceived with a given (higher or smaller) 
probability at each presentation. To deal with these aspects, 
we propose a new version of the Hebb rule, able to produce 
a not-symmetrical pattern of synapses, and we show that this 
rule automatically generates a distinction between marginal 
and relevant features and category representations based on 
shared and distinctive features.

To test this rule, we use a simplified auto-associative 
network with only one layer of units, as in older models of 
semantic memory. We know that this is a substantial simpli-
fication of reality and that a multilayer network is necessary 
to simulate the real neural processing circuits in the brain. 
The simplification is justified by the possibility of present-
ing results and synapse changes in a much more straightfor-
ward way, putting in evidence the virtues and limitations of 
the proposed Hebb rule within a simple auto-associative net. 
In the last section, we discuss how the present model can be 
extended in future work to fit novel, more complete models 
(e.g., by Garagnani et al.) or, more generally, with multilayer 
deep neural networks.

Finally, brain rhythms are known to play a significant 
role in cognition. Slow gamma oscillations of neural activ-
ity (in the 30–40 Hz range) have been frequently observed 
during various memory tasks involving working, episodic, 
and semantic aspects [33–39].

Despite the presence of some controversies in the recent 
literature (see [40, 41] for cons), an influential theory sug-
gests a role for the gamma rhythm in binding conceptual 
information [38, 42, 43]. Notably, Tallon-Baudry et al. [33, 
34] suggest that neural discharges in the gamma band play 
a fundamental role in binding activities in areas involved in 
an object representation, merging bottom-up (i.e., sensory) 
and top-down (i.e., memory and past experience) infor-
mation in a coherent entity. This idea is supported by the 
observation that stimuli for which subjects have a long-term 
memory representation lead to significantly larger gamma 

responses than unknown stimuli [44]. Indeed, gamma-band 
activity accompanies many cognitive functions, like atten-
tion [45–47], arousal [48], object recognition [33, 34], and 
language perception [49]. Hence, Herrmann et  al. sug-
gested that in these tasks, the gamma band response real-
izes a match of sensory information with memory contents, 
a mechanism named by the authors “match and utilization 
model” [44, 50]. Gamma rhythms are observed in the hip-
pocampus during episodic memory retrieval (often linked 
with a slower theta oscillation) [51–53] and in the prefrontal 
cortex during working memory tasks [35, 54], all conditions 
where a relationship with semantics can be postulated [55].

Furthermore, a compromised link between semantic 
organization and brain oscillations has been observed in 
several neurological conditions. Some of them, like Alzhei-
mer’s disease or semantic dementia, are characterized by a 
progressive loss of object recognition, possibly involving the 
theta-gamma code [27, 56, 57]. Others, like schizophrenia, 
are characterized by an illogical use of concepts and a possi-
ble involvement of alterations in the gamma rhythm [58–60].

Since oscillatory aspects are of value, activity in each 
computational unit in our model is simulated through a neu-
ral mass model developed by the authors in recent years [61], 
in which brain rhythms arise from feedback interactions 
among local excitatory and inhibitory populations. Specifi-
cally, parameters are assigned so that each unit oscillates in 
the gamma band. Neural masses are a valuable alternative 
way to simulate oscillations compared with spiking neurons, 
assuming that a single unit describes the behavior of entire 
populations of neurons, coding for the same aspect. This 
formalism is more oriented to analyzing local field potentials 
or cortical activity reconstructed in regions of interest from 
high-density scalp EEG [62]. A taxonomy of various ani-
mals (mammals and birds), including several subcategories 
and salient-plus-marginal features, shows the main model 
virtues and limitations in representing semantic objects. A 
sensitivity analysis on some parameters involving the Hebb 
rule or the gamma rhythm generation is finally performed 
to test the robustness of the network, suggest some testable 
predictions, and unmask conditions leading to pathological 
behavior.

Method

The Object Taxonomy

To illustrate the model behavior, we use a simple taxonomy 
including fourteen animals divided into two categories, 
“mammals” and “birds,” with different marginal and sali-
ent features. Moreover, each category is further subdivided 
into several subcategories, which can also intersect. These 
are illustrated in the diagram in Fig. 1, while a list of all 
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features is presented in Table 1. It is worth noting some 
features (like “it eats”) are common to all the animals and 
are used to generate the category “animal.” Other features 
(like “it has four legs” for mammals or “it has two legs” for 
birds) are used to generate the subcategories “mammals” 
and “birds” in the taxonomy. Other features (like “it eats 
grass” for the herbivorous or “it lives in nature” for wild ani-
mals) generate additional subcategories, which can also be 
partially superimposed. Finally, the individual animals have 
some distinctive salient and marginal features not shared 
with the others (like “it barks” for the dog). In our model, 
the difference between salient and marginal features depends 
on the probability of feature presentation during training 
(see “Training the Network”): features presented quite rarely 
during training automatically become marginal and are not 
spontaneously evoked when thinking about the concept (see 
[26]). The few animals simulated in this work are just exam-
ples to illustrate model potentiality.

In the model, each feature in Table  1 is represented 
through a single neural mass model, implementing the inter-
action between pyramidal neurons and excitatory-inhibitory 
local interneurons, as illustrated below. We assume that 
whenever a feature is present in the perception of the external 
world or is spontaneously evoked in the mind, the pyramidal 
neurons oscillate in the gamma band, coding for the feature’s 
presence in the object representation.

The Neural Mass Model

The model of each computational unit, coding for an indi-
vidual feature, is realized through the feedback connection 
among a population of pyramidal neurons, a population of 
excitatory interneurons (both with glutamatergic synapses), 
a population of GABAergic inhibitory interneurons with 

slow synapse dynamics, and a population of GABAergic 
inhibitory interneurons with fast synapse dynamics (see the 
upper panel in Fig. 2). As traditionally done in neural mass 
models (see [61, 63, 64]), the output of each population rep-
resents the spike density of a group of neurons of the same 
kind, which share similar inputs and exhibit similar global 
dynamics. More details on the construction of individual 
computational units can be found in previous papers of the 
authors [61, 65, 66] and in Supplementary Materials, where 
all equations and parameter numerical values can be found.

The basic idea of the semantic model is that, after train-
ing, the individual computational units, each coding a fea-
ture, are linked together in an auto-associative network to 
implement the conceptual knowledge of the object. As well 
known, long-range synapses in the brain are realized by 
axons of pyramidal glutamatergic neurons [67]. However, 
as demonstrated in “Results” and discussed in the final sec-
tion, a balance between excitation and inhibition is needed 
in the network connectivity to obtain robust synchroniza-
tion in the gamma band. In particular, using only excita-
tory links can spread excessive activity across the auto-
associative network, causing some units to reach saturation. 
Inhibitory long-range connections are necessary to control 
the net’s global level of gamma oscillations. Accordingly, 
we assumed that each unit can send both long-range con-
nections from pyramidal presynaptic to pyramidal postsyn-
aptic neurons in other units (thus realizing an excitatory 
“pyramidal → pyramidal” link) and long-range connections 
from presynaptic pyramidal to postsynaptic fast-inhibitory 
interneurons in other units (thus realizing a bi-synaptic 
inhibitory link, “pyramidal → fast inhibitory → pyramidal”). 
In the following, the first connections will be generically 
named “excitatory” and represented with the connection 
strength Wex. In contrast, the second connections will be 

Fig. 1   Taxonomy of animals used in the present work. Categories 
belonging to a particular subset inherit all properties of its supersets: 
for instance, the features listed in the category “animals” are inherited 
both by “mammals” and “birds.” The category “volatile” inherits all 
properties of birds. The properties of “volatile” (including those of 

“birds” and “animals”) are inherited by the “owl,” the “pigeon,” the 
“goose,” and the “parrot.” Finally, individual animals are character-
ized by distinctive features that can be salient or marginal. A list of all 
shared and distinctive features is shown in Table 1
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Table 1   List of all shared and distinctive features used in the present work. Common features between animals are indicated with an asterisk

Dog (1) It barks Salient Dangerous (54) It is dangerous Salient

(2) It wags its tail

(3) It is loyal

(4) It keeps watch (55) It has big claws

(5) It is affectionate Wild (56) It is wild Salient

(6) It sleeps in the kennel Marginal (57) It lives in nature

(7) It is of various sizes Mammals (58) It has four legs Salient
Cat (8) It meows Salient (59) It has fur

(9) It purrs (60) It is viviparous
(10) It is independent Roster (61) It crows at dawn Salient
(11) It chases mice (62) It lives in the coop
(12) It has whiskers Marginal (63) It has a big crest
(13) It scratches (64) It has a spur

Domestic (14) It is domestic Salient (65) It pecks*** Marginal
(15) It is a pet (66) It is aggressive

Sheep (16) It bleats Salient Hen (67) It makes chicks Salient

(17) It is sheared (68) It hatches eggs

(18) It produces wool (69) It has a small crest

(19) It lives in the flock (65) It pecks*** Marginal

(20) It is soft Marginal (70) It is stupid

(21) It has curly hair Owl (71) It lives at night Salient
Cow (22) It moos Salient (72) It hunts rodents

(23) It has udders (73) It is a raptor
(24) It has horns (74) It has a rostrum beak
(25) It lives in the stable (75) It has keen sight
(26) It has a bell Marginal (76) It lives in the woods Marginal
(27) It is sacred in India (77) It is silent
(28) It has spots* Pigeon (78) It coos Salient

Farm (29) It produces milk Salient (79) It eats the crumbs
(30) It lives in the farm (80) It is in the squares

Giraffe (31) It has a long neck Salient (81) It litters
(32) It has long legs (82) It is used to send messages Marginal
(33) It is very high (83) It carries diseases
(28) It has spots* Marginal Goose (84) It squawks Salient
(34) It has thin legs (85) It has webbed feet
(35) It has a prehensile tongue (86) It has an orange beak

Zebra (36) It has stripes Salient (87) It lives in the pond Marginal
(37) It runs (88) It migrates
(38) It has hooves Parrot (89) It has a big beak Salient
(39) It camouflages itself Marginal (90) It repeats words
(40) It lives in herds** (91) It speaks

Herbivorous (41) It eats grass Salient (92) It has a colored tail
(42) It is a ruminant (93) It is exotic Marginal

Bear (43) It is omnivorous Salient (94) It lives as a couple
(44) It goes into hibernation Volatile (95) It flies Salient
(45) It eats honey (96) It makes the nest
(46) It is big Marginal Birds (97) It has two legs Salient
(47) It lives in the mountain (98) It has feathers
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called “inhibitory” and defined with the connection strength 
Win. Furthermore, we included the presence of a pure delay 
between the units. A qualitative example of the connectivity 
between two units is shown in the lower panels of Fig. 2.

We assume that excitatory and inhibitory (bi-synaptic) 
connections among units are trained with an original Heb-
bian rule through a learning phase, during which several 
features of an object are provided as input with a given 
probability.

Training the Network

As commented in “Introduction,” we need not-symmetrical 
connections among units after training to simulate hierarchi-
cal concepts, reflecting the differences between shared and 
distinctive features and between salient and marginal fea-
tures. In particular, shared features must not send a connec-
tion to distinctive features (for instance, the feature “it eats” 
must not excite the feature “it barks” since not all animals 
bark). Conversely, a distinctive feature must send a synapse 
to the shared features of its object (for instance, the feature 
“it barks” must send connections, among the others, to “it is 
a pet” typical of a domestic animal, “it has four legs” typical 
of a mammal, and also to “it eats”). Similarly, marginal fea-
tures must not receive synapses from salient features since 
they are not spontaneously produced but must send synapses 
to salient features since they contribute to object recognition.

We used a Hebb rule with different roles and thresholds 
for the presynaptic and postsynaptic neurons to realize this 
asymmetrical connectivity.

Both the presynaptic and postsynaptic activities (normal-
ized to the maximum, to work in a 0–1 range) are averaged 
on a 30 ms interval (approximately equal to the period of the 
gamma rhythm) and compared with a (different) threshold. 
The synapse change is proportional to the product of these 
differences multiplied by a learning factor. Furthermore, to 
make synapses asymmetrical, we adopted a “presynaptic” 
ON/OFF switch, i.e., the Hebb rule holds only if the presyn-
aptic activity is above the threshold. Otherwise, no synaptic 
change occurs. In other words, the presynaptic population 
must be sufficiently active to have a synapse change. In this 

condition, the synapse change is a reinforcement or a weak-
ening, depending on whether the postsynaptic population 
activity is above or below the threshold.

The overall model is reported in Supplementary Materi-
als; however, the individual equations for synapse change 
are anticipated below.

(i) The connection change from presynaptic pyramidal to 
postsynaptic pyramidal populations is computed as follows:

where Wex
ij

 denotes an excitatory pyramidal-pyramidal con-
nection for the postsynaptic pyramidal population in unit i 
and the presynaptic pyramidal population in unit j, zpi and 
zpj are the activity of the pyramidal postsynaptic and presyn-
aptic pyramidal populations, respectively, normalized to the 
maximum and mediated over the previous 30 ms, �post and 
�pre are the postsynaptic and presynaptic thresholds, � is the 
learning factor and the operation ()+ denotes the function 
“positive part” (i.e., (u)+  = u if u is positive, (u)+  = 0 other-
wise). The last term in Eq. (1) signifies that the learning rate 
progressively decreases when the synapse approaches a 
maximum saturation level ( Wmax).

(ii) Connection change from the presynaptic pyramidal to 
postsynaptic fast-inhibitory populations

The meaning of symbols in Eq. (2) is similar to (1), but 
now zfi represents the normalized activity of the fast-inhibi-
tory population in the postsynaptic unit, i, mediated over the 
previous 30 ms. We used different learning rates and thresh-
old values when training the two kinds of connections. As 
shown in “Results,” this will be essential to build a connec-
tivity network that respects the constraints delineated above.

Finally, a further normalization has been adopted for the 
sum of synapses entering a given unit, i.e., we assumed this 
sum cannot overcome a given upper saturation. This con-
straint reproduces a physiological limitation in overall neu-
rotransmitter availability and is helpful to avoid excessive 
excitation (see Supplementary Materials for more details). 

(1)ΔWex
ij

= �ex
(

zpi − �ex
post

)(

zpj − �ex
pre

)+(

Wex
max

−Wex
ij

)

(2)ΔWin
ij
= � in

(

zfi − �in
post

)(

zpj − �in
pre

)+(

Win
max

−Win
ij

)

Table 1   (continued)

Lion (48) It roars Salient (99) It has wings
(49) It has a bushy mane Animals (100) It eats Salient

(50) It is brave (101) It drinks

(51) It is a predator (102) It sleeps

(52) It has sharp teeth

(40) It lives in herds** Marginal

(53) It defends the territory
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Interestingly, this normalization comes into play only for 
synapses that enter units encoding shared properties, i.e., 
representing categories. Indeed, without normalization, the 
latter (being shared by all animals) would receive too many 
synaptic inputs, reaching a saturation value and losing the 
oscillation in the gamma rhythm, thus resulting in an errone-
ous training phase.

Due to Eqs. (1) and (2), not-symmetrical connections are 
created in the network after training. By way of example, let 
us assume that a distinctive feature and a shared feature are 
excited together during the presentation of a given object and 
so oscillate in the gamma range (for instance, the distinctive 
feature “it barks” and the shared feature “it eats” may be 
both active during the presentation of the object “dog”). As 
a consequence of the Hebb rule, a connection is reinforced 
between them in both directions, as shown in the upper panel 
of Fig. 3. Let us now assume that, in a subsequent moment, 
the shared feature (“it eats”) occurs during the presentation 

of another animal (for instance, “the cat”). So, the distinc-
tive feature “it barks” is not excited at the moment (mid-
dle panel). As a consequence of the presynaptic rule, the 
strength of the connection from the presynaptic distinctive 
feature (“it barks”) to the postsynaptic shared feature (“it 
eats”) does not change (since the presynaptic activity is 
silent). Conversely, the synapse from the shared to the dis-
tinctive feature (from “it eats” to “it barks”) is weakened: in 
fact, the presynaptic population at the moment is active, and 
the postsynaptic population is inhibited. Since the shared 
feature occurs in many animals, prolonged training causes 
the suppression of synapses from shared to distinctive fea-
tures. In contrast, connections from the distinctive features 
to the shared features are preserved (bottom panel).

Similar reasoning can also be applied to what concerns 
the synapses linking a salient and a marginal feature within 
a given object. Connections from marginal (less frequent) 
to salient (more frequent) features are preserved whenever 

Fig. 2   a Schematic repre-
sentation of the neural mass 
model used to implement each 
processing unit. The dynamic 
results from the interaction 
among a population of pyrami-
dal neurons, a population of 
excitatory interneurons, and 
two populations of inhibitory 
interneurons with slow and fast 
synaptic dynamics, respectively. 
Continuous lines represent glu-
tamatergic excitatory synapses. 
Dashed lines are GABAergic 
inhibitory synapses with slower 
dynamics, while dash-dotted 
lines are GABAergic inhibitory 
synapses with faster dynam-
ics. The constants Cij represent 
internal connections among 
the populations, where the first 
subscript denotes the target 
population and the second sub-
script is the presynaptic popula-
tion. E and I are external inputs 
to pyramidal neurons and fast 
inhibitory interneurons, respec-
tively, while np and nf represent 
white noise. b, c Two examples 
of connections among units. 
b An excitatory connection 
(pyramidal → pyramidal) where 
Wex is the connection strength. 
c A bi-synaptic inhibitory 
connection (pyramidal → fast 
inhibitory → pyramidal) where 
Win is the connection strength
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a marginal feature is absent, whereas synapses from salient 
to marginal features disappear. The final result, however, 
depends on the particular choice of the postsynaptic and 
presynaptic thresholds and the probabilities given to the 
individual features during training (see also [68, 69]).

Training is performed by providing all objects (in this 
example, the 14 animals) once within a random permuta-
tion: this represents just one epoch of training. During each 
object presentation, a feature is given as input with a given 
probability. Specifically, if the feature is experienced, the 
input to the unit is assigned a value as high as 500, allowing 
the unit to oscillate with a gamma rhythm without reaching 
a saturation (see Fig. S1 in Supplementary Materials for 
one example). If the feature is absent, the input is zero, and 
before training the unit is silent (but it can oscillate after 
training if it receives sufficient excitatory input from other 
co-active units). In this work, we used a frequency of occur-
rence as high as 80% for all salient features and just 30% for 
marginal features (all shared features are assumed as sali-
ent), i.e., we consider a stationary condition for the external 
environment (see Table A3 in Supplementary Materials for 
some examples of inputs concerning the dog). Training with 
a not-stationary environment (with varying probabilities for 
the features) can be the subject of a future study. Six hundred 
epochs were used to reach quite a stable final value (with 
only slight changes). During each simulation, the model is 
run for 0.35 s, and the Hebb rule is applied at each integra-
tion step (hence, with a very small learning rate, see Sup-
plementary Materials) during the last 0.25 s when the initial 
transient is exhausted. This time agrees with the common 
opinion that an object is recognized in semantic memory 
within 150–200 ms (see [22]).

Results

Pattern of Synapses

Figure  4 shows an example of the excitatory synapses 
obtained after learning, using the basic parameter values 
reported in Tables A1 and A2 of the Supplementary Mate-
rials for the Hebb rule (learnings factors and thresholds in 
Eqs. (1) and (2)). These parameters were assigned empiri-
cally after a few attempts to achieve a correct behavior. The 
results of the sensitivity analysis will be illustrated below.

For example, Fig. 4a shows the excitatory synapses 
(type Wex) entering into all the distinctive features that 
characterize the dog from all the remaining network fea-
tures. According to the probability used (see Table 1), the 
first five features of the dog are salient, and the last three 
are marginal. Interestingly, the five salient features receive 
strong synapses from all the other salient features of the 
dog and synapses (although less strong) from the three 

marginal features. Hence, they are automatically evoked. 
Conversely, the marginal features do not receive signifi-
cant synapses and hence cannot be automatically pro-
duced. Noteworthily, the distinctive features of the dog do 
not receive excitatory synapses either from the distinctive 
features of the other animals or from the shared features of 
subcategories (including domestic animals, since there is 
another domestic animal, i.e., the cat) or from the shared 
features of mammals, birds, and animals.

The inhibitory synapses (type Win) entering into the 
eight distinctive features of the dog are shown in Fig. S2 
of Supplementary Materials. These synapses are similar 
to the excitatory ones but with smaller strengths. We can 
observe that the salient distinctive features of the dog also 
receive inhibitory synapses from the shared features of 
mammals (positions 58–60). This is not a problem: in fact, 
it is of value that shared features send a slight inhibition to 
distinctive features to avoid their appearance in the pres-
ence of information from other animals (for instance, to 

Fig. 3   An example of training with the presynaptic Hebb rule. We 
consider the connections between a feature shared by all animals (“it 
eats”) and a salient feature of dogs (“it barks”). Dashed circles repre-
sent active units. Open circles represent inhibited units (not excited 
by their input). The upper panel shows a situation during training 
when a dog is perceived, and both salient features are present as input 
(since both features have an 80% probability, this situation is quite 
frequent). The synapses potentiate in both directions. The middle 
panel represents a situation during training when an animal different 
from the dog is perceived; the property “it eats” is present (80% prob-
ability), but the property “it barks” is absent. Since the presynaptic 
rule assumes that the presynaptic activity must be above the thresh-
old to have a synaptic change, the synapse from “it barks” to “it eats” 
does not change. In contrast, the synapse from “it eats” to “it barks” 
is depotentiated. The bottom panel represents a probable situation 
after learning, in which the synapse from the distinctive feature (“it 
barks”) to the shared feature (“it eats”) remains elevated. In contrast, 
the synapse from the shared feature to the distinctive features has 
fallen close to zero



334	 Cognitive Computation (2024) 16:326–347

1 3

prevent the feature “it barks” through the production of 
the shared features of mammals, erroneously activates the 
distinctive features of the cat).

Similar patterns of synapses can be found for the other 
distinctive features in the network (both concerning mam-
mals and birds) and are not shown for briefness.

Figure 4b shows the synapses entering into the three 
shared features of the mammals and the three shared fea-
tures of the birds. These features receive strong synapses 
from the shared features of the same category (either 
mammals or birds), the features of the corresponding sub-
categories (for instance, the features of “volatile” for the 
category “birds,” the feature of the category “herbivorous” 
for the category “mammals”), and also from the distinctive 
features of all the individual members of the category: this 
implements a correct logic for the categories. No cross 
interference between categories occurs (i.e., the distinc-
tive features of birds do not send synapses to mammals’ 
shared features and mammals’ distinctive features do not 
send synapses to the shared features of birds). Moreover, 
as shown in Fig. 4c, the three features shared by all ani-
mals (“it eats,” “it sleeps,” and “it drinks”) receive syn-
apses from all features in the network and hence are always 
evoked.

Finally, to complete the analysis of subcategories, Fig. 4d 
shows the excitatory synapses entering into one shared fea-
ture of the category “farm,” one shared feature of the subcat-
egory “herbivorous,” and a shared feature of the subcategory 
“volatile.” All other features denoting subcategories behave 
similarly and are not shown for briefness. In all cases, the 
feature receives synapses only from members of the same 
category. Interestingly, the feature “it flies” does not receive 
synapses from the general features of the bird, nor from fea-
tures of the roster and the hen (which do not fly). The last 
aspect, of course, is quite fragile and will be discussed at 
the end.

Basic Simulation Results

First, if one unit receives no input but only white noise, 
it works in the bottom portion of the sigmoidal relation-
ship; hence, its spike density is close to zero, and the noise 
effect is strongly attenuated. We used an input as high as 
500 to produce an oscillatory behavior in an individual iso-
lated unit, even without other synaptic inputs. Examples are 
shown in Fig. S1 in Supplementary Materials.

Figure  5 shows an example of network activity in 
response to a distinctive salient property of the cat (i.e., “it 
is independent”). The upper panel shows the initial 300 ms 
of simulation, and the bottom panel zooms on the same 
simulation, showing just two gamma cycles. Some aspects 
are relevant. Thanks to the presence of auto-associative 

connections among the units, all four distinctive salient fea-
tures of the cat, together with the two shared features of 
domestic animals, the three shared features of the mammals, 
and the three shared features of all animals oscillate in the 
gamma band and become synchronized within 100–110 ms. 
The distinctive marginal features of the cat are silent, and, of 
course, all the distinctive features of other animals and the 
shared features of other categories are silent, too.

Figure 6 shows the response to a marginal feature of the 
cat (“it has whiskers”). There are some differences compared 
with the case of a salient feature. Now, the network requires 
a longer time (about 170 ms) to synchronize the cat’s salient 
and shared features. Moreover, the stimulated unit coding 
for the marginal feature oscillates with the gamma rhythm 
but out-of-phase compared with the other salient features 
of the cat.

A similar behavior (production of all salient distinctive 
features, no production of marginal features, production of 
all shared features in its categories and the category animal) 
can be observed by exciting one salient distinctive feature or 
one marginal feature of any animal. An example of a bird’s 
salient distinctive feature is shown in Fig. S3 of the Sup-
plementary Materials.

Figure 7 shows some additional examples. They concern 
(i) a salient feature of the zebra (“it has stripes”). The zebra 
is a complex example since it exhibits two shared features 
of the herbivorous and two shared features of wild animals, 
together with the shared features of mammals and animals. 
The simulation shows that the network can recover all these 
features, recognizing that the zebra is an animal with char-
acteristics of a mammal, an herbivorous, and a wild animal, 
and further includes the additional distinctive features. (ii) A 
shared feature of a herbivorous (“it eats grass”). The network 
correctly recovers the two shared features of herbivorous 
and, since all herbivores are mammals, recovers the three 
features of mammals and, of course, the three features of 
animals. (iii) A shared feature of dangerous animals (“it has 
big claws”). Interestingly, since all dangerous animals in our 
structure are also wild animals and mammals, the network 
recovers the features of dangerous and wild animals, mam-
mals, and the generic features of all animals; (iv–vi) the 
network response to a shared feature of mammals (“it has 
four legs”), a shared feature of birds (“it has wings”), and 
a feature shared by all animals (“it eats”). In all cases, the 
network can recover the entire salient content of the given 
category (i.e., the three features of mammals + three features 
of animals in the first case, the three features of birds + three 
features of animals in the second case, and only the three 
general features of animals in the last case) without recover-
ing distinctive features of individual members.

Similar examples can be obtained concerning all subcat-
egories in the model. In no case are distinctive features of 
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individual members or shared features of other subcategories 
incorrectly recovered.

Finally, an interesting example is given in Fig. 8, where 
we show what is occurring in response to a feature “it has 
spots” shared by the cow and the giraffe. It is worth not-
ing that both animals are herbivorous, but only the first is 
a “farm animal,” and only the second is a “wild animal.” 
The top panel shows the model response. The network has 
difficulty in finding the correct response in this challenging 
condition. After a long time (almost 300 ms), the network 
restores the three properties of the mammals, the three prop-
erties of the animals, and just one property of the herbivo-
rous. The other property is lacking. However, it is sufficient 
to assume a slight increase in the strength of all excitatory 
synapses (+ 30% increase in all synapses Wex, bottom panel) 
to obtain a prompted and correct response. Similar behavior 
is obtained by simulating other properties shared by two 
animals without generating a category, i.e., “it lives in the 
herds” (common to the zebra and lion) and “it pecks” (com-
mon to the roster and hen).

The possibility of increasing the synapse strength under 
challenging conditions, requiring much attention, can be 
related to neurotransmitter changes (especially acetylcho-
line) [70].

Sensitivity Analysis

The previous simulations show that the model, with the 
parameters assigned as in Tables A1 and A2 of Supplemen-
tary Materials, can recover all salient features of an object 
from a single external cue, synchronizing all activities in the 
gamma range. Moreover, the model can distinguish correctly 
between categories, creating a taxonomy based on shared vs. 
distinctive features.

In the following, we will test the robustness of the model 
by changing some fundamental parameters.

First, we analyzed the effect of the pure delay among the 
units. In all previous simulations, a delay of 25 ms was used. 
The simulations show that a decrease of the delay below 
20 ms causes poor synchronization (see the upper panel 
in Fig. 9); the synchronization remains high if the delay is 
20–25 ms and then progressively deteriorates (bottom panel 
in Fig. 9).

Since alterations in GABAergic interneurons occur in 
neurological disorders, such as schizophrenia, we also ana-
lyzed the effect of a change in internal parameters involving 
these interneurons. Decreasing parameter Cpf, which repre-
sents the inhibitory effect of fast GABAergic interneurons 
on pyramidal neurons, or decreasing Cfp, which represents 
the excitatory effect of pyramidal neurons on GABAergic 
fast interneurons, provokes the interruption of the gamma 
rhythm after a few cycles, with some (or all) oscillating units 
entering into saturation. Decreasing Cff to zero, represent-
ing the self-inhibitory loop of fast interneurons causes poor 
synchronization and difficulty emerging distinctive features.

A further sensitivity analysis concerns parameters in the 
Hebb learning rules (Eqs. (1) and (2)). In particular, we 
systematically modified the threshold and learning rates in 
Eqs. (1) and (2). Results can be summarized as follows: if 
the learning rate of the excitatory synapses is augmented 
too much ( �ex ≥ 0.00011) or the threshold for the post-
synaptic term is diminished too much ( �ex

post
≤ 0.20 ), the 

excitatory synapses increase too rapidly during training. 
In particular, the synapses from the shared to the distinc-
tive features (which should fall to zero after learning) 
can remain significant, causing an erroneous interference 
between different categories or between members of the 
same category. For instance, a shared feature of a category 
becomes able to evoke a shared feature of another cat-
egory (by way of example, the shared feature “it eats” 
erroneously evokes the feature “it has for legs”; as a con-
sequence, any bird evokes the feature of mammals); or a 
feature of a category evokes the distinctive features of a 
member, causing confusion among members of the same 
category (the feature “it has four legs” evokes the feature 
“it purrs” causing any mammal to evoke the properties of 
cats). An example of the first kind is illustrated in Fig. 10, 
where the upper panel shows the synapses entering into 

Fig. 4   a The pattern of the excitatory synapses entering into the dog’s 
features from all other features in the network. It is worth noting that 
all salient features (from 1 to 5) receive strong synapses from all 
other salient features of the dog and smaller but still significant syn-
apses from all other marginal features (positions from 6 to 7). How-
ever, they do not receive synapses either from features of other ani-
mals or from shared features of the categories. Marginal features of 
the dog (positions from 6 to 7) do not receive relevant synapses and, 
hence, are not evoked spontaneously. b Excitatory synapses enter-
ing into the shared features of the mammals (positions from 58 to 
60, upper row) and the shared features of the birds (positions from 97 
to 99, bottom row). These features receive strong synapses from all 
other shared features of the same category and all distinctive features 
of individual members of the same category (features of mammals 
are positioned from 1 to 60, and features of birds are positioned from 
61 to 99). They do not receive synapses from features all animals 
share (position from 100 to 102). c Excitatory synapses entering into 
the features shared by all animals (positions from 100 to 102). These 
features receive synapses from all the other features in the network. 
The stronger synapses come from totally shared features, the smaller 
from distinctive marginal features. d A few examples of excitatory 
synapses entering into one shared feature typical of a subcategory: 
the feature “it produces milk” of the farm animals receives synapses 
from the other shared feature of the farm animals (position 30) and 
the distinctive features of the sheep and the cow (positions from 16 to 
28); the property “it eats grass” of the herbivorous receives synapses 
from the other shared feature of the herbivorous (position 42), from 
the distinctive features of the sheep and the cow (positions from 16 
to 28), the features of farm animals (since all our farm animals are 
herbivorous, positions 29–30), and all distinctive features of the zebra 
and giraffe (positions from 31 to 40); the feature “it flies” receive syn-
apses from the other shared feature of flying birds (position 96) and 
distinctive features of the owl, pigeon, goose, and parrot (positions 
71–94)

◂
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the shared feature of the mammals after training the net-
work with a learning rate as high as 0.00011. Erroneously, 
mammals’ features receive synapses from animals’ general 
features. The bottom panel shows the result of a simulation 
in response to the feature “it lives at night” using these 
synapses of the owl. The three properties of the mammals 
are erroneously produced, together with all the correct 
properties of the owl, causing a “fantastic” owl with some 
mammalian characteristics.

The same kind of error occurs if the learning rate of the 
inhibitory synapse is excessively decreased ( � in ≤ 0.000012 ) 
or the postsynaptic threshold of inhibitory synapses is exces-
sively increased ( �in

post
≥ 0.075 ). Both changes result in a 

slower increase of inhibitory synapses during training, caus-
ing excessive excitation from shared to distinctive features 
and confusion among members of the same class.

Finally, if the learning rule of inhibitory synapses is 
too much increased ( � in ≥ 0.00006 ) or the learning rule of 
excitatory synapses is too low ( �ex ≤ 0.00004 ), the distinc-
tive features of an animal fail to evoke some other features 
resulting in incomplete object recovery.

In conclusion, the learning rate must remain relatively 
small for excitatory synapses, and the balance between 

excitation and inhibition must be controlled carefully to have 
the desired behavior, as in Figs. 4, 5, 6, 7, and 8.

However, even though the previous parameter ranges for 
correct behavior appear pretty small and the model seems 
not too robust, the interval for acceptable parameter values 
becomes wider if some parameters are changed together. For 
instance, the parameter �ex can be increased further if the 
postsynaptic threshold �ex

post
 is also increased, resulting in a 

broader range. In fact, increasing the postsynaptic threshold 
results in a smaller value for the postsynaptic term in the 
Hebb rule (Eq. (1)) and, consequently, in a minor synaptic 
reinforcement. An increase in the excitatory learning factor 
γex can balance the latter.

Implications for pathological possible cases will be dis-
cussed in the last section.

Discussion

The present work proposes a model of semantic organiza-
tion based on a feature representation of objects, attractor 
dynamics, and gamma-band oscillations. Compared with 
the recent literature, the fundamental new aspect consists 

Fig. 5   Simulation of the network in response to a salient distinctive 
feature “it is independent” of the cat. The upper row represents the 
response of all units in the net in the time interval 0–300 ms. The bot-
tom row represents a zoomed portion of the same simulation. Only 
the cat’s salient features are evoked, distinctive and shared, and oscil-
late in the gamma range. In particular, the red continuous lines repre-
sent the salient distinctive features of the cat, the pink pointed lines 

(which remain at zero) the distinctive marginal features of the cat, 
the dashed lines the shared features of domestic animals (yellow) and 
mammals (blue), and the dash-dotted lines (green) the features shared 
by all animals. All these features’ activities are synchronized. The 
residual features in the net remain all at zero and are not shown in the 
legend for clearness
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of using an original asymmetric Hebb rule to deal with cor-
related patterns and distinguish between superordinate and 
subordinate concepts. Moreover, training is performed in a 
probabilistic environment, where not all features are simulta-
neously presented, but some can be lacking at any iteration. 
As discussed below, these aspects are original and can lead 
to an enrichment of existing models.

Hebb Rule and Hierarchical Organization 
of Concepts

Our asymmetrical Hebb rule, already partially exploited in 
previous works [68, 69], is based on different thresholds 
for presynaptic and postsynaptic activities. This has been 
further refined in the present work by including a presyn-
aptic gating mechanism: only if the presynaptic activity 
is above the threshold is a synaptic change (either poten-
tiation or depotentiation) implemented. This rule automati-
cally allows the formation of categories based on shared 
properties and implements a distinction between salient and 
marginal features. An essential aspect of the present learn-
ing procedure is that the latter distinction depends on the 

probability of feature occurrence. For clearness, we used 
just two probabilities (80 and 30% for salient and marginal 
features, respectively). Of course, different values can occur 
in reality, making the final object representation and the pat-
tern of synapses more varied than the one shown in Fig. 4. 
Moreover, other aspects of learning not included in our train-
ing procedure can modify the final semantic representation. 
These may involve the emotional impact of an experience, 
which may affect the learning rate, γ, in Eqs. (1) and (2), 
and the dependence of feature occurrence on a context 
[71] (so that certain features may frequently occur together 
with other features and tend to activate reciprocally). These 
aspects can be analyzed in a future job.

Interestingly, in this work, we tested a hierarchical organi-
zation consisting of many subcategories nested one inside 
the other and with some subcategories partly superimposed 
(for instance, the category “herbivorous” contains the cat-
egory “farm” and is partially superimposed on the category 
“wild”; the latter, in turn, includes the category “danger-
ous”). Furthermore, some isolated features are shared 
between a couple of animals without generating a specific 
category [for instance, “it has spots” (cow and giraffe), or 

Fig. 6   Simulation of the network in response to a marginal distinc-
tive feature “it has whiskers” of the cat. The upper row represents the 
response of all units in the net in the time interval 0–300 ms. The bot-
tom row represents a zoomed portion of the same simulation. All the 
cat’s salient features are evoked, distinctive and shared, and oscillate 
in the gamma range, out of phase, compared with the marginal input 
feature. In particular, the red continuous lines represent the salient 
distinctive features of the cat, the pink pointed lines the distinctive 

marginal features of the cat, the dashed lines the shared features of 
domestic animals (yellow) and mammals (blue), and the dash-dotted 
lines (green) the features shared by all animals. The residual features 
in the net remain all at zero and are not shown in the legend for clear-
ness. The activities of all salient features are synchronized; the activ-
ity of the marginal feature given as input oscillates out of phase. The 
other marginal cat’s features are silent
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“it lives in herds” (zebra and lion), or “it pecks” (roster and 
hen)]. In all cases, after training, the model responds to 
a single feature by correctly restoring the salient features 
describing the specific category or member. Marginal fea-
tures are never automatically restored (hence, do not come 
to mind thinking of an object), but, if given as input, can 

restore all salient features of the object. Noteworthily, in 
training the model, we never provided categories as input, 
only individual members (of course, containing distinctive 
and shared features). As shown in the simulations, categories 
emerge spontaneously after training. If a shared property is 
given as input (for instance, “it eats grass”), only the shared 

Fig. 7   a Simulation of the network in response to a distinctive feature 
of the zebra (“it has stripes”). The salient features of the zebra (gray 
lines), the shard features of the wild animals (violet lines), the herbiv-
orous (orange lines), the mammals (blue lines), and all animals (green 
lines) are synchronized. b Simulation of the network in response to 
a shared feature “it eats grass” of the herbivorous. The shared fea-
tures of the herbivorous (orange lines), the mammals (blue lines), 
and all animals (green lines) are synchronized. c Simulation of the 
network in response to a shared feature “it has big claws” of the dan-
gerous animals. The shared features of the dangerous animals (pur-
ple), wild animals (violet), mammals (blue), and all animals (green 
lines) are synchronized. d Simulation of the network in response to 

a shared feature “it has four legs” of the mammals. The three shared 
features of the mammals (blue) and the three features shared by all 
animals (green) are evoked and oscillate in synchronism. e Simula-
tion of the network in response to a shared feature, “it has two legs” 
of the birds. Again, the three shared features of the birds (cyan) and 
the three features shared by all animals (green) are evoked and oscil-
late in synchronism. f Simulation of the network in response to a fea-
ture “it eats” shared by all the animals. Only the shared features of all 
animals (green) are evoked in synchronism. In all these simulations, 
the residual features remain silent and are not shown in the legend for 
clearness
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Fig. 8   a Simulation of the network in response to a marginal feature 
(“it has spots”) shared by the cow and the giraffe. The network takes 
a long time (more than 330 ms) to recover the features of mammals 
(blue) and animals (green), together with one feature of the herbivo-
rous (orange). b The same simulation repeated after a 30% increase 

in all excitatory synapses of the network (this might reflect increased 
attention, for instance, mediated by a neurotransmitter change, like a 
fall in acetylcholine concentration). A correct response is achieved 
now within 100  ms. In all these simulations, the residual features 
remain silent and are not shown in the legend for clearness
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properties of that category are evoked (in that case, herbivo-
rous, mammals, and animals).

An interesting example concerns the subcategory “vola-
tile.” With the present values of training parameters, a fea-
ture like “it flies” is not attributed to the roster and the hen, 
i.e., the network can correctly distinguish between flying and 
not-flying birds. However, this distinction is quite fragile 
and depends on the number of flying birds (four in our tax-
onomy representing 66% of cases) and not-flying birds (just 
two, i.e., 33%). Since learning is probabilistic, using a more 
significant number of flying birds would lead to a different 
conclusion, i.e., that all birds can fly. This is understandable 
since cases rarely occurring in a category (for instance, that 
whales are mammals) can probably be managed only using 
encyclopedic knowledge and not acquired from experience. 
In a previous work [69], we proposed that categories should 
have an increasing postsynaptic threshold to deal with rare 
cases. This can be tested again in future work.

Gamma‑Band Synchronization

Since the synchronization of neuron activities in the 
gamma band can potentially affect information transmis-
sion in the brain [72, 73], it is ubiquitously present in the 
cortex [38, 74] and has been observed in many cognitive 
and memory tasks such as object recognition [33, 34], 
working memory [35, 36], sensory processing [38, 43, 75], 
and attention control [45, 47], we deemed it of value to test 
the semantic model in a gamma oscillation regimen. All 
units in the model (coding for different features) exhibit 
30–35 Hz oscillatory activity if excited by an external 

input. To this aim, we used a neural mass model of inter-
connected populations (pyramidal neurons, excitatory 
interneurons, inhibitory interneurons with slow and fast 
synaptic dynamics) arranged in feedback to simulate cor-
tical column dynamics. Neural mass models describe the 
collective behavior of entire populations of neurons with 
just a few state variables [61, 63–65]. In particular, these 
models emphasize the pivotal role played by fast inhibitory 
interneurons in the development of a fast (> 30 Hz) oscil-
latory behavior [61]. This approach is suitable for testing 
model behavior vs. mean field potentials or simulating 
cortical activity reconstructed in an ROI from high-density 
scalp EEG measurements [62]. Finally, the gamma rhythm 
can be linked with other rhythms to analyze more complex 
dynamical scenarios (for instance, theta-gamma during 
sequential memory [76]).

It is well known that the neocortex exhibits a six-layer 
structure and that these layers have a different role in 
sending and receiving information [77]. In the present 
simplified model, however, we do not use a six-layer 
arrangement but just four populations without a layer 
specification: the output emerges from the population of 
pyramidal neurons and enters into pyramidal neurons and 
fast GABAergic interneurons of another unit, depending 
on previous training. A more complex arrangement of 
populations in six layers may be the subject of further 
improvements in the neural mass model.

Three aspects emerge from our training algorithm in 
an oscillatory regimen. First, we assumed that the Hebb 
rule is based on the mean activity of neurons in a 30 ms 
time interval. In fact, before learning, the different units 

Fig. 9   Simulations of the network in response to a salient distinctive feature “it is independent” of the cat (the same simulation as in Fig. 5), per-
formed with different time delay values among the units. Good synchronization is achieved with delay values of 20–25 ms
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Fig. 10   a Pattern of the excitatory synapses entering into one shared 
feature of the mammals (“it has four legs”) from all features in the 
network after training the network with an increased learning rate 
γex = 0.00011. It is worth noting that this feature now receives sig-
nificant synapses not only from the distinctive and shared features 
of mammals (positions 1–60) but also from the features shared by 
all animals (positions 100–102). As a consequence, the features 
of mammals are erroneously evoked in response to any feature of a 
bird, too, and erroneous synapses are created from birds to mammals. 

b Simulation in response to a distinctive feature of the owl, “it lives 
at night,” performed with the synapse pattern as in the upper panel. 
Indeed, not only the correct owl’s features are evoked [distinctive of 
the owl (brown), flying birds (violet), general birds (cyan), and ani-
mals (green)] but also the shared features of mammals (blue), result-
ing in a monster bird with mixed mammal-bird features. Note that the 
marginal features of the owl (pointed lines) are not evoked. All other 
features not shown are at zero
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in an object representation oscillate out of phase due to 
noise; hence, their instantaneous activity is uncorrelated 
and cannot contribute to Hebbian synaptic potentiation 
using a threshold rule. The idea that the Hebb rule is based 
on a temporal interval finds much interest in the literature 
[78, 79]. Of course, our model does not use spiking neu-
rons; hence, our temporal version of the Hebb rule refers 
to a collective neuron behavior (i.e., a population spike 
density) rather than a precise spike temporal organization.

Second, to achieve good synchronization among units 
oscillating with a gamma rhythm, both excitatory and 
inhibitory (bi-synaptic) connectivity must be considered 
(see the bottom panels in Fig. 2). Strong excitatory con-
nections (named Wex in the model) realize attractor dynam-
ics and allow the recovery of the overall salient content 
from an initial cue; weaker inhibitory connections (Win) 
favor synchronization and avoid excessive excitation to 
spread over the network. Of course, this result is not new. 
A role for inhibitory interneurons in gamma synchroniza-
tion has been demonstrated in recent papers [80–82] and 
is a subject of much active research.

Third, we observed that synchronization is much more 
robust if a delay higher than 15 ms is included in the 
connectivity among units. Ideal delays for our models are 
20–25 ms. Some recent results emphasize a positive role 
in the delay. Petkoski and Jirsa [83], using a propagation 
velocity as high as 5  m/s, computed that mean intra- 
and interhemispheric time delays are 6.5 and 19.6 ms, 
respectively. Suppose we assume a similar velocity, long-
distance transmission, + a further delay necessary to 
perform possible additional processing steps (like more 
complex feature extraction in the visual pathway). In 
that case, our intervals are compatible with information 
exchange in the brain.

Possible Training Errors

The present simulations also indicate possible blunders 
in the semantic network, resulting in inadequate learning. 
Notable, in case of excessive excitation vs. inhibition (for 
instance, an increase in parameter γex, or a decrease in γin, 
or a decrease in parameter �ex

post
 ), excitatory connections can 

erroneously be created from shared to distinctive features. 
These erroneous synapses are insufficiently depotentiated, 
thus leading to confusion between attributes of different 
categories (for instance, the production of an animal with 
characteristics of mammals and birds together) or between 
members of the same category (for example, a mammal that 
barks and meows at the same time). It is worth noting that 
this confounding logic can have some similarities with the 
form of paradoxical thinking occurring during psychiatric 
disorders (like schizophrenia) characterized by a distorted 
perception of reality [84]. We know this is just a preliminary 

result, but it can provide interesting indications for future 
work (see also “Applications to Neural Disorders” below).

Comparison with Recent Models

It is important to compare our model with the more recent 
and advanced models in the literature, particularly those 
developed by Rogers et al. [18, 19] and Garagnani et al. 
[20–25]. These models are based on a multilayer organi-
zation, in which different layers represent different brain 
regions involved in semantic processing, and connections 
among regions are neuroanatomically grounded. Our model 
is much simpler, based on a single attraction network (remi-
niscent of previous models developed in the nineties and 
early twenties [8–10, 13]). We adopted this choice since 
we aimed to investigate the potentiality of the Hebb rule in 
dealing with correlated patterns, hierarchical organization 
of concepts, and probabilistic learning. For this purpose, 
a single-layer auto-associative network provides a more 
straightforward and intuitive description of the results.

Despite this substantial simplification, we claim our 
results introduce some novel aspects. Indeed, the models 
by Rogers et al. are based on backpropagation. The models 
by Pulvermuller et al. are trained with a Hebb rule, with 
different presynaptic and postsynaptic thresholds. Still, the 
authors do not investigate the role of correlated patterns 
or probabilistic learning. Another difference, although of 
less value, is that recent versions of these models, devoted 
to gamma-band simulations [23–25], use spiking neurons, 
whereas we analyze population dynamics.

Briefly, our results can be helpful, in perspective, to 
enrich multilayer neurocomputational models, especially 
the models by Pulvermüller et al. based on Hebbian learn-
ing. Of course, in our model (as in similar attractor mod-
els), features are assumed as an input, i.e., the model pre-
sumes a previous neural processing stream that extracts 
these features from external data. Moreover, while some 
features are unimodal, involving just one sensory modal-
ity (such as “it barks,” “it meows,” or “it purrs” for the 
auditory modality or “it is gray” for the visual one), other 
involves many sensory modalities together (such as “it has 
fur” which can include visual and tactile modalities or “it 
is of various sizes”) or more complex abstract concepts 
(like “it is viviparous,” “it hibernates,” or “it is affection-
ate”). This opens the problem of where these features can 
be extracted and organized in the brain. A characteristic of 
deep neural networks is the capacity to extract more and 
more abstract features and to combine these features to 
solve problems like object classification or signal decod-
ing [85]. In this regard, the multilayer organization in the 
models by Pulvermüller et al. [23, 25] based on sensory 
modal (visual and auditory), motor, and multimodal areas 
(semantic hubs) can be enriched by a Hebbian learning 
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procedure that reflects correlated patterns, a hierarchy of 
concepts and probabilistic differences among features.

Applications to Neural Disorders

A potential application of the present study concerns 
pathological behavior. The problem is so complex and 
multifaceted that it deserves much future study. Just two 
preliminary analyses have been presented here. The first 
involves the training procedure and points out that insuf-
ficient depotentiation of synapses during learning can 
produce an “illogic” behavior in the network, propagating 
excitation from shared features toward category members. 
Interestingly, some psychiatrists suggested that both Aris-
totelic and not-Aristotelic logic can be implemented in the 
brain (related to conscious and unconscious modalities, 
respectively; see also the work by Matteo Blanco, sum-
marized in Rayner [86]) and that a not-Aristotelic logic or 
paleo-logic can be typical of schizophrenic or autistic sub-
jects [84, 87] and could characterize dreaming. This idea 
is speculative but may represent a stimulus for investigat-
ing this fascinating domain. Second, since dysfunction in 
GABAergic interneurons has been hypothesized in several 
psychiatric disorders, such as schizophrenia, autism, and 
other neurological conditions [88, 89], we simulated the 
effect of changing internal parameters related to fast inhib-
itory interneurons. Results indicate that fast inhibitory 
interneurons are essential to sustain the gamma rhythm. 
A decrease in the auto-inhibitory loop in this population 
plays a fundamental role in jeopardizing synchronization. 
This opens an interesting perspective for further studies 
devoted to a deeper analysis of the relationships between 
GABAergic fast interneurons, gamma rhythms, and neu-
rological disorders.

Testable Predictions

Testable predictions are experimentally tricky since the model 
considers integration among neural activity in the gamma band 
in distal brain regions. Therefore, just some significant lines 
are presented here.

The first kind of prediction can involve the asymmetric 
Hebb rule proposed for feature representation. It can be tested 
using feature listing tasks after training subjects with new arti-
ficial objects (for instance, new “objects” consisting of visual, 
auditory, motor, or other amodal features presented with a dif-
ferent probability). Features with a smaller probability should 
be neglected during subsequent feature listing tasks.

Regarding the gamma rhythm, responses revealing a 
higher level of object recognition and appropriate feature 
listing should be associated with higher gamma power than 
poor responses, a difference already suggested by Garagnani 

et al. using a spiking neurocomputational model [23]. Fur-
thermore, objects able to evoke more features should present 
higher gamma power. Last, gamma power should be present 
in unimodal regions (auditory, visual), motor regions, or 
amodal associative areas, depending on the single object and 
the kind of features spontaneously evoked. A large amount 
of literature on this subject is already present, often recog-
nized under the name of “embodied” or “grounded cogni-
tion” (see [1, 90] for a review).

Another prediction concerns the idea that marginal 
features, when perceived, can oscillate out of phase com-
pared with salient features; after their presentation, they do 
not participate in attractor dynamics and so are no longer 
evoked if removed from the input (unpublished simulations), 
whereas salient features, after object recognition, continue 
to oscillate in synchronism. Furthermore, the model predicts 
that object recognition from marginal features requires more 
time. However, this prediction is difficult to test because 
feature extraction from the sensory data requires additional 
time, and the latter may differ depending on the kind of 
feature. The comparison should involve the same features in 
different individuals, with different saliency or marginality 
depending on their experience.

Finally, testable predictions may concern the pivotal role 
of fast inhibitory interneurons in producing gamma oscil-
lations and favoring synchronization. Tests (some already 
discussed in literature see [91]) can involve a drug reduction 
of GABAergic activity or brain stimulation and their con-
sequence on gamma rhythms and feature listing responses.

Conclusions

This study presents a neurocomputational model of semantic 
memory based on a feature representation of objects, Heb-
bian learning, and gamma-band synchronization. Compared 
with previous models, we suggest using a new version of the 
Hebb rule, joined with probabilistic learning, to deal with 
correlated patterns, hierarchical representations, and differ-
ent feature saliency. Through simulations, we show that the 
network can distinguish between superior and inferior cat-
egories without errors and provides a different role for sali-
ent and marginal features based on their frequency in previ-
ous experience. Furthermore, simulations indicate that rapid 
synchronization among neural populations can be realized 
in the gamma band through trained excitatory and inhibi-
tory synapses, provided the delay is 20–25 ms. Additionally, 
alterations in some parameters concerning the learning rule 
or the GABAergic interneurons provide interesting, although 
preliminary, indications about the possible causes of seman-
tic disorders, characterized by confusion among categories 
or the recovery of a distorted reality. The model’s topologi-
cal structure is relatively more straightforward than in recent 
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sophisticated models implementing different cortical regions 
and their neuroanatomical connections. Still, in perspective, 
our results can be incorporated into multilayer networks, 
improving their capacity to realize a more consistent seman-
tic description based on a hierarchical and probabilistic rep-
resentation of reality.
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