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ABSTRACT 

Image processing through the implementation of manually coded algorithms has been adopted to detect fruit 

damage during post-harvest operations. This study tested convolution neural networks with “You Only Look 

Once” (YOLO) architecture using a commercial online platform to detect physiological disorders in ‘Abbé Fétel’ 

pear. Disorders such as superficial scald and the related ripening stage using the starch pattern index (SPI) were 

assessed. Three different models were trained to detect: i) individual fruit within the boxes; ii) superficial scald or 

senescence scald on pear skin; iii) the SPI value of pears was assessed using the Lugol solution. Preliminary statistics 

show that the model to count the fruit inside the boxes reached 64.70 % of true positives with 0.5 intersection over 

union. The second had less accuracy (up to 20 % of true positives) but maintained a good average precision (60 %) 

with different confidence thresholds (40 % and 20 %). The third showed good performances compared to the Ctifl and 

Laimburg scales, with an F1 score of 0.36 and 0.59, respectively. The effectiveness of the transfer learning method 

was demonstrated but further image labelling and modelling research is needed to improve the accuracy of the 

simulations and to develop an application for portable devices for pre- and post-harvest factor mapping. These results 

could lead to improvements in the management of fruit boxes and thus help ensure good fruit quality for consumers. 

Keywords: Pyrus communis, fruit quality, superficial scald, starch pattern index, neural networks, YOLO 
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1. INTRODUCTION25 

Various technologies have been used to evaluate fruit quality attributes effectively and economically. Although a26 

demand for automation together with better and faster solutions in the post-harvest industry is increasing , only a few 27 

of them have been adopted (Bazame, Molin, Althoff, & Martello, 2021; Jayas & Karunakaran, 2005). Computer vision 28 



techniques are a non-destructive, low operational cost, reliable, objective and efficient approach to this end, based on 29 

image processing (Leiva, Mondragon, Mery, & Aguilera, 2011). Artificial neural networks (ANN) have proven to be 30 

very effective to identify and classify fruit based on quality, where non-coherence or non-linearity often exists (El Masry 31 

et al., 2009). Moreover, the use of neural networks can help to add value to horticultural management, promoting 32 

productivity, better quality control processes, and achieve flexible farm management (Juan P. Vasconez, Kantor, & Auat 33 

Cheein, 2019). Strategies that allow data acquisition and analysis from agricultural products can help to optimize current 34 

practices, such as yield estimation, pathogen and disease detection and crop maturity classification (J. P. Vasconez, 35 

Delpiano, Vougioukas, & Auat Cheein, 2020). Barreiro et al., (1997) tested different neural network approaches for 36 

bruise prediction in apple, pear and peach and Kim et al., (2000) used non-linear techniques (ANN) based on multilayer 37 

perception with variations on back-propagation learning to classify kiwi fruit stored under different conditions. Kavdir 38 

& Guyer, (2004) used a different approach and developed a back-propagation neural network (BPNN) with the textural 39 

features extracted from spatial distribution of colour (grey colour) levels to detect defects in Empire and Golden 40 

Delicious apples. ANN methods were also used by Gama et al., (2017) to simulate the enzymatic hydrolysis process 41 

with the optimal conditions being successfully selected, as indicated by the R2 value of 0.99 and a small MSE value. 42 

Superficial scald (SS) is one of the major challenges in the pear sector and it severely affects Abbé Fétel pear during 43 

storage and reduces shelf life (Lurie & Watkins, 2012). Thus, an accurate and rapid detection method for this disease 44 

could help to develop an early treatment technique while substantially reducing economic losses (Fuentes, Yoon, Kim, 45 

& Park, 2017). The severity of SS is related to fruit maturity determined by SPI (Blanpied et al., 1991; Brouwer, 46 

Mensink, Hogeveen-van Echtelt, & Woltering, 2021). A model for SS was developed by Kupferman, (2001) using 47 

harvest date, starch score, and the number of preharvest days below 10 ºC. In ‘Nanguo’ pears, n-butanol controlled core 48 

browning and preserved starch grains in the core tissue during storage were observed by Sun et al., (2020) using 49 

transmission electron microscopy. However, SPI is not always employed in pears although some studies have reported 50 

the use of this procedure to estimate fruit storability (Agar, Biasi, & Mitcham, 1999). While some researchers have 51 

observed that pears showed a similar behaviour to apples (Isidoro & Almeida, 2006), but in ‘Abbé Fétel’ and ‘Beurré 52 

D’Anjou’ pears starch degradation is related to the advance of fruit maturity and the superficial scald development 53 

(Calvo et al., 2011; Calvo et al., 2015). Moreover, ‘Bartlett’ pears have reported higher scald incidence in late harvested 54 

fruit (Bower, Biasi, & Mitcham, 2003; Whitaker, Villalobos-Acuña, Mitcham, & Mattheis, 2009). More recently, 55 

Zanella et al., (2019), in collaboration with Isolcell SPA, Laives, BZ, Italy developed an automated starch-meter 56 

(Amilon) that  still uses iodine-potassium but integrates an imaging system that quantifies the colorimetric reaction for 57 



unbiased results. Further studies are therefore needed to provide a fast, simple, and reliable software for portable devices 58 

to detect disorders and replace completely the traditional starch assessment method for pear fruit during storage. This 59 

work was aimed at training and testing neural network using images to detect superficial scald on individual fruit and 60 

to classify equatorial slices of fresh cut fruit dipped in an iodine solution. 61 

2. MATERIAL AND METHOD 62 

2.1. Model Architecture 63 

In the study a convolutional neural network (CNN), a specialized type of artificial neural network used for image 64 

analysis, has been adopted. Between different CNNs available, the object detection system called “You Only Look 65 

Once”, and in particular its third version (YOLO v3), was selected because it is a fast and efficient convolutional network 66 

for detection and localisation and is suitable for application in portable devices. Compared to other current methods that 67 

treat detection, classification and region extraction as different problems, YOLO v3 has the advantage of a single step 68 

approach (Redmon & Farhadi, 2018). To achieve that, YOLO v3 sacrifices accuracy to gain speed. It takes as input an 69 

image of max size 608 × 608 pixels and divides it into grid cells (with a dimension S × S). Each grid cell is responsible 70 

for the bounding box whose centre is at the location of the grid cell and predicts bounding boxes (B) as well as 71 

confidence level and class probability. In a dataset with class labels (C), the output tensor is S × S × (C + B × 5). 72 

However, the main problem with the standard YOLO v3 is that the model can detect only one object class per cell 73 

(Redmon, Divvala, Girshick, & Farhadi, 2016).  74 

2.2. Dataset 75 

Images were collected in the laboratories of the Department of Agricultural and Food Sciences, University of 76 

Bologna, Italy, and in a storage warehouse in Altedo, Bologna, Italy. From 2018 to 2020, multiple images of Abbé Fétel 77 

pears, sourced from 30 orchards located in the Emilia Romagna Region, Italy were taken at different angles and light 78 

conditions, both with a camera and a smartphone. The orchards were selected to represent a selection of different 79 

features such as age, vigour, rootstock and training system. Concerning pear counting, 122 images of pear boxes were 80 

taken in 2019, and 3,133 fruit were labelled to distinguish them inside a box (number of fruit as independent variable). 81 

On the other hand, 851 images of pear boxes were taken, and 3071 superficial scald symptoms were labelled to detect 82 

the storage disorder from different producers and at different times during the storage seasons 2018-2019 and 2019-83 

2020 (number of symptoms as independent variable). Finally, 318 pictures of pears were captured, and 4043 fruit with 84 

Lugol solution was used to recognise the different classes of iodine reaction having a well-represented SPI range. The 85 



latter dataset was created with images of pear fruit slices taken at the harvest during three consecutive seasons (2018, 86 

2019 and 2020). 87 

2.3.  GPU and Platform 88 

To label the images, and train our models, a computer vision platform was used (https://supervise.ly). A workstation 89 

equipped with an NVIDIA RTX2080 SUPER- RAM: 8GB card as GPU was used as the computer cluster to train the 90 

algorithm. The dataset was augmented with a DTL (Data Transformation Language) tool, available on the web platform, 91 

to enlarge the data set which helped to reduce over-fitting in supervised learning algorithms (Table 1; Krizhevsky & 92 

Hinton, 2012). The final datasets were divided into training, validation, and test set which was excluded from the training 93 

session. For the SPI model, the test set was a totally independent data set from 2018 and it was extracted before 94 

augmentation. On the contrary, the test pictures to evaluate the other models were randomly chosen as 10 % of the total 95 

augmented pictures and extracted before the training session. Regarding the validation set while training, the algorithm 96 

considered 15% of the remaining photos.  97 

 

 

 

Training 

set 
Validation set Test set 

Pear counting 
 

4502 
804 

 

550 

Superficial 

scald 
8466 1446 

 

300 

Starch pattern 

index 
3108 348 

 

30 

 98 

Table 1. Number of augmented images used for training and testing the pear fruit ANNs. 99 

YOLO v3 (COCO pre-trained version) was operated up to 60 epochs to train the pear counting model (Table 2). The 100 

superficial scald model algorithm was trained for 200 epochs (i.e., two sessions of 100 epochs; Table 2). The starch test 101 

model was instead trained in differently, as shown in Table 2. Firstly, a transfer learning (TL) approach was considered: 102 

the model was improved by adding pictures whilst labelling was underway (123 epochs, 130 epochs and 100 epochs). 103 

Secondly, all the labelled images and all the datasets were trained in a massive training (MT) session with 353 epochs 104 

in total. This procedure was repeated with the starch-iodine dataset to take into account ten classes (Le code Amidon 105 

Pomme, 2002 from Ctifl, France) with one of the five classes coming from the Laimburg Experiment Station (Werth, 106 

2000). For each task, the best models or checkpoints were selected looking at the train graph and the loss value (Fig. 1). 107 

 108 



 

 

 

Pear 

counting 
Superficial scald 

SPI 1-10 

(transfer 

learning) 

SPI 1-10 

(massive 

training) 

SPI 1-5 

(transfer 

learning) 

SPI 1-5 

(massive 

training) 

 

Training 

sessions  

 

1 2 

 

3 

 

 

1 

 

2 

 

1 

 

Epochs 60 200 
 

353 

 

353 

 

353 

 

353 
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Table 2. Number of training sessions and epochs used for pear fruit ANNs. 110 

To validate our model, 10% of the original datasets with the labelled images were extracted and included in a validation 111 

dataset (defined “test set”) that was tested with the trained algorithm (Jarvinen, Choi, Heinemann, & Baugher, 2018). 112 

Afterwards, their accuracy was estimated by calculating confusion matrices on the results with imposed intersection 113 

over union (IoU). Precision (1), recall (2) and F1 score (3) were calculated as important parameters for fruit detection 114 

where TP is the number of true positives (matches), FP is the number of false positives (false detection), and FN is the 115 

number of false negatives (missed; Tu et al., 2020). In the case of superficial scald, the test set was validated with two 116 

levels of confidence thresholds (0.4 and 0.2) that represent the class probability of the bounding boxes YOLO v3 trained 117 

model (Bresilla et al., 2019).  118 

                          𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                    (1) 119 

                            𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                        (2)  120 

                        𝐹1 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                  (3)  121 

3. RESULTS AND DISCUSSION 122 

3.1. Pear detection model 123 

The output analysis was evaluated using the data of labelled images from the validation dataset. As a first step the model 124 

was trained to count pear fruit inside boxes. The matrix evaluated the accuracy for the first model, according to the well-125 

known criteria based on Pascal Visual Object Classes (VOC; Bresilla et al., 2019). Pixel-wise accuracy was measured 126 

by comparison of ground truth and predicted information with the confusion matrix. Different levels of intersection over 127 

union (IoU) were considered, to evaluate the accuracy of our model (level of 0.4, 0.5, 0.6 in Tables 3, 4 and 5, 128 

respectively). The IoU computes the correctness of detection by calculating the overlapping area of prediction and the 129 

ground truth. Confusion matrices were generated, with the percentages of true positive, false negative and false positive. 130 

True negatives were not considered because this neural network wasn’t trained to distinguish or exclude different objects 131 

in the same picture.  132 



 

 

ground 

truth 

(100%) 

 Predicted 

true 

True Positive 

(TP) 

80.73% 

False Negative 

(FN) 

19.26% 

false 

False Positive 

(FP) 

9.38% 

True Negative 

(TN) 

0% 

Table 3. Confusion matrix with IoU = 0.4. 133 

 

 

Ground 

truth 

(100%) 

 Predicted 

true 

True Positive 

(TP) 

64.70% 

False Negative 

(FN) 

35.29% 

false 

False Positive 

(FP) 

25.41% 

True Negative 

(TN) 

0% 
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Table 4. Confusion matrix with IoU = 0.5. 135 

Ground 

truth 

(100%) 

 Predicted 

true 

True Positive 

(TP) 

31.57% 

False Negative 

(FN) 

68.42% 

false 

False Positive 

(FP) 

58.54% 

True Negative 

(TN) 

0% 

Table 4. Confusion matrix with IoU = 0.6. 136 

Considering the results, the threshold should be IoU = 0.5. Below this value the true positives can increase considerably 137 

but above it they decrease sharply, not reaching sufficient accuracy. The best F1 score of 0.84 was reached by imposing 138 

IoU=0.4. Recently, a multiple scale faster region-based convolutional neural network (MS-FRCNN) was used to detect 139 

small passion fruit by achieving 0.909 of the F1 score with IoU= 0.5 (Tu et al., 2020). Another framework was also  140 

presented by Stein et al., (2016) to identify, track, and localize mango using a faster region-based convolutional neural 141 

networks (R-CNN) detector with a F1 score of 0.89. Therefore, our results show that more images of pear boxes and 142 

more epochs to train our model are required, to estimate the number of pears. It is also important to highlight that fruit 143 

grown in the field generally have a different background when imaged that those sampled as the first layer of fruit in 144 

bins during storage. Consequently, the total number of fruit laid down can be estimated knowing the dimensions of the 145 

boxes. 146 

3.2. Pear superficial scald models 147 

Concerning the model for scald detection, two neural networks were trained (Fig. 2). The first one (Scald v1) was built 148 

starting from ten augmented datasets that represent five producers, four sampling points from 2019-2020 and one from 149 

2018-2019. It was then trained for one day up to one hundred epochs (approximately 100,000 iterations). Later, the 150 



algorithm considering two confidence thresholds (CT) was tested and the confusion matrices were computed. In Table 151 

5 and Table 6, V1 seems not to be very accurate but quite precise. In fact, the precision level was 0.62 for CT = 0.4 and 152 

0.59 for CT = 0 .2. On the other hand, the F1 scores do not reach enough reliability by achieving 0.21 with CT = 0.4 153 

and 0.25 with CT =0.2. 154 

Ground 

Truth 

(100%) 

 Predicted 

True True Positive 

(TP) 

13.22% 

False Negative 

(FN) 

86.77% 

False 

False Positive 

(FP) 

8% 

True Negative 

(TN) 

0% 

Table 5. Confusion matrix of scald V1 with IoU=0.5 and with confidence threshold =0.4 155 

Ground 

Truth 

(100%) 

 Predicted 

True 

True Positive 

(TP) 

16.26% 

False Negative 

(FN) 

83.73% 

False 

False Positive 

(FP) 

11.1% 

True Negative 

(TN) 

0% 

Table 6. Confusion matrix of scald V1 with IoU=0.5 and with confidence threshold =0.2 156 

The second model (Scald v2) was trained starting from Scald v1 but adding 100 more epochs and part of the validation 157 

dataset (the sixth producer). In any case, the images for the validation dataset (test set) there were not the same used for 158 

the training dataset. Thereafter, the confusion matrices were extracted to evaluate the accuracy (Table 7 and Table 8). 159 

Thus, the percentage of true positives improved for both confidence thresholds reaching almost 20 % with CT = 0.2. 160 

Moreover, the F1 scores increase moderately from 0.21 to 0.26 in CT = 0.4 and from 0.25 to 0.28 in CT = 0.2. 161 

Nevertheless, precision decreases and recall scores still low since the high number of false negatives in Scald v2.  162 

Ground 

Truth 

(100%) 

 Predicted 

True 

True Positive 

(TP) 

16.71% 

False Negative 

(FN) 

83.28% 

False 

False Positive 

(FP) 

11.57% 

True Negative 

(TN) 

0% 

 163 

Table 7. Confusion matrix of scald V2 with IoU=0.5 and with confidence threshold =0.4 164 

 

 

Ground 

Truth 

(100%) 

 Predicted 

True 

True Positive 

(TP) 

19.17% 

False Negative 

(FN) 

80.82% 

False 

False Positive 

(FP) 

15.63% 

True Negative 

(TN) 

0% 



Table 8. Confusion matrix of scald V2 with iou=0.5 and with confidence threshold =0.2 165 

 166 

Looking at the scores and visual results of the models (Scald v1 and Scald v2), the algorithm can detect only few 167 

superficial scald symptoms. In fact, in many cases skin browning was not recognised. It was sometimes difficult to 168 

distinguish browing from a blemish or friction discoloration. However, evident symptoms of superficial scald where 169 

often detected (Fig. 2) and the YOLO v3 labels were quite precise (0.6 average precision). Comparing each pixel with 170 

its neighbour has proved accurate for the classification of apple fruit diseases and has achieved greater than 93%  171 

accuracy (Dubey & Jalal, 2012). In tomato plants some diseases, such as leaf mould, grey mould, canker, and plague, 172 

have shown variable performance and comparative results have shown that plain networks perform better than deeper 173 

networks. Fuentes et al., (2017) found that Faster R-CNN with VGG-16 had an average precision of 83%, compared to 174 

the same meta-architecture with ResNet-50, that achieved 75.37% or ResNeXt-50 with 71.1%. Thus, compared to the 175 

literature, the models can be improved carrying out four tasks: i) collect and ii) label more images to train the neural 176 

networks, iii) hire and teach qualified operators on how to label specific storage disorders and iv) finally apply different 177 

architectures such as the new versions of YOLO (v4 or v5) that deal with high resolution and more details or Mask R-178 

CNN which detects objects in an image while simultaneously generating a high-quality segmentation mask for each 179 

instance. A further action that could improve our results would be applying different image types in respect of a standard 180 

RGB images: converting these to other formats or colour-spaces such as grey scale or HSV applying pre-processing 181 

techniques.  182 

3.3. Pear starch pattern index (SPI) models 183 

Regarding the model for SPI recognition, different neural networks were trained as shown in Fig. 3.  Tables 10 and 11 184 

present the scores of different models and approaches to identify the right SPI. The CNN (YOLO v3) could not always 185 

detect the pear circle and the right maturity class. However, a remarkable increase was observed between the Ctifl and 186 

the Laimburg scales. The first reached 0.36 with the third version (Lugol v3) using a transfer learning method but the 187 

second (Lugol v5) achieved 0.59. Considering the F1 scores of each category, the class 1 in both scales and in all models 188 

is above 0.5. In the Laimburg scale the class 5 had the highest value. In pears, the recognition of the SPI is sometimes 189 

tricky for a trained operator as well. Nevertheless, in Rocha pear this analysis performed reasonably well and could be 190 

simply used in the field or at the laboratory (Saquet & Almeida, 2017). Decreasing the number of classes, the models 191 

based on the Laimburg scale were more precise and accurate, and, perhaps, more suitable for packing house needs. 192 

Considering the training method, transfer learning is effective to train SPI models. In this way, a protype model could 193 

be initially trained with a few labelled pictures and less epochs. It could later be improved by adding images and epochs 194 



until reasonable precision is obtained. The massive training session did not reach the same F1 score, especially with the 195 

Ctifl scale. In fact, Lugol v4 had the same number of epochs as Lugol v3, but in this CNN the best checkpoint with the 196 

lowest error (loss value) in each step was chosen. 197 

 Transfer Learning Massive Training 

 
Lugol V1 EP123  

(EP150 In Total) 
Lugol V2 EP130 Lugol V3 EP100 

Lugol V4 EP305 

(EP353 In Total) 

1 0.6122 0.7599 0.6181 0.5333 

2 0.3631 0.387 0.4126 0.2413 

3 0.1558 0.2588 0.4042 0.2474 

4 0.1818 0.2962 0.4 0.2735 

5 0.198 0.1682 0.3174 0.3039 

6 0.1801 0.1882 0.18 0.2 

7 0.2368 0.1176 0.3578 0.2857 

8 0.1904 0.1355 0.3478 0.1403 

9 0.258 0.387 0.4615 0.5294 

10 0.2 0.6153 0.3636 0.6153 

Overall 

Average 
0.2403 0.2791 0.3684 0.2939 

Table 9. F1 scores of SPI models from 1 to 10 class (ctifl scale) 198 

 Transfer Learning Massive Training 

 
Lugol v5 EP124  

(EP150 in total) 

Lugol v6 EP 197  

(EP229 in total) 

Lugol v7 EP293  

(EP353 in total) 

1 0.72 0.6814 0.7121 

2 0.5795 0.583 0.5763 

3 0.5066 0.4705 0.4873 

4 0.5813 0.5581 0.575 

5 0.75 0.75 0.7843 

Overall 

Average 
0.5908 0.5717 0.5845 

Table 10.  F1 scores of SPI models from 1 to 5 class (Laimburg scale) 199 

Confusion matrices were obtained with good results in both scales (Fig. 4 and Fig. 5). In fact, the highest number of 200 

matches (true positives) were observed along the diagonal line. Thus, our CNNs can in general perform two goals at the 201 

same time: detecting pears and identify the correct class. Concerning the recognition of the correct SPI, the models did 202 

not make significant mistakes. In Figs. 4 and 5, in general one class of average error was found. Pear shape identification 203 

was affected by a high number of false negatives. The neural networks still missed many objects: the model sometimes 204 

did not recognize a fruit or even did not detect any fruit in a picture.  205 



There is very little literature on objective tools to assess SPI and establish the ripening stage on apple or pear at harvest 206 

or during storage. However, Peirs et al., (2002) highlighted that the differences in SPI assessment carried out on the 207 

same samples from different subjects varied up to 60%. Furthermore, each estimator showed poor repeatability with 208 

respect to its own evaluation. Considering these elements, the use of an objective method would be necessary to improve 209 

accuracy, the reliability and repeatability of the evaluation of the SPI. For instance, Menesatti et al., (2009) investigated 210 

the use of hyper spectral NIR imaging to measure starch. This technique is not employed in the fruit supply chain 211 

because it does not properly consider the ripening stage and high costs as limiting factors. However, Zanella et al., 212 

(2019) have used Amilon to quantify  SPI as an effective tool. In ‘Golden Delicious’ apples, they showed a correlation 213 

and accuracy against the human evaluation of 0.94 and 0.58, respectively. However, currently the starch-meter needs a 214 

laboratory environment to work properly. By contrast, our algorithms could be implemented in portable device such as 215 

a standard smartphone, even if Lugol solution had to be previously applied on the pears. 216 

4. CONCLUSIONS 217 

The possibility of identifying pears the first layer inside a box, to detect superficial scald on pear peel and to recognise 218 

SPI after the Lugol solution application, with high precision, using current deep neural network techniques and YOLO 219 

v3 as a convolutional neural network has been demonstrated. Results showed that further research is needed to improve 220 

the different models to recognise and quantify the level of superficial scald affecting fruit skin and to predict fruit 221 

storability considering SPI in pre- and post-harvest. More labelled pictures would improve the results; also, applying 222 

different approaches (e.g., image pre-processing/alteration) to increase the information extractable from the pictures by 223 

the ANN could boost considerably the algorithms. Our effort aims to help fruit cooperatives and producers improving 224 

the post-harvest management of pears to achieve consumer acceptance. They could adapt their storage techniques to 225 

identify and sort pear boxes in different cold rooms according to their ripening stage and symptoms of physiological 226 

disorders that are difficult to detect, even by trained human experts. 227 
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FIGURE CAPTIONS 307 

Fig. 1. Training graph of Lugol V3 model where the purple bars are the training rate, and the orange line is the loss value in each epoch (extracted 308 

by https://supervise.ly). 309 

Fig. 2. Example of superficial scald detection (polygon is ground truth, rectangle is Scald v2 detection). 310 

Fig. 3. Example of starch index recognition (one rectangle is real ground truth, the other one is predicted by LUGOL v3. Matching colours means 311 

correct classification while different colours is wrong classification. Missing double rectangle is missed detection. 312 

Fig. 4. Confusion Matrix of Lugol v3 with IoU = 0.5 and confidence threshold = 0.5. 313 

Fig. 5. Confusion Matrix of Lugol v5 with IoU = 0.5 and confidence threshold = 0.5. 314 


