
Ad Hoc Networks 156 (2024) 103413

A
1

Contents lists available at ScienceDirect

Ad Hoc Networks

journal homepage: www.elsevier.com/locate/adhoc

CACHE-IT: A distributed architecture for proactive edge caching in
heterogeneous IoT scenarios
Ivan Zyrianoff a,b,∗, Lorenzo Gigli a,b, Federico Montori a,b, Luca Sciullo a,b, Carlos Kamienski c,
Marco Di Felice a,b

a Department of Computer Science and Engineering, University of Bologna, Italy
b Advanced Research Center on Electronic Systems ‘‘Ercole De Castro’’, University of Bologna, Italy
c Federal University of ABC (UFABC), Santo André, SP, Brazil

A R T I C L E I N F O

Keywords:
Internet of Things
Edge computing
Proactive caching
Cloud-to-Thing continuum
Edge caching
Caching architecture

A B S T R A C T

The Cloud-to-Things (C2T) continuum combines the proximity of edge infrastructure to the devices with
cloud resources to optimize data processing and response time in the Internet of Things (IoT). Proactive edge
caching is a potential solution for meeting latency constraints in C2T environments, enabling efficient data
processing and storage while reducing redundant computation and cost. However, while 5G/6G infrastructural
aspects and caching strategies are extensively studied, no frameworks facilitate the design and deployment of
caching strategies or address IoT’s unique requirements. This paper proposes CACHE-IT, a proactive edge
caching framework that decouples the caching strategy algorithm from the underlying architecture, enabling
customization based on application-specific requirements. Through extensive simulations, we analyzed the
impact of different configurations on system metrics and verified that the CACHE-IT positively impacts the
system latency and hit rate. By implementing a scenario-specific caching strategy, we illustrate the CACHE-
IT deployment in a real-world Structure Health Monitoring (SHM) system. The evaluation demonstrates that
CACHE-IT impacts positively in terms of latency, hit rate, and the number of requests sent to data providers.
1. Introduction

In recent years, we experienced a rapid growth of low-power devices
connected to the Internet, which brought forth a plethora of new
challenges for computational and network infrastructure. The Internet
of Things (IoT) has become a primary enabler for various new domains,
such as Smart Cities [1] and Structure Health Monitoring (SHM) [2].
However, IoT devices have constrained processing capabilities and
struggle to handle the increasing demands of data processing and
storage. Consequently, cloud computing was integrated with IoT, as
it offers virtually unlimited storage and computation capabilities to
the thousands of gigabytes daily produced by sensory data [3]. Nev-
ertheless, cloud computing faces its own set of limitations regarding
IoT. In particular, the long communication delay between users and
the cloud hinders IoT time-sensitive applications that rely on high
automation and low-latency operations, such as in Industry 4.0 [4,5]
and vehicle networks [6]. Edge computing has gained prominence as a
potential solution to overcome these challenges by bringing data and
computation near IoT devices. By leveraging the client proximity of
edge devices combined with the vast resources of the cloud, the novel

∗ Corresponding author at: Department of Computer Science and Engineering, University of Bologna, Italy.
E-mail addresses: ivandimitry.ribeiro@unibo.it (I. Zyrianoff), lorenzo.gigli@unibo.it (L. Gigli), federico.montori2@unibo.it (F. Montori),

luca.sciullo@unibo.it (L. Sciullo), cak@ufabc.edu.br (C. Kamienski), marco.difelice3@unibo.it (M. Di Felice).

Cloud-to-Things (C2T) continuum paradigm [7] aims to optimize data
processing and storage, providing a balance between latency-sensitive
applications and resource-intensive cloud computations.

Not all computational tasks can be efficiently offloaded to the net-
work edge due to constraints in the processing power and robustness of
edge nodes [8]. Further, real IoT systems commonly require to interface
with third-party services that are not under system administrators’
control [9]. In order to achieve better exploitation of C2T integration
with IoT, edge caching constitutes a potential solution to satisfying
latency constraints [10]. Storing frequently accessed data at the edge
reduces redundant computation, which leads to cost savings in terms
of power and cloud resources — e.g., serverless functions, cloud data
transfer, and paid APIs. More in-depth, proactive edge caching [11–13]
is attracting attention as a further improvement of edge caching. Its
principle is to explore the relationship between users and their request
patterns and accurately predict and prefetch data, reducing latency
while satisfying freshness of information constraints [14] — i.e., Age
of Information (AoI). However, the current literature has two gaps that
need to be addressed.
vailable online 1 February 2024
570-8705/© 2024 The Author(s). Published by Elsevier B.V. This is an open access a

https://doi.org/10.1016/j.adhoc.2024.103413
Received 5 June 2023; Received in revised form 11 October 2023; Accepted 18 Jan
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

uary 2024

https://www.elsevier.com/locate/adhoc
https://www.elsevier.com/locate/adhoc
mailto:ivandimitry.ribeiro@unibo.it
mailto:lorenzo.gigli@unibo.it
mailto:federico.montori2@unibo.it
mailto:luca.sciullo@unibo.it
mailto:cak@ufabc.edu.br
mailto:marco.difelice3@unibo.it
https://doi.org/10.1016/j.adhoc.2024.103413
https://doi.org/10.1016/j.adhoc.2024.103413
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2024.103413&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.

d
T
c
c
n
e

First, the studies focus mainly on the optimization of edge caching
in scenarios such as 5G and 6G networks, where the primary goal
is to minimize backhaul traffic and optimize network performance
from the perspective of network owners [15], which do not overlap
with the requirements imposed by IoT scenarios. Apart from the time
requirements of IoT applications, the diverse range of IoT devices and
protocols demand interoperability to enable seamless integration and
communication [16]. IoT environments are highly dynamic, character-
ized by rapidly changing conditions through continuous device addition
and removal, and their mobility [17]. Unlike network-oriented proac-
tive caching, which focuses on ensuring average client satisfaction, IoT
application-oriented caching has varying constraints. For instance, in
vehicular networks, the infotainment data system needs low latency
sufficient to meet clients’ Quality of Experience (QoE), while essential
navigation data requires strict AoI and latency [18]. These factors
present significant challenges demanding a tailored proactive edge
caching solution designed explicitly for IoT environments.

Second, caching strategies, models, and optimizations are the main
focus of researchers. At the same time, there is a lack of proposals
for caching frameworks that enable the design and deployment of
caching strategies [19]. The absence of design efforts to guide users on
the implementation and deployment creates a significant gap between
academia and practitioners; while complex caching strategies are con-
solidated in literature, their implementation requires time-demanding
efforts from highly specialized individuals.

To address these challenges, we propose CACHE-IT (Connected
Architecture for Caching HEterogeneous IoT), a distributed framework
for proactive edge caching in IoT scenarios. CACHE-IT allows rapid
eployment, modification, and replacement of the caching strategy.
he framework provides the clients’ request history as input to the
aching strategy, which is handled as an independent and modular
omponent. CACHE-IT components are based on current Web tech-
ology standards, ensuring compatibility and easy integration with
xisting systems.

The contributions of our paper are:

• Flexibility: CACHE-IT allows the deployment of customized
and flexible caching in the C2T continuum by decoupling the
edge caching architecture from the caching strategy, enabling
use-case-driven caching strategy customization. Consequently, it
provides versatility in the technique utilized (e.g., Deep Learning,
Heuristic) and the caching goal (e.g., minimize latency, minimize
AoI). The framework allows handling different specific users or
requests that impose specific constraints.

• IoT oriented design: we address interoperability issues of IoT by
providing a dedicated device abstraction layer that seamlessly in-
tegrates heterogeneous IoT devices through a standard and well-
defined interface. We tackle the dynamism of IoT environments
regarding the volatile nature of sensors by incorporating mech-
anisms that adapt the caching strategy to reflect these changes.
Finally, CACHE-IT components were designed to be distributed
in the C2T continuum, considering edge nodes ranging from base
stations to constrained computational devices.

• Advanced Caching Mechanism: CACHE-IT utilizes cooperative
and proactive caching mechanisms for increased performance
with no additional complexity. It optimizes the capacity of the
system to share resources in a twofold manner. First, caching
strategies are able to redirect specific Cache Node requests to
query directly other edge nodes. Second, when a cache miss oc-
curs, the Cache Node queries its nearest neighbors. We intention-
ally avoided mechanisms that might be bound to specific caching
strategies to ensure CACHE-IT flexibility and adaptability.

• Twofold Validation: we performed extensive simulations vary-
ing numerous parameters to understand the impact of CACHE-IT
features under different scenarios and client behaviors — mod-
2

eled according to patterns commonly found in IoT scenarios.
Additionally, we deployed CACHE-IT in a real-world Structure
Health Monitoring (SHM) system, which illustrates how CACHE-
IT can provide personalized strategies to specific IoT environ-
ments. We evaluated the testbed by comparing the system with
and without traditional caching mechanisms.

In the remainder of this paper, Section 2 discusses related works
in the field and compares them to our solution. Section 3 introduces
the CACHE-IT framework, providing a comprehensive overview of its
architecture, while Section 4 details its operations. Section 5 describes
CACHE-IT implementation. In Section 6, we evaluate the framework
performance through large-scale simulations while CACHE-IT deploy-
ment in a real IoT environment is described in Section 7. Finally,
Section 8 concludes the paper and discusses future research directions
that have emerged from this work.

2. Related work

The topic of edge caching has been deeply explored in literature.
For a more structured reading, we redirect the interested reader to
our previous work, where we proposed a taxonomy for IoT edge
caching solutions [19]. In this section, we review the recent literature
and highlight the differences concerning our work by focusing on the
following aspects:

• The goal of the caching strategy, i.e., what the caching strategy
aims to optimize.

• The overall caching strategy, focusing on the underlying scien-
tific method adopted.

• Whether the caching solution is domain-agnostic or is particu-
larly tied to one application, e.g., video streaming.

• Whether the caching solution is infrastructure-agnostic or is
particularly tied to a certain physical deployment, e.g., 5G macro-
cells.

• Whether the caching solution is proactive, i.e., it tries to cache
the content before it is requested.

• Whether the caching solution is cooperative, meaning that the
edge Cache Nodes exchange content or information for tuning
their decisions.

Related information about each of the analyzed papers is collected
and summarized in Table 1, while the rest of the section is dedicated to
their description and the analysis of the gaps our work aims to tackle.

First, a substantial quantity of works proposed in the literature
are bound to a definite application scenario or deployment. It is the
example of [4], which deals specifically with industrial scenarios where
mobile nodes need data from a central server and wander near wireless
sensors. Here, the authors propose a centralized optimization algorithm
where all the computation takes place in the cloud to proactively
offload data to edge servers by predicting client mobility. Prediction of
mobility patterns is also employed in [20], where proactive caching is
used in urban scenarios to deliver content to vehicles promptly. In [21],
authors cache and transcode video content on UAVs to alleviate the
backhaul load through a heuristic model. Authors in [22] propose a
deep learning model for proactive caching that predicts the content
popularity of videos and music only. In contrast with our work, the
mentioned approaches are vertical in one application context and lack
adaptability.

One recurrent scenario for which a consistent number of works have
been proposed is 5G cellular networks. In [23], authors overview the
state-of-the-art and the current challenges and potential solutions for
5G edge caching. They also propose a caching framework that leverages
blockchain transactions and non-negative matrix factorization. In [24],
authors inspect cooperative micro-caching as a network function that
should be embedded in 5G networks to minimize latency. A similar
5G scenario is analyzed in [6], where results aim to motivate the

introduction of new caching policies to deal with high mobility nodes



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.
Table 1
Comparison of CACHE-IT with the works in literature.

Paper Goal Strategy Domain Infrastructure Proactive Cooperative

[12] Backhaul Load Deep Learning ✓ ✗ ✓ ✗

[11] Hit Rate Deep Learning ✗ ✗ ✓ ✗

[28] Delay No strategy ✓ ✓ ✗ ✗

[31] Delay, Hit rate Deep Learning ✓ ✓ ✓ ✓

[29] Response Time Heuristic ✗ ✓ ✗ ✓

[32] Hit Rate Deep R. Learning ✓ ✓ ✗ ✓

[4] Delay, Goodput Optimization ✗ ✗ ✓ ✗

[24] Delay Fuzzy inference ✓ ✗ ✗ ✓

[6] Delay Statistical ✓ ✗ ✗ ✗

[13] Hit Rate LSTM & Ensemble ✓ ✗ ✓ ✗

[25] Hit Rate & Delay Deep R. Learning ✓ ✗ ✓ ✓

[20] Hit Rate & Delay Probabilistic ✗ ✗ ✓ ✗

[21] Hit Rate & Delay Heuristic ✗ ✗ ✗ ✗

[35] Hit Rate & Delay LSTM ✓ ✓ ✓ ✓

[33] Hit Rate & Profit Federated Learning ✓ ✓ ✓ ✓

[34] Traffic Load Deep Learning ✗ ✗ ✓ ✗

[36] Hit Rate, Delay Heuristic ✓ ✗ ✗ ✗

[30] User Utility Probabilistic ✗ ✗ ✗ ✓

[23] Delay Optimization ✓ ✗ ✓ ✗

[26] Hit Rate Deep R. Learning ✓ ✗ ✓ ✓

[22] Hit Rate, Load Deep Learning ✗ ✗ ✓ ✗

[27] Traffic Load Greedy ✓ ✗ ✗ ✓

CACHE-IT Flexible Flexible ✓ ✓ ✓ ✓
(e.g., vehicles). Again, in [25], authors focus on mobile content caching
for 5G networks, tackling the problems of edge caching and radio re-
source allocation separately, using a deep reinforcement leaning for the
first one and a branch & bound approximation algorithm for the second.
The work in [12] proposes DeepCacheNet, a deep learning-based frame-
work for proactive caching that uses stacked denoising autoencoders
to classify content popularity and instruct base stations to cache such
content. In [26], the authors present a framework for proactive and
cooperative edge caching that aims to cluster base stations to establish
intra-cluster collaboration through a deep reinforcement learning tech-
nique. Caching-as-a-Service [27] is a caching virtualization framework
along with the development of Cloud-based Radio Access Networks
(C-RAN). It focuses on virtualizing the cache through Network Func-
tion Virtualization (NFV) and exploring the possibilities of detaching
the software application from the underlying hardware. These ap-
proaches, unlike ours, are tied to the 5G infrastructure, requirements,
and characteristics, which do not reflect many IoT systems.

Most edge caching works in literature present a similar core struc-
ture: they aim to optimize several parameters (e.g., the hit rate and
the backhaul load) of a specific caching policy. Therefore, they pro-
pose a mathematical structure to model the system, an algorithmic
or learning-based solution, and numerical results supported by simu-
lations. Some solutions are numerical or probabilistic, such as Smart-
Edge-CoCaCo [28], or [29], which proposes a cooperative caching
mechanism for scenarios where edge nodes offload computing tasks
to edge cloudlets. A D2D solution is adopted in [30], where authors
consider data freshness and client mobility. However, most of the
solutions in the literature rely on deep learning, as [11], where content
popularity in the future is predicted by using bidirectional deep recur-
rent neural networks, or [31], which uses a distributed deep learning
algorithm to predict the content demand by single users, or in [32],
where deep reinforcement learning is adopted by each caching agent so
that they learn to cooperate and share cached resources. Other related
deep learning-based works use federated learning [33] or deep learn-
ing in conjunction with attention mechanisms [34]. In [35], authors
present a very different solution: proactive caching is done locally in
each user’s equipment, and cache hit can occur locally or with direct
D2D communication, eliminating the structural constraints enforced by
cellular networks. With such a focus on the single caching strategy, very
few efforts are dedicated to proposing an edge caching architecture
for IoT scenarios capable of accommodating different caching policies.
Furthermore, most of the solutions proposed are not complemented by
3

a real implementation or guidelines of the software components.
It is also important to mention Information-Centric Networking
(ICN), which, in the past decade, has established itself as an alternative
to conventional TCP/IP networks. ICN, in particular in its guise of
Named Data Networking (NDN), fulfills a content-centric design and a
location-independent naming mechanism, giving this paradigm several
advantages in the scope of mobility and efficiency. One powerful and
native feature of ICN is its in-network caching in intermediate network
routers [37]. The recent study in [36] presents an all-encompassing so-
lution based on NDN, encompassing network topology, data freshness,
and content popularity, thus attempting to design a common solution
to all previous works on caching in ICN.

A final aspect to consider is modeling the pattern of requests from
clients. A meaningful amount of the mentioned works assume time-
invariant content popularity and primarily cater to human clients.
This may differ if the system actors are IoT devices, such as sensors
or robots. Furthermore, they disregard the system aspects of how to
collect, share, store, and process client traces to obtain the popularity
values of each resource. In [13], authors apply proactive caching to
mobile edge networks at the base stations based on content popularity;
however, they evaluate the method over a movie dataset, assuming to
know the demographic information of the clients through the usage of
cameras. In contrast to existing approaches, our work focuses on crucial
aspects of IoT environments, including time-variant conditions and
interoperability. Additionally, we evaluated CACHE-IT under different
client behaviors, which was modeled based on the real behavior of
agents in IoT scenarios.

3. CACHE-IT architectural design

CACHE-IT is an architectural framework for proactive edge caching
in heterogeneous IoT scenarios that provides high customization and
flexibility. Following, we describe the guidelines that support CACHE-
IT design (Section 3.1), then we detail its high-level architecture
(Section 3.2).

3.1. Designing guidelines

Our architecture aims to provide proactive caching capabilities
through a fully customized framework. Additionally, our solution aims
to be deployed on top of operational IoT systems. Four general guide-

lines supported our architectural design:



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.

c
e
T
o
a
f
N
t
i
u
p
f
w
p
i
o
p
i
h

B
i
b
r

d
t
T
d
C
s

4

a
e

t

4

t
b
l
n

1. Interoperability: we adopt standards-based approaches and
open interface solutions that enable seamless communication
between heterogeneous devices and data providers.

2. Generality: IoT systems are employed in a wide range of do-
mains, each with unique requirements and characteristics. These
domains include areas that are orthogonally different from each
other, such as Industry 4.0 and smart agriculture. Specific sce-
narios may have their own particularities that must be ad-
dressed. The architecture should be domain-agnostic and capa-
ble of handling different constraints.

3. Adoption: The fundamental elements of the architecture must
rely on established, real-world technologies that are widely
adopted in the industry. Nonetheless, the architecture descrip-
tion must remain independent of the underlying technology

4. Flexibility: The architecture must be flexible regarding the
caching deployment in the C2T continuum by decoupling it
from the caching strategy regarding its goal, constraints, and
requirements. The ability to easily switch between caching poli-
cies allows organizations to react rapidly to alterations in their
requirements or constraints.

3.2. CACHE-IT high level architecture

CACHE-IT is a distributed microservice-oriented architecture; each
software component is modular and independent. This design addresses
scalability concerns by allowing multiple replicas of the same services
to be instantiated simultaneously, effectively managing a high demand
of requests to the framework. Fig. 1 illustrates CACHE-IT high-level
architecture, which comprises clients – at the bottom – that request data
from providers — at the top. Requests are routed through the caching
framework, which checks if the requested content is cached and valid.
If so, data is returned to the client without forwarding the request to
the provider.

CACHE-IT comprises two classes of computational nodes: a single
Cache Controller and 𝑁𝐶 Cache Nodes. The set of Cache Nodes is de-
noted as 𝐶 = {𝑐1, 𝑐2,… , 𝑐𝑁𝐶

}. The Cache Manager – a Cache Controller
omponent – generates a set of instructions, called caching orders, for
ach Cache Node that determine: what, when, and how long to cache.
he Cache Workers – one per Cache Node – are responsible for carrying
ut the caching orders – i.e., performing requests and storing data –
nd managing clients’ requests, thus returning the cached content or
orwarding their request to the specified provider. Typically, Cache
odes are located at the edge, and the Cache Controller is deployed in

he cloud. Any device with an operating system and storage capabilities
s suitable as a Cache Node. It can be deployed in a dedicated config-
ration, such as on a Raspberry Pi, or as an independent and isolated
rocess within a shared environment. The latter setup is better suited
or more powerful and stable equipment (e.g., base stations). However,
e highlight that the Cache Node does not engage in resource-intensive
rocessing tasks (which are executed by the Cache Manager), resulting
n minimal impact on the node’s computational metrics. A caching
rder is a well-defined structure that contains an instruction to be
erformed by the specified Cache Node at a certain execution time, and
ts output is valid until the specified expiration time. A caching order
as two different modes:

• Standalone: the caching order contains the provider to be re-
quested and all the metadata needed to formulate the request.
Each cache order makes the Cache Worker perform a request
to a given provider; the corresponding response is cached for a
predetermined time.

• Cooperative: besides the content in standard mode, the caching
order includes an additional parameter: a Cache Node address.
In this case, instead of requesting data directly to the service
provider, the Cache Worker checks if the Cache Node specified
has the requested resource; if so, the requests to the specified
provider will be fetched from that Cache Node until the defined
4

expiration time. I
y employing cooperative caching orders, the Cache Manager can min-
mize the number of requests made to the providers. This is achieved
y storing a particular resource in one Cache Node and directing the
emaining Cache Nodes to retrieve it from that specific Cache Node.

Before initialization, the user defines the Caching Template, a well-
efined structure that holds all the system configurations — including
he caching strategy. Table 2 lists the attributes included in the Caching
emplate along with a brief description. There are four independent
ata flows in CACHE-IT (as depicted in Fig. 1 legend), and for each
aching Template attribute, we denote the data flow it impacts and the
ubsection that describes it.

. CACHE-IT operations

After initialization, CACHE-IT has a short bootstrap phase for en-
bling interoperability (Section 4.1), followed by the caching strategy
xecution (Section 4.3), which is also triggered every 𝑡 time slots

(the time slot duration set in the Caching Template). Both the history
manager (Section 4.2), the request forward, and data retrieval data
flows (Section 4.4) are triggered by the arrival of the client’s requests.

4.1. Interoperability enabler

An important aspect to consider when designing an IoT caching
framework is the heterogeneous nature of the devices, which vary
greatly in software and communication protocols. As illustrated by
Fig. 1, CACHE-IT clients can be diverse, ranging from constrained
sensors to robots and even regular humans. IoT devices do not usually
adopt compatible interfaces with current Web technologies, which
makes integration with non-IoT solutions difficult. To address this
issue, CACHE-IT provides a standardized and interoperable interface,
allowing clients to abstract the specific interface adopted by the data
providers.

CACHE-IT bootstrap operation aims to enable interoperability, as
illustrated in red in Fig. 1. The active component in this data flow is
the Interface Translator, which bridges dissonant ecosystems, namely
the traditional Web, with a standard and interoperable interface for
IoT devices. We adopt the W3C Web of Things (WoT) [38] standard,
as it extends existing Web technologies and provides a homogeneous
interface to access IoT devices that abstract from their particular inter-
faces and heterogeneous network protocols. The WoT core component
is the Web Thing (WT), an abstraction of a physical or a virtual entity
with its metadata and interfaces described in a well-defined document
called Thing Description (TD). The TD describes the WT metadata,
capabilities, properties, and interactions in a machine- and human-
understandable structure — i.e., JSON. The interaction with a given
WT is implemented through the WT protocol bindings, which define
the mapping of the possible device interactions to different network
protocols.

As WoT does not provide methods or guidelines to convert dissonant
interfaces to its ecosystem, the Interface Translator converts traditional
Web services interfaces (i.e., RESTful APIs) into TDs and instantiates
them in WTs that act as a proxy of the original provider. Step R1 in
Fig. 1 refers to the syntactical translation of the provider interface into
a TD, and Step R2 depicts its instantiation into a proxy WT. The set of
data providers to translate are defined by the providers attribute of
he Caching Template.

.2. History management

CACHE-IT defines a pipeline to manage the clients’ request his-
ory, which the caching strategies may use. Each request performed
y a client – through the interoperability layer – is registered in a
og file, as depicted in the Step G1 of the dataflow. The lightweight
ature of log files makes them well-suited for resource-constrained

oT environments. Additionally, the system also supports a configurable



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.
Fig. 1. CACHE-IT High Level Architecture.
Table 2
Caching Template.

Attribute Description Data flow Subsection

providers data providers to be
translated to a
seamless interface

interoperability 4.1

record attributes what attributes to
register from clients
requests

history management 4.2

logs longevity retention time of
log files

history management 4.2

t time slot duration the time slot in
which a new set of
caching orders is
generated

caching strategy
execution

4.3

caching strategy a set of three
functions that
generate caching
orders

caching strategy
execution

4.3

cache node storage the maximum
storage available in
each cache node

caching strategy
execution

4.3

cache replacement resource
replacement strategy

request forwarding
and data retrieval

4.4

cNN the number of
neighbor Cache
Nodes visited if the
resource is found
locally

request forwarding
and data retrieval

4.4

reactive caching if the data resulting
from a cache miss is
stored

request forwarding
and data retrieval

4.4
5



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.

f

a
c
o
s
b
T
b
s

a
p
s
i
w
t
f
o
C
𝑝

4

d
T
d
c
o
a
a
d
e
u
c
C
–
i
t
o
s
t
m
d

4

i
c
o
e
m
r
t
w
t

U
T
t
c

Table 3
Properties of a record.

Property Description Optional

request IP Address or DNS, port, and
URI

✗

parameters query, path, header, and
cookie parameters

✗

cached boolean value that is true if
the requested content was
retrieved from the cache

✗

delay time elapse to retrieve the
response (from cache or the
response time from performing
the request to the provider)

✗

timestamp request arrival timestamp ✗

cache node the Cache Node received and
registered the record

✗

client client identification (IP and
MAC address)

✓

data returned request data ✓

data-pruning mechanism to ensure the efficient management of the
log files. This functionality allows the user to define record retention
parameters, namely logs longevity defined in the Caching Tem-
plate. Logs surpassing a pre-set age threshold are automatically pruned
based on these parameters, ensuring the lightweight nature of the log
iles over an extended duration.

Each record’s core information is its arrival time (i.e., its timestamp)
nd the Cache Node where the record was registered. The complete
ontent of a record is depicted in Table 3. Some record properties are
ptional. Namely, the returned data, which might be too burdensome to
tore, manage, and process, and the client identification, which might
e concealed for privacy reasons. The user defines through the Caching
emplate which optional properties will be registered; this choice is
ased on the information and metadata that the employed caching
trategy utilizes.
Step G2 and Step G3 refer to transferring the request history of

single Cache Node to the centralized Cache Controller storage, a
rocess that occurs in batches. The History Transfer is a lightweight
hipper for forwarding and centralizing log data. In detail, Step G2
llustrates the operation of finding and managing all the log files that
ill be transferred to the Cache Controller. The History Transfer needs

o keep track of the state of each log file and what portion of the
ile was not sent already. Step G3 refers to the periodical data transfer
f the collected request history to the centralized storage in the Cache
ontroller. We define as 𝐷𝑝𝑎𝑠𝑡 the subset of data points stored in the last
𝑎𝑠𝑡 time. The History Transfer needs to attend to some requirements:

• Disconnection Handling: as the Cache Nodes often are unreli-
able computation nodes in the network edge, they might suffer
occasional disconnections from the Internet; hence, they lose
communication with the Cache Controller. In such cases, the
History Transfer should keep track of the unsent batches and send
them once the connection is re-established.

• Lightweight implementation: the History Transfer should use
limited system resources and not impact the other process exe-
cuting in the Cache Node.

• Multi-environment deployment: there are virtually no con-
straints on what devices can fulfill the role of a Cache Node. The
History Transfer should be able to support multi-heterogeneous
deployment environments.

• History Update Management: as common scenarios comprise
multiple Cache Nodes, those can potentially overwhelm the His-
tory Storage. The History Transfer must employ techniques to find
6

an adequate pace to transmit data to the History Storage. N
.3. Caching strategy execution

The Cache Manager comprises three distinct operations, each with
ifferent execution periodicity and detailed in its own Subsection.
he modification and deployment of a Caching Template occur upon
irect user intervention, and it is a long-term operation. Adapting the
aching strategy to new environmental conditions is a medium-term
peration. Lastly, the generation and transmission of caching orders
re considered a short-term operation. Fig. 2 depicts each operation
nd its interactions. Additionally, CACHE-IT short-term operations are
epicted through the orange dataflow in Fig. 1. Although they are
xplained in detail in Section 4.3.3, an introduction is necessary to
nderstand the big picture, as these operations are a core system
omponent: every 𝑡 time slot (the duration of which is specified in the
aching Template) the Cache Manager – located in the Cache Controller
invokes a function that generates and transmits (Step O1 and Step O2)

nstructions (i.e., caching orders) to each Cache Worker. We count the
ime slots as 𝑡0, 𝑡1,… , 𝑡𝑛. When a Cache Worker receives a new batch
f caching orders, it reports its caching accuracy in the previous time
lot (i.e., 𝑡𝑖−1) to potentially trigger medium-term operations that adjust
he generation of such caching orders (such as retraining a model),
eaning that the conditions may have changed (see Section 4.3.2 for
etails).

.3.1. Long-term: user intervention
Before system initialization, the user defines the caching strategy

n the Caching Template. In proactive edge caching, the strategies
an employ diverse techniques that impose different data flows and
perations [39]. For instance, a statistical-based strategy requires re-
xecution for generating each new set of caching orders, while a
achine learning-based strategy relies on a pre-trained model, which

equires an understanding of the timing for training (and retraining)
he model. To encompass variability in the strategies processing steps,
e define a generic workflow comprising three functions that compose

he caching strategy in CACHE-IT. Those functions are:

• 𝑔𝑒𝑛 function: the core function that sets the strategy goal and
implements a technique (e.g., Deep Learning). It is a higher-order
function that produces a function 𝑐𝑂𝑟𝑑𝑒𝑟, which generates a set
of caching orders in each time slot (short-term operation). The
𝑔𝑒𝑛 function is analogous with the machine learning process of
training a model, while the 𝑐𝑂𝑟𝑑𝑒𝑟 function pairs with the model
execution itself in inference mode. Other techniques that do not
involve pre-computing steps can be integrated into the framework
by defining 𝑔𝑒𝑛 as a deterministic function that always outputs the
same 𝑐𝑂𝑟𝑑𝑒𝑟 function.

• 𝑝𝑒𝑟𝑖𝑜𝑑 function: the function accesses the historical storage and
outputs a time slot, determining the size of the data chunk utilized
by the 𝑔𝑒𝑛 function upon execution. The aim is to determine
the last homogeneous time segment of historical storage data. It
is possible to utilize a simple rolling window method (e.g., al-
ways get the last 1-month of data) or an advanced technique
(e.g., an auto-regression model that, based on the prediction
errors, determines the last time segment of homogeneous data).

• 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 function: it is executed every time slot (i.e., short-term),
taking as input the accuracy of all the caching nodes in the last
time window and returns a Boolean value. If true, it prompts
the execution of the 𝑝𝑒𝑟𝑖𝑜𝑑 and the 𝑔𝑒𝑛 functions to regenerate the
𝑐𝑂𝑟𝑑𝑒𝑟. The output of the function can be bounded to the Cache
Nodes accuracy (e.g., if less than 20%), time (e.g., every 12 h),
or both.

pon system initialization or when the user uploads a new Caching
emplate, CACHE-IT executes the newly defined 𝑝𝑒𝑟𝑖𝑜𝑑 and 𝑔𝑒𝑛 func-
ions to generate an updated 𝑐𝑂𝑟𝑑𝑒𝑟 function considering the newly set
onfigurations, such as the maximum available storage for each Cache

ode.



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.
Fig. 2. CACHE-IT operations and their timings.
E

Fig. 1 omits the component in charge of managing the Cache Nodes
and gathering data related to their status – i.e., online or offline – and
their connectivity. However, we adopted IoTManA [40] as our chosen
management system, which provides tools for managing, controlling,
and monitoring software, hardware, and communication components.
Specifically, it facilitates monitoring network delay and system entities’
availability — i.e., the Cache Controller and Cache Nodes.

4.3.2. Medium-term: caching strategy adaption
Due to changes in the context, such as the inclusion, removal,

or behavior change of IoT devices, a historical system snapshot may
not represent its current state. To periodically adapt the generation
of caching orders to reflect the system conditions better, CACHE-IT
performs a check (e.g., executes 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 function) each time slot to
determine if conditions have changed. From CACHE-IT point-of-view,
an alteration in system conditions means that the output of 𝑡𝑟𝑖𝑔𝑔𝑒𝑟
function is true or that a new Caching Template was uploaded. In
such cases, CACHE-IT regenerates the 𝑐𝑂𝑟𝑑𝑒𝑟 function by executing
the 𝑝𝑒𝑟𝑖𝑜𝑑 function followed by the 𝑔𝑒𝑛 function.

4.3.3. Short-term: generation of caching orders
The short-term operations encompass the generation of caching or-

ders in each time slot. Algorithm 1 is executed in fixed slots of 𝑡 time
to generate and transmit a new set of caching orders, detailing Step O1
and Step O2 from Fig. 1. Line 2 denotes the generated function 𝑐𝑂𝑟𝑑𝑒𝑟
producing caching orders for the next 𝑡𝑖+1 time slot. Then, the Cache
Manager transmits to each Cache Worker its set of caching orders,
which reply with their caching accuracy in the last 𝑡𝑖−1 time slot (lines 3
to 5). A Cache Worker accuracy is defined as the total amount of cache
hits divided by the total number of requests. The algorithm checks
if 𝑔𝑒𝑛 is already in execution (line 6). Then, if the 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 function
outputs true (lines 7 and 8) the medium-term operations are triggered.
Namely, the execution of 𝑝𝑒𝑟𝑖𝑜𝑑 (line 9), followed by 𝑔𝑒𝑛 (line 10);
which updates the caching order generating function 𝑐𝑂𝑟𝑑𝑒𝑟.

Fig. 2 illustrates an example of the three distinct caching operations.
The upload of a new Caching Template (long-term) triggers the execu-
tion of 𝑝𝑒𝑟𝑖𝑜𝑑 and 𝑔𝑒𝑛 to generate a new 𝑐𝑂𝑟𝑑𝑒𝑟 (medium-term). In the
example, the 𝑔𝑒𝑛 function performs the retraining of an LSTM Neural
Network model, which becomes the updated 𝑐𝑂𝑟𝑑𝑒𝑟. Then, the Neural
Network (i.e., 𝑐𝑂𝑟𝑑𝑒𝑟) generates a new batch of caching orders in every
time slot (e.g., 2 h), which are transmitted to each Cache Node (short-
term). The Cache Nodes reply with their accuracy. The 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 function
then takes the set of accuracies as input and, if their average is below
20%, prompts the execution of the medium-term operations to retrain
the Neural Network.
7

Algorithm 1: The CACHE-IT caching orders generation
1very 𝑡𝑖 time passed:
2 𝑐𝑎𝑐ℎ𝑖𝑛𝑔_𝑜𝑟𝑑𝑒𝑟𝑠𝑡𝑖 ← 𝑐𝑂𝑟𝑑𝑒𝑟(𝐷𝑝𝑎𝑠𝑡)
3 for 𝑐 from 0 to 𝑁𝑐 do
4 𝑜𝑟𝑑𝑒𝑟𝑠𝑐 ← filter 𝑐𝑎𝑐ℎ𝑖𝑛𝑔_𝑜𝑟𝑑𝑒𝑟𝑠𝑡𝑖 for caching orders that match 𝑐
5 transmit to the 𝑐 Cache Node the 𝑜𝑟𝑑𝑒𝑟𝑠𝑐 and receive 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑖−1 ,𝑐

of all Cache Workers
6 if gen is not executing then
7 𝑖𝑠𝑇 𝑟𝑖𝑔𝑔𝑒𝑟 ← 𝑡𝑟𝑖𝑔𝑔𝑒𝑟(

⋃

𝑐∈𝐶 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑡𝑖−1 ,𝑐 )
8 if isTrigger then
9 𝑝𝑎𝑠𝑡 ← 𝑝𝑒𝑟𝑖𝑜𝑑(𝐷)
10 𝑐𝑂𝑟𝑑𝑒𝑟 ← 𝑔𝑒𝑛(𝐷𝑝𝑎𝑠𝑡)
11 end
12 end
13 end

4.4. Request forwarding and caching retrieval

The request forwarding and caching retrieval process employed by
each Cache Node is triggered upon receiving a request; the overall
flow is depicted in blue in Fig. 1. A client requests data from a given
provider in any protocol supported by the Device Abstraction Interface,
as depicted by Step B1, which translates the request and forwards it to
the Cache Worker. In turn, the Cache Worker checks if the requested
data is cached (Step B3). If so, the data is returned to the client (Step
B5 and Step B6). The role of Step B6 is mapping the data to the format
and protocol used by the client. When a cache miss occurs (Step B4),
the Cache Worker forwards the request to the provider.

Algorithm 2 is executed by each Cache Worker to handle client
data requests and to perform caching orders. One particular feature
described in the Algorithm 2 is the cNN (CACHE-IT Nearest Neigh-
bors) strategy. In cNN, when a cache miss occurs, the Cache Worker
checks if its 𝑁 nearest neighbors (i.e., other Cache Nodes) have the
resource requested cached. This feature can be integrated into any
caching strategy and capitalizes on the assumption that geographic
proximity influences the request pattern. The amount of 𝑁 of neighbors
visited is defined in the Caching Template.

Algorithm 2 keeps track of the received caching orders, the local
cache hit rate (i.e., its accuracy), and the set of 𝑁 neighboring Cache
Nodes and their latency towards the originating Cache Node. The
Algorithm 2 uses two event handlers for dealing with the arrival of
caching orders and client requests. For the sake of simplicity, we adopt



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.
the dot notation (.) to access the properties of a caching order —
e.g., 𝑜𝑟𝑑𝑒𝑟.𝑡𝑦𝑝𝑒.

When a set of caching orders arrives (line 5), the algorithm checks
if any client requests were made since the last batch of caching orders
was received (line 6); if so, it computes the cache accuracy by dividing
the number of cached requests by the total number and transmits it to
the Cache Controller (lines 7-9). For each caching order in the set, the
algorithm checks whether the order is of 𝑠𝑡𝑎𝑛𝑑𝑎𝑙𝑜𝑛𝑒 or 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒 (lines
11-17). For standalone orders, the algorithm performs the request at
the designated execution time and caches the response data until its
expiration time; if the caching order is 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒, the Cache Worker
adds it to a list of cooperative orders (line 15). The list of cooperative
orders is periodically updated to remove expired orders — omitted from
the algorithm for clarity.

When a request arrives from a client (line 18), the algorithm first
checks if the content is present in the local cache (line 20). If so, the
corresponding data is returned to the client, and the 𝑐𝑎𝑐ℎ𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
variable is incremented (line 21). If not, the Cache Worker checks if
there is a valid cooperative caching order that matches the request
(lines 22–27). If so, the Cache Worker tries to retrieve data from the
Caching Node specified in the cooperative order, returning it to the
client and incrementing 𝑐𝑎𝑐ℎ𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 in case of success. If the data
is not found, the algorithm performs the cNN strategy (lines 28–31)
by verifying if the content requested is cached in any of the 𝑁 nearest
Cache Nodes. Finally, if data is not found, the algorithm performs the
request directly to the data provider and returns the data to the client
(lines 32–36). The returned resource is only cached if the variable
𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑐ℎ𝑖𝑛𝑔 is set to true This behavior considers the reliability of
the prediction solution, as a cache miss may be an outlier, and caching
its returned resource might be unnecessary.

CACHE-IT default cache replacement strategy is Least Recently
Used (LRU). However, users can configure it to use other strategies such
as Least Frequently Used (LFU), random, or maximum idle time.

5. CACHE-IT implementation

This Section describes CACHE-IT implementation. We utilize
industry-adopted applications to fulfill some framework components
while the others perform specific CACHE-IT tasks, which we imple-
mented ourselves.

A first version of an Interface Translator was proposed in [9] and
its implementation, namely C3PO (Converter of OPen API SPecification
to WoT Objects), was detailed in [41]. It can convert RESTful Web ser-
vices APIs documented through the OpenAPI Specification (OAS) [42]
into WTs. The current implementation requires a formal description
of the provider interface (including its endpoints, inputs, outputs, and
parameters) for the translation process. The OAS provides a language-
independent standard to describe RESTful interfaces using a JSON-
based description, and it is the de facto standard for API documentation.

We adopted the ELK stack1 to fulfill the role of the History Transfer
and the History Storage, as it satisfies the requirements listed. The
ELK stack is a set of open-source tools that provide a flexible and
scalable platform for collecting and storing distributed log data. ELK
is an acronym built with the union of its three main components —
i.e., Elasticsearch, Logstash, and Kibana. Elasticsearch is employed for
indexing and storing data; Logstash is a data processing pipeline that
collects and parses the log data to be stored in Elasticsearch. Logstash
and Elasticsearch together fulfill the role of History Storage. The His-
tory Transfer is implemented by Filebeat, a lightweight shipper that is
used to collect and transfer log data to Logstash. It can be instantiated
in practically any computational environment and utilizes a back-
pressure sensitive protocol to send data to Logstash, thus preventing
overloading.

1 https://www.elastic.co
8

Algorithm 2: The Cache Worker caching retrieval and request
forwarding.
1 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑂𝑟𝑑𝑒𝑟𝑠 ← [ ]
2 𝑐𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒𝑠 ← list of 𝐶𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒𝑠 and their respective latency
3 𝑡𝑜𝑡𝑎𝑙𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ← 0
4 𝑐𝑎𝑐ℎ𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 ← 0
5 upon the arrival of a set of caching orders 𝑜𝑟𝑑𝑒𝑟𝑠: (every 𝑡

intervals)
6 if 𝑡𝑜𝑡𝑎𝑙𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 is not 0 then
7 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← 𝑐𝑎𝑐ℎ𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠∕𝑡𝑜𝑡𝑎𝑙𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
8 else
9 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ← 1
10 end
11 transmit 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 to Cache Controller and reset

𝑡𝑜𝑡𝑎𝑙𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and 𝑐𝑎𝑐ℎ𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
12 for 𝑜𝑟𝑑𝑒𝑟 in 𝑜𝑟𝑑𝑒𝑟𝑠 do
13 if 𝑜𝑟𝑑𝑒𝑟.𝑡𝑦𝑝𝑒 = 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 then
14 𝑑𝑎𝑡𝑎 ← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑜𝑟𝑑𝑒𝑟)
15 𝑠𝑡𝑜𝑟𝑒(𝑑𝑎𝑡𝑎, 𝑜𝑟𝑑𝑒𝑟.𝑒𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑇 𝑖𝑚𝑒)
16 else
17 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑂𝑟𝑑𝑒𝑟𝑠.𝑝𝑢𝑠ℎ(𝑜𝑟𝑑𝑒𝑟)
18 end
19 end
20 upon the arrival of a request 𝑟 from client:
21 increment 𝑡𝑜𝑡𝑎𝑙𝐶𝑙𝑖𝑒𝑛𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
22 𝑑𝑎𝑡𝑎 ← 𝑔𝑒𝑡𝐿𝑜𝑐𝑎𝑙𝐶𝑎𝑐ℎ𝑒(𝑟)
23 if 𝑑𝑎𝑡𝑎 is 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙 increment 𝑐𝑎𝑐ℎ𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and return 𝑑𝑎𝑡𝑎 to

the client
24 for 𝑜𝑟𝑑𝑒𝑟 in 𝑐𝑜𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑣𝑒𝑂𝑟𝑑𝑒𝑟𝑠 do
25 if match(𝑜𝑟𝑑𝑒𝑟, 𝑟) then
26 𝑑𝑎𝑡𝑎 ← 𝑔𝑒𝑡𝐹 𝑟𝑜𝑚𝐶𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒(𝑜𝑟𝑑𝑒𝑟.𝑐𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒, 𝑟)
27 if 𝑑𝑎𝑡𝑎 is 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙 increment 𝑐𝑎𝑐ℎ𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠 and return

𝑑𝑎𝑡𝑎 to the client
28 end
29 end
30 for 𝑐𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒 in 𝑐𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒𝑠 do
31 𝑑𝑎𝑡𝑎 ← 𝑔𝑒𝑡𝐹 𝑟𝑜𝑚𝐶𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒(𝑐𝑎𝑐ℎ𝑒𝑁𝑜𝑑𝑒, 𝑟)
32 if 𝑑𝑎𝑡𝑎 is 𝑛𝑜𝑡 𝑛𝑢𝑙𝑙 increment 𝑐𝑎𝑐ℎ𝑒𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠, return 𝑑𝑎𝑡𝑎 to

the client and break
33 end
34 𝑑𝑎𝑡𝑎 ← 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑅𝑒𝑞𝑢𝑒𝑠𝑡(𝑟)
35 if 𝑟𝑒𝑎𝑐𝑡𝑖𝑣𝑒𝐶𝑎𝑐ℎ𝑖𝑛𝑔 then
36 𝑠𝑡𝑜𝑟𝑒(𝑑𝑎𝑡𝑎, 𝑝𝑟𝑒𝑠𝑒𝑡𝑇 𝑖𝑚𝑒)
37 end
38 return 𝑑𝑎𝑡𝑎 to client

While the ELK stack was chosen for its scalability and flexibil-
ity, many other alternatives follow different approaches, like Fluentd2

and Graylog.3 Fluentd is built around an extensible architecture. Like
Logstash, it offers a unified logging layer, but where it distinguishes
itself is in its pluggable architecture. Fluentd supports numerous input
and output sources via plugins, enabling it to integrate with various
systems without core modifications. Also, it uses a lightweight core
and is written in Ruby and C, which might provide efficiency benefits
in specific environments. Graylog is centered on simplicity and ease
of use. While Elasticsearch can be used as a backend for both ELK
and Graylog, Graylog provides a more streamlined setup process and a
centralized management interface for various logging pipelines. A no-
table feature of Graylog is its built-in alerting and reporting capabilities,
allowing users to generate insights from their log data more seamlessly.
However, based on the particular requirements and design principles of
CACHE-IT, the ELK stack was determined to be most aligned with our
goals.

2 https://www.fluentd.org
3 https://graylog.org

https://www.elastic.co
https://www.fluentd.org
https://graylog.org


Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.

e

The Cache Manager invokes the caching strategy functions through
a POST request towards a user-specified address (defined in the Caching
Template). The caching strategy needs to be wrapped in an application
that exposes a REST API. That way, we preserve CACHE-IT separation
of concerns and provide the user a rapid way to deploy and test
different versions of their caching strategy since REST API can be
hosted through a lightweight virtualization technique. This design al-
lows caching strategy functions to implement more complex operations,
including components tailored to specific scenarios or domains, such as
mobility prediction. Finally, Cache Worker and the Cache Manager
were developed as NodeJS4 applications to be executed in a container
nvironment [43].

As for the cache storage, we adopted Redis,5 considered the de
facto standard database for caching. It is a lightweight key–value store
implementation that operates entirely in memory, making it suitable
for use cases demanding low latency. Additionally, Redis currently
supports various operating systems and hardware architectures, and its
low resource requirements make it compatible with edge scenarios. The
framework is designed to be deployed using lightweight virtualization
(e.g., Docker containers6).

6. Validation

This section evaluates different CACHE-IT features under different
client behaviors. Specifically, we aim to quantify the effects of (1)
the number of neighbors visited by the cNN ranging from zero to
two, (2) the caching strategy accuracy, and (3) the usage of cooper-
ative caching orders as opposed to standalone orders. The objective
is to understand how these factors impact the overall system perfor-
mance, demonstrating the flexibility, applicability, and performance of
CACHE-IT.

We designed and implemented an open-source simulator [44] to
perform large-scale simulations by modeling the Cache Workers, the
Cache Manager, and the network behavior.

In the experiments, we do not implement an explicit caching strat-
egy. Instead, we emulate the caching strategy accuracy as a percentage
that dictates the number of requests it could predict. Introducing a
specific caching strategy would divert the evaluation toward the effec-
tiveness of that particular strategy, overshadowing the evaluation of
the cache architecture as a whole. By abstracting the specific caching
strategy operations from our evaluation, we isolate the impact of the
unique features and benefits provided by CACHE-IT. To emulate the
caching strategy, the Cache Manager probabilistically selects a number
of requests according to the caching strategy accuracy, sets them as a
simulation input, and transforms those into standard caching orders.
The caching order execution time is determined by the request exe-
cution time subtracted from a Gaussian time to represent the lack of
precision in determining the specific request arrival time. The request
expiration time is set to a default value of 10 min. If the experiment
utilizes cooperative orders, the Cache Manager analyzes the caching
orders and identifies duplicate resources cached in the same time slot;
in those cases, it converts one of the orders to cooperative, pointing
to the Cache Node that holds the resource in that time. Finally, the
Cache Manager performs a redundancy check to eliminate duplicate
caching orders. Standalone caching orders that store resources used by
cooperative orders are excluded from this process.

For simplicity and without loss of generality, the data providers
are abstracted as entities that generate resources over time. Its appli-
cation and network behavior are modeled based on real datasets. We
utilized [45] to model the network latency between the edge nodes

4 https://nodejs.org
5 https://redis.io
6

9

https://www.docker.com/
Fig. 3. Data characterization of processing time for the three categories of data
providers.

and the data providers. The mentioned work characterizes cloud-to-
user latency from different geographically distributed vantage points
towards several data centers in distinct locations on the infrastructures
of Amazon Web Services7 and Microsoft Azure8. Upon initialization,
each data provider randomly selects a specific cloud data center and
emulates its network latency. We utilized the encrypted web traffic
dataset as a base to model the data providers’ behavior [46], specif-
ically, the returned data size in bytes and the application processing
time. The dataset comprises 800 real web services monitoring data
— including the mentioned metrics. We select three significant web
applications to represent high, medium, and low values regarding
the returned data size of the data providers since this feature had
non-overlapping distributions as opposed to processing time, which is
similar to all services. The characterization of the selected web services
is shown in Fig. 3 and in Fig. 4 regarding processing time and bytes
returned. Data providers were assigned to each category equally. We
disregard the latency added by the Device Abstraction Layer since a
previous work [9] demonstrates it is insignificant.

The simulator deploys a configurable number of edge nodes within
the experiment dimensions in random positions. These edge nodes
serve as network gateways — e.g., base stations. Each edge node is
equipped with a dedicated cache storage, and the caching replacement
strategy employed in our experiments is the Least Recently Used (LRU)
algorithm. We modeled the network between the client and the edge
node following the wireless latency dataset present in [47], and the
inter-edge nodes communications were modeled using the wired LAN
dataset of the same source [47].

Clients in IoT scenarios often are mobile, ranging from industry 4.0
devices [17] to intelligent vehicles [20], so we add client mobility in
the evaluation scenario. Each client moves in a trajectory determined
by a list of random reference points within the experiment dimen-
sions. The simulator generates a list of requests for each client for the
experiment duration, and clients perform these requests by querying
its closest edge node. The inter-arrival times between requests follow
an exponential distribution corresponding to a Poisson process. The
choice of which provider to query follows a Zipf popularity distribution
since the latter is widely used to simulate the popularity of requests to
data providers in the context of edge caching [6,12,20,21,27,30,32,48].
We utilized the Zipf parameter as 1.1 [32] independent of the client
category. Additionally, we modeled three different patterns of client

7 https://aws.amazon.com/
8 https://azure.microsoft.com/

https://nodejs.org
https://redis.io
https://www.docker.com/
https://aws.amazon.com/
https://azure.microsoft.com/


Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.

p

b
a
c
r
d

E
e
a
e

Fig. 4. Data characterization of response size in bytes for the three categories of data
roviders.

ehavior based on observation in IoT systems; each client category
lters how providers are selected. The popularity distribution in this
ontext means that the popularity order of each data provider was
andomly shuffled while still adhering to the same underlying Zipf
istribution. The categories are:

• ID: clients in this category are independent of each other and
follow their particular popularity distribution.

• type: Each client in this category is assigned a specific type
with its own popularity distribution. This behavior was modeled
assuming that devices of the same type (e.g., a specific brand and
model of UAV) tend to consume data from similar providers.

• location: clients in this category have popularity distributions
associated with their respective areas. The simulation considers
the total area and divides it into a parameterized number of
subareas, each with its popularity distribution.

ach category is illustrated in Fig. 5. We perform experiments for
ach client type and an experiment configuration in which we deploy
ll client types in the same experiment equally distributed — this
xperiment configuration is called ‘‘mix’’.

During the simulation, we track and record the following metrics:

• Latency: captures the time taken for each request to be returned
to the client.

• AoI: represents the time difference between the generation of a
resource and its arrival to the clients.

• Number of Requests to Providers: the total number of requests
sent to the data providers.

• Cache Hit Rate: the percentage of requests retrieved from the
cache as opposed to those forwarded to the data provider.

Finally, Table 4 lists the experiment parameters kept constant in all
simulations. Table 5 depicts the factors and levels utilized in the per-
formance evaluation. We perform experiments combining all the levels
and factors. The caching order type denotes experiments executed
only with standalone orders instead of the ones in which cooperative
orders were used. For clarity, we refer to the experiments utilizing
standard and cooperative orders as "cooperative’’. Each experiment was
replicated 30 times, and the calculated confidence interval was 99%. In
each replication, all entities involved were re-instantiated, increasing
the inter-experiment variability — e.g., the clients’ trajectories and
initial positions, the edge nodes placement, the assignment of providers
10

to their category, and a network trace.
Table 4
Experiment parameters.

Property Value

Experiment Duration 1 h
Area dimensions 10 000 units2

Number of edge nodes 10
Edge storage size 4 GB
Minimum distance between edge nodes 1000 units
Number of clients 500
Client Speed 10 units∕s
Number of client types 5
Number of subareas 5
Default resource expiration time 10 min
Reactive caching ✓

Number of providers 750
Rate of requests per client (Poisson 𝜆) 0.1 event/s
Popularity distribution (Zipf 𝛼) 1.1

Table 5
Factors and levels.

Factor Level

Caching Strategy Accuracy 0%, 20%, 40%
Caching Orders Type standalone, cooperative
c-NN (N neighbors visited) 0, 1, 2
Client Category location, ID, type, mix

Fig. 6 depicts a handful selection of the most significant experiment
configurations, which allows for a comprehensive analysis of the per-
formance and behavior of our proposed framework. Those results were
all executed with ‘‘mix’’ as the client category. We adopt a consistent
naming pattern for our experiments: "accX-NY-Z’’, where X represents
the accuracy percentage, Y denotes the number of neighbors visited
(for the c-NN strategy), and Z indicates the caching order employed,
"s" for standalone and "c" for cooperative. Exceptions are "baseline’’,
which denotes the experiments without cache, and "regular-cache’’,
which refers to experiments only applying the current reactive caching.
The results showcase that the greater the caching strategy accuracy
and the number of neighbors visited, the better the outcome for all
metrics, except for AoI — since cached resources are less fresh than
those fetched directly from the data providers.

It is noteworthy that CACHE-IT impacts positively in terms of
latency, hit rate, and the number of requests sent to providers. The
framework features enhance caching strategy accuracy, and we numeri-
cally show that the c-NN mechanism meaningfully improves the system.
One experiment parameter that influences the results is the default time
to keep resources cached (10 min), as the clients tend to query the same
provider, which increases the overall hit rate, though it also increases
the AoI. The baseline configuration value in Fig. 6, approximately
0.25 s, reflects the minimal time difference from resource generation
to client delivery, as the resource was not cached for a period of time.
System administrators deploying CACHE-IT must consider the trade-
off between lower latency and data freshness. In scenarios where it
is key to have low AoI, the amount of time to keep resources cached
should be bounded by the maximum AoI.

Fig. 7 deepens the comparison between the experiments that use
cooperative orders and experiments that do not. In general, the out-
come of those experiments differs for the number of requests sent
to providers and AoI. The number of requests is lower due to the
cooperative aspect of the system sharing the predicted resource without
performing additional requests. Consequently, the resources returned
are less fresh, which increases the AoI. The difference in latency and
hit rate between cooperative and standalone caching is attributed
to removing redundant caching orders. Removing redundant caching
orders does not eliminate caching orders that serve as pointers for
cooperative ones, resulting in a higher number of requests and a greater
average number of cached resources per Cache Node. However, when
the number of visited neighbors (N) increases, this aspect is mitigated
as resources are shared with the closest nodes.



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.
Fig. 5. Representation of the different categories of client behavior modeled in the experiments.
Fig. 6. Overall Simulation results for CACHE-IT comparing different configurations. Hatched bars represent experiments in which cooperative caching orders were used.
That behavior is observed by comparing the different Fig. 7 rows —
each row corresponds to a number of neighborhoods visited, ranging
from zero to two. This disparity in latency arises due to the additional
one-hop requirement for cooperative orders to retrieve the requested
data. When comparing the experiments with cNN equals two, both
cooperative and standalone caching strategies exhibit similar high hit
rates. However, the incremental latency introduced by cooperative
orders (i.e., the additional hop to retrieve a resource) becomes more
noticeable. In our experiments with ten edge nodes, configurations with
two visited neighbors had access to approximately 30% of the total
cached resources.

Fig. 8 shows sets of graphs characterizing the performance of the
different client categories: each row represents a c-NN value, start-
ing from zero until two. All the experiments were performed using
standalone orders only. The results show that the client categories
‘‘type’’ and ‘‘location’’ have the best overall results since clients share
a similar requesting pattern. In contrast, the ‘‘id’’ client category had
slightly worse results since each client is independent of the other.
Due to the heterogeneity of clients’ behaviors, the experiments with
all the types – i.e., ‘‘mix’’ – follow the same pattern as observed in the
experiments performed with the ‘‘id’’ client category, which means that
in those scenarios, the clients’ popularity distribution was, in practice,
independent from each other. However, Fig. 8 makes evident that the
client category differences are minor when compared to the impact
11
wielded by other simulation configurations, as the caching strategy
accuracy. This behavior indicates that CACHE-IT is versatile enough
to be exploited in different contexts regarding client interactions. The
results presented in this section are open-source to guarantee trans-
parency and replicability; they can be found in the project’s GitHub
repository [44].

7. SHM use case

This section aims to validate the CACHE-IT architectural frame-
work in an SHM case study, employing an IoT-based toolchain for
real-time monitoring and diagnostic of a physical structure. We il-
lustrate the customization potential of CACHE-IT by employing a
specialized caching strategy that considers domain information and
data source characteristics. This scenario is a comprehensive expansion
of the case study initially demonstrated and deployed in our previous
work [19].

Our exploration is divided into three subsections for easy compre-
hension and coherence. In Section 7.1, we offer a detailed overview
of the scenario and clarify the caching goal we aim to accomplish.
Next, in Section 7.2, we detail the Caching Template utilized, providing
insights into the careful design choices and trade-offs we made to opti-
mize performance. Finally, in Section 7.3, we present the outcomes of a
small-scale performance analysis, in which we numerically demonstrate
the effectiveness of the CACHE-IT framework in this context.



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.
Fig. 7. Simulation results for CACHE-IT comparing standard and cooperative caching orders. Each row represents a different cNN configuration, denoted as N.
Fig. 8. Simulation results for CACHE-IT for different client types. Each row represents a different cNN caching configuration, denoted as N.
7.1. Caching goal and scenario description

The scenario revolves around an experimental 1:4 scale bridge with
heterogeneous sensors forming a complex IoT network. The deploy-
ment, illustrated in Fig. 9, includes multiple peripheral sensor nodes,
each hosting an accelerometer permanently attached to the structure
and several cluster heads orchestrating subsets of the sensor network.
12
These cluster heads, equipped with a wireless connection, battery, and
a photovoltaic energy harvester, play a critical role in energy manage-
ment, aiming to leverage the energy harvester to its maximum potential
to prevent battery depletion. For this purpose, the harvester’s external
Digital Twin (DT) has been developed and deployed to estimate the
devices’ battery lifetime based on their electrical characteristics and
current environmental conditions, specifically solar irradiance. Clients



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.
Fig. 9. The CACHE-IT framework deployed in a SHM case-study.
and applications can interact with the DT to optimize the device’s duty
cycle, extending battery life without disrupting the system’s overall
operation. However, the existing DT has limitations: it requires con-
siderable processing power. It takes approximately 25 s on average to
respond to a request due to low-level electronic interaction simulation
for each request. This long processing time leads to waiting times that
often extend to several hours, especially when several duty cycle simu-
lations for each device are required. Adding new devices to the system
further escalates this problem, imposing high latency that impacts the
system in two ways: changes in environmental conditions before the
DT reply and a poor user experience due to high screen loading times.
To counteract these issues, a caching layer was designed and deployed
to cache the outputs from the harvester DT.

The Harvester DT was deployed on a third-party server, over which
we do not have direct control. The Cache Controller and the Analyt-
ics Dashboard, crucial components for managing and monitoring the
cache system, were deployed on a cloud-like cluster composed of two
machines. Each server is powered by a 16-core Intel CPU backed by
64 GB of RAM. On the other hand, the Cache Node, Translator, and DT
Dashboard were deployed on an edge server, specifically a Raspberry Pi
3, located close to the physical structure. This setup demonstrates a C2T
continuum deployment, with the CACHE-IT framework facilitating
efficient communication between the components and ensuring optimal
operation despite the inherent limitations of the devices, such as the
Raspberry Pi’s constrained resources.

7.2. Caching template definition

This testbed caching strategy relies on domain knowledge; the data
requests to the DT contain information such as the device’s electronic
features, battery percentage, and the current solar irradiance, which
is logged at the edge and transferred to the Cache Controller by the
History Transfer. We designed the caching strategy to leverage those
data to estimate each device’s battery and solar irradiance for the next
period and produce caching orders instructing those resources’ caching.
The other relevant Caching Template configurations are the functions
that define the caching strategy:
13
• 𝑔𝑒𝑛 function: we choose the Prophet algorithm as the underlying
technique since it is capable of forecasting time series data [49].
The 𝑔𝑒𝑛 function triggers the fit process, which outputs a model
capable of generating predictions.
The function extracts the historical solar irradiance and the bat-
tery level data points from the log and fits them into the Prophet
model. This fitting process allows Prophet to understand the
trends and seasonality present in our data. Once fitted, the model
can generate a forecast for a future period. This forecast becomes
the function 𝑐𝑂𝑟𝑑𝑒𝑟𝑠 that we utilize to generate caching orders.

• 𝑡𝑟𝑖𝑔𝑔𝑒𝑟 function: this function is implemented to simply return
a true value every 12 h. The periodic reevaluation is chosen to
ensure that our caching strategy could respond to changes in
demand patterns that might occur from day to day but without
causing unnecessary computational overhead by recomputing the
strategy too frequently.

• 𝑝𝑒𝑟𝑖𝑜𝑑 function: this function is designed to output the values
from the last 7 days. This choice was based on the results obtained
in [19]. This time frame balances the need for a sufficiently large
dataset to capture trends and patterns with the need to keep the
computational demands of the strategy manageable.

7.3. Results

We executed a comprehensive evaluation in the real testbed to
quantify the impact of the CACHE-IT in the proposed environment.
In our evaluation, we compared the performance of three distinct
configurations:

• no-cache: This is the most basic configuration that acts as our
baseline scenario. It does not implement any form of caching
mechanism.

• simple-cache: This configuration emulates a traditional
caching system where the responses from the Harvester DT are
cached on the edge device.

• CACHE-IT: This is our proposed advanced caching strategy that
leverages specific functions outlined in Section 7.2 of the study.



Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.

w
q
c
n
f
a
b
h
s
I
m
r
w
d
r

8

t
a
p
e
s
e
t
l
b
w
n
e
m
a
C
o
t
a
t
t
a
a

s
t
t
p
T
w

D

t
M
I

D

A

‘
e
c

R

Table 6
CACHE-IT Results for the SHM use case.

Strategy Latency (s) Hit rate (%)

Avg CI Avg CI

no-cache 29.72 [28.29, 31.15] 0 –
simple-cache 18.74 [16.85, 20.63] 41.70 [37.55, 45.85]
CACHE-IT 0.19 (0, 0.42] 98.91 [97.8, 100]

The evaluation generated a syntactic workload regarding the opera-
tion of ten cluster heads for 12 h and was replicated twenty times
to ensure consistency in the findings. The edge caching, conversely,
was deployed on a computational node possessing limited process-
ing power — i.e., the mentioned Raspberry Pi. To emulate realistic
network conditions, we generated requests synthetically following a
Poisson distribution from a personal computer. The traffic genera-
tor and edge caching devices were collocated within the same LAN
and communicated via WiFi. The traffic generator was in charge of
emulating the cluster head battery depletion. At the same time, the
irradiance data was modeled utilizing the National Solar Radiation
Database [50] considering the location of the metropolitan area of
Bologna. We selected random start dates and times from the solar
irradiance database for each experiment replication to ensure a varied
and unbiased representation.

Table 6 summarizes the results. Using the no-cache configuration,
e experienced an average latency of 29.72 s due to the constant
uerying of the Harvester DT from the edge. As expected, since no
aching was involved, the hit rate was 0%. The simple-cache
otably reduced the average latency to 18.74 s, significantly improving
rom the no-cachescenario. The hit rate was 41.70%, meaning that
lmost half of the requests could be served directly from the cache,
ypassing the need for a full round trip to the Harvester DT. The high
it rate of the simple-cache solution makes it evident that the
cenario is composed of similar requests. Finally, our proposed CACHE-
T strategy outperformed both the previous strategies by a significant
argin. The average latency drastically dropped to 0.19 s, and the hit

ate increased to 98.91%, demonstrating that nearly all the requests
ere accurately predicted and cached on the edge. This case study
epicts CACHE-IT potential to address custom caching strategies that
ely on specific domain and application knowledge.

. Conclusions and future work

In this work, we have presented CACHE-IT, a flexible and cus-
omizable framework for edge caching that addresses the features
nd challenges particular to IoT environments. Our framework decou-
les the caching strategy algorithm from the underlying architecture,
nabling easy modification of caching strategies based on application-
pecific requirements. Further, it considers the C2T continuum for
fficient resource allocation, exploring the computational power from
he cloud while benefiting from the edge advantages such as low
atency. Finally, we present novel mechanisms to handle dynamism
y automatically triggering the update of the caching strategy, and
e incorporate cooperation features in the framework that allow edge
odes to share resources and, thus, increase performance. Through
xtensive simulations, we demonstrated the effectiveness and perfor-
ance of CACHE-IT in optimizing latency, improving cache hit rates,

nd reducing the number of requests to data provided . We deployed
ACHE-IT in a real IoT testbed, which illustrated the customization
f the framework by supporting a scenario-oriented caching strategy
hat considered use case specific information, which decreased the
verage system latency by more than 95%. In future works, we plan
o develop caching strategies based on the prevalent techniques in
he literature to perform proactive edge caching (e.g., deep learning)
nd strategies that aim to optimize AoI. Our objective is to establish
14

n open marketplace where users can select and customize caching
trategies as off-the-shelf resources. We believe that this approach has
he potential to foster an engaging community that actively contributes
o the enhancement of the CACHE-IT framework. Furthermore, we
lan to integrate federated learning into the framework’s architecture.
his integration would address potential privacy concerns associated
ith centralized data collection.

eclaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
arco Di Felice reports financial support was provided by National

nstitute for Insurance against Accidents at Work.

ata availability

Data will be made available on request.

cknowledgments

The presented work has been partially supported by the project
‘DS2: Digital Smart Structures’’, funded by INAIL, Italy (Italian Work-
rs’ Compensation Authority), BRIC 2021. The icons in the images are
ourtesy of FlatIcon.

eferences

[1] P. Sharma, S. Jain, S. Gupta, V. Chamola, Role of machine learning and deep
learning in securing 5G-driven industrial IoT applications, Ad Hoc Netw. 123
(2021) 102685, http://dx.doi.org/10.1016/j.adhoc.2021.102685.

[2] F. Zonzini, C. Aguzzi, L. Gigli, L. Sciullo, N. Testoni, L. De Marchi, M. Di Felice,
T.S. Cinotti, C. Mennuti, A. Marzani, Structural health monitoring and prognostic
of industrial plants and civil structures: A sensor to cloud architecture, IEEE
Instrum. Meas. Mag. 23 (9) (2020) 21–27.

[3] M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep learning for IoT
big data and streaming analytics: A survey, IEEE Commun. Surv. Tutor. 20 (4)
(2018) 2923–2960, http://dx.doi.org/10.1109/COMST.2018.2844341.

[4] X. Li, J. Wan, Proactive caching for edge computing-enabled industrial mobile
wireless networks, Future Gener. Comput. Syst. 89 (2018) 89–97, http://dx.doi.
org/10.1016/j.future.2018.06.017.

[5] F. Righetti, C. Vallati, S.K. Das, G. Anastasi, An experimental evaluation of
the 6top protocol for industrial IoT applications, in: 2019 IEEE Symposium
on Computers and Communications, ISCC, 2019, pp. 1–6, http://dx.doi.org/10.
1109/ISCC47284.2019.8969590.

[6] R.W.L. Coutinho, A. Boukerche, Modeling and analysis of a shared edge caching
system for connected cars and industrial IoT-based applications, IEEE Trans. Ind.
Inform. 16 (3) (2020) 2003–2012, http://dx.doi.org/10.1109/TII.2019.2938529.

[7] M. Chiang, S. Ha, F. Risso, T. Zhang, I. Chih-Lin, Clarifying fog computing and
networking: 10 questions and answers, IEEE Commun. Mag. 55 (4) (2017) 18–20,
http://dx.doi.org/10.1109/MCOM.2017.7901470.

[8] K. Cao, Y. Liu, G. Meng, Q. Sun, An overview on edge computing research,
IEEE Access 8 (2020) 85714–85728, http://dx.doi.org/10.1109/ACCESS.2020.
2991734.

[9] I. Zyrianoff, L. Gigli, F. Montori, C. Aguzzi, S. Kaebisch, M. Di Felice, Seamless
integration of restful web services with the web of things, in: 2022 IEEE
International Conference on Pervasive Computing and Communications Work-
shops and Other Affiliated Events, (PerCom Workshops), 2022, pp. 427–432,
http://dx.doi.org/10.1109/PerComWorkshops53856.2022.9767531.

[10] J. Yao, T. Han, N. Ansari, On mobile edge caching, IEEE Commun. Surv. Tutor.
21 (3) (2019) 2525–2553, http://dx.doi.org/10.1109/COMST.2019.2908280.

[11] L. Ale, N. Zhang, H. Wu, D. Chen, T. Han, Online proactive caching in
mobile edge computing using bidirectional deep recurrent neural network, IEEE
Internet Things J. 6 (3) (2019) 5520–5530, http://dx.doi.org/10.1109/JIOT.
2019.2903245.

[12] S. Rathore, J.H. Ryu, P.K. Sharma, J.H. Park, DeepCachNet: A proactive caching
framework based on deep learning in cellular networks, IEEE Netw. 33 (3) (2019)
130–138, http://dx.doi.org/10.1109/MNET.2019.1800058.

[13] T.-V. Nguyen, N.-N. Dao, V. Dat Tuong, W. Noh, S. Cho, User-aware and flexible
proactive caching using LSTM and ensemble learning in IoT-MEC networks, IEEE
Internet Things J. 9 (5) (2022) 3251–3269, http://dx.doi.org/10.1109/JIOT.
2021.3097768.

[14] M. Pappalardo, E. Mingozzi, A. Virdis, A model-driven approach to aol-
based cache management in IoT, in: 2021 IEEE 26th International Workshop
on Computer Aided Modeling and Design of Communication Links and Net-
works, CAMAD, 2021, pp. 1–6, http://dx.doi.org/10.1109/CAMAD52502.2021.

9617772.

http://dx.doi.org/10.1016/j.adhoc.2021.102685
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb2
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb2
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb2
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb2
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb2
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb2
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb2
http://dx.doi.org/10.1109/COMST.2018.2844341
http://dx.doi.org/10.1016/j.future.2018.06.017
http://dx.doi.org/10.1016/j.future.2018.06.017
http://dx.doi.org/10.1016/j.future.2018.06.017
http://dx.doi.org/10.1109/ISCC47284.2019.8969590
http://dx.doi.org/10.1109/ISCC47284.2019.8969590
http://dx.doi.org/10.1109/ISCC47284.2019.8969590
http://dx.doi.org/10.1109/TII.2019.2938529
http://dx.doi.org/10.1109/MCOM.2017.7901470
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/ACCESS.2020.2991734
http://dx.doi.org/10.1109/PerComWorkshops53856.2022.9767531
http://dx.doi.org/10.1109/COMST.2019.2908280
http://dx.doi.org/10.1109/JIOT.2019.2903245
http://dx.doi.org/10.1109/JIOT.2019.2903245
http://dx.doi.org/10.1109/JIOT.2019.2903245
http://dx.doi.org/10.1109/MNET.2019.1800058
http://dx.doi.org/10.1109/JIOT.2021.3097768
http://dx.doi.org/10.1109/JIOT.2021.3097768
http://dx.doi.org/10.1109/JIOT.2021.3097768
http://dx.doi.org/10.1109/CAMAD52502.2021.9617772
http://dx.doi.org/10.1109/CAMAD52502.2021.9617772
http://dx.doi.org/10.1109/CAMAD52502.2021.9617772


Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.
[15] R. Singh, R. Sukapuram, S. Chakraborty, A survey of mobility-aware multi-access
edge computing: Challenges, use cases and future directions, Ad Hoc Netw. 140
(2023) 103044, http://dx.doi.org/10.1016/j.adhoc.2022.103044.

[16] M. Noura, M. Atiquzzaman, M. Gaedke, Interoperability in internet of things:
Taxonomies and open challenges, Mobile Netw. Appl. 24 (2019) 796–809.

[17] M. Pettorali, F. Righetti, C. Vallati, S.K. Das, G. Anastasi, Mobility management
in industrial IoT environments, in: 2022 IEEE 23rd International Symposium on
a World of Wireless, Mobile and Multimedia Networks, (WoWMoM), 2022, pp.
271–280, http://dx.doi.org/10.1109/WoWMoM54355.2022.00046.

[18] S. Zhang, H. Luo, J. Li, W. Shi, X. Shen, Hierarchical soft slicing to meet
multi-dimensional QoS demand in cache-enabled vehicular networks, IEEE Trans.
Wireless Commun. 19 (3) (2020) 2150–2162, http://dx.doi.org/10.1109/TWC.
2019.2962798.

[19] I. Zyrianoff, A. Trotta, L. Sciullo, F. Montori, M. Di Felice, IoT edge caching:
Taxonomy, use cases and perspectives, IEEE Internet Things Mag. 5 (3) (2022)
12–18, http://dx.doi.org/10.1109/IOTM.001.2200112.

[20] G. Yu, Y. He, J. Wu, Z. Chen, J. Pan, Mobility-aware proactive edge caching
for large files in the internet of vehicles, IEEE Internet Things J. (2023) 1,
http://dx.doi.org/10.1109/JIOT.2023.3240423.

[21] A.A. Chowdhury, I. Islam, M.I.A. Zahed, I. Ahmad, An optimal strategy for
UAV-assisted video caching and transcoding, Ad Hoc Netw. 144 (2023) 103155,
http://dx.doi.org/10.1016/j.adhoc.2023.103155.

[22] K. Thar, T.Z. Oo, Y.K. Tun, D.H. Kim, K.T. Kim, C.S. Hong, A deep learning model
generation framework for virtualized multi-access edge cache management,
IEEE Access 7 (2019) 62734–62749, http://dx.doi.org/10.1109/ACCESS.2019.
2916080.

[23] D.T. Hoang, D. Niyato, D.N. Nguyen, E. Dutkiewicz, P. Wang, Z. Han, A dynamic
edge caching framework for mobile 5G networks, IEEE Wirel. Commun. 25 (5)
(2018) 95–103, http://dx.doi.org/10.1109/MWC.2018.1700360.

[24] M.U. Farooq, M. Zeeshan, M.T. Jahangir, M. Asif, A novel cooperative micro-
caching algorithm based on fuzzy inference through NFV in ultra-dense IoT
networks, J. Netw. Syst. Manage. 30 (1) (2021) 20, http://dx.doi.org/10.1007/
s10922-021-09632-6.

[25] F. Zhang, G. Han, L. Liu, M. Martínez-García, Y. Peng, Joint optimization of
cooperative edge caching and radio resource allocation in 5G-enabled massive
IoT networks, IEEE Internet Things J. 8 (18) (2021) 14156–14170, http://dx.
doi.org/10.1109/JIOT.2021.3068427.

[26] S. Xu, X. Liu, S. Guo, X. Qiu, L. Meng, MECC: A mobile edge collaborative
caching framework empowered by deep reinforcement learning, IEEE Netw. 35
(4) (2021) 176–183, http://dx.doi.org/10.1109/MNET.011.2000663.

[27] X. Li, X. Wang, C. Zhu, W. Cai, V.C.M. Leung, Caching-as-a-service: Virtual
caching framework in the cloud-based mobile networks, in: 2015 IEEE Confer-
ence on Computer Communications Workshops, (INFOCOM WKSHPS), 2015, pp.
372–377, http://dx.doi.org/10.1109/INFCOMW.2015.7179413.

[28] Y. Hao, Y. Miao, L. Hu, M.S. Hossain, G. Muhammad, S.U. Amin, Smart-
edge-cocaco: AI-enabled smart edge with joint computation, caching, and
communication in heterogeneous IoT, IEEE Netw. 33 (2) (2019) 58–64, http:
//dx.doi.org/10.1109/MNET.2019.1800235.

[29] C.K. Kim, T. Kim, S. Lee, S. Lee, A. Cho, M.-S. Kim, Delay-aware distributed
program caching for IoT-edge networks, Plos One 17 (7) (2022) e0270183.

[30] X. Zhao, Q. Zhu, Mobility-aware and interest-predicted caching strategy based
on IoT data freshness in D2D networks, IEEE Internet Things J. 8 (7) (2021)
6024–6038, http://dx.doi.org/10.1109/JIOT.2020.3033552.

[31] Y.M. Saputra, D.T. Hoang, D.N. Nguyen, E. Dutkiewicz, D. Niyato, D.I. Kim,
Distributed deep learning at the edge: A novel proactive and cooperative caching
framework for mobile edge networks, IEEE Wirel. Commun. Lett. 8 (4) (2019)
1220–1223, http://dx.doi.org/10.1109/LWC.2019.2912365.

[32] Y. Zhang, B. Feng, W. Quan, A. Tian, K. Sood, Y. Lin, H. Zhang, Cooperative
edge caching: A multi-agent deep learning based approach, IEEE Access 8 (2020)
133212–133224, http://dx.doi.org/10.1109/ACCESS.2020.3010329.

[33] T. Li, L. Song, Federated online learning aided multi-objective proactive caching
in heterogeneous edge networks, IEEE Trans. Cogn. Commun. Netw. (2023) 1,
http://dx.doi.org/10.1109/TCCN.2023.3262243.

[34] Y. Zhang, Y. Li, R. Wang, J. Lu, X. Ma, M. Qiu, PSAC: Proactive sequence-aware
content caching via deep learning at the network edge, IEEE Trans. Netw. Sci.
Eng. 7 (4) (2020) 2145–2154, http://dx.doi.org/10.1109/TNSE.2020.2990963.

[35] D. Li, H. Zhang, H. Ding, T. Li, D. Liang, D. Yuan, User preference learning-based
proactive edge caching for D2D-assisted wireless networks, IEEE Internet Things
J. (2023) 1, http://dx.doi.org/10.1109/JIOT.2023.3244621.

[36] H. Wu, Y. Xu, J. Li, PTF: Popularity-topology-freshness-based caching strategy
for ICN-IoT networks, Comput. Commun. 204 (2023) 147–157.

[37] H. Wu, J. Li, J. Zhi, Could end system caching and cooperation replace in-
network caching in CCN? in: Proceedings of the 2015 ACM Conference on Special
Interest Group on Data Communication, 2015, pp. 101–102.

[38] W3C Working Group, Wot reference architecture (W3C recommendation 9 April
2020), 2023, http://www.w3.org/TR/wot-architecture. (Accessed on 1 June
2023).

[39] M. Reiss-Mirzaei, M. Ghobaei-Arani, L. Esmaeili, A review on the edge caching
mechanisms in the mobile edge computing: A social-aware perspective, Internet
Things 22 (2023) 100690, http://dx.doi.org/10.1016/j.iot.2023.100690.
15
[40] D. Silva, A. Heideker, I.D. Zyrianoff, J.H. Kleinschmidt, L. Roffia, J.-P. Soininen,
C.A. Kamienski, A management architecture for IoT smart solutions: Design and
implementation, J. Netw. Syst. Manage. 30 (2) (2022) 35, http://dx.doi.org/10.
1007/s10922-022-09648-6.

[41] I. Zyrianoff, L. Gigli, F. Montori, C. Aguzzi, S. Kaebisch, M. Di Felice, Artifact:
C3PO - converter of open API specification to WoT objects, in: 2022 IEEE
International Conference on Pervasive Computing and Communications Work-
shops and Other Affiliated Events, (PerCom Workshops), 2022, pp. 185–186,
http://dx.doi.org/10.1109/PerComWorkshops53856.2022.9767293.

[42] Swagger, Openapi specification 3.1.0, 2021, https://swagger.io/specification/.
(Accessed on 1 June 2023).

[43] I. Zyrianoff, CACHE-IT cache worker, https://github.com/ivanzy/cache-worker.
[44] I. Zyrianoff, CACHE-IT simulator, https://github.com/UniBO-PRISMLab/cache_

simulator.
[45] F. Palumbo, G. Aceto, A. Botta, D. Ciuonzo, V. Persico, A. Pescapé, Characteriza-

tion and analysis of cloud-to-user latency: The case of azure and AWS, Comput.
Netw. 184 (2021) 107693, http://dx.doi.org/10.1016/j.comnet.2020.107693.

[46] [dataset], S. Špaček, P. Velan, P. Čeleda, D. Tovarňák, Encrypted web traffic
dataset: Event logs and packet traces, Data Brief 42 (2022) 108188, http:
//dx.doi.org/10.1016/j.dib.2022.108188.

[47] [dataset], G.A. Stafford, LAN network stability, 2023, https://www.kaggle.com/
datasets/garystafford/ping-data. (Accessed on 31 May 2023).

[48] Z. Sang, S. Guo, Q. Wang, Y. Wang, GCS: Collaborative video cache management
strategy in multi-access edge computing, Ad Hoc Netw. 117 (2021) 102516,
http://dx.doi.org/10.1016/j.adhoc.2021.102516.

[49] S.J. Taylor, B. Letham, Forecasting at scale, Amer. Statist. 72 (1) (2018) 37–45.
[50] [dataset], A.M. Gracia Amillo, N. Taylor, M.A. M., E.D. Dunlop, P. Mavrogiorgios,

F. Fahl, G. Arcaro, I. Pinedo, Adapting PVGIS to trends in climate, technology
and user needs, in: 38th European Photovoltaic Solar Energy Conference and
Exhibition, PVSEC, 2021, pp. 907–911.

Ivan Zyrianoff is a Ph.D. student from the University of
Bologna and a member of the IoT-Prism lab. He holds
a B.S. degree in Computer Science and an M.S. degree
in Information Engineering from the Federal University of
ABC, Brazil. He was involved in the SWAMP Project, an
EU-Brazil collaborative research project that developed IoT-
based methods and approaches for smart water management
in precision irrigation. He also participated in the Arrow-
head Tools project, which aims for the digitalization and
automation solutions for the European industry. His current
research topics encompass interoperability for the Internet
of Things and Edge Computing.

Lorenzo Gigli received his Master’s Degree (summa cum
Laude) in Computer Science in 2019 from the University
of Bologna, Italy. He worked as a Research Fellow on the
MAC4PRO project (INAIL) at the Department of Computer
Science and Engineering (DISI), University of Bologna, Italy.
He is enrolled in a Ph.D. program in Engineering and Infor-
mation Technology. He is part of the IoT PRISM laboratory
directed by Prof. Marco Di Felice. His field of study includes
the Internet of Things, Blockchains, and Distributed Systems.

Federico Montori received the B.S. and M.S. degrees
(summa cum laude) in computer science and the Ph.D.
degree in computer science and engineering from the Uni-
versity of Bologna in 2012, 2015, and 2019, respectively.
He was a Visiting Researcher with the Swinburne University
of Technology, Australia, and Luleå Tekniska Universitet,
Sweden. He is currently an Assistant Professor with the
University of Bologna. He participated in several EU projects
and he was WP Leader for the H2020 Project Arrowhead
Tools. His primary research interests include mobile crowd-
sensing (MCS), pervasive and mobile computing, the IoT
automation, and IoT data analysis.

Luca Sciullo received the master’s degree (summa cum
laude) in computer science and the Ph.D. degree in com-
puter science and engineering from the University of
Bologna, Italy, in 2017 and 2021, respectively. He is a
Junior Assistant Professor with the University of Bologna.
He was a Visiting Researcher at the Huawei European
Research Center of Munich, Germany. He is a part of the
IoT Prism Laboratory directed by Prof. Marco Di Felice and
Prof. Luciano Bononi. His research interests include wireless
systems and protocols for emergency scenarios, wireless
sensor networks, the IoT systems, and the Web of Things.

http://dx.doi.org/10.1016/j.adhoc.2022.103044
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb16
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb16
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb16
http://dx.doi.org/10.1109/WoWMoM54355.2022.00046
http://dx.doi.org/10.1109/TWC.2019.2962798
http://dx.doi.org/10.1109/TWC.2019.2962798
http://dx.doi.org/10.1109/TWC.2019.2962798
http://dx.doi.org/10.1109/IOTM.001.2200112
http://dx.doi.org/10.1109/JIOT.2023.3240423
http://dx.doi.org/10.1016/j.adhoc.2023.103155
http://dx.doi.org/10.1109/ACCESS.2019.2916080
http://dx.doi.org/10.1109/ACCESS.2019.2916080
http://dx.doi.org/10.1109/ACCESS.2019.2916080
http://dx.doi.org/10.1109/MWC.2018.1700360
http://dx.doi.org/10.1007/s10922-021-09632-6
http://dx.doi.org/10.1007/s10922-021-09632-6
http://dx.doi.org/10.1007/s10922-021-09632-6
http://dx.doi.org/10.1109/JIOT.2021.3068427
http://dx.doi.org/10.1109/JIOT.2021.3068427
http://dx.doi.org/10.1109/JIOT.2021.3068427
http://dx.doi.org/10.1109/MNET.011.2000663
http://dx.doi.org/10.1109/INFCOMW.2015.7179413
http://dx.doi.org/10.1109/MNET.2019.1800235
http://dx.doi.org/10.1109/MNET.2019.1800235
http://dx.doi.org/10.1109/MNET.2019.1800235
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb29
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb29
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb29
http://dx.doi.org/10.1109/JIOT.2020.3033552
http://dx.doi.org/10.1109/LWC.2019.2912365
http://dx.doi.org/10.1109/ACCESS.2020.3010329
http://dx.doi.org/10.1109/TCCN.2023.3262243
http://dx.doi.org/10.1109/TNSE.2020.2990963
http://dx.doi.org/10.1109/JIOT.2023.3244621
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb36
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb36
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb36
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb37
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb37
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb37
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb37
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb37
http://www.w3.org/TR/wot-architecture
http://dx.doi.org/10.1016/j.iot.2023.100690
http://dx.doi.org/10.1007/s10922-022-09648-6
http://dx.doi.org/10.1007/s10922-022-09648-6
http://dx.doi.org/10.1007/s10922-022-09648-6
http://dx.doi.org/10.1109/PerComWorkshops53856.2022.9767293
https://swagger.io/specification/
https://github.com/ivanzy/cache-worker
https://github.com/UniBO-PRISMLab/cache_simulator
https://github.com/UniBO-PRISMLab/cache_simulator
https://github.com/UniBO-PRISMLab/cache_simulator
http://dx.doi.org/10.1016/j.comnet.2020.107693
http://dx.doi.org/10.1016/j.dib.2022.108188
http://dx.doi.org/10.1016/j.dib.2022.108188
http://dx.doi.org/10.1016/j.dib.2022.108188
https://www.kaggle.com/datasets/garystafford/ping-data
https://www.kaggle.com/datasets/garystafford/ping-data
https://www.kaggle.com/datasets/garystafford/ping-data
http://dx.doi.org/10.1016/j.adhoc.2021.102516
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb49
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb50
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb50
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb50
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb50
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb50
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb50
http://refhub.elsevier.com/S1570-8705(24)00024-6/sb50


Ad Hoc Networks 156 (2024) 103413I. Zyrianoff et al.
Carlos A. Kamienski is a Full Professor of Computer
Science at the Federal University of ABC (UFABC, Brazil).
For eight years, he led the NUVEM Strategic Research
Unit comprising faculty members and students working
in smart societies, virtual sensations, connected mobil-
ity, extreme computing, and integrated universes. He was
the Brazilian coordinator of SWAMP from 2017 to 2021
(swamp-project.org), an EU-Brazil collaborative research
project that developed IoT-based methods and approaches
for smart water management in precision irrigation. His
current research interests include the Internet of Things,
smart agriculture, smart cities, fog computing, network
softwarization, and Future Internet.
16
Marco Di Felice received his Laurea and Ph.D. degrees
in computer science from the University of Bologna in
2004 and 2008, respectively. He has held visiting research
positions at the Georgia Institute of Technology and North-
eastern University. Currently, he is a Full Professor of
computer science at the University of Bologna and serves as
the Co-Director of the IoT PRISM Laboratory. With over 150
papers published, his research focuses on wireless and mo-
bile systems, including self-organizing networks, unmanned
aerial systems, IoT, WoT, and context-aware computing. He
has been recognized with three Best Paper Awards and is
an Associate Editor for the IEEE Internet of Things Journal.


	CACHE-IT: A distributed architecture for proactive edge caching in heterogeneous IoT scenarios
	Introduction
	Related Work
	CACHE-IT Architectural Design
	Designing Guidelines
	CACHE-IT High Level Architecture

	CACHE-IT Operations
	Interoperability Enabler
	History Management
	Caching Strategy Execution
	Long-Term: User Intervention
	Medium-Term: Caching Strategy Adaption
	Short-Term: Generation of Caching Orders

	Request Forwarding and Caching Retrieval

	CACHE-IT Implementation
	Validation
	SHM Use Case
	Caching Goal and Scenario Description
	Caching Template Definition
	Results

	Conclusions and Future Work
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


