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Abstract: The synthesis of dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate has been
realized through a diastereospecific bis-alkoxycarbonylation reaction, which starts from the cheap
and easily available 1H-indene, benzyl alcohol, and carbon monoxide. The catalyst is formed in situ
by mixing Pd(TFA)2, the ligand N2,N3-bis(2,6-dimethylphenyl)butane-2,3-diimine, p-benzoquinone
is used as an oxidant, and benzyl alcohol acts both as a nucleophile and as the main solvent.
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1. Introduction

The most commonly used processes for the synthesis of carbonylated compounds
are probably carbonylation reactions [1–3]. In particular, the bis-alkoxycarbonylation of
olefins [4–6] is a very useful reaction for the synthesis of succinic acid ester derivatives,
which are compounds that find applications in various industrial fields [7,8], including
cosmetics [9] and food industries [10]. Through this process, in the presence of CO and
alcohol, cheap functionalized alkenes can be easily converted into the desired succinate
in one-step. The reaction is usually palladium-catalyzed and requires an oxidant for
regenerating the catalytic active species [5,11]. Various bis-alkoxycarbonylations of olefins,
using different conditions and catalytic systems, have been reported in the literature [12,13].
However, the main problems that emerge from these examples are represented by the
limited scope of the processes described, in particular regarding the alcohols, and by the
drastic reaction conditions usually required (high temperatures and/or high CO pressures).
Recently, we have realized an efficient method for the bis-alkoxycarbonylation of variously
functionalized olefins, utilizing aryl α-diimine/palladium(II) complexes as catalysts and
p-benzoquinone as the oxidant [14–18]. Here, with the aim of broadening the scope and the
applications of our developed bis-alkoxycarbonylation reaction of internal olefins, we have
described the synthesis of dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate 3.

2. Results and Discussion

Recently, we have reported the bis-alkoxycarbonylation of 1,2-disubstituted olefins [15]. The
catalyst was formed in situ by mixing Pd(TFA)2 and the ligand N2,N3-bis(2,6-dimethylphenyl)
butane-2,3-diimine 1a, which displays a 1,4-diaza-1,3-butadiene skeleton bearing two
methyl groups and otho-disubstituted aromatic rings linked to nitrogen atoms. The reaction
proceeded in the presence of 1.5 equiv of p-benzoquinone as oxidant and 2 mol% of p-
toluenesulfonic acid, under mild conditions (room temperature and 4 bar of CO pressure)
and a mixture of alcohol/THF in a 7:1 ratio was employed as the solvent. Remarkably,
the process was diastereospecific, therefore, starting from the (E)-alkene or the (Z)-alkene,
diastereoisomers were obtained. Applying these conditions to the bis-alkoxycarbonylation
of 1H-indene, bearing a C=C double bond in a (Z)-fashion, and utilizing benzyl alcohol,
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product 3 was obtained in 87% isolated yield, as shown in Scheme 1. In this reaction,
the benzyl alcohol acts as both the nucleophile and the main solvent. Its removal from
the reaction mixture, after completion of the reaction, is difficult due to its high boiling
point and poor water solubility, therefore more than one chromatographic column may
be required for the isolation of the pure product. The proposed catalytic cycle accounting
for the synthesis of compound 3 is illustrated in the Supplementary Materials [19]. The
diastereospecificity of the reaction can be explained as a consequence of a concerted syn
addition of the Pd-benzoyloxycarbonyl moiety to the olefin double bond [15]. The relative
syn stereochemistry in product 3 was further validated by a (1H,1H)-NOESY (Nuclear
Overhauser Effect SpectroscopY) experiment, which evidenced the presence of a NOE
correlation between H1 and H2 (see Supplementary Materials). Moreover, the value of
the J coupling constant of the doublet relative to H1 (see Scheme 1) is 8.3 Hz, which is in
agreement with that reported for similar substrates with the stereochemistry assigned [11].
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Scheme 1. Pd-catalyzed bis-alkoxycarbonylation of indene using benzyl alcohol. Only one enan-
tiomer is shown.

Other analyses, which confirm the structure of 3, such as 13C-NMR and the ESI-MS
spectrum, can be found in the Supplementary Materials.

The DFT calculated free Gibbs energy associated with the process resulted to be
−39.1 kcal/mol, indicating that the whole process is highly exergonic (see Supplementary
Materials).

3. Materials and Methods

Chemicals and instruments. The reaction was carried out under a carbon monoxide
atmosphere (PCO = 4 bar) with dry solvent under anhydrous conditions, in a stainless-
steel autoclave, by using the Schlenk technique. The reaction was monitored using 1H
NMR by collecting a direct sample of the crude mixture. The 1H NMR and 13C NMR
were recorded on a Bruker Avance 400 spectrometer (1H: 400 MHz, 13C: 101 MHz), using
deuterated DMSO as the solvent. Chemical shifts are reported in the δ scale relative to the
central line of the residual DMSO (2.50 ppm) for 1H NMR and to the central line of DMSO
(39.52 ppm) for 13C NMR. The 13C NMR was recorded with 1H broadband decoupling.
The following abbreviations were used to explain the multiplicities: s = singlet, br = broad,
d = doublet, dd = doublet of doublets, and m = multiplet. Coupling constants (J) are
reported in Hertz (Hz). The elemental analysis was performed with a Thermo Finnigan
Flash 1112 EA CHN analyzer. The ESI-MS spectrum was recorded on Waters Micromass
ZQ 4000, using electrospray ionisation techniques, with the sample dissolved in MeOH.
Carbon monoxide (Cp grade 99.99%) was supplied by Air Liquide (carbon monoxide is a
toxic gas with potentially lethal action, adequate precautions must, therefore, be observed).
The p-benzoquinone was purchased by Alfa Aesar and was filtered through a plug of silica
gel washing with CH2Cl2, obtaining a yellow solid after drying the solution under vacuum.
The pure compound 3 was isolated through flash column chromatography on silica gel
60 (40–60 µm, 230–400 mesh). 1H-Indene 2 was purchased from Merck Sigma-Aldrich
and, before use, was filtered through a plug of neutral Al2O3 without further purification.
Anhydrous THF was distilled from sodium-benzophenone. The benzyl alcohol was dried
over molecular sieves (Alfa Aesar, 4 Å, 1–2 mm, beads). Pd(TFA)2 was purchased by
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Flurochem and p-toluenesulfonic acid was purchased from Merck Sigma-Aldrich and used
without further purification. The ligand 1a was synthesized according to the literature [20].
All solid reagents were weighted in an analytical balance without excluding moisture
and air.

Computational Details. All DFT calculations have been performed using the ORCA
4.2.1 suite of quantum chemistry programs [21,22]. Geometries were optimized in vacuum
using the Becke–Perdew (BP) functional [23,24] and the def2-TZVP basis [25]. Vibrational
frequencies were calculated at the optimized geometries to check the stability of the sta-
tionary points and to evaluate the vibrational contribution to free energies at 298K. Final
single point energy calculations at the optimized geometries were performed with the large
def2-QZVPP basis [25] and the M06 functional [26], with the inclusion of solvation effects
(with THF as solvent) through the SMD model [27] and of dispersion interactions [28].
The final free energy of each structure, used to evaluate the reaction free energy, was built
by summing the difference between the def2-TZVP electronic and free energies to the
def2-QZVPP single point electronic energy.

Synthesis of dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate. In a nitrogen
flushed Schlenk tube, equipped with a magnetic stirring bar, 1H-indene 2 (2 mmol) and
benzyl alcohol (3.5 mL) were added in sequence. The mixture was left under stirring for
10 min. In another nitrogen-flushed Schlenk tube, equipped with a magnetic stirring bar,
the Pd(TFA)2 (13.3 mg, 0.04 mmol) and THF (0.5 mL) were added in sequence. After the
mixture turned into a red-brown color (20 min), the ligand 1a (12.8 mg, 0.044 mmol) was
added. The mixture was left under stirring for 10 min, turning into a dark orange color.
The olefin solution and the formed catalyst were injected in sequence in a nitrogen flushed
autoclave, equipped with a magnetic stirring bar, containing p-benzoquinone (325 mg,
3 mmol) and p-TSA·H2O (7.6 mg, 0.04 mmol). After 10 min of stirring, the autoclave was
flushed three times with CO and pressurized with 4 bar of carbon monoxide. The reaction
was vigorously stirred at room temperature (20 ◦C) for 66 h. The autoclave was vented off
and flushed with nitrogen and the crude was dried under reduced pressure and filtered
through a plug of silica gel, washing with CH2Cl2/Et2O = 1:1 (150 mL). The solution was
dried up in vacuum and then NaOH 1 M (30 mL) was added and the solution was extracted
with CH2Cl2 (3 × 30 mL). The combined organic solution was dried over Na2SO4 and the
solvent was removed under reduced pressure. Product 3 was eventually obtained after
column chromatography on silica gel (Petroleum Ether/CH2Cl2 80: 20 to 50:50). Yield:
87% (671 mg), white solid.

Rf = 0.23 (Petroleum Ether/CH2Cl2 = 50:50). 1H NMR (400 MHz, DMSO-d6) δ
7.40–7.27 (m, 10H, ArH), 7.27–7.16 (m, 4H, ArH), 5.06 (d, J = 12.5 Hz, 1H, CH2Ph), 4.98 (d,
J = 12.5 Hz, 1H, CH2Ph), 4.93 (s, 2H, CH2Ph), 4.39 (d, J = 8.3 Hz, 1H, CHCH), 3.88–3.78
(m, 1H, CH2CHCH), 3.38 (dd, J = 15.8, 9.7 Hz, 1H, CH2CH), 3.16 (dd, J = 15.8, 8.9 Hz,
1H, CH2CH). 13C NMR (101 MHz, DMSO-d6) δ 171.9 (C=O), 171.5 (C=O), 142.2 (Cq,Ar),
139.3 (Cq,Ar), 135.9 (Cq,Ar), 135.7 (Cq,Ar), 128.4 (CHAr), 128.3 (CHAr), 128.03 (2C, CHAr),
128.00 (CHAr), 127.98 (CHAr), 127.7 (CHAr), 126.8 (CHAr), 124.9 (CHAr), 124.6 (CHAr),
65.9 (CH2Ph), 65.7 (CH2Ph), 51.7 (CHCH), 46.3 (CH2CHCH), 33.8 (CH2CH). ESI-MS:
m/z = 387 [M + H]+; m/z = 404 [M + NH4]+; m/z = 409 [M + Na]+. Anal. for C25H22O4
(386.45): calculated C 77.70, H 5.74; found C 77.3, H 5.6.

4. Conclusions

In conclusion, the bis-alkoxycarbonylation of the 1H-indene using benzyl alcohol
has been successfully realized, leading to the diastereospecific synthesis of the succinic
acid ester dibenzyl-(1S*,2S*)-2,3-dihydro-1H-indene-1,2-dicarboxylate. This palladium(II)-
catalyzed reaction proceeds under mild reaction conditions (4 bar of CO at 20 ◦C) and the
∆rG of the reaction has been evaluated through DFT calculations. The product has been
fully characterized using NMR and ESI-MS analysis.
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Supplementary Materials: Scheme S1: Proposed catalytic cycle. Only one enantiomer is shown;
Figure S1: 1H-NMR spectrum; Figure S2: 13C-NMR spectrum; Figure S3: DEPT 135 (CH and CH3
positive, CH2 negative); Figure S4: COSY spectrum; Figure S5: HSQC spectrum; Figure S6: NOESY
spectrum; Figure S7: Zoom of the NOESY spectrum (from 6.0 ppm to 2.0 ppm for both f1 and f2).
Observed NOE correlation for H1 (4.39 ppm) and H2 (3.83 ppm); Figure S8: ESI-MS (ESI+) spectrum
of compound 3.
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