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Colletotrichum chrysophilum (Ascomycota, Sordariomy-
cetes, Glomerellaceae) is a species belonging to the C. 
gloeosporioides complex. Described in 2017 as responsible 
for anthracnose on Musa acuminata (banana plants; Vieira 
et al. 2017), C. chrysophilum has been associated with 
Persea americana (avocado) and Prunus persica (peach) 
(Talhinhas and Baroncelli 2021). Moreover, together with 
Colletotrichum fructicola and C. noveboracense, it is con-
sidered one of the major causal agents of Glomerella leaf 
spot (GLS) and Apple bitter rot (ABR) diseases on Malus 
domestica (apple) (Astolfi et al. 2022; Khodadadi et al. 
2020). Originally, C. chrysophilum was presumed to be 
limited to the American and Asian continents (Astolfi et al. 
2022; Talhinhas and Baroncelli 2021), however, reports of 
GLS and ABR caused by this pathogen in European apple 
orchards, such as in Italy and Spain, start emerging in 2022 
(Cabrefiga et al. 2022; Deltedesco and Oettl 2022).

Colletotrichum chrysophilum was isolated in September 
2021 from symptomatic leaves showing GLS symptoms 
from an apple orchard with a disease incidence close to 50%, 
in northern Italy (Province of Ferrara, Emilia-Romagna). 
The monosporic strain M932 was transferred onto fresh 
PDA medium (supplemented with 200 ml/L streptomycin 
and 200 ml/L neomycin) and incubated at 20 °C for 10 days 

to obtain mycelium for genomic DNA extraction using a 
modified CTAB method (Prodi et al. 2011).

The DNA of C. chrysophilum strain M932 was 
sequenced using the Illumina NovaSeq 6000 150bp 
paired-end sequencing system. NovaSeq 6000 adapters 
were trimmed using Trimmomatic v0.39 (Bolger et al. 
2014) and low-quality reads were removed using TrimGa-
lore v0.6.4 (Krueger 2015). The quality of the reads was 
assessed and compared using FastQC v0.11.9 (Andrews 
2010). Illumina reads were assembled using SPAdes 
v3.15.1 (Bankevich et al. 2012). The first draft of the 
nuclear genome of C. chrysophilum consists of 1497 scaf-
folds with a total length of 55.56 Mbp (N50= 86538 bp 
and N75= 44545 bp). BUSCO v5.2.2 (Seppey et al. 2019) 
software was used to assess the integrity of the fungal 
genome assembly while assembly statistics were evalu-
ated with QUAST v5.0.2 (Gurevich et al. 2013). Results 
are reported in Table 1.

A total of 20,041 protein-coding genes were predicted 
to be encoded by the nuclear using MAKER v3.01.02 
pipeline (Holt and Yandell 2011) with self-trained Gen-
eMark-ES v4.10 (Borodovsky and Lomsadze 2011) and 
AUGUSTUS v3.3 prediction performed using the “Fusar-
ium” model (Stanke et al. 2008). SignalP v5.0 (Almagro 
Armenteros et al. 2019) revealed that 2,350 proteins in 
C. chrysophilum are secreted and among those 991 have 
been predicted to be candidate effectors by EffectorP v3.0 
(Sperschneider and Dodds 2022). A comparative analy-
sis of the newly sequenced genome with those publicly 
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available (Gan et al. 2013; Armitage et al. 2020; Gan et al. 
2021; Baroncelli et al. 2022) showed similar genomic fea-
tures in terms of genome size and GC% but a high diver-
sity in gene content within strains of C. chrysophilum and 
with closely related species (Fig.  1). A phylogenomic 
approach, performed as described in Baroncelli et  al. 
2022 did also highlight incongruence in the taxonomic 

designation of deposited data as strains C. nupharicola 
and C. noveboracense do not form distinct clusters (Fig-
ure 1); further analyses are needed to fully understand the 
diversity and the taxonomy of this group.

The availability of the genome of C. chrysophilum M932 
offers the possibility to perform further comparative analy-
ses, to fully understand species boundaries within the Colle-
totrichum gloeosporioides species complex and to develop 
molecular diagnostic methods.

Nucleotide sequence accession numbers

This whole-genome shotgun project has been deposited in 
GenBank under the accession no. JAQOWY000000000 
(BioProject: PRJNA928458; BioSample: SAMN32933927).
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Table 1  Summary statistics of the Colletotrichum chrysophilum 
M932 genome

Assembly Variables Statistics

Assembly length (Mbp) 59,19
Number of scaffolds 1497
Largest scaffold size (bp) 406526
N50 86538
N75 44545
L50 210
L75 428
GC (%) 53,68
BUSCO completeness 96,50%
Complete and single-copy 96,20%
Complete and duplicated 0,30%
Fragmented 1,00%
Missing 2,50%
Protein encoding genes
Number of predicted genes 20024
Number of predicted secreted proteins 2350
Number of predicted effector proteins 991
Number of predicted cytoplasmic effectors 458
Number of predicted apoplastic effectors 533

Fig. 1  Comparative analysis of the newly sequenced genome with 
those of closely related species publicly available. The genome 
sequenced in the present study is highlighted in bold. On the left 
side a phylogenomic tree showing the evolutionary relationships 
between genomes; number next to the nodes represent Bayesian 
posterior probability (BPP) values while thicker branches indicate a 

support value of BPP = 1.00. In the center four bubble plots illus-
trating assembly fragmentation, size, GC content and completeness. 
The bubble sizes have been scaled to each panel and are not com-
parable across panels. The bar diagram on the right reports the size 
of not secreted (in yellow) and secreted (in orange) predicted protein 
encoding genes
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included in the article's Creative Commons licence, unless indicated 
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the article's Creative Commons licence and your intended use is not 
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copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.
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