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Abstract
Purpose  The emergence of chimeric antigen receptor (CAR) T-cell therapy fundamentally changed the management of 
individuals with relapsed and refractory large B-cell lymphoma (LBCL). However, real-world data have shown divergent 
outcomes for the approved products. The present study therefore set out to evaluate potential risk factors in a larger cohort.
Methods  Our analysis set included 88 patients, treated in four German university hospitals and one Italian center, who had 
undergone 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography (PET) before CAR T-cell therapy with tisagen-
lecleucel or axicabtagene ciloleucel. We first determined the predictive value of conventional risk factors, treatment lines, 
and response to bridging therapy for progression-free survival (PFS) through forward selection based on Cox regression. In 
a second step, the additive potential of two common PET parameters was assessed. Their optimal dichotomizing thresholds 
were calculated individually for each CAR T-cell product.
Results  Extra-nodal involvement emerged as the most relevant of the conventional tumor and patient characteristics. Moreo-
ver, we found that inclusion of metabolic tumor volume (MTV) further improves outcome prediction. The hazard ratio for 
a PFS event was 1.68 per unit increase of our proposed risk score (95% confidence interval [1.20, 2.35], P = 0.003), which 
comprised both extra-nodal disease and lymphoma burden. While the most suitable MTV cut-off among patients receiv-
ing tisagenlecleucel was 11 mL, a markedly higher threshold of 259 mL showed optimal predictive performance in those 
undergoing axicabtagene ciloleucel treatment.
Conclusion  Our analysis demonstrates that the presence of more than one extra-nodal lesion and higher MTV in LBCL 
are associated with inferior outcome after CAR T-cell treatment. Based on an assessment tool including these two factors, 
patients can be assigned to one of three risk groups. Importantly, as shown by our study, metabolic tumor burden might 
facilitate CAR T-cell product selection and reflect the individual need for bridging therapy.
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Introduction

Chimeric antigen receptor (CAR) T‐cell therapy provides 
a new option for patients with various lymphoma subtypes. 
Tisagenlecleucel and axicabtagene ciloleucel are anti-CD19 
products that were approved in relapsed or refractory large 
B-cell lymphoma (LBCL) based on results of the JULIET 
and ZUMA-1 trials [1, 2]. While the design heterogeneity of 
these studies, mainly with respect to inclusion criteria and 
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bridging therapy, precludes direct comparison, recently pub-
lished real-world data show considerable progression-free 
survival (PFS) as well as overall survival (OS) differences 
between the two constructs [3, 4].

The importance of individualized treatment planning is 
already widely appreciated, since CAR T-cell therapy can 
cause clinically relevant side effects and requires complex 
patient management [5, 6]. However, a specific risk model 
on which to base treatment decisions has not yet been 
established. CAR T-cell product selection and indications 
for tumor debulking are contingent upon local standards 
of care and hence inconsistent. The available data suggest 
that, among other factors, lymphoma burden and response to 
bridging therapy may influence outcomes after CAR T-cell 
infusion [7, 8]. Moreover, intrinsic tumor factors and char-
acteristics of the cells administered such as dose or kinetics 
have been discussed [9–11].

Positron emission tomography (PET) with 2-[18F]fluoro-
2-deoxy-D-glucose ([18F]FDG) is a diagnostic modality 
routinely used for the staging of patients undergoing CAR 
T-cell therapy. Recently, retrospective studies including our 
own have demonstrated that quantitative image evaluation 
by parameters like metabolic tumor volume (MTV) may be 
helpful in pretreatment assessment [12–15]. We therefore 
initiated this multicenter analysis to find a risk assessment 
tool for the specific context of CAR T-cell therapy based on 
conventional disease characteristics, patient factors, and PET 
metrics, taking into account potential differences between 
products. Additionally, the role of lymphoma burden before 
treatment in the development of toxicities was examined.

Patients and methods

Data collection

Our study cohort included patients with relapsed or refrac-
tory biopsy-proven LBCLs who had undergone CAR T-cell 
therapy through January 31, 2021, and met the following 
criteria:

(1)	 PET examination performed within 30 days before 
infusion of tisagenlecleucel or axicabtagene ciloleucel

(2)	 No systemic cytoreductive treatment after imaging 
besides a lymphodepleting regimen of fludarabine and 
cyclophosphamide

(3)	 Absence of lesions only captured by another diagnostic 
modality or classified as non-measurable due to high 
physiologic [18F]FDG uptake in the surrounding tissue

After institutional ethics committee approval, the four 
participating German university hospitals and single Italian 
center identified 88 individuals who qualified for analysis. 

The study sites were asked to provide information about 
clinical stage, extra-nodal disease sites, patient age, Eastern 
Cooperative Oncology Group status, lactate dehydrogenase 
(LDH) levels, C-reactive protein values, therapy lines, and 
response status after bridging treatment. Product selection 
was based on the approved indications and local availabil-
ity. All individuals or their representatives gave written 
informed consent for CAR T-cell therapy and the respec-
tive staging procedures. Forty-seven of the patients enrolled 
were also examined in a smaller analysis recently published 
elsewhere [14].

PET scanning and quantitative image analysis

Imaging was performed at the academic medical centers that 
participated in our study, using Biograph mCT, Biograph 
mMR, Biograph Vision (Siemens Healthcare GmbH, Erlan-
gen, Germany); Discovery MI (GE HealthCare, Milwaukee, 
WI); and Gemini TF (Koninklijke Philips N.V., Amsterdam, 
The Netherlands) PET systems. As part of clinical protocol, 
scans were acquired according to institutional standards.

MTV was calculated semi-automatically with a standard-
ized uptake value (SUV) threshold of 4.0 in ACC​URA​TE 
(PETRA consortium, Amsterdam, The Netherlands), LIFEx 
(Laboratory of Translational Imaging in Oncology, Orsay, 
France) [16], MIM Encore (MIM Software, Inc., Cleveland, 
OH), or syngo.via (Siemens Healthcare GmbH, Erlangen, 
Germany), depending on reader preferences. Recent stud-
ies indicate a satisfactory level of agreement between the 
software tools used [14, 17, 18]. The absolute cut-off chosen 
has been shown previously to achieve the highest delinea-
tion success rates in lymphoma patients [19]. Furthermore, 
we measured the maximum SUV (SUVmax) as an additional 
PET parameter.

Statistical evaluation and development 
of a predictive model

Main patient outcomes evaluated by our study were PFS, 
defined as time to imaging-detected progression, relapse, 
or any-cause death, and OS, which was calculated taking 
only deaths into account. We determined 1-year survival 
rates through Kaplan–Meier analysis and used Cox regres-
sion with likelihood ratio tests to assess differences between 
risk groups. Median follow-up time was calculated by the 
reverse Kaplan–Meier method. Moreover, hazard ratios of 
the identified risk factors and corresponding 95% Wald’s 
confidence limits were established.

Our model for prediction of PFS was developed by multi-
variable Cox regression based on forward selection, using the 
Akaike’s information criterion (AIC). All conventional disease 
parameters and basic patient characteristics collected were 
taken into account as factors potentially affecting outcome. 
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In a second step, we assessed whether MTV and SUVmax 
could improve the generated model. The respective optimal 
threshold was determined individually for each CAR T-cell 
product based on AIC with the condition that at least 15% of 
patients should be allocated to a risk group. Factors which 
proved predictive were analyzed through univariable Cox 
regression and in the context of our final model. Additionally, 
our study evaluated whether grade of cytokine release (CRS) 
or immune effector cell-associated neurotoxicity syndrome 
(ICANS), assessed using the American Society for Blood and 
Marrow Transplantation consensus scoring system [20], cor-
relates with metabolic tumor burden based on Pearson’s coef-
ficients separately for both CAR T-cell constructs. An exces-
sive response of immune cells following infusion primarily 
causes fever in CRS. It may also lead to hypotension, capillary 
leak, and end-organ dysfunction. CAR T-cell-related ICANS 
is a pathologic process involving the central nervous system, 
which can induce aphasia, impairment of consciousness or 
cognitive skills, motor weakness, seizures, and cerebral edema.

To examine potential differences in baseline character-
istics between the two treatment subgroups receiving tisa-
genlecleucel and axicabtagene ciloleucel, we performed 
Mann–Whitney U as well as Fisher’s exact tests. All analy-
ses were conducted with SAS software (SAS Institute, Inc., 
Cary, NC), treating the study sites as random effects in Cox 
models.

Results

Baseline characteristics of the study cohort

The median patient age was 59 years, with a male-to-female 
ratio of 1.67 (Table 1). A majority of them were treated for 
relapsed or refractory diffuse LBCL (n = 67, 76.1%), and 
elevated LDH was the most common established risk fac-
tor (n = 61, 69.3%). While 62 individuals underwent CAR 
T-cell therapy with tisagenlecleucel (70.5%), 26 received 
axicabtagene ciloleucel (29.5%). Though, generally, the 
baseline characteristics of our two treatment groups did 
not significantly differ, there were a few exceptions: first, 
a higher metabolic tumor burden (P = 0.024) but less fre-
quent need for bridging therapy of patients who received 
axicabtagene ciloleucel (P < 0.001) and, second, differences 
in histologic subtype distribution (P = 0.023). A markedly 
lower proportion of individuals undergoing treatment with 
tisagenlecleucel had primary mediastinal B-cell lymphoma.

Optimal PET parameter thresholds and risk 
categorization

The most suitable MTV and SUVmax cut-offs to predict PFS 
were 11 mL and 9.7, respectively, for patients treated with 
tisagenlecleucel. In contrast, markedly higher thresholds of 

259 mL and 15.1 provided optimal predictive power among 
those receiving axicabtagene ciloleucel.

Extra-nodal disease emerged as the most relevant of the 
conventional tumor and patient characteristics (Fig. 1A, B) 
with a hazard ratio (HR) of 1.83 (95% confidence interval 
(CI) [1.10, 3.04], P = 0.021). No other factors considered 
for the first risk modeling step were of any added value in 
our study cohort. However, with a univariable HR of 2.04 
(95% CI [1.16, 3.58], P = 0.014), metabolic tumor burden 
was identified as a PET parameter that can further improve 
PFS prediction and formed the developed assessment tool’s 
second category (Fig. 1C, D). Accordingly, patients were 
assigned to one of three risk groups based on a numerical 
scale ranging between 0 and 2.

In our study, which had a 17-month median follow-up, 
individuals with no more than one extra-nodal lesion plus 
smaller MTV achieved 1-year PFS and OS probabilities 
of 49.0% (95% CI [28.4, 84.5]) and 85.7% (95% CI [69.2, 
100]), respectively. The HR for a PFS event per unit increase 
of our sum score comprising these two risk factors was 1.68 
(95% CI [1.20, 2.35]; P = 0.003; Fig. 2). Accordingly, 1-year 
PFS and OS rates in patients who had extra-nodal disease as 
well as a higher metabolic lymphoma burden were signifi-
cantly lower at 15.8% (95% CI [7.6, 32.9]) and 48.2% (95% 
CI [34.3, 67.7]), respectively.

Correlation between tumor burden and grades 
of toxicity

We observed a weak correlation of metabolically active 
tumor volume with CRS (r = 0.359; P = 0.004) and 
ICANS grade (r = 0.298; P = 0.019) for individuals receiv-
ing tisagenlecleucel. No relevant associations of MTV to 
CRS (r = 0.242; P = 0.235) or ICANS severity (r = 0.059; 
P = 0.776) after CAR T-cell treatment were found in axi-
cabtagene ciloleucel-treated patients. The lymphoma burden 
distribution of individuals with negligible or moderate ver-
sus more severe toxicity is illustrated by Fig. 3.

Discussion

We here present a product-specific risk assessment tool 
for CAR T-cell therapy in LBCL that includes extra-nodal 
disease reflecting lesion dissemination and pretreatment 
MTV as a measure of tumor load. The PET parameter cut-
offs were chosen taking into account potential differences 
between tisagenlecleucel and axicabtagene ciloleucel. Our 
two-factor score accurately identified patients at risk of 
shorter PFS and OS after CAR T-cell treatment. In those 
with more than one extra-nodal lesion and elevated MTV, 
the rate of progression or death was three times higher than 
for individuals without.
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Table 1   Patient and disease 
characteristics in the two 
treatment subgroups

Data are presented as n (%) of patients unless otherwise indicated
ECOG Eastern Cooperative Oncology Group, IPI International Prognostic Index, LBCL large B-cell lym-
phoma, LDH lactate dehydrogenase, MTV metabolic tumor volume, SUVmax maximum standardized uptake 
value
* Presence of a lesion measuring ≥ 7.5 cm in at least one axis

Tisagenlecleucel 
(n = 62)

Axicabtagene ciloleu-
cel (n = 26)

P

Age, y
  Median 58 61 0.621
  Range 19–82 19–73

Sex
  Female 25 (40.3) 8 (30.8) 0.474
  Male 37 (59.7) 18 (69.2)

Lymphoma subtype
  Diffuse LBCL 49 (79) 18 (69.2) 0.023
  Transformed follicular lymphoma 9 (14.5) 2 (7.7)
  Primary mediastinal B-cell lymphoma 2 (3.2) 6 (23.1)
  High-grade B-cell lymphoma 2 (3.2) 0 (0)

IPI factors
  Age > 60 years 29 (46.8) 14 (53.9) 0.642
  Ann Arbor stage III or IV 40 (64.5) 19 (73.1) 0.469
  More than one extra-nodal lesion 33 (53.2) 19 (73.1) 0.1
  ECOG performance status ≥ 2 17 (27.4) 8 (30.8) 0.798
  Elevated LDH 46 (74.2) 15 (57.7) 0.137

IPI score
  1–2 30 (48.4) 14 (53.9) 0.816
  3–5 32 (51.6) 12 (46.2)

Bulky disease*
  Yes 11 (17.7) 6 (23.1) 0.566
  No 51 (82.3) 20 (76.9)

Treatment lines
  Median 3 3 0.095
  Range 2–12 1–7

Prior stem-cell transplantation
  Autologous 20 (32.3) 7 (26.9) 0.801
  Allogeneic 1 (1.6) 0 (0)

Bridging therapy
  Yes 62 (100) 19 (73.1)  < 0.001
  No 0 (0) 7 (26.9)

Response to bridging treatment
  Complete remission 6 (9.7) 0 (0) 0.082
  Partial response 20 (32.3) 2 (10.5)
  Stable disease 7 (11.3) 4 (21.1)
  Progressive disease 29 (46.8) 13 (68.4)

MTV
  Median 55 202 0.024
  Range 0–1831 5–3646

SUVmax

  Median 19.3 19.8 0.661
  Range 2.4–54.8 5.7–38.8
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Fig. 1   Kaplan–Meier estimates for predictive factors identified. Impact of extra-nodal disease (A, B) and MTV (C, D) on survival outcomes. 
MTV, metabolic tumor volume; OS, overall survival; PFS, progression-free survival

Fig. 2   Risk assessment with a two-factor score including the presence of more than one extra-nodal lesion and MTV. Kaplan–Meier curves for 
PFS (A) and OS (B) based on individual status. MTV, metabolic tumor volume; OS, overall survival; PFS, progression-free survival
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Extra-nodal spread was the most relevant of conventional 
patient characteristics and basic disease parameters, a find-
ing consistent to previous studies [13, 14]. Shorter survival in 
these individuals could be explained by the observed hindrance 
of T-cell migration into non-lymphatic tissues [21]. Hence, 
optimization of the approved products and tailored bridging 
strategies have the potential to improve therapy outcomes.

Interestingly, extra-nodal disease and MTV compared 
favorably with several established risk factors. This may be 
explained by the circumstance that Ann Arbor stage and 
LDH are only surrogates of tumor burden. Using large clini-
cal trial data sets, Mikhaeel et al. developed a risk score 
based on metabolic tumor burden, patient age, and clini-
cal stage, which predicted the treatment response of diffuse 
LBCL patients undergoing first-line therapy more accurately 
than the International Prognostic Index [18, 22]. In the set-
ting of CAR T-cell treatment, that novel risk assessment tool 
was found to be predictive for PFS but not OS [23].

To date, there is no randomized study comparing the 
efficacy of tisagenlecleucel and axicabtagene ciloleucel. 
However, real-world data have recently shown significant 

differences regarding survival rates [3, 4]. Our analysis indi-
cates that axicabtagene ciloleucel may be particularly benefi-
cial in patients with high lymphoma load, as the optimal MTV 
threshold of tisagenlecleucel was markedly lower. Metabolic 
tumor burden would thus seem useful for the selection of both 
CAR T-cell product and bridging therapy. Of note, unlike oth-
ers [12, 24], we did not use the MTV median as a threshold 
to identify individuals at risk, but determined specific cut-
offs based on model selection methods, providing increased 
accuracy. Several studies indicate that effective debulking is 
most important in high-tumor volume patients, while those 
who have low MTV should be protected from chemo- or radi-
otherapy-associated toxicity. The decrease of metabolic tumor 
burden between leukapheresis and CAR T-cell infusion signif-
icantly correlated with PFS in a study by Sesques et al. [24]. 
Surprisingly, we did not find any predictive value of response 
status after bridging treatment. This might be explained by the 
fact that disease stratification based on Lugano criteria [25] is 
less precise than the exact measurement of volume changes.

While other authors have reported an association between 
MTV and CRS development [26, 27], the present study 

Fig. 3   Box plots comparing the 
distribution of MTV in patients 
with negligible to moderate 
versus more severe CRS (A, 
C) and ICANS (B, D) by CAR 
T-cell product. CAR, chimeric 
antigen receptor; CRS, cytokine 
release syndrome; ICANS, 
immune effector cell-associated 
neurotoxicity syndrome; MTV, 
metabolic tumor volume
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showed only weak correlations of lymphoma load with CAR 
T-cell-specific adverse events. However, it is important to 
note that the number of higher-grade toxicities was limited 
in our cohort. Furthermore, management of these potentially 
life-threatening side effects has significantly improved over 
time, presumably through the use of tocilizumab and corti-
costeroids at an increasingly early stage [28, 29].

Implementation of standardized measuring methods and 
automated workflows will be essential if MTV or other PET-
derived biomarkers are to become available in routine clini-
cal practice. Radiomics may also play a relevant role within 
the management of patients undergoing CAR T-cell therapy 
[30]. Recent developments suggest that more convenient 
tools such as plug-ins for commercial imaging software can 
be expected soon. The deep-learning algorithm presented by 
Jemaa et al. is just one of several with sufficient accuracy in 
lymphoma [31]. We ourselves used the absolute SUV thresh-
old of 4.0 for semi-automatic tumor burden calculation. This 
cut-off is currently the most promising candidate, since it 
was found to be the least influenced by image reconstruction 
and choice of segmentation tool [17, 32].

One potential weakness of our study lies in the retro-
spective data collection. Nevertheless, the findings appear 
generalizable to a broad spectrum of patients, as individu-
als from five university centers and two European countries 
were enrolled. Another strength was the inclusion of two 
different CAR T-cell products. However, it should be noted 
that the treatment groups were not matched for all baseline 
characteristics. Although cautious interpretation is needed 
due to the limited number of patients who received either 
tisagenlecleucel or axicabtagene ciloleucel, respectively, we 
believe that both risk factors identified will become increas-
ingly important (Supplementary Fig. 1). Thus, there remains 
a particular need for reliable data on the efficacy of different 
bridging strategies in cases with higher tumor load. Moreo-
ver, prospective studies should be carried out to confirm 
the prognostic value of extra-nodal disease as well as MTV 
and refine treatment recommendations not only for tisagenle-
cleucel or axicabtagene ciloleucel but also other CAR T-cell 
products like lisocabtagene maraleucel [33].

Conclusions

Our study demonstrates that extra-nodal disease and higher 
MTV identified by [18F]FDG PET are associated with a sig-
nificantly worse outcome following CAR T-cell treatment in 
LBCL. Using an assessment tool, which includes these two 
factors, patients can be assigned to one of three risk groups. 
Moreover, as shown by the present analysis, metabolic tumor 
burden might be a valuable parameter for selection of the 
optimal CAR T-cell product and bridging therapy.
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