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Abstract—The rapid advancement of energy-efficient parallel
ultra-low-power (ULP) µcontrollers units (MCUs) is enabling
the development of autonomous nano-sized unmanned aerial
vehicles (nano-UAVs). These sub-10cm drones represent the next
generation of unobtrusive robotic helpers and ubiquitous smart
sensors. However, nano-UAVs face significant power and payload
constraints while requiring advanced computing capabilities akin
to standard drones, including real-time Machine Learning (ML)
performance and the safe co-existence of general-purpose and
real-time OSs. Although some advanced parallel ULP MCUs
offer the necessary ML computing capabilities within the pre-
scribed power limits, they rely on small main memories (<1MB)
and µcontroller-class CPUs with no virtualization or security
features, and hence only support simple bare-metal runtimes. In
this work, we present Shaheen, a 9mm2 200mW SoC implemented
in 22nm FDX technology. Differently from state-of-the-art MCUs,
Shaheen integrates a Linux-capable RV64 core, compliant with
the v1.0 ratified Hypervisor extension and equipped with timing
channel protection, along with a low-cost and low-power memory
controller exposing up to 512MB of off-chip low-cost low-power
HyperRAM directly to the CPU. At the same time, it integrates a
fully programmable energy- and area-efficient multi-core cluster
of RV32 cores optimized for general-purpose DSP as well as
reduced- and mixed-precision ML. To the best of the authors’
knowledge, it is the first silicon prototype of a ULP SoC coupling
the RV64 and RV32 cores in a heterogeneous host+accelerator
architecture fully based on the RISC-V ISA. We demonstrate the
capabilities of the proposed SoC on a wide range of benchmarks
relevant to nano-UAV applications including general-purpose
DSP as well as inference and online learning of quantized DNNs.
The cluster can deliver up to 90GOp/s and up to 1.8TOp/s/W
on 2-bit integer kernels and up to 7.9GFLOp/s and up to
150GFLOp/s/W on 16-bit FP kernels.

Index Terms—Heterogeneous, Linux, Low-Power, Autonomous
Nano-UAVs, RISC-V
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I. INTRODUCTION

THE number of Internet-of-Things (IoT) devices and the
spectrum of IoT applications are rapidly growing: from

home automation, robotics, industrial gateways, and building
automation to smart cities, digital signage, medical equipment,
and more [1]. In this context, nano-sized unmanned aerial
vehicles (nano-UAVs) can be considered the “ultimate” IoT
node, thanks to their ability to navigate, sense, analyse, and
understand the surrounding environment. Nano-UAVs have a
form factor of a few centimeters in diameter, and a weight
of only tens of grams, which allows them to safely operate
near humans and in narrow, cramped spaces [2], [3]. They
have a total power envelope of a few Watts, of which only
5-15% for computation [4], and their small physical footprint
and limited payload restrain the maximum battery, the printed
circuit board size and exclude any form of active cooling.
Nowadays, µcontroller units (MCUs) are the only computing
platforms that meet the nano-UAV’s power and form-factor
constraints.

MCUs feature simple RISC host processors (e.g., ARM
Cortex-M) with low computational capabilities and no virtu-
alization support, to which they expose just a few hundred
kBytes of on-chip SRAM scratchpad memory (SPM) [5]–
[11]. To deliver more advanced computational capabilities,
state-of-the-art (SoA) MCUs integrate accelerators with high
data processing capabilities [5]–[11]. Usually, ultra-low-power
(ULP) devices’ accelerators are hardwired application-specific
data-paths [9], [10] which achieve the best energy efficiency
but are tailored to a single application domain, leading to poor
programmability and a high nonrecurring engineering cost [12]
while occupying a considerable part of the scarce area re-
sources. To improve the overall versatility of the SoC, recent
works replace ASIC accelerators with fully programmable
parallel accelerators [7], [8] that achieve competitive energy
efficiency while maintaining significant flexibility, and hence
make the most out of the available power and area.

The increase in computing capabilities of SoA MCUs
has enabled nano-UAVs to achieve autonomous flight while
executing intelligent auxiliary tasks. For example, Quantized
Neural Networks (QNNs) have been proposed to carry out
obstacle avoidance [2] or human pose estimation and object
detection [3]. At the same time, floating point (FP) digital-
signal-processing (DSP) computation has been proposed for
path planning or structural build monitoring [13], [14]. Also, a
recent trend for edge devices is online learning, which enables
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a small portion of the Neural Networks (NN) training to
happen on the edge, increasing the accuracy and reliability
directly on the field [15], [16]. Nevertheless, even the most
advanced MCUs, supporting this new class of applications, lag
behind in terms of software support. Due to the small amount
of available memory and the simplicity of their host CPU, SoA
MCUs only provide close-to-metal software environments,
based on minimal real-time operating systems (RTOS) or
simple bare-metal runtimes. However, enabling the execution
of full-fledged OSs (like Linux), securely along with the real-
time control applications, would allow nano-UAVs to leverage
an existing, mature, and solid software stack and hence ease
the software development [17]. In this context, this work
presents a step forward in the current and future generation
of autonomous nano-UAVs. We present Shaheen, a 9mm2

200mW heterogeneous System-on-Chip (SoC) implemented
in 22 nm FDX technology that couples an application-class
RV64 host processor with a low-power HyperRAM memory
controller and with a flexible cluster of eight RV32 cores,
providing best-in-class energy efficiency and performance for
IoT applications. The design is fine-tuned to accommodate the
requirements of emerging nano-UAV applications.

The host includes hardware virtualization support [18]: to
the best of our knowledge, it is the first silicon implemen-
tation fully compliant with the ratified RISC-V Instruction
Set Architecture (ISA) Hypervisor extension1, enabling the
secure coexistence of an RTOS and a full-blown OS onto the
same host core. In particular, the Hypervisor extension aims to
provide confidentiality and integrity of virtual machines (VM)
by enforcing isolation (via two-stage virtual memory) between
multiple consolidated guest OSes, i.e., General Purpose OS
(GPOS) and RTOS. To further isolate the execution of these
coexisting software stacks (trusted and untrusted), prevent
security threats, and ensure multi-domain operations, the host
core features Physical Memory Protection (PMP) [19] and ISA
and micro-architecture extensions for timing channel mitiga-
tion [20]. Namely, the PMP aims to provide confidentiality
and integrity by limiting the physical addresses accessible
by software running on CVA6. PMP enforces the separation
between the bare-metal firmware (running in machine mode)
and everything else through a set of additional registers, which
specify the physical memory access privileges (read, write, ex-
ecute) for each physical memory region. Lastly, timing channel
mitigation aims to provide confidentiality by eliminating side-
channel attacks.

Apart from a 1MB on-chip SRAM SPM, Shaheen connects
to up to 512MB of off-chip low-power HyperRAMs [21] di-
rectly on the main interconnect, through a low-power, low-cost
0.27mm2 1.6Gbps fully-digital memory controller. Relying
on HyperRAMs instead of high-end LPDDR4/5 memories,
typically integrated into embedded Linux-capable systems,
frees Shaheen from expensive and proprietary memory con-
trollers with large mixed-signal PHYs, while still exposing
hundreds of MB to the host processor and matching the tight
power, form factor and cost requirements of nano-UAVs.

1SiFive, Ventana, and StarFive have announced RISC-V CPU designs with
Hypervisor extension support, but we are not aware of any silicon available
on the market yet.

TABLE I: UAVs taxonomy by vehicle class-size [2].

Vehicle
class size

Diameter : Weight
[cm : kg]

Power Budget
Total[W]

Compute[W]

Onboard
computer

standard [22] ∼ 50 : ≥ 1 ≥ 100 / 5-15 Desktop/Emb.
micro [17] ∼ 25 : ∼ 0.5 ∼ 50 / 2.5-7.5 Embedded
nano [2] ∼ 10 : ∼ 0.01 ∼ 5 / 0.25-0.75 MCU
pico [4] ∼ 2 : ≤ 0.001 ∼ 0.1 / 5-15E-3 ULP

The cluster integrates the so-called Flex-V cores. The Flex-
V core extends the RISC-V ISA with custom instructions
for reduced-precision single instruction multiple data (SIMD)
FP-based computation and byte and sub-byte mixed-precision
QNN inference, achieving State-of-the-Art (SoA) software
power and energy efficiency. Thanks to the aggressive op-
timizations, the cluster achieves up to 22.5 GigaOperations
per second (GOp/s) and 90GOp/s on 8-bit and 2-bit integer
kernels, enabling low-latency mixed-precision QNN-based au-
tonomous navigation [2], [3]. Furthermore, the cluster achieves
up to 4 GigaFloating-Point Operations per second (GFLOp/s)
and 7.9GFLOp/s on FP32 and FP16 kernels enabling DSP
and online training of neural networks (NNs) [15], [16].

To sum up, compared to the State-of-the-Art MCUs for
nano-UAVs, Shaheen is the first one coupling:

• an RV64 host with Hypervisor support and security
features,

• a low-power memory controller exposing hundreds of
MB at up to 1.6Gbps to the host core,

• a fully-programmable parallel RV32 cluster providing
SoA software performance for IoT,

while keeping the overall power envelope within 200mW.
The structure of this manuscript is as follows: in Section

II, we will present an overview of the State-of-the-Art SoC
for UAVs. Following this, Sections III and IV will delve
into an exhaustive discussion of Shaheen’s architecture, its
implementation, and the measurements obtained from the
silicon prototype. Moving forward, Sections V and VI will
address the software stack and provide a benchmark of the
cluster’s performance and energy efficiency on a relevant set of
applications for nano-UAVs. In Section VII, we will compare
Shaheen with similar silicon prototypes from both industry and
academia. Finally, Section VIII will summarize our results and
offer insights into potential future research directions.

II. RELATED WORK

Table I shows the four categories of UAV systems according
to size, weight, power budget and onboard processing plat-
form. The latter two characteristics are tightly coupled, as only
around ∼ 5 − 15% of the power budget is allocated to com-
putation [2]. Across all the categories of UAVs, autonomous
navigation is achieved by the combination of two components:
mission control and flight control. Mission control is the high-
level decisional part of the navigation algorithm, e.g., path
planning [23], optimization-based control [24], etc. To carry
out these types of tasks, SoA drones mostly rely on machine
learning (ML) algorithms [2], [17]. Flight control, on the
other hand, is the actuation of the output decisions of mission
control: it collects data from the sensors to determine the
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TABLE II: State-of-the-Art SoCs for UAVs.

SoC
(Proxy price)

Target
Platform Task

CPU :
Max freq

[MHz]

Supported
OS

HW Virt.
support

Parallel
accelerator

Accelerator
FLOp/s

Power
envelope :
Technology

Main
memory

NVIDIA Jetson
TX2 [29]

(100-150$)

Standard/
micro-size Mission 4×Cortex-A57 :

2 GHz Linux ✓
256x Pascal

CUDA
1.33

TFLOp/s
7.5-15W :

16nm
8GB

LPDDR4

Intel Atom
x7-E3950 [30]

(50$)
Micro-size Mission 4xIntel Atom :

2GHz Linux ✗
GPU Intel HD

505
230

GFLOp/s
∼10W :

14nm
8GB

LPDDR3

Allwinnner
H3 [17]
(<10$)

Micro-size Mission 4xCortex-A7 :
1.2GHz Linux ✓

GPU Mali-400
MP2

10
GFLOp/s

>1W :
40nm

512MB
LPDDR3

STM32-H7 [5]
(15$)

Standard/
micro-size Flight

Cortex M7 +
Cortex M4 :

480 - 240
Linux ✗ - <500

MFLOp/s
<200mW :

40nm
512kB
SRAM

STM32-F4 [6]
(15$) Nano-size Both Cortex M4 :

180 RTOS ✗ - - <200mW :
90nm

1MB
SRAM

GAP8 [7]
(40$) Nano-size Both Ri5cy : 250 RTOS ✗ 8xRi5cy - <100mW :

55nm
1.5MB
SRAM

GAP9 [7]
(40$) Nano-size Both Ri5cy : 450 RTOS ✗ 9xRi5cy <3GFLOp/s

(FP32)
<50mW :

22nm
1.5MB
SRAM

Kraken [8]
(Prototype) Nano-size Both Ri5cy-NN :

350 RTOS ✗ 8xRi5cy-NN <3GFLOp/s
(FP32)

<300mW :
22nm

1MB
SRAM

This Work
(Prototype) Nano-size Both RV-64 : 600 Linux

+RTOS ✓ 8xFlex-V 7.9GFLOp/s
(FP16)

<200mW :
22nm

8-512MB
HyperRAM

vehicle’s state and generates the control law, which manages
the actuators [25]. Flight control is often based on cascade PID
control [26], especially in the case of nano-UAVs [27], [28],
and it is not as computationally intensive as mission control,
but it requires low-latency guarantees. As a consequence, also
in the context of standard and micro-drones, flight control
is usually carried out by simple MCUs with a predictable
execution time like the STM32-H7 [5] integrated into the
Pixhawk board [25]. Table II shows some mainstream SoCs
successfully deployed on drones of standard, micro, and nano
size. For each SoC, it highlights the different computational
capabilities and power envelope, as well as the specific tasks
and UAV platforms they are suited for, detailed in the three
sections below. Sections II-A and II-B describe the state of
the art of standards, micro, and nano UAVs SoCs.

A. SoCs for Standard and Micro-sized UAVs

As table I shows, micro-size drones integrate embedded
computers, while standard-sized drones can even accommo-
date desktop processors. Nevertheless, embedded processors
can nowadays deliver performance in the order of hundreds
of TOp/s and hundreds of GFLOp/s, which has proven to be
sufficient to support the full flight stack for mission control,
both for micro [17] and standard-size UAVs [22].

Embedded computers integrate high-end SoCs with
application-class cores, supporting virtualization and various
privilege levels (and hence full-fledged OSs), embedded GPUs,
and GBytes of high-performance off-chip LPDDR/DDR4/5
memories, connected through expensive, large and power-
hungry mixed-signal DDR controllers, all within a power
envelope of few watts [29], [31]–[33].

The NVIDIA Jetson TX2 is claimed to be ”the fastest, most
power-efficient embedded artificial intelligence (AI) computing
device” by NVIDIA [29] and it is the board of choice for
the Agilicious drone [17]. It features a Quad-core Cortex

A57 running up to 2GHz and a Pascal CUDA GPU, which
can deliver up to 1.33TFLOp/s resulting in an overall power
consumption of more than 7.5 W. The Intel Atom x7 is the
heart of the Intel UpBoard platforms, as big as a credit card.
It features 4 Intel Atom processors running up to 2GHz and
an Intel HD 505 GPU delivering up to 230GFLOp/s and
roughly consuming 10W. Another compute hardware platform
commonly used on autonomous UAVs is the NanoPi Neo
Air, which integrates an Allwinner H7 SoC with a quad-
core CortexA7 and a Mali-400 MP2 GPU, delivering up to
10GFLOp/s. All these SoCs offer a mainstream Ubuntu-ready
software stack and virtualization capabilities and can handle
very sophisticated and complex applications. However, due to
their power envelope, size, and the necessity for high-end off-
chip memories, these SoCs can only be integrated into standard
and micro-UAVs.

Naturally, Shaheen can not compete with these architectures
in terms of performance, but our approach borrows the best
of their characteristic while targeting a much smaller power
envelope. Firstly, to mimic high-end SoCs with their heteroge-
neous GPU-based architecture, Shaheen integrates an RV32-
based parallel programmable cluster along with an RV64 CPU.
Secondly, it exposes a significant amount of off-chip main
memory to the CPU. However, instead of high-performance
DRAMs (LPDDR3/4/5) that are connected through large,
proprietary and expensive mixed-signal PHYs with a high pin
count (>30), Shaheen leverages HyperRAMs, which are fully-
digital low-power small-area DRAMs with less than 14 pins
and feasible to be deployed on nano-UAVs. A similar approach
is adopted in Cheshire [34], which is not optimized for nano-
UAV applications. Cheshire revolves around CVA6 as Shaheen
and exposes up to 1GB of Reduced Pin Count (RPC) DRAM
memory, which uses a minimum number of signals to deliver
DDR3-level in-system bandwidth at the cost of 22 switching
signals for a 16-bit wide data bus [34], [35]. While RPC and
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the related controller offer higher bandwidth than HyperBUS,
the RPC protocol is more convoluted, leading to higher design
complexity and a bigger area, mostly due to the four 8kB
buffers [34]. More importantly, Cheshire’s CVA6 does not
feature hardware virtualization support and micro-architectural
extensions for timing channel mitigations. Lastly, while being
easily extensible through the AXI4 interface, Cheshire’s sili-
con prototype does not integrate a parallel accelerator, heavily
limiting the offered performance. To sum up, Shaheen is the
first silicon implementation of a heterogeneous MCU coupling
an RV64 core with a cluster of eight RV32 cores and tens of
MB of main memory.

B. SoCs for Nano-UAVs
A state-of-the-art MCU for nano-UAVs platforms is the

STM32-F4 [6]. The STM32-F4 is the computational unit of
the Crazyflie [36] platform, integrating a Cortex-M4 core and
192kB of on-chip SRAM with 180MHz of maximum operat-
ing frequency. Its low performance and small memory capacity
limit the autonomous navigation capabilities of the nano-drone
when compared to embedded computers. To this extent, two
kinds of approaches have been proposed: minimization of the
workload [37] or offloading of the mission control computation
to an external base station [38], limiting the MCU to flight
control. The latter approach presents severe drawbacks, in the
first instance, it introduces network-dependent latency, limiting
the maximum distance from the workstation to a few tens of
meters. Also, the data transmitted are subject to noise on the
transmission channel, limiting reliability, and eavesdropping
on confidential data [39].

To offer enhanced computational capabilities within a small
power budget, recent works also propose SoCs featuring
hardwired ASIC accelerators designed for specific UAV ap-
plications, like, for example, motion-control [9], visual-inertial
odometry (VIO) [10], simultaneous-localization-and-mapping
(SLAM) [40], or QNN inference [7], [8]. These accelerators
achieve impressive energy efficiency, in the order of hundreds
of TOp/s/W, by carefully mapping the target algorithm to the
hardware. For example, many accelerators exploit the inherent
parallelism of the target application, such as using a systolic
array for motion control [9]. Another common approach
exploits reduced-precision arithmetic, as in SLAM [40] and
VIO [10], to reduce the memory footprint and the datapath
size. Exploiting both parallelism and reduced-precision com-
putation is also a well-established technique to accelerate QNN
inference and training, due to the nature of such algorithm. For
example, accelerators like the NE16 in GAP9 [7], the HWCE
in GAP8 [7], and the ternary weight neural-network (so-called
CUTIE) accelerator in Kraken [8], able to reach peaks of 11.6
TMAC/s, have been proposed to speed up QNN inference.
However, due to poor flexibility and programmability, these
accelerators have to anyway rely on general-purpose CPUs
to achieve end-to-end flight. Furthermore, the high area cost
per device makes them hard to adopt as they risk becoming
obsolete due to the rapid evolution of the target nano-UAVs
applications.

To overcome these limitations, recent MCUs integrate par-
allel fully-programmable and flexible accelerators, that have

successfully proved to enable autonomous navigation [2],
[3]. Namely, GAP8, GAP9 [7] and Kraken [8] are MCUs
with enhanced computational capabilities, based on parallel
programmable accelerators. GAP8 and GAP9 are commercial
products by GreenWaves Technologies compliant with the so-
called Crazyflie-AIdeck [41] board, which is meant as a com-
panion of the Crazyflie to offload the mission control tasks [2].
GAP8 embeds the so-called Ri5cy [7] core as host CPU and
1.5MB of on-chip SRAM memory, accompanied by a parallel
programmable cluster of other eight Ri5cy cores delivering up
to 150 GOP/s on 8-bit data. Ri5cy is a 4 pipeline-stages core
compliant with the so-called XpulpV2 ISA, a custom RISC-V
ISA based on RV32 with extensions for DSP and ML applica-
tions, with support for 16/8-bit SIMD operations and hardware
loops. GAP9 is an improved version of the GAP8 processor.
It is fabricated in a more advanced node than GAP8, halving
the power envelope and it features as well 2MB of non-
volatile SVM memory. Also, differently from GAP8, GAP9’s
cluster includes 4 FPUs with FP16/32 support. Lastly, Kraken
[8] is a research prototype based on the same heterogeneous
architecture of GAP8 and GAP9, i.e., an RV32 CPU along
with an eight RV32 core cluster, which delivers up to 90 GOp/s
on 2-bit data. Kraken’s RV32 cores are a more advanced
version of Ri5cy, i.e., the Ri5cyNN cores [8] with support of
sub-byte SIMD operations and fused Mac&Load instructions,
which enable the concurrent execution of SIMD dot-product
and memory accesses, increasing the computation efficiency
up to 94%. Kraken embeds 1.5MB of on-chip SRAM memory
and the CUTIE accelerator, able to achieve up to roughly 90k
Ternary-MACs per cycle. Furthermore, it provides an event-
based camera, tightly coupled with a Spiking Neural Engine
accelerator. When compared to traditional cameras, event-
based cameras offer high temporal resolution (in the order of
µs), very high dynamic range (140 dB vs. 60 dB), low power
consumption, and high pixel bandwidth (on the order of kHz)
resulting in reduced motion blur [42].

Shaheen’s approach leverages the best from these advanced
AI IoT SoCs, integrating its own fully-programmable parallel
8-core RV32 cluster accelerator. Shaheen’s RV32 cores stem
from the Ri5cyNN cores and are further enhanced with mixed-
precision support to eliminate the massive software overhead
necessary for packing and unpacking data when executing
mixed-precision sub-byte kernels, providing up to 8.5x speed-
up over Kraken and less than 5.6% extra area resource over
the baseline core without extensions. In addition, Shaheen
addresses a major limitation of SoA MCUs: the software stack
based on lightweight RTOSs or simple bare-metal runtimes.
Programming applications on these stacks is hard, owing to
(i) the lack of virtualization capabilities of the host CPUs and
(ii) the small amount of memory directly accessible through
loads and stores, which limits the maximum software memory
footprint. In the context of MCUs, memory resources coincide
with on-chip SRAMs and off-chip DRAMs. The first ones
provide high bandwidth but are limited to a few hundred kB,
due to the area and power constraints [21]. The latter ones offer
one order of magnitude more capacity but are much slower
and are typically accessed only through explicit input-output
copy functions. Thus, beyond SoA, to support a richer software
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Fig. 1: Shaheen architecture block diagram.

stack while offering the advanced computing performance
and energy efficiency of the RV32-based cluster, Shaheen
integrates an RV64 core with advanced virtualization and
security features, along with up to 512MB of main memory.
This enables the secure coexistence of rich and mature general-
purpose OS and bare-metal RTOS on the same platform and
eases porting of feature-rich software stacks for robotics, such
as ROS [43].

III. SHAHEEN ARCHITECURE

Shaheen consists of 4 clock domains, as illustrated in Fig.
1: (i) the CVA6 domain, where the host core is; (ii) the
host domain, including the main interconnect and 4 256kB
interleaved SRAM banks; (iii) the cluster domain, served by
16 16kB interleaved SRAM banks and 8 specialized RV32
cores; and (iv) the peripheral domain.

A. CVA6 host core

CVA6 [44] is the heart of Shaheen. It is an open-source
6-stages, single-issue, in-order, 64-bit Linux-capable RISC-
V core, supporting the RV64GC ISA variant, SV39 virtual
memory with a dedicated Memory Management Unit (MMU),
three levels of privilege (Machine, Supervisor, User), and PMP
[19]. In the context of this work, the baseline version of
CVA6 has been enhanced with 2 extra features to provide
high-assurance isolation between the different applications co-
existing on the core:

1) hardware support for virtualization compliant with the
ratified 1.0 version of the RISC-V Hypervisor specifica-
tion [18].

2) temporal fence instruction, namely fence.t [20], which
flushes µarchitectural state and enables the OS to close

Virtualization Nominal Name 2-stage
Mode (V) Privilege translation

0 U User (U) mode Off
0 S Hypervisor-extended Off

Supervisor (HS) mode
0 M Machine (M) mode Off
1 U Virtual User (VU) mode On
1 S Virtual Supervisor (VS) mode On

TABLE III: RISC-V ISA privilege modes with the Hypervisor
extension.
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Fig. 2: RISC-V privilege levels.

covert channels with a low increase in context switch
costs and negligible hardware overhead.

Such new features are relevant to many UAV applications such
as the co-existence of full-fledged and real-time OSes (both
custom and legacy), as well as isolation for safety and security
reasons.

1) H extension: Tab. III shows the different privilege modes
when implementing the Hypervisor extension and Fig. 2 the
resulting software stack. The nominal privilege modes are
machine (M), supervisor (S), and user (U). The Hypervisor
extension adds the virtualization mode (V), indicating whether
the hart is currently executing in a guest (V=1) or not (V=0).
When V=0, the S-mode is modified into the hypervisor-
extended supervisor (HS) mode, well suited to host both type-
1 and type-2 hypervisors. Other than in the HS-mode, when
V=0, the hart can either be in M-mode or in U-mode atop
an OS running in HS-mode. When V=1, two new privilege
levels are added, namely the virtual supervisor (VS) mode and
the virtual user (VU) mode. Also, the hypervisor extension
defines a second stage of translation (the so-called ”G-stage”)
to virtualize the guest memory by translating guest-physical
addresses (GPA) into host-physical addresses (HPA).

To enable these new execution modes, the Control Status
Register (CSR) and Decode modules have been modified.
The CSR module was extended to implement the first three
building blocks that comprise the hardware virtualization
logic, specifically: (i) access logic and permission checks for
VS-mode and HS-mode CSRs, (ii) delegation and triggering
of exceptions and interrupts, and (iii) handling of trap entry
and exit. The Decode module underwent changes to enable
the decoding of hypervisor instructions (such as hypervisor
load/store instructions and memory-management fence in-
structions), as well as the execution of all VS-mode-related
instructions and the triggering of access exceptions.

The MMU’s page table walker (PTW) and translation
lookaside buffer (TLB) have been modified to support the
second stage of translation. The PTW features a new control
state to monitor the current stage of translation and facilitate
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Fig. 3: Channel matrices on the CHANNEL BENCH test.

the switching of contexts between VS-Stage and G-Stage
translations. Finally, the TLB entries have been extended to
store both VS-Stage and G-Stage Page Table Entries (PTEs),
as well as their corresponding permissions and virtual machine
identifiers. Overall, all these modifications account for less
than 6% extra area and hardware while enabling the safe co-
existence of a full-fledge guest-OS (executed in VS-mode)
together with a bare-metal RTOS (executed in U-mode).

2) fence.t: The CVA6 core also implements the fence.t
instruction [20]. This instruction is added to CVA6’s ISA
to prevent timing channels: exploitable hardware resources
holding state depending on the execution history (caches,
TLBs, branch predictors, and prefetchers) can leak information
if not properly reset during a context switch. Timing channels
can be exposed by prime-and-probe attacks [20]. In these kinds
of attacks, the spy first brings the target hardware resource
into a known state (prime). In the following time slice, the OS
switches to an application containing a Trojan, which accesses
a subset of the hardware resource to encode a secret. Finally,
when the execution switches back to the spy, it again probes
(probe) the whole buffer and observes an execution time t,
correlated with the encoded secret. For data caches, the spy
traverses a large buffer of n lines so that the Trojan can then
transmit a secret s ≤ n by touching s lines: in the last time
slice, the spy decodes s from the measured execution time t.

In this context, the fence.t extends the control that the OS, or
the Hypervisor, has over the hardware. Namely, it provides the
capability of clearing vulnerable microarchitectural states to
enable a history-independent context-switch latency by flush-
ing the caches and the TLB and resetting the internal FSMs
of the core. The fence.t has been validated against prime-
and-probe attacks from the MASTIK toolkit [20], [45]. These
attacks are implemented within Ge’s CHANNEL BENCH [46],
[47] suite, which provides a minimal OS and data collection
infrastructure, running on an experimental version of seL4 sup-
porting timing protection. To visualize the correlation between
s and t, we use channel matrices. A channel matrix represents
the conditional probability of getting an execution time t,
having an input secret s. In Fig. 3, we represent the channel
matrix as heatmaps: s (the secret encoded by the Trojan by
touching s ≤ n data cache lines) varies horizontally, and t (the
execution time measured by the spy) varies vertically, bright
colours indicate a high probability and dark colours indicate
a low probability of measuring such t, given a certain s.

Fig. 3 shows the channel matrices on the CHANNEL
BENCH test for CVA6’s write-through L1 data cache. On the

left it is shown the matrix when not using the fence.t: the
correlation between the Trojan’s secret and the spy’s probe
time indicates a covert channel. On the right, when using the
fence.t, there is no correlation. With less than 320 additional
clock cycles to the context-switch latency (insignificant at
typical switch rates of 1 kHz), the fence.t requires a low
implementation effort and negligible hardware costs.

B. Host & Peripheral Domain

The host domain leverages the popular AXI4 protocol
[48] for the main interconnect. Namely, it includes a 64-
bit AXI4 crossbar delivering up to 32Gbps on each AXI4
port, respectively on read and write channels. It also includes
4 256kB SRAM banks, composing a 1MB L2 ScratchPad
Memory (L2SPM) delivering up to 64Gbps, either for writing
or reading. The L2SPM is meant to (i) store data to be
shared with off-chip peripherals, (ii) store the cluster code,
(iii) for fast communication between CVA6 and the cluster,
and, more in general, (iv) for low-latency (<10 clock cycles)
and predictable accesses.

To enable independent data transfer from peripherals to
the SoC, Shaheen includes in the peripheral domain the so-
called ”µDMA subsystem” which is a controller intended to
autonomously serve a set of I/O interfaces popular in critical
applications. Such interfaces include for instance HyperBUS,
I2C, (Q)SPI, CPI, SDIO, UART, CAN, PWM, and I2S. The
µDMA exports two ports, one for receiving and one for
sending data, to read/write data from/to the L2SPM SRAM
memory to/from the off-chip peripherals [7]. Shaheen also
features an open-source Linux-compliant Ethernet IP, to be
fully compliant with the Pixhawk standard [25], popular
open-source hardware specifications and guidelines for drone
systems development.

1) HyperRAM memory controller: Fig. 4 depicts Shaheen’s
HyperRAM controller, which provides a configuration APB
port and an AXI4 subordinate port. It connects the SoC with
off-chip HyperRAMs, compliant with the HyperBUS protocol,
which is a fully digital protocol counting 11 + n pins: 3
control pins, n Chip Select (CS), and 8 Double-Data-Rate
pins used both for commands and data [21]. Depending on
the off-chip memory models, the controller exposes between
32MB and 512MB to the interconnect, and it provides up
to 1.6 Gbps. HyperRAMs are the main memory of choice
for Shaheen because, differently from high-end DDR DRAM
memories, they target a much lower power consumption and
silicon footprint while guaranteeing enough bandwidth for
advanced AI IoT applications and capacity to boot embedded
SPM Linux [21].

There are two distinct modules within the HyperRAM
controller, i.e., the PHY controller (back-end) and the front-
end, operating in different frequency domains. The front-
end module consists of an AXI4-to-PHY converter and a
specialized µDMA engine channel accessible through APB
to execute software-programmed DMA transfers. The AXI4
and µDMA transactions are multiplexed towards the PHY,
which translates the incoming data packets into HyperRAM
transactions and vice versa. The AXI4 front-end enqueues
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Fig. 4: HyperRAM memory controller architecture.

the AXI4 transactions individually and lets through only one
read or one write at a time and converts it into a request for
the PHY. At this point, the back-end translates the request
into a command for the HyperRAMs and issues it over the
HyperBUS. Following, in the case of a write, the W channel
transactions get converted into multiple PHY data packets. For
reads, the PHY back-end sends data packets to a converter
that then populates the R channel. The µDMA engine directly
connects the L2SPM and the back-end and can generate
both 1D and 2D burst transactions. These features are highly
valuable for the efficient execution of ML algorithms on the
cluster, as it is achieved through explicit orchestration of the
data movement between the off-chip memory, the L2SPM and
the L1SPM [49].

To double the bandwidth and the capacity, Shaheen’s back-
end module controls 2 HyperBUS interfaces in parallel, and it
controls 2 memories on each HyperBUS, with 2 dedicated CS.
Each memory is seen as a memory block of 16 bits width and
N rows, programmable at runtime according to the onboard
memories available. The pair of memories on the same CS
of the two different buses are mapped as interleaved, hence
occupying the first 2 · 2 ·N Bytes. The other pair of memory
is placed contiguously on top.

C. Parallel Programmable Cluster

While the host core supports advanced virtualization, se-
curity and isolation features, it is not optimized for num-
ber crunching: when running computation-intensive kernels
is needed, it invokes the cluster. The cluster domain is a
programmable parallel accelerator connected to the main host
interconnect through a controller and a subordinate AXI4
port. The cluster is composed of 8 70kGE 4-pipeline stages
RV32 cores, optimized for general-purpose DSP and ML
applications, described below. The cores share 16 16kB inter-
leaved SRAM banks, composing a 256kB L1 SPM, accessible
through a single clock cycle latency logarithmic intercon-
nect, providing up to 256 Gbps at 500MHz. A hierarchical
instruction cache, composed of 8 512 Bytes private caches
and a 4kB of 2-cycle latency shared cache, assists the cores.
It is implemented with latch-based SCM to improve energy
efficiency over energy-expensive SRAM cuts. The cluster also
includes a DMA with one 64-bit AXI4 port and 4 32-bit
ports towards the L1SPM for high-bandwidth, low-latency
transactions to/from the L1 SPM. Leveraging explicit memory
DMA transfers and scratchpad memories, double-buffering

DECODER CSRs
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FORMAT

Fig. 5: Instruction decoding during the status-based execution.

DOTP-2b

O
U

TP
U

T 
M

U
X

SL
IC

ER
 A

N
D

 R
O

U
TE

R

B

A

C

DOTP-4b

DOTP-8b

DOTP-16b

SIMD_FMT; MPC_CNT

R
es

ul
t

Fig. 6: Dotp unit Datapath.

and custom ISA extensions, the cluster avoids the hardware
overhead of expensive data caches while maximizing the
utilization of memory and computing resources [49].

1) Flex-V cores: The 8 RV32 cores are the so-called Flex-
V cores [50]. Each core has a dedicated FPU unit supporting
FP32, FP16 and bfloat16 types, supporting SIMD instruc-
tions on lower precision data. Also, all the cores share a
single Floating Point division and square root operations unit
(DIV/SQRT). The Flex-V core is an aggressively optimized
version of the Ri5cy core [51], which support the XPulpV2
ISA extension, considered as the baseline. The Ri5cy core al-
ready provides custom instructions to accelerate the execution
of ML and DSP workloads, namely, it supports post-increment
LD/ST, hardware loops, and SIMD instructions down to 8-bit
precision.

To enhance the performance of sub-byte uniform linear
kernels, the XpulpNN ISA has been proposed [8], which
extends XpulpV2 ISA with 4- and 2-bit SIMD operations.
Additionally, it introduces fused Mac&Load instructions en-
abling simultaneous execution of SIMD dot-product operations
alongside memory accesses, almost doubling the computation
efficiency. More precisely, the fused Mac&Load (mlsdotp)
instruction combines a SIMD dot-product-like operation with
a load operation performed during the writeback stage. Doing
so enables replacing the non-stationary data in a register to
directly feed the next Mac&Load instruction with it. To decou-
ple and simplify the Mac&Load execution, the XPulpNN core
integrates six additional 32-bit registers, forming the so-called
Neural Network Register File (NN-RF), enabling the Load
operations (of weights and activations) during the Mac&Load
write-back stage, which could not be performed otherwise on
the general purpose register file (GP-RF). However, when deal-
ing with mixed-precision inputs, the performance of XpulpNN
degrades significantly because of the substantial software
overhead required for packing and unpacking data.

To overcome this limitation and maximize the computa-
tional unit utilization, Flex-V further extends XPulpNN with
mixed-precision operation support. To efficiently enable arbi-
trary mixed-precision operations while avoiding the prolifer-
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ation of extra instructions, Flex-V exploits the dynamic bit-
scalable execution mode: the ISA instruction only encodes
the type of the operation, while the format is specified by
a CSR in the core. Figure 5 illustrates the relative decoding
process: the decoder retrieves all the necessary information
from the instruction and transmits it to the EX stage. If the
received op-code corresponds to a Virtual SIMD instruction,
such as a (ml)sdotp, the decoder activates the SIMD func-
tional unit which will execute the instruction according to
CSRs values and to signals from the dedicated MAC&Load
and Mixed-precision controllers (MCD). Figure 6 shows the
mixed-precision Dot Product (Dotp) unit. This unit integrates
a Slicer&Router, responsible for the extraction of the 4- and
2-bit operands from a 32-bit input word, along with the two
dedicated units for the sub-byte operations. For example, as
shown in Fig. 7, the slicer is needed in the case of a sum-of-
dot-product (sdotp) operation between an 8-bit operand A and
a 4-bit operand B. Since the single instruction can consume
just four elements of the eight 4-bit words inside the register,
it selects either the 16 MSBs or the 16 LSBs, according to the
value of the MPC CNT signal from the MCD. Subsequently,
the Router directs the desired elements to the Dotp units
following the SIMD FMT signal coming from the CSR, i.e.
the DOTP-8b (operating on 8b inputs) for this example.

In the case of mixed-precision kernels, by re-arranging
the data natively in hardware, Flex-V alleviates the sub-
stantial software overhead needed for pointer management
and explicit data unpacking that would be needed otherwise.
Table IV shows Flex-V’s performance gain over XPulpV2 and
XPulpNN on dense matrix multiplication kernels with weights
and activations (operands A and B in Figure 7, respectively)
of different bit widths. It expresses performance in terms
of MAC/cycle, isolating the inner kernel and excluding the
non-idealities that arise when running complex real-world
applications. While on uniform kernels, Flex-V and XPulpNN
achieve the same performance, on mixed-precision kernels,
Flex-V outperforms XPulpNN by up to 6.8× and for only
5.6% extra area resources.

2) IOTLB: The cluster accesses towards the host intercon-
nect are mediated by an IO TLB (IOTLB) unit [52]. Since
the Flex-V cores cannot perform virtual-to-physical address
translation, the IOTLB unit is meant to ease pointer sharing
with CVA6 and further prevent cluster unauthorized accesses
towards the shared memory. The latter is a fundamental feature
for critical applications: without any control, malicious or
buggy applications running on the cluster could potentially
cause denial-of-service to the host core or break confidentiality

TABLE IV: Flex-V’s performance [MAC/cycle] on MatMul
kernels, against XPulpNN and XPulpV2 [50].

Input XpulpV2 XpulpNN Flex-V Flex-V
widths [8] [7] [

MAC
cycle

] Speedup vs.
[bits] [

MAC
cycle

] [
MAC
cycle

] XPulpV2 /
Act. Weight XPulpNN

2 2 - 90.8 91.5 -/≤ 1%
4 2 - 7.62 51.9 -/6.8x
4 4 - 49.5 50.6 -/≤ 1%
8 2 4.91 6.07 27.8 5.6x/4.5x
8 4 6.38 7.63 27.6 4.3x/3.6x
8 8 16.59 26.1 26.9 1.6x/3%

(i.e., get unauthorised access to sensitive data).
The IOTLB provides 32 entries. For each entry, CVA6 has to

specify the starting and ending virtual addresses, the physical
base address and the characteristics of the region: if the
cluster can access it, and if it is readable or writeable. Before
offloading a task to the cluster, the host statically reserves the
portions of the main memory to be shared with the cluster and
then it programs the entries. Then, once a transaction from the
cluster arrives, its address is compared against the 32 virtual
address ranges. If it is within one of the available ranges and
the cluster has the right permissions, the address is translated
through simple subtraction of the virtual base address and the
addition of the physical base address. Otherwise, the IOTLB
sends an interrupt to CVA6 to notify the cluster’s attempt
at accessing memory outside the expected regions. Then, the
IOTLB behaves as a simple AXI4 subordinate to not break the
AXI4 protocol: for write transactions, it accepts the incoming
data on the write channel, without propagating them, while
for read transactions, it serves as many read beats as needed,
providing an arbitrary value set at design time. At this point,
the cluster is not aware that the transaction was not allowed
and continues the execution until it receives an interrupt from
CVA6. If, in this scenario, the cluster’s runtime has not been
compromised by the malicious/buggy application, the cluster
will gracefully interrupt its execution and resume from a
known state. If this is not the case and it is not possible to
shut down the cluster, the IOTLB will anyway prevent denial-
of-service attacks and prevent unauthorised access to sensitive
data.

IV. IMPLEMENTATION AND MEASUREMENTS

Fig. 8 shows the microphotograph of the Shaheen SoC,
highlighting the main building blocks described in Section III.
The SoC is implemented in Global Foundries 22nm CMOS
FD-SOI technology. It was synthesized with Synopsys Design
Compiler 2019.12, while Place & Route was performed with
Cadence Innovus 19.10. Shaheen’s 4 different clocks are gen-
erated by 4 Frequency Locked Loops (FLLs), taking a 32KHz
clock in input from an off-chip ring oscillator. The FLLs’
maximum achievable output frequency at 0.8V is 600MHz.
The different peripheral PHYs (I2C, SPI, HyperBUS, ...)
internally feature clock division to further scale down the input
clock when needed.

Figure 9 shows the test board developed for the bring-up
and measurements. It provides four 8MB HyperRAM chips
and a socket to test different chips easily. It also exposes the
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Fig. 8: Die micrograph (3mm x 3mm) and area breakout.

Technology CMOS22nm FD-SOI (SLVt, LVt)
Chip Area 9mm2

SRAM Memory 1280KB
VDD Range 0.625-0.8V

CVA6/Cluster Max Freq. 600/500MHz
Idle Power 9-19mW (0.625-0.8V)

Avg. Power (CVA6 Active) 45-130mW (0.625-0.8V)
Max. Power (Cluster Active) 75-200mW (0.625-0.8V)

TABLE V: Shaheen SoC features.

Fig. 9: Shaheen test-board, top and bottom.

interfaces required to debug the chip, such as JTAG and UART,
as well as pin headers connected to all the other interfaces for
testing purposes. Finally, it exposes the pin headers to regulate
the voltage supply of the two power domains: (i) one for the
core logic and the SRAM macros, which we vary between
0.625V and 0.8V, and (ii) one for the IOs, fixed at 1.8V. While
the SoC fits all the requirements for Nano-UAV navigation, the
board described above has not been designed for flying, but
specifically for the testing and characterization of Shaheen.

First, we measure the idle power. To do so, we reduce the
frequency of the SoC to 32kHz and clock gate the cluster while
CVA6 is in a wait-for-interrupt state, i.e., a for loop of nop
operations. As reported in Table V, idle power consumption is
between 9mW and 19mW, depending on the supply voltage.
Fig. 10 (a) shows the measured maximum frequency varying
the voltage supply of the host domain, the cluster domain,
and CVA6. The cluster and the host domain can run at up to
280MHz at 0.625V and up to 500MHz at 0.8V. Thanks to the
more aggressive pipelining, the CVA6 core can reach up to
310MHz at 0.625V and up to 600MHz at 0.8V. Fig. 10 (b)
also shows the measured maximum power consumption at the
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highest achievable frequency for the voltage supply. For these
tests, CVA6 runs a dense FP64 matrix multiplication, and the
cluster runs a dense INT32 matrix multiplication, both within
an infinite loop. Then, we measure and sum the average cur-
rents consumed by the two power domains. To get the average
power consumption, we measure the power consumption of
Shaheen when the cluster is clock-gated, which matches with
the power consumption of CVA6, the peripheral, and the host
domain together. Then, we also enable the cluster and measure
the resulting total power, which coincides with the maximum
power consumed by Shaheen. Varying VDD and frequency, the
power consumption of CVA6 and the host domain varies from
45mW to 130mW. On the other hand, the cluster consumes
from 30mW to 70mW.

Fig. 11 shows the cluster domain energy efficiency varying
frequency, VDD and data width. On 2-bit data, the cluster
can achieve up to 90GOp/s and up to 1.8TOp/s/W. On 8-
bit data, the cluster can achieve up to 26.9GOp/s and up
to 540GOp/s/W. All the experiments were performed run-
ning on Shaheen the various n-bit matrix-multiplication ker-
nels extracted from the PULPNN library on the software-
programmable cores and extracting the MAC/cycle of the inner
loops, excluding the initial data arrangement overhead [50].

Lastly, we performed post-layout, parasitic annotated sim-
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ulations of the HyperRAM memory controller’s netlist to
characterize its power consumption. At 0.8V and a speed
of 1.6Gbps, it consumes 1.25mW, 70% of which is con-
sumed by the IOs. At 0.625V, delivering 1.1Gbps, the power
consumption is 0.8mW, with 75% of the IOs. More details
about the HyperRAM controller’s performance and power
characterization, as well as comparisons with traditional DDR
controllers, can be found in [53].

V. HETEROGENEOUS SOFTWARE STACK

A. Software stack and programming model

Shaheen comes with a mature software stack for hetero-
geneous programming. On the cluster side, we provide a
lightweight bare-metal runtime that allows low programming
overhead, and fast hardware functionality validation and per-
formance profiling. On the host side, CVA6 can either run full-
ledged Buildroot-based Linux distribution (v5.16.9) on top of
the Bao Hypervisor [18] or a bare-metal runtime, and both are
equipped with a dedicated driver for the cluster management.
The APIs provided by the cluster runtime and the CVA6’s
driver are already sufficient to run heterogeneous code on
the platform. However, one must write two different codes
for the host and cluster. To avoid this, Shaheen adapts the
OpenMP 5 framework from HERO [52], allowing users to use
a high-level, directive-based, intuitive programming interface
to efficiently offload the computationally intensive part of a
program to the cluster within one single heterogeneous source
code. Also, to map the execution of QNNs on the cluster,
we adopt the data and execution flow presented in Dory [49].
Dory is a tool that given the description of a QNN in input
generates the corresponding C code to be executed on parallel
programmable clusters. Dory calculates data tiling solutions
fitting the available L1SPM (where it puts the data to be
processed by the cluster) and it schedules the DMA data
transfers from the main memory to the L1SPM and vice-versa.
Thanks to the efficiency of tiling and double-buffering, when
the execution is not memory bound, data movements overlap
with computation for more than 95% of the execution time
[49].

B. Offload mechanism & Performance

To perform the offload, CVA6 lazily (at first occurrence)
loads the cluster code into the L2SPM to then communicate
to the cluster where is the code to execute. Such a mechanism
requires a few thousand clock cycles, depending on the length
of the code. Hence, when the cluster execution time is very
short (<100k cycles), the cluster’s offload overhead (i.e.,
loading the code) dominates the total execution time and
reduces the speedup. Based on our (empirical) experience, this
is a very uncommon case.

Figure 12 shows the offload speedup and overhead over
an FP matrix multiplication. It is important to notice how
the cluster can run such a benchmark with reduced precision
(down to FP16), exploiting the SIMD extensions otherwise
unavailable on the CVA6 core.

The plot on the left in Fig. 12 shows CVA6 and cluster
performance at the maximum frequency at 0.8V (600MHz for
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CVA6, 500MHz for the cluster), and it also highlights the
speed up. The figure shows the acceleration when executing
the accelerated kernel once or 1000 times on the cluster; the
first case represents low code utilization, while the second
represents high code utilization. In each execution, the cluster
performs the computation on a different couple of input
matrices. At the same time, it fetches the input matrices
for the next execution and writes back the result of the
previous computation. Data movement is performed through
the DMA and overlaps computation. On a simple FP32 matrix
multiplication, the cluster can deliver up to 4.3 GFLOp/s,
which is roughly 27 times more than CVA6. Furthermore, the
plot shows once again the benefit of scaling down the number
precision, which is not a possibility on CVA6.

The plot on the right in Figure 12 compares the energy
efficiency achieved by CVA6 and the host domain against
the cluster on the same benchmark, with the IPs working at
the maximum frequency at 0.65V (280MHz for the cluster
and 310MHz for CVA6). On the reduced-precision matrix
multiplication, the cluster can reach up to 157 GOp/s/W, while
CVA6 can only provide 2 GOp/s/W, ≈ 80× less.

VI. BENCHMARKING

Figure 13 presents the loop that Shaheen executes to achieve
autonomous flight while executing other auxiliary tasks, and
how it maps on Shaheen’s hardware. In the first instance, it col-
lects and filters the sensors’ input data, which are subsequently
used to estimate the current state. Then, in the “intelligence”
block it has to independently determine the next state (i.e.,
what to do next) and carry out the target auxiliary tasks such as
object detection, recognition or monitoring [3], [14]. Once the
next state is determined, the control part actuates the change.
In Shaheen, the first three phases (filtering, state estimation,
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and intelligence) are mapped on the cluster hardware, while
the real-time control is left to the host core, also executing
the general-purpose OS, to leverage its legacy software stack
for non-real-time tasks (e.g. transmitting the classification of a
detected object to the cloud through the legacy network stack).
In this section, we focus on benchmarking the cluster on its
target tasks as they are the most computing-intensive phases
and potential bottlenecks of the autonomous flight and mission
loop.

Filtering of the input data and state estimation as well
as intelligence tasks like path planning or structural health
monitoring usually rely on general-purpose DSP primitives
[13], [14]. At the same time, QNN inference is widely
adopted for tasks like classification or recognition for obstacle
avoidance or object recognition and localization [2], [3], [17],
[54], [55]. However, one limitation of the QNN inference at
the edge is the mainstream adoption of the train-once-deploy-
everywhere approach, which trains the networks offline and
then deploys them later on the embedded devices, where no
further modifications to the weights happen. This approach
prevents the models to adapt in the deployment environment
and possibly leads to accuracy degradation and unreliability
[15]. On-device learning potentially overcomes this limitation
by enabling small portions of the training to happen on the
field, directly on the MCU [16]. Thus, we benchmark the
proposed SoC on three sets of kernels representative of the
different tasks described above, i.e., (i) general-purpose DSP,
(ii) DNN, and (iii) online learning benchmarks.

A. General Purpose DSP

Figure 14 shows the cluster performance and energy ef-
ficiency over seven open-source FP benchmarks [56] repre-
sentative of DSP applications for filtering, feature extraction
classification, and basic linear algebra functions, relevant both
for input data filtering, state estimation but also intelligence
tasks such as path planning or structural health monitoring
[13], [14]. To show the advantage given by parallelism and
reduced-precision computation, such benchmarks are executed
both at full precision (FP32) on a single Flex-V core, and then
on 8 cores at full and lower precision (FP16 & bfloat16) to
exploit the available packed-SIMD support.

Some of the benchmark kernels are representative of digital
data acquisition and analysis, such as the Finite Impulse
Response (FIR) and Infinite Impulse Response (IIR) filters.
To characterize the cluster on frequency-domain applications,
we run a decimation-in-frequency radix-2 variant of the Fast
Fourier Transform (FFT) and a Discrete Wavelet Transform
(DWT), a standard kernel used for feature extraction. As for
more state-estimation-oriented kernels, we provide the perfor-
mance results when executing a K-Means classifier kernel.
Lastly, we also benchmark two classical basic linear algebra
kernels such as a Matrix Multiplication and a 1D Convolution.

As the plots in Fig. 14 show, on all these benchmarks,
thanks to the ISA extension not available on the host core, a
single Flex-V running at 500MHz provides from 1× to 3× the
performance delivered by CVA6 on a dense and regular matrix
multiplication at 600MHz. Furthermore, the parallel execution
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Fig. 14: Performance and en. eff. delivered by the cluster on
general-purpose DSP benchmarks.

TABLE VI: Accuracy, memory footprint, perf. & en. of end-
to-end networks.

Network MobilNetV1 MobileNetV1 ResNet20
(8b) (8b4b) (4b2b)

Top-1 Acc. 69.3% 66.0% 90.2%
Deg. w.r.t. 8b - 3.3% 0.15%

Model size 1.9 MB 997 kB 142 kB
MACs 325M 328M 10M

Mem. saved 47% 63%
Avg. Perf. : Latency : Energy [MAC/cycle : ms : mJ]

@0.8V -run to sleep-
XpulpV2 5.6 : 3.2 : 4.8 :

GAP9, 450MHz 126 : 5.87 227 : 10.23 4.9 : 0.22
XpulpNN 6.0 : 2.7 : 4.4 :

Kraken, 380MHz 141 : 12.7 319 : 28.76 6.4 : 0.58
Flex-V 6.0 : 5.8 : 11.2 :

Shaheen, 500MHz 108 : 8.55 119 : 8.83 1.9 : 0.15

of the benchmarks on 8 Flex-V cores can give an additional
speed-up between 5.9 and 7.9 times when compared to single-
core execution. Leveraging the reduced precision arithmetic
can further provide almost a 2x speed-up, allowing the core
to reach up to 7.9GFLOp/s and up to 157 GFLOp/s/W.

B. QNN inference

In this subsection, we focus on two real-world 8-bit QNNs
fine-tuned for Nano-UAVs application scenarios, namely Tiny-
PULP-Dronet [2] and FrontNet [3], as well as two aggressively
quantized mixed-precision QNNs for object detection and clas-
sification. The Tiny-PULP-Dronet is a lightweigth QNN based
on the ResNet architecture [55] and it enables autonomous
navigation within tight spaces avoiding obstacle collision.
FrontNet on the other hand is based on the MobileNet [54]
architecture and it is used for Human-Robot Interaction (HRI):
it allows the nano-drone to recognize a face and follow it. The
cluster is able to achieve 320FPS on a Tiny-PULP-Dronet and
260FPS on an optimized 6.7MMAC FrontNet, which is well
above the 20FPS needed to achieve autonomous flight [2], [3].
This means that more than 90% of the cluster’s computational
capabilities are actually available to carry out other activities.

Stemming the analysis from the QNNs mentioned below, we
first benchmark the cluster on a relatively big (325MMAC)
8-bit MobileNetV1 [54] for object classification. Then, we
extend the analysis to a mixed-precision MobileNetV1 with
8-bit activations and 4-bit (8b4b) weights and an aggressively
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Fig. 15: Performance and En. Eff. delivered by the cluster on
FP training benchmarks.

quantized 4b2b ResNet-20 [57] for object detection. The two
MobileNetV1 networks have been trained on ImageNet while
the 4b2b ResNet-20 targets CIFAR10. As table VI shows,
reducing the operands’ precision does not automatically jeop-
ardize the accuracy: in the case of the MobileNetV1, there
is a 47% memory footprint reduction for a negligible 3%
accuracy loss, from 69% to 66% [50], while the ResNet-
20 achieves 90.2% accuracy [55]. As shown in table VI,
Flex-V is the only version of Ri5cy able to efficiently deal
with mixed precision networks: in terms of MAC/cycles, on
the 4b-2b mixed-precision ResNet-20, it achieves 2.3× and
2.5× of speedup with respect to XPulpNN and XPulpV2.
Table VI also compares the latency and energy consumed
by Shaheen over the three networks when running at the
maximum frequency at 0.8V, compared to two other 8-core
clusters respectively implementing the baseline XPulpV2 in-
structions or the XPulpNN, namely GAP9 [7] and Kraken [8].
On the uniform-precision MobileNetV1, thanks to the higher
frequency and optimized ISA, Shaheen’s cluster provides the
smallest latency, but not the lowest energy, due to higher power
consumption (70mW) when compared to GAP9 (50mW),
being the latter tuned for energy-efficient operation. As soon
as the mixed-precision extensions can be exploited, Shaheen’s
cluster emerges both as the fastest and most energy-efficient
one.

C. Online training

In this subsection, we benchmark the cluster against a set of
open-source kernels to enable online learning on MCU con-
trollers [16]. In particular, we benchmark three very popular
layers such as 2D Convolution, Pointwise and Fully-Connected
which are the three building blocks of Convolutional NNs
(CNNs), used to find patterns in images. Convolutional and
pointwise layers are the core building blocks of CNN, where
most of the computation happens, and are used to perform
feature extraction. The Fully connected layer connects the in-
formation extracted from the previous steps (i.e., Convolution
layer and Pooling layers) to the output layer and eventually
classifies the input into the desired label. For each layer, we
consider the three phases of training: (i) the forward pass, to
compute the output result and hence the loss, (ii) the backward

computation of the gradients with respect to the activations,
and (iii) the backward computation of the gradients with
respect to the weights. The kernels we leverage map each of
these computation phases directly to one matrix multiplication
containing all the matrix multiplications needed to obtain the
output [16]. Depending on the matrices’ shapes, the amount of
parallelizable work changes, and hence the performance [58].
Figure 15 shows performance and energy efficiency over such
benchmarks. As for the DSP benchmarks, the parallelization
provides a significant speed-up for most of them. Except for
the weight gradient computation on the convolution kernel,
which achieves a 4.7× speedup, the parallelization provides
between 6.1x and 7.5x faster execution. At the same time,
leveraging the bfloat16 format (providing a wide dynamic
range explicitly thought for ML training) and the dedicated
SIMD extensions provides up to 1.8x more performance.
Overall, the cluster is able to achieve up 6.2 GFLOp/s and
120 GFLOp/s/W on this class of benchmarks.

VII. COMPARISON WITH STATE-OF-THE-ART

Table VII shows Shaheen against 6 SoCs for UAVs, both
from industry and academia. To have a thorough comparison,
we extend it also with SoC not explicitly optimized for UAVs
but with similar general-purpose software performance and
functionalities that could fit the purpose, namely Cheshire
[34], the work from Jia et.al. [31], the STM32-H7 [5] and
the work by Ju et.al. [11]. From an architectural viewpoint, Ju
et. al. [11] consists of a homogeneous systolic array of RV32
cores, while Jia et al. [31] instantiates a cluster of four RV64
cores along with a set of hardwired ASIC accelerators. More
advanced nano-UAV SoCs, such as GAP9 [7] and Kraken [8],
incorporate an RV32 CPU that can offload compute-intensive
tasks to a parallel cluster of cores with the same ISA.

In this context, Shaheen is the first silicon demonstrator
of a heterogeneous RV64/RV32 architecture. When offloading
compute-intensive tasks to the fully-programmable parallel
cluster of Flex-V cores, performance can be improved by up to
2 orders of magnitude achieving state-of-the-art performance
with up to 90 GOp/s on heavily quantized integer tasks and
up to 7.9 GFLOp/s/W on 16-bit floating point tasks. Shaheen
stands out as the only nano-UAV SoC that provides Linux,
hypervisor, and security capabilities to the host enabling
the secure co-existence of user applications running on full-
fledged OSes and control tasks running on real-time OSes
while providing up to 512MB of low-cost and low-power off-
chip memory within the power envelope of 200 mW.

VIII. CONCLUSION

We presented Shaheen: a heterogeneous and flexible SoC
implemented in 22 nm FDX technology. Shaheen features a
Linux-capable RV64 core, compliant with the v1.0 ratified Hy-
pervisor extension. To the best of our knowledge, it is the first
silicon implementation fully compliant with the ratified RISC-
V ISA Hypervisor extension. It features support for timing
channel protection to isolate concurrent execution of multiple
software stacks (trusted and untrusted), preventing security
threats and ensuring multi-domain operations. It provides up to
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TABLE VII: Comparison with SoA SoCs.

Neo - Cheshire
[34]

Jia et al.
[31]

STM32-H7
[5]

Ju et al.
[11]

GAP9
[7]

Kraken
[8] Shaheen (ours)

Target Prototype Prototype Product Prototype Product Prototype Prototype
Technology 65nm 12nm 40nm 65nm 22nm 22nm FDSOI 22nm FDSOI

Die Size 6, 4mm2 21, 6mm2 - 4, 47mm2 12mm2 9mm2 9mm2

CPU /
ISA

CVA6/
RV64GC

4xCVA6 /
RV64GC

Cortex-M7 +
CortexM4 /

ARM32

10xRISC-V /
RV32

10x RI5CY /
RV32

9x RI5CY-XNN /
RV32

CVA6 +
8x FLEX-V /

RV64GC + RV32
Power Env. 300mW 1.83W - 116mW-589mW 50mW 300mW 195mW
Max. Freq. 300MHz 1,5GHz 480-240MHz 400MHz 450MHz 330-390MHz 500-600MHz

Memory
exposed to
the CPU

1GB RPC 2GB SerDes 512kB On-chip
SRAM

150kB On-chip
SRAM

1.5MB On-chip
SRAM +
8-64MB

HyperBUS (XIP)

1.5MB On-chip
SRAM

1MB On-chip
SRAM +

32-512MB
HyperBUS

Supported
OS

Linux /
RTOS

Linux /
RTOS RTOS RTOS RTOS RTOS Linux +

RTOS
Security
Features - - Crypto/hash

processor - AES128/256 acc.,
PUF - fence.t, IOTLB,

PMP, Hypervisor
SW INT/FP
arithmetic

support
SP/DP-FP SP/DP-FP SP-FP - bfloat16, fp16/32,

int32/16/8
bfloat16, fp16/32,

int32/16/8/4/2

bfloat16, fp16/32,
int32/16,

int-mixed8/4/2

Peak SW INT
Performance

0.5GOp/s
(32b)

1.5GOp/s
(32b)

390MOp/s
(8b)

16GOp/s
(8b)

15.6GOp/s
(8b)

22GOp/s(8b-8b)
45GOp/s(4b-4b)
85GOp/s(2b-2b)

26GOp/s(8b-8/4/2b)
50GOp/s(4b-4/2b)
90 GOp/s(2b-2b)

Peak SW FP
Performance

0.5GFLOp/s
(32b)

1.5GFLOp/s
(32b)

240MFLOp/s
(32b) - 3.3GFLOp/s

(32b)
3.12GFLOp/s

(32b)
4.0GFLOp/s(32b)
7.9GFLOp/s(16b)

512MB of main off-chip HyperRAM memory, large enough to
host general-purpose OSs as well as RTOSs. Also, it is the first
silicon implementation of a heterogeneous MCU coupling an
RV64 host together with a multi-core RV32 cluster, achieving
up to 90GOp/s and up to 1.8TOp/s/W on 2-bit integer kernel
and up to 26.9GOp/s and up to 540GOp/s/W on 8-bit integer
kernels.

After this thorough evaluation, we envision the miniaturiza-
tion of the testing PCB (see Fig. 9) and development of ad-hoc
control software, tightly coupled with the physical character-
istics of the board, to achieve real-world nano-UAV flight,
exploiting Shaheen’s secure and scalable architecture with
host/cluster decoupling and advanced virtualization. Overall,
Shaheen is the first prototype SoC providing support for
general-purpose OSs within a 200mW power envelope while
offering state-of-the-art performance over a wide spectrum of
applications, thanks to the programmable multi-core cluster.
All the IPs integrated within Shaheen are released as open
source2 under a liberal license to foster future research in the
area of AI-IoT computing devices.
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