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A B S T R A C T

Mobile Crowdsensing (MCS) is a paradigm involving a crowd of participants, called workers, into sensor data
gathering campaigns through their personal devices. Some campaigns require workers to contribute with small
amounts of geolocalized data at a constant rate, while being not directly aware of the global conditions of
the system. In the scope of this reduced awareness, it is crucial to consider the privacy preservation of single
workers at design time, as the disclosure of their exact location may lead to severe privacy issues. In this
paper we design a privacy by design MCS framework that leverages variable rewards for workers willing to
submit their location with an higher precision than others. Privacy is ensured through a negotiation phase
that estimates the reward of the workers for different levels of location precision. This way, it helps them
decide autonomously the spatial granularity of their data in order to preserve their privacy, yet obtaining a
reward for their data. We design a metric based on 𝑘-anonymity to evaluate the level of privacy achieved, and
validate the proposed framework over a real dataset. Our results show the efficacy of the framework as well
as interesting effects caused by the topology of the environment.
1. Introduction

Mobile Crowdsensing (MCS) is often considered as a viable technol-
ogy to gather data of interest in an area, leveraging personal devices
of a crowd of users. In this scenario the participants to the MCS
campaign are called workers, and are committed to provide data to
the entity running the campaign, called crowdsourcer, in exchange of
a reward (Capponi et al., 2019). MCS campaigns often require sensor
data and are subject to the well-known problems of recruiting and
rewarding workers efficiently, as well as to maximize the data quality
while dealing with highly variable and uncertain environments (Mon-
tori et al., 2018). Furthermore, there are many different categories of
MCS platforms; in this work we focus on Opportunistic MCS, meaning
that data is reported opportunistically without any human interaction
as workers move around. This typically involves workers to install
an application either on their smartphone or on a specialized device.
Opportunistic MCS is different compared to Participatory MCS; in the
latter the tasks issued by the crowdsourcer can be heterogeneous, and
involve a necessary human participation on the workers’ side. Most
of the times, data in MCS is geolocalized, so workers also implicitly
provide their position whilst sending the data of interest. This behavior
raises a significant issue in MCS, since sending the personal position of
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workers may also lead to the reconstruction by an attacker of the his-
tory of locations visited by each worker. This may potentially highlight
routine behaviors of individual workers, manifesting a privacy issue
which needs to be addressed, although the perception of the issue by
workers may vary depending on their awareness (Kim et al., 2022).
Moreover MCS workers are typically rewarded by the crowdsourcer,
either for simply taking part in it or for each measurement they send.
While in Participatory MCS there are different proposals on this aspect,
in Opportunistic MCS it is more challenging, since reporting data and
deciding the reward to provide to the worker needs to be automatically
addressed, without any explicit human interaction. Another challenge
is related to the noise and to the amount of information needed in
any part of the city by the crowdsourcer. In fact, having identical
measurements close in time and space may be less valuable than
having a wider coverage of the whole area of interest. This is also
the motivation for crowdsourcers to provide different rewards based
on the amount of data sent, the time of the day, or the location
of the workers. In order to protect the geographical privacy of sin-
gle workers, a widespread approach is to alter the precise location
of measurements to obfuscate the real data – the so-called location
cloaking (Pournajaf et al., 2014a) – to reduce possible issues if such
data is accessed by a malicious entity. However, this is applicable if
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workers are partially aware of the conditions of other workers, due to
fog layers, overlay networks or trusted entities. In real use cases these
might not be available, therefore, purely optimization-based solutions
such as in Wang et al. (2016) or Wang et al. (2017) might not be viable.
For these reasons it is important to design a rewarding system which
has privacy by design principles, so that workers are protected while
yielding a meaningful data collection to the crowdsourcer. This must
reward workers willing to share more precise measurements compared
to workers which provide coarser data, although not being aware of
the presence of others.

In this paper we propose a Privacy-by-Design (PbD) MCS system
which tackles the aforementioned challenges: users’ privacy, data qual-
ity and a variable reward. We do so by designing a framework which
advertises the rewards to each of the workers through a negotiation
phase, and allows workers to determine the desired privacy level. The
rewards are estimated on top of the willingness of workers to provide
more precise data. At the same time, workers are willing to receive the
highest possible reward, while also disclosing little information about
their real position. There is an evident trade off between the measure-
ment location precision and the reward which the remote server may
offer. Each worker always starts by sending a measurements with the
coarser possible precision, then possibly increasing it upon exchanging
information with the server. More specifically, upon receiving each
measurement with a specific uncertainty in the real position, the server
looks for measurements already collected and stored, and foresees an
increased reward for the worker, in case he/she is willing to provide the
same measurement with an increased precision. This is then sent back
to the worker, who has the possibility to decide whether to increase
the precision or abort the process, keeping the reward collected with
the last measurement sent. This enables the central entity to adopt
algorithms for variable rewards, which can take into account what the
crowdsourcer values the most, and reward users providing such data
appropriately. In other words, workers may refine with subsequent
messages their measurements, in case the server is willing to offer a
higher reward in exchange for such increased precision.

The rest of this paper is structured as follows: Section 2 discusses
related work on this topic; Section 3 details the model we have designed
and the communication which takes place between the workers and
the remote server; Section 4 outlines the negotiation phase that leads
workers to select the location precision; Section 5 discusses the privacy
metrics which we considered to evaluate our proposal; Section 6 anal-
yses the performance of our system with a real dataset, and Section 7
concludes this work and presents future works on this topic.

2. Related work

MCS is currently a significantly studied topic in literature. As it is
a wide area of research, there are many contributions which target the
challenges that this scenario presents.

Concerning the privacy of users, many works have explored how
to send, store and retrieve data in MCS campaigns while maintaining
workers’ privacy Cheng et al. (2022a). Recent survey papers (Kim
et al., 2022) Zhao et al. (2022b) underline how the privacy problem
is one of – if not the – most important challenges in MCS and presents
some of the newest works in the area. In Ni et al. (2017) the authors ex-
plore the privacy problem in MCS by building a location matrix through
which the server can get precise information about data measurements,
but users do not have to disclose their exact location. The focus of Bou
Abdo et al. (2016) is on exploring different privacy metrics for MCS,
and among the contributions of it the authors identify that a privacy
preserving MCS should protect location privacy, identity privacy and
identity-query privacy. Moreover, Montori and Bedogni (2020) focuses
on achieving an increased privacy for users participating in the MCS
campaign, by obfuscating IDs with hashes, hence breaking the cor-
relation between chunks of different measurements. Nevertheless, in
some scenarios this may not be acceptable, as the crowdsourcer needs
2

to identify measurements reported by the same user. In Wu and Luo
(2020) the authors present the concepts of Activity Point Exposure and
Activity Transitions Exposure, providing three main privacy preserva-
tion techniques which are anonymization, obfuscation and encryption.
Recently also privacy by design mechanism have been proposed, which
preserve the workers’ privacy thanks to the exchange of specific mes-
sages that do not disclose the identity of the worker Montori and
Bedogni (2023). More recently, in Cheng et al. (2022b), authors
envision a privacy-preserving MCS system for vehicular scenarios, using
𝑘-anonymity and a reputation-location matrix computed by both the
mobile worker and the data requester. Through the Hadamard product,
the suitability of the worker for the task is calculated without the need
for explicit disclosure of location data. As a concluding remark, we
observe that the vast majority of location privacy-aware MCS scenarios
are mostly founded on the concepts of pure 𝑘-anonymity or differential
privacy, such as in Wang et al. (2016), Pournajaf et al. (2014b), Sun
et al. (2019) or Yan et al. (2019). All such works are adding some sort
of trusted layer to the architecture, which instructs the workers on the
environmental conditions. This allows to build algorithms that optimize
location cloaking against the location precision, however, these trusted
layers are not viable in many of the actual opportunistic deployments,
which are better represented by the architecture proposed in this paper.
Clearly, these systems should also cope with additional constraints,
such as the energy efficiency (Marjanović et al., 2016), the scalability
of them (Mota et al., 2018) and the data quality, which may be noisy
due to user generated data (Cheng et al., 2017). Another very recent
set of solutions comes from the data aggregation, using for instance
homomorphic encryption schemes to aggregate encrypted data without
the need to know their content. The solution in Zhao et al. (2022a)
combines this concept with Federated Learning techniques to securely
aggregate individual participants’ models.

Regarding rewarding mechanisms, the main challenge lies in de-
termining the appropriate reward depending on a number of factors
such as the data quality, the data freshness or the type of data sensed.
For participatory crowdsensing, Wang et al. (2018) proposes an opti-
mal dynamic programming solution and also a greedy based solution.
In Hu et al. (2020) the authors propose a rewarding system based on
blockchain, where the incentive is computed through a three step Stack-
elberg game. Finally Klopfenstein et al. (2019) proposes an anonymous
rewarding system, through an aggregation service which forwards re-
quests to the rewarding platform. Finally, regarding the data quality,
the main challenge in MCS is to understand whether crowdsensed data
has to be trusted or not, concerning the noise which may result from
opportunistic measurements (Arkian et al., 2017). In Luo et al. (2019)
the authors tackle the problem by proposing a cross validation of data
by other participants, to double check the data reported to find possible
issues. In Liu et al. (2017) the authors focus on the same problem,
although analyzing it by determining the context in which the sensing
takes place, thus foreseeing the possibility that such sensing operations
may result in noisy data. An et al. (2020) focuses instead on selecting
participants which provide higher quality data to the campaign, by
also employing a blockchain mechanism. In fact, participant selection
is a key task in participatory crowdsensing (Azzam et al., 2016; Alagha
et al., 2021). Finally Zhao et al. (2021) proposes PACE, and focuses
both on the data quality and on the privacy of users, to reward users
while also preserving their privacy. A work that is close to the one
proposed in this paper is Jin et al. (2019), which aims to build an
auction market between workers and the campaign owner. However,
the study is focused on participatory MCS, in which the campaign
owner publishes a set of tasks on which workers can bid depending
on their privacy preferences, and are rewarded based on the precision
of the location through which they report their measurement.

3. Framework

The proposed system operates onto a PbD pull-based MCS scenario,
where mobile workers spontaneously and opportunistically send data
to a central data storage without any communication mediator, i.e. no
fog layer is required.
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3.1. System model

More in detail, let us define the set of mobile workers as 𝐖 =
{𝑊1,… ,𝑊𝑛}. Each mobile worker is then defined as a list of events,
which correspond to location and times: 𝑊𝑖 = {⟨𝑡{𝑖}0 , 𝑙{𝑖}0 ⟩, ⟨𝑡{𝑖}1 , 𝑙{𝑖}1 ⟩,…}.
We assume that time is sliced into discrete time slots with a defined
duration 𝛥𝑡 in seconds. As for location, in this paper we do not use
punctual location encoding based on coordinates, such as GPS; instead,
we leverage the hierarchical areal encoding offered by MGRS. MGRS
(Military Grid Reference System) (Lampinen, 2001) is a coordinate
systems that divides the world in square areas, each of them having an
𝑥 and a 𝑦 coordinate. The division is hierarchical: each square contains
100 smaller squares which are identified by adding a digit to both its 𝑥
and 𝑦 coordinates. In this way it is easy to see whether a square 𝐴 lies
within a square 𝐵, in such case 𝐴 is obtained by removing a number
of digits from both coordinates of 𝐵. More in detail, the world map
is divided into 100 km × 100 km squares that are uniquely identified
by a label, forming the first part of an MGRS coordinate (e.g. 32TPQ).
The second part is then given by the 𝑥 and 𝑦 coordinates of a square
that, depending on the number of digits of both coordinates, identifies
the precision, spanning from 1 to 5, where precision 1 stands for a
10 km-sided square, while precision 5 stands for a 1 m-sided square.
For instance, 32TPQ 56 78 has precision 2 and identifies a 1 km-sided
square, and is a subsquare of 32TPQ 5 7, which is obtained by removing
two digits from the 𝑥 and 𝑦 coordinates.

Given that a single MGRS coordinate can be expressed with different
precisions, in this paper we will then use the notation 𝑙{𝑖}𝑗,𝑝 to identify
the MGRS location of worker 𝑖 at time slot 𝑡𝑗 expressed with precision
𝑝, where 1 ≤ 𝑝 ≤ 5. In this case, 1 identifies the coarser granularity
(i.e. 10 km), while 5 identifies the finest granularity (i.e. 1 m). Note
that it is always possible to translate an MGRS coordinate to any coarser
granularity, while it is not possible the opposite. At any time slot 𝑡𝑗 , a
worker 𝑊𝑖 is aware of his/her MGRS position 𝑙{𝑖}𝑗,𝑝 , for all values of 𝑝.
Over time, a worker can send sensor data relevant to the MCS campaign
to the central server in exchange for a reward. More formally, a data
point is defined as a tuple 𝐷 = ⟨𝑡{𝑖}𝑗 , 𝑙{𝑖}𝑗,𝑝 , 𝑑⟩, where 𝑑 is the data payload,
𝑡{𝑖}𝑗 is the data timestamp and 𝑙{𝑖}𝑗,𝑝 is the data location. The sender 𝑊𝑖
may freely decide which precision 𝑝 to use for sending data: the higher
the precision, the higher the reward received in exchange, the lower is
the privacy guaranteed to the worker. Ideally, 𝑊𝑖 aims to maximize 𝑝
(therefore maximizing the reward) as long as the MGRS area revealed
𝑙{𝑖}𝑗,𝑝 guarantees a sufficient anonymity, ensured by the presence of other
workers within 𝑙{𝑖}𝑗,𝑝 . The problem, however, cannot be modeled as an
optimization strategy, as workers do not know the location of other
workers. For such reason, we introduce an automatic negotiation phase
between a worker and the central server before sending the data. Such
phase is outlined in detail in Section 4.

The architecture of the proposed model is represented in Fig. 1.
The figure shows the set of workers scattered onto a square area. For
simplicity, we graphically represented a simple hierarchical world map
that observes the same concept as MGRS, yet more suitable for this
graphic example. In this case, the world map is divided into four square
areas of the same size: 𝑎, 𝑏, 𝑐 and 𝑑. Every square area is divided into
other four square areas that belong to the immediately higher precision
level, until reaching three levels of precision. Adding a precision level
to a square implies adding a letter on top of the coordinate of such
square for every square of higher precision that are contained into
it. For instance, as shown in the figure, square 𝑏𝑐𝑏 has the highest
possible precision in our example (𝑝 = 3) and it is contained into
square 𝑏𝑐 with 𝑝 = 2 and square 𝑏 with 𝑝 = 1. Two of the workers
in the figure are about to send data to the central server. Let us
assume that their requirement is to have at least two other workers
located within their same area, therefore aiming for a 𝑘-anonymity
of at least 3. The sender in 𝑏𝑐𝑐 would be then better off sending
its precise location 𝑏𝑐𝑐 as it contains exactly three workers, fulfilling
3

the privacy requirement as also the other two workers would share
Fig. 1. Architecture of the proposed privacy-preserving system. Workers send measure-
ments to the central data storage. A higher precision yields a higher reward, at the
cost of a reduced privacy.

the same measurement location. Such worker could also have been
sending 𝑏𝑐 or 𝑏, however the choice of 𝑏𝑐𝑐 yields the highest rewards
as it is more precise, hence more valuable for the campaign owner.
Conversely, the worker in 𝑐𝑑𝑎 is alone within the 𝑐𝑑𝑎 square, therefore
he/she should send the location 𝑐𝑑 reducing 𝑝 by 1, thus fulfilling
the privacy requirement as 𝑐𝑑 contains five workers. Nevertheless,
this scenario is obviously simplified, as neither of the two workers
know how many other workers are located nearby, hence it has to be
heuristically determined. The negotiation phase described in the next
section has the goal of producing an estimate, helping the workers
themselves to choose which MGRS precision they shall use.

3.2. Privacy patterns

To guarantee PbD we leverage on the use of Privacy Patterns (No-
tario et al., 2015), which define a set of design patterns aimed at
guaranteeing resilience of the systems against various attacks. More
specifically, we have applied the following patterns to our model:

• Location Granularity: this privacy pattern aims at minimizing
the location granularity of collected information by users. It states
that users should be allowed with diverse granularity of locations
when sharing information, as providing coarser data better pro-
tects their routine habits. We implement this in our system by
allowing users to send their location with an increased precision,
depending on their wanted privacy levels and depending on the
other information available to the system.

• Minimal Information Asymmetry: this privacy pattern relates
to the fact that when users interact with an agent, they may
know less information about themselves than the agent itself. In
our system, this pattern is implemented through the use of trans-
parent messages about the interactions. Moreover, no identifiers
about the users are maintained on the server, which consequently
cannot correlate data reported at different times together.

• Incentivized Participation or Reciprocity: this pattern states
to pay back users that take part into a system, and is known
under different names. This is implemented in our system intrin-
sically since our aim is exactly to reward users for their data.
Moreover the pattern also describes that users may have different
participation in a computing system, hence they may be rewarded
differently. In our system this is implemented by the variable
reward each user can obtain, depending on the information they
share. A more precise location data allows for a more detailed
representation of the environment by the central server, with a
higher associated reward, while coarser reports are associated
with a lower reward.
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Fig. 2. Sequence diagram of the negotiation. Workers and the Server communicate to achieve each one their objective.
• Identity Federation — Do not track pattern: this privacy pat-
tern states that the Identity Provider cannot learn the correlation
between the user and its data. In our platform this is imple-
mented since no personal information nor pseudo-identifiers are
maintained together with the data provided.

• Personal Data Store: this privacy pattern states that personal
data can be kept on the device rather than on a central server,
so that data cannot be used to identify users. In our system this
is implemented by the fact that the server does not maintain any
personal data about the user, which is never shared by her.

• User data confinement pattern: this privacy pattern is similar to
the previous one, and aims at moving some computation to the
device of the user, so that less data is shared to the central server.
Specifically this pattern is tackled by the device which takes
autonomous decisions about sending more precise information.
The server only advertises the rewards the user can get, and the
user decides on its own whether to increase her measurement
privacy or leave it as it is.

• Anonymity Set: this pattern aims at removing identifying in-
formation from data, so that multiple users can be part of a
set without specific data which can link to any of them. In
our platform this is implemented on the server, since the data
maintained by it do not contain any specific information about
the user, so all users belong to the same anonymity set.

4. Negotiation phase

Whenever a mobile worker is about to send out sensor data, it
initiates a negotiation phase with the server in order to establish the
best precision at which to disclose his/her location. The process is
described at a high level in Fig. 2 in the form of a sequence diagram,
while the steps are described in detail in this section. This process
is executed each time a worker needs to send data to the remote
server and it does not involve any human interaction, in fact it runs
automatically in the worker’s device and takes decisions upon specific
parameters. In our scenario, we run the negotiation phase every 𝛥𝑡
seconds by every 𝑊 ∈ 𝐖.

4.1. Initialization

Suppose that the mobile worker 𝑊𝑖 wishes to send sensor data 𝑑 at
timestamp 𝑡𝑗 . He/she first detects its own position and translates it into
an MGRS coordinate with the maximum precision (𝑙{𝑖}𝑗,5 ). This means
that 𝑊 knows at all times its own position 𝑙{𝑖} for each 𝑝.
4

𝑖 𝑗,𝑝
4.2. Advertise position

Subsequently, 𝑊𝑖 sends its MGRS location 𝑙{𝑖}𝑗,𝑝 to the server, where 𝑝
is given in input. If this is the first time within 𝑡𝑗 , then 𝑝 = 1, therefore
the least precision. This lets the server know the rough position of 𝑊𝑖,
but does not disclose the precise location of it.

4.3. Return estimated reward

Once the server receives the location of 𝑊𝑖 it computes two values:
(i) the reward that 𝑊𝑖 would earn by only disclosing its location with
precision 𝑝, defined as 𝑅(𝑙{𝑖}𝑗,𝑝 ), and (ii) the estimated reward that 𝑊𝑖

would earn by increasing its precision by 1, defined as �̃�𝑝+1(𝑙
{𝑖}
𝑗,𝑝 ). Both

values are then sent back to 𝑊𝑖.
More in detail, we assume that 𝑅 is a function of both the freshness

of existing data for the considered MGRS location and the existing
number of measurements. In this paper we define the reward as:

𝑅(𝑙{𝑖}𝑗,𝑝 ) =
𝑡𝑗 − 𝑡𝑙𝑎𝑠𝑡(𝑙

{𝑖}
𝑗,𝑝 )

𝑁(𝑙{𝑖}𝑗,𝑝 ) + 1
, (1)

where 𝑡𝑙𝑎𝑠𝑡(𝑙) is a function that returns the number of seconds elapsed
since the last data point was uploaded within location 𝑙, and 𝑁(𝑙) is the
number of data points uploaded from 𝑙. Note that 𝑅 is computed by the
server, which has a complete view over the data already uploaded by
all 𝑊 ∈ 𝐖. The idea behind the definition of Eq. (1) is that 𝑅 tends to
be higher if the data within 𝑙{𝑖}𝑗,𝑝 is not fresh, meaning that fresher data
has a higher importance. Conversely, this is mitigated if 𝑁(𝑙{𝑖}𝑗,𝑝 ) is high,
meaning that the systems rewards more when the location has been less
monitored previously. Clearly different rewards can be adopted in this
step, depending on the scenario and on the campaign owner objectives.

The server also computes �̃�, which estimates the reward that would
be generated from a higher precision. Let us first define the notion of
inclusiveness between areas: let 𝑙1,𝑝1 and 𝑙2,𝑝2 be two MGRS coordinates.
We say the 𝑙2,𝑝2 ⊂ 𝑙1,𝑝1 if and only if 𝑙2,𝑝2 is fully contained within 𝑙1,𝑝1 .
This also implies that if 𝑙2,𝑝2 ⊂ 𝑙1,𝑝1 , then 𝑙1,𝑝1 = 𝑙2,𝑝1 and 𝑝1 < 𝑝2. Then
we define the estimated reward as:

�̃�𝑝+1(𝑙
{𝑖}
𝑗,𝑝 ) =

∑

𝑙′𝑗,𝑝+1⊂𝑙
{𝑖}
𝑗,𝑝

𝑅(𝑙′𝑗,𝑝+1)

|𝑙′𝑗,𝑝+1 ⊂ 𝑙{𝑖}𝑗,𝑝 |
. (2)

Eq. (2) therefore calculates the mean over the rewards of all the squares
with precision 𝑝 + 1 that are contained within 𝑙{𝑖}.
𝑗,𝑝
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Fig. 3. Negotiation example.
4.4. Calculate probability

At this point in time, 𝑊𝑖 receives the information about the reward
that he/she would earn if submitting the data with precision 𝑝 (𝑅(𝑙{𝑖}𝑗,𝑝 ))
as well as the mean reward that he/she would earn if submitting
the data with precision 𝑝 + 1 (�̃�𝑝+1(𝑙

{𝑖}
𝑗,𝑝 )). 𝑊𝑖 then by using a higher

precision would expect a mean gain �̃�𝑝+1(𝑙
{𝑖}
𝑗,𝑝 ) − 𝑅(𝑙{𝑖}𝑗,𝑝 ). Such a gain

is always positive, as proven by Theorem 1 (Theorems and proofs are
presented at the end of this paper). Based on the gain calculated, 𝑊𝑖
can decide whether to disclose his/her position with a higher precision,
promoting then the gain, or keeping the precision as it is, promoting the
privacy preservation. As every mobile worker may behave differently
depending on their preferences, we model such a behavior by defining
two probabilities: 𝑃𝑅{𝑔𝑎𝑖𝑛} (probability promoting gain) and 𝑃𝑅{𝑝𝑟𝑖𝑣𝑎𝑐𝑦}

(probability promoting privacy). They are defined as follows in Eq. (3)
and in Eq. (4):

𝑃𝑅{𝑔𝑎𝑖𝑛} =
�̃�𝑝+1(𝑙

{𝑖}
𝑗,𝑝 ) − 𝑅(𝑙{𝑖}𝑗,𝑝 )

�̃�𝑝+1(𝑙
{𝑖}
𝑗,𝑝 )

(3)

𝑃𝑅{𝑝𝑟𝑖𝑣𝑎𝑐𝑦} =
𝑅(𝑙{𝑖}𝑗,𝑝 )

�̃�𝑝+1(𝑙
{𝑖}
𝑗,𝑝 )

. (4)

In order to model different worker preferences, we then set the
probability of choosing a finer precision as defined in Eq. (5):

𝑃𝑅 = 𝛼 ⋅ 𝑃𝑅{𝑔𝑎𝑖𝑛} + (1 − 𝛼) ⋅ 𝑃𝑅{𝑝𝑟𝑖𝑣𝑎𝑐𝑦}. (5)

The 𝛼 parameter, with 0 < 𝛼 < 1, is tuning the tendency of the mobile
worker to be more conservative or seeking a higher reward. A higher
value of 𝛼 indicates a major willingness to use a higher precision, a
lower value of 𝛼 indicates the opposite.

4.5. Send data or reiterate

Once 𝑊𝑖 calculates its value of 𝑃𝑅, he/she now performs a con-
ditional choice (shown in the opt block in Fig. 2). With probability
𝑃𝑅, 𝑊𝑖 increases its MGRS precision by 1 and goes back to the
‘‘Advertise Position’’ step using the new precision value. This process
eventually stops 𝑊𝑖 to perform the second branch in the opt block with
probability 1−𝑃𝑅 or 𝑝 reaches 5 (in such case 𝑃𝑅 would be 0). Under
this choice, 𝑊𝑖 sends the tuple 𝐷 = ⟨𝑡{𝑖}𝑗 , 𝑙{𝑖}𝑗,𝑝 , 𝑑⟩ with precision 𝑝.

In Fig. 3 we show a sample negotiation of a client. Note that the
server has already stored the blue and yellow measurements, and is
now negotiating for the green one. As we explained, the worker starts
from a coarse precision, which ends up in a scenario like Fig. 3(a),
in which the location of the client is sent as the gray MGRS square,
which is shared by all the other 15 yellow measurements, which means
that the data point would be fairly anonymized. At this point the
server replies with the reward for the measurement, and advertises the
possible increased rewards in case the clients decides to increase the
precision. The client decides to continue and ends up in the scenario
depicted in Fig. 3(b), where the gray MGRS square is smaller hence
shared only by 4 other clients’ measurements. The same negotiation is
5

repeated again, and in case the client indefinitely continues to increase
even more the precision of the measurement, it will end up in the
scenario depicted in Fig. 3(c), where the green measurement is the only
one in a given MGRS square, thus uniquely identifying it in the dataset
and compromising anonymization.

5. Privacy metrics

The whole negotiation process described in Section 4 is executed
between every 𝑊 ∈ 𝐖 and the Server. Since mobile workers can
only roughly estimate the number of other mobile workers nearby from
the values of 𝑅 and �̃� received by the Server, they can only estimate
their own privacy preservation. In this paper we quantify such a metric
by adapting the well-known concept of 𝑘-anonymity (Sweeney, 2002)
to the present problem. We recall that a scenario is 𝑘-anonymous,
with 𝑘 known, if and only if each and every user of the system is
indistinguishable from at least other 𝑘− 1 other users. In our case, this
translates into verifying that every MGRS coordinate recorded onto the
Server is repeated at least 𝑘 times over a certain time interval 𝑇 . We
note that in this work we are not focusing on the 𝑘-anonymity of the
user trace, but rather on the anonymity of each reported measurement.
Extending our framework to the user trace is left as a future work. More
formally, it should stick to the following constraint defined in Eq. (6):

∀𝑙{𝑖}𝑗,𝑝 .∃𝑙
{𝑢1}
𝑗1 ,𝑝1

, 𝑙{𝑢2}𝑗2 ,𝑝2
,… , 𝑙{𝑢𝑘}𝑗𝑘 ,𝑝𝑘

s.t.
𝑢1 ≠ 𝑢2 ≠ ⋯ ≠ 𝑢𝑘
|𝑗 − 𝑗1| ≤ 𝑇 , |𝑗 − 𝑗2| ≤ 𝑇 ,… , |𝑗 − 𝑗𝑘| ≤ 𝑇

𝑙{𝑢1}𝑗1 ,𝑝1
⊆ 𝑙{𝑖}𝑗,𝑝 , 𝑙

{𝑢2}
𝑗2 ,𝑝2

⊆ 𝑙{𝑖}𝑗,𝑝 ,… , 𝑙{𝑢𝑘}𝑗𝑘 ,𝑝𝑘
⊆ 𝑙{𝑖}𝑗,𝑝 (6)

Given the probabilistic nature of the negotiation phase, it is highly
unrealistic that a fully-fledged 𝑘-anonymity would be fulfilled. For this
reason, assuming that a tolerance for 𝑘-anonymity exists in our sce-
nario, then we adopt an alternative metric named 𝑘-quasi-anonymity,
which aims to fulfill its correspondent 𝑘-anonymity as much as possible.

Suppose a scenario in which 𝑘-quasi-anonymity is required for a
certain value of 𝑘. For a certain 𝑇 , we will then have a set of data
points uploaded in different locations by different mobile workers.
More formally, let us define such a set as 𝐋𝐓 = {𝑙{𝑢1}𝑗1 ,𝑝1

, 𝑙{𝑢2}𝑗2 ,𝑝2
,… , 𝑙{𝑢𝑘}𝑗𝑘 ,𝑝𝑘

}.
If, for our fixed 𝑘, 𝐿𝑇 does not satisfy Eq. (6), then it does not satisfy
𝑘-anonymity. In order to estimate to what extent it satisfies 𝑘-quasi-
anonymity, we apply iteratively a transformation to 𝐿𝑇 which reduces
the precision of a number of its locations. Once the transformed set
𝐿′
𝑇 satisfies the 𝑘-anonymity, then the transformation stops and the

number of locations that have been updated with a new precision is
the 𝑘-quasi-anonymity score (𝑄𝑆𝑘) of 𝐿𝑇 . A lower value of 𝑄𝑆𝑘(𝐿𝑇 )
means a higher privacy preservation, with 𝑄𝑆𝑘(𝐿𝑇 ) = 0 meaning that
𝐿𝑇 satisfies 𝑘-anonymity. The transformation is outlined in Algorithm
1.

The algorithm takes as input the level of anonymity 𝑘 and the set of
locations 𝐋𝐓. It is important to point out that Algorithm 1 works if 𝐿𝑇
has no duplicate MGRS location belonging to the same worker, as 𝑘-
anonymity is only significant among 𝑘 different subjects to anonymize.
If this happens, the algorithm drops the duplicates before running. The



Journal of Network and Computer Applications 215 (2023) 103634L. Bedogni and F. Montori

1

1

1

1

1

1

r
o
t

o
a
c
h
p
p
e
t

6

b

T
N
u
t
s
w
t
t
o
l
o
s
a
s
p
r
W
o
b
o

i
l

b
d
q
(
t
o

Algorithm 1: Calculate 𝑘-quasi-anonymity.
Input : 𝑘, 𝐿𝑇
Output: 𝑘-quasi-anonymity score: 𝑄𝑆𝑘(𝐿𝑇 )

1 𝑎𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 = 𝑓𝑎𝑙𝑠𝑒
2 𝑝𝑐ℎ𝑒𝑐𝑘 = 5
3 𝑄𝑆𝑘(𝐿𝑇 ) = 0
4 while not anonymous do
5 𝐶𝑇 = 𝑙 ∈ 𝐿𝑇 s.t. 𝑙 does not fulfill 𝑘-anonymity
6 𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 = 𝑚𝑎𝑥(𝑘′) s.t. 𝐿𝑇 fulfills 𝑘′-anonymity
7 if 𝑘𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≥ 𝑘 then
8 𝑎𝑛𝑜𝑛𝑦𝑚𝑜𝑢𝑠 = 𝑡𝑟𝑢𝑒
9 else
0 Reduce precision of 𝑙 ∈ 𝐶𝑇 that have 𝑝 = 𝑝𝑐ℎ𝑒𝑐𝑘 by 1
1 𝑄𝑆𝑘(𝐿𝑇 ) = 𝑄𝑆𝑘(𝐿𝑇 )+ number of reductions
2 𝑝𝑐ℎ𝑒𝑐𝑘 = 𝑝𝑐ℎ𝑒𝑐𝑘 − 1
3 end
4 end
5 return 𝑄𝑆𝑘(𝐿𝑇 )

algorithm starts by initializing 𝑄𝑆𝑘(𝐿𝑇 ) to 0 and the precision to be
checked 𝑝𝑐ℎ𝑒𝑐𝑘 as the maximum value of precision (lines 2–3). Next
it cycles until 𝐿𝑇 fulfills the level of anonymity 𝑘 (line 4). Within the
cycle, first a set of candidates is generated. Such a set is indicated with
𝐶𝑇 and contains all the locations in 𝐿𝑇 that do not fulfill Eq. (6) (line
5). They are called candidates because the algorithm will select among
them a number of locations for which reducing the precision. Next,
we calculate the current anonymity level of 𝐿𝑇 , i.e. the maximum 𝑘′

for which 𝐿𝑇 fulfills 𝑘′-anonymity (line 6). If that is greater or equal
than the desired anonymity level 𝑘, then it exits the cycle (line 7–8).
Otherwise, the precision of all the locations in the set of candidates
𝐶𝑇 that have their precision equal to 𝑝𝑐ℎ𝑒𝑐𝑘 (which starts off at 5)
is reduced by 1. 𝑄𝑆𝑘(𝐿𝑇 ) is then increased by the number of such
eductions (11). However, if a candidate has been reduced more than
nce during the whole process, it only counts once, therefore it holds
hat 𝑄𝑆𝑘(𝐿𝑇 ) ≤ |𝐿𝑇 |. Finally, 𝑝𝑐ℎ𝑒𝑐𝑘 is decreased by 1 and the whole

cycle repeats (line 12). The idea behind this procedure is to (i) select the
locations that are not anonymized according to 𝑘 (𝐶𝑇 ), (ii) gradually
reduce the MGRS precision of the locations in 𝐶𝑇 starting with the most
precise one, and (iii) stop this process whenever the 𝑘-anonymity is
achieved. In this way, the metric 𝑄𝑆 gives us a ‘‘distance’’ between the
desired anonymity level and the one existing in the scenario. A more
informative and less quantitative version of this metric is defined as the
Relative 𝑘-quasi-anonymity, which is defined as follows in Eq. (7):

𝑅𝑄𝑆𝑘(𝐿𝑇 ) =
𝑄𝑆𝑘(𝐿𝑇 )
|𝐿𝑇 |

(7)

The latter definition ensures that 0 ≤ 𝑅𝑄𝑆𝑘(𝐿𝑇 ) ≤ 1 and represents
ur main metric used within the next section. On a side note, we
cknowledge that RQS cannot capture efficiently the level of privacy in
ases where workers are extremely sparse. In such extreme situations,
owever, workers will always submit measurements with the coarsest
ossible granularity by stopping at the very first step of the negotiation
hase. This implies that privacy is sort of natively guaranteed by the
xtremely vague localization, in fact these cases are less relevant for
he purpose of this study.

. Performance evaluation

In this section we present how we evaluated the proposed system,
oth against the negotiation phase and the 𝑘-quasi-anonymity met-

ric. We first outline our experimental setup, which frames all the
experiments into a common storyline, then we present singularly each
result.
6

6.1. Experimental setup

The evaluation process has taken place through the usage of the
well-known TLC Trip Record Dataset1 – we will hereafter refer to it as

LC – which contains the traces of all the green and yellow taxis in
ew York City. The traces can be downloaded daily, in our case, we
sed the full set of traces from January 6th, 2015. We first separated
he traces depending on the NYC boroughs, in order to run localized
imulations. In order to do so we isolated the traces that lie entirely
ithin a borough and split those that are crossing the borders. From

his step we obtained 20 different datasets, one for each borough. We
hen further split each of such dataset over time, dividing each of them
nto different 30 [min] chunks. From these, we erased the ones with
ess than 100 vehicles, as they would be too sparse for our evaluation,
btaining then 401 different datasets, on top of which we ran a different
imulation each. In each simulation vehicles are moving within the
rea of interest and are triggering sensing events at a constant pace,
pecifically 𝛥𝑡 = 10 s. Each sensing event will then trigger a negotiation
hase with the server, as outlined in Section 4, which will eventually
esult in uploading a single data point with a defined spatial precision.
e also set the value for 𝑇 to be 30 min. Given the probabilistic nature

f our framework, we ran each simulation 50 times. The simulator has
een developed ad-hoc and written in Python 3, its code is released
pen source.2

The above described simulation setup enables us to thoroughly
validate and evaluate both the negotiation mechanism and the 𝑘-quasi-
anonymity, as results from different boroughs and times of the day
can run independently, while we aggregate them in order to show the
final results. Such results, shown in the next section, have a twofold
rationale: first of all we examine all the aspects of the proposed
framework under different conditions to grasp the behavior of each of
the parameters involved and how they influence the metrics, second,
we aim to give a model for individual workers on how to tune the
parameters themselves in order to achieve a certain level of privacy or
a certain reward or, better, how to minimize the disclosure of sensitive
location data while aiming to maximize the personal reward. Many of
the results turned out to be dependent on a number of environmental
parameters, namely the number of vehicles and morphological aspects
of the borough itself (the density of the streets, the number of junctions
etc.). This is positive, because it might give workers a guideline on how
to orient their parameters on top of such conditions. In this paper we
choose to borrow the LWVD metric (Layout-Weighted Vehicle Density)
from literature (Bedogni et al., 2018). This metric is, given a map 𝑀 ,
calculated as follows in Eq. (8):

𝐿𝑊 𝑉 𝐷𝑀 =
|𝑉𝑀 | ⋅ |𝐸𝑀 | ⋅𝑁(𝑀)

𝐿𝑒𝑛2𝑀
, (8)

where 𝑉𝑀 is the set of nodes in 𝑀 , 𝐸𝑀 is the set of edges in 𝑀 , 𝑁(𝑀)
s the average number of vehicles in 𝑀 and 𝐿𝑒𝑛𝑀 is the sum of the
ength of the edges in 𝑀 .

More in detail, next section will show the following: (i) the overall
ehavior of 𝑅𝑄𝑆𝑘(𝐿𝑇 ) for different values of 𝛼 and 𝑘 as well as at
ifferent times of the day, (ii) how different values of the privacy re-
uirement 𝑘 would affect the precision of the submitted measurements
i.e. how many measurements would not fit the requirement), (iii) how
he LWVD parameter can be used to drive workers into choosing a near-
ptimal 𝛼 parameter, and (iv) how other aspects such as the road type

could also influence the choice.

1 https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
2 https://github.com/lbedogni/variable-reward

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://github.com/lbedogni/variable-reward
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Fig. 4. 𝑅𝑄𝑆𝑘(𝐿𝑇 ) for different values of 𝑘 and different 𝛼.

6.2. Comparison

To better evaluate our proposal, we compare it against a baseline
algorithm that is equivalent to the ones found in many different contri-
butions (Andrés et al., 2013; Micinski et al., 2013). To better frame this
comparison we also introduce the difference between spatial cloaking
and location obfuscation, which share some common aspects (Kim
et al., 2022). Mainly, location cloaking aims at reducing the precision
of the location measurement, to maximize the number of users that
share the same location resulting in a better protection against re-
identification attacks. However, this requires a trusted server, which
feeds back to the user the precision that they have to select in order
to meet the desired privacy levels. Location obfuscation instead alters
the precise location of the user with noise without the need for a
trusted entity (Andrés et al., 2013) (Micinski et al., 2013). Comparing
our proposal with spatial cloaking alternatives would clearly lead to
reduced performance, as it is clearly impossible to achieve better results
than those which can be obtained with a centralized optimization
process and precise information from the server. Instead, we compare
our work with obfuscation techniques, which do not require a trusted
server and can then provide the location precision they envision to
be the most suitable one. Since current works in literature reduce the
location precision in an empirical way, a baseline obfuscation that
uses a constant precision reduction is equivalent. For this reason, by
using MGRS as reference system, we then compare our proposal against
obfuscation algorithms that keep the precision reduction constant at
different granularities, using the MGRS squares of different size in
which the real location lies within.

6.3. Results

The results from the experiments introduced in the previous section
are presented here. If not otherwise specified, the results are averaged
out over all the boroughs and all the time chunks.

Fig. 4 shows the value of 𝑅𝑄𝑆𝑘(𝐿𝑇 ) over all the simulations by
varying the number of 𝑘. The figure clearly validates the expected
monotonic increase of 𝑅𝑄𝑆𝑘(𝐿𝑇 ): in fact, a higher 𝑘 demands more pre-
cision reductions within 𝐿𝑇 in order to meet the privacy requirement.
Secondly, we also observe how a higher 𝛼 causes more measurements
to undergo a precision reduction, as it means a higher tendency to
promote rewards over privacy.

This is validated further by Fig. 5, in which the 𝑅𝑄𝑆𝑘(𝐿𝑇 ) is shown
over a time span of 24 simulated hours. In the same plot we also shown
how the number of vehicles changes during the day and how these two
parameters are correlated: with a considerably high number of vehicles
(e.g. at 8:00 PM), under the same working conditions, the value of
𝑅𝑄𝑆 (𝐿 ) decreases, while it increases in the opposite scenario (e.g. at
7

𝑘 𝑇
Fig. 5. Number of vehicles and 𝑅𝑄𝑆𝑘(𝐿𝑇 ) over time for a simulation covering 24 h.

4:00 AM). This is again expected, as a higher number of vehicles gives
a higher chance for a single vehicle to be obscured by the presence of
others in its proximity.

Fig. 6 shows three histograms, each for a different value of 𝛼, that
display the ratio of measurements having a certain MGRS precision.
This is calculated after 𝑘-quasi-anonymity has been applied, with 𝑘
ranging from 1 to 8. Note that 𝑘 = 1 means that 𝑘-quasi-anonymity re-
turns exactly the same 𝐿𝑇 , therefore it resembles 𝑘-quasi-anonymity not
being applied. For each MGRS precision, we notice that from left
to right the bars adjust slightly to meet the desired 𝑘-anonymity. In
particular, for 𝛼 = 0.25 we observe that measurement with 𝑝 ≥ 3
tend to decrease while increasing the measurements with 𝑝 = 2. For
𝛼 = 0.5 this happens for 𝑝 ≥ 4. This is expected as 𝛼 = 0.5 means
that workers are generally less conservative, therefore more willingly
submitting precise measurements. For the same reason, we observe a
similar behavior for 𝛼 = 0.75, although the measurements having a high
𝑝 are more numerous.

An important outcome is given by the evaluation in Fig. 7, which
studies the relationship of several parameters with the LWVD metric.
We observe that such a metric causes parameters to change almost
linearly, thus giving us a clear characterization of a location against
the framework presented in this paper. In detail, we first validate the
𝑅𝑄𝑆𝑘(𝐿𝑇 ) against the LWVD metric in Fig. 7(a). The figure shows the
high values of LWVD are more likely to cause less precision drops,
because a high LWVD implies a higher density of the population, which
also leads to workers being unlikely alone and easily anonymizable. On
a side note, we observe that 𝑅𝑄𝑆𝑘(𝐿𝑇 ) gets more boosted in absolute
for higher values of 𝛼, which confirms the previous considerations. This
led us to use LWVD as a driving parameter: in Fig. 7 we are fixing
a threshold value 𝜏 for 𝑅𝑄𝑆𝑘(𝐿𝑇 ). This threshold 𝜏 accounts for the
maximum value of 𝑅𝑄𝑆𝑘(𝐿𝑇 ) that the system is going to tolerate. This
is crucial, because this way we can give a hint on how potentially
adjust the 𝛼 parameter in order for 𝑅𝑄𝑆𝑘(𝐿𝑇 ) to stay below such a
threshold 𝜏 on top of other environmental parameters. In the case
of Fig. 7(b), the environmental parameter is the LWVD, and we can
observe that, for most of the values of 𝜏(intentionally low values, to
ensure a decent privacy level), the suggested 𝛼 value tends to increase
as LWVD increases. This is expected: the denser the environment is, the
higher 𝛼 can be used safely. We also notice that, for values of 𝜏 over
0.25 the curve does not change, as a higher 𝛼 would cause a privacy
loss nonetheless.

A consequence of this finding is also reflected in Fig. 8, where
a number of parameters is studied on top of 𝜏 . All these analyses
are compared against a baseline, which keeps the MGRS precision
of the data sent constant. In particular, for each plot in Fig. 8, the
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Fig. 6. Histograms showing the ratio of measurements with a certain MGRS precision after applying 𝑘-quasi-anonymity for different values of 𝑘.
Fig. 7. Plots showing the influence of LWVD and how such parameter can be beneficial for the individual workers to tune internally their parameters.
solid line represents our proposal, whereas the dashed lines represent
the baseline with 𝑝 = 5, 𝑝 = 4 and 𝑝 = 3 – lower values were
not plotted for displaying purposes, as their behavior is not relevant.
Figs. 8(a)–8(c) show, for different values of 𝑘, the ‘‘ratio of satisfied
boroughs’’, that is the ratio of boroughs in which measurements sent
by the workers fulfill the established threshold – i.e. 𝑅𝑄𝑆𝑘(𝐿𝑇 ) ≤ 𝜏 –
during the whole simulation, averaged out considering all three values
of 𝛼 used for Fig. 7(a). We notice how our solution keeps the value
constantly to almost 1, whereas constant values of MGRS precision
cause many measurements to be exposed. By comparing these results
with Figs. 8(d)–8(f), we observe that the baseline with 𝑝 = 5 and 𝑝 = 4
tend to reward the users more that our proposal, whilst 𝑝 = 3 keeps
a generally lower reward, as the behavior is far more conservative.
Nonetheless, all the three baselines still cause some of the simulations
to not meet the threshold 𝜏 . Our proposal instead almost always meets
the the condition 𝑅𝑄𝑆𝑘(𝐿𝑇 ) ≤ 𝜏, while guaranteeing a relatively high
reward at the price of a higher 𝑅𝑄𝑆𝑘(𝐿𝑇 ) that, however, is always
below the tolerated value. We notice how, for our solution, no matter
the value of 𝛼, the only affected boroughs are the very few ones with
a fairly low LWVD. We assume that a widespread deployment of our
system would also affect a tiny portion of less crowded areas, for which
the risk for exposure is higher. Looking at the plots in Fig. 8, we can see
that the value of 𝜏 only affects such few boroughs, while for the vast
majority of the others it does not. For this reason, a general guideline
could be setting globally a low 𝜏 (i.e. 0.05), because for crowded areas
the outcome does not change, while it guarantees a higher privacy
preservation for less crowded ones.

A further interesting outcome is shown in Fig. 9(a). The boxplot
shows the MGRS precision of each measurement submitted, after 𝑘-
quasi-anonymity has been applied. In this case we used 𝑘 = 8. The
figure displays the effect of the framework over three types of road,
as reported on OpenStreetMap: primary, secondary and tertiary. The
pattern displays clearly that primary roads are likely to allow a higher
precision to workers, because of their higher people density. Such a
precision is slightly but steadily decreasing as roads get smaller and,
thus, less crowded. This is an interesting outcome, as it shows that even
the road type could be significant for choosing the MGRS granularity,
8

therefore, in an enhanced version of the framework it could offer
an additional feature to help workers in discriminating the precision
themselves.

Finally Fig. 9(b) shows an example on a constrained area of NYC
which plots an heatmap regarding the average reward which can be
obtained in different locations. It is immediately evident that bigger
roads and, more importantly, cross roads are areas in which the density
of vehicles is higher, hence workers may provide higher precision
measurement locations since they can better hide in the crowd.

The analysis provided in this section, although performed onto the
specific case of the city of New York, highlights a number of important
takeaway lessons that can be applied to the general case.

First, our method is superior to the considered baseline, which, to
the best of our knowledge, represents the equivalent to existing solu-
tions that work empirically upon location obfuscation without trusted
entity (Micinski et al., 2013; Andrés et al., 2013). The evaluation
shows that even setting a very low tolerance threshold for 𝑘-quasi-
anonymityhas a negligible negative impact on the overall reward per
user, while ensuring a higher privacy preservation even in low pop-
ulated areas. Second, while on the one hand our method has shown
to be equally effective for crowded areas (i.e. with a high LWVD)
no matter the configuration, on the other hand its effectiveness is
more subject to the user/crowd-specific parameters 𝛼 and 𝜏 for less
crowded ones. In such areas, correctly setting such parameters might
be crucial. While we showed that 𝜏 can be set to be globally low, 𝛼
is instead dynamically (and automatically) set by the user’s device. In
Fig. 7(b) we showed how, given 𝜏, we can automatically set 𝛼 based on
environmental parameters, that are supposed to be constant and known
(the LWVD of an area and the road type are only examples). Third, this
study suggests that future works could investigate more environmental
parameters and how each of them influences the 𝑅𝑄𝑆𝑘(𝐿𝑇 ). Further-
more, we could envision automated adjustments techniques based on,
for instance, reinforcement learning for fine-tuning 𝛼 as to achieve the
best privacy-reward tradeoff.
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Fig. 8. Plots showing the performance of our proposal against a baseline with fixed MGRS precision.
Fig. 9. Fig. 9(a) shows the average MGRS precision of each measurement after 𝑘-quasi-anonymity with 𝑘 = 8 has been applied for different types of road, while Fig. 9(b) presents
an example which highlights where user are able to achieve better rewards thanks to a higher density of vehicles.
7. Conclusion

In this paper we have proposed a novel framework to reward MCS
workers which jointly considers the data quality and the privacy of
users. We have shown how our framework can effectively reward users
which are willing to report more precise measurements, also taking
into account the user preference regarding the privacy protection. Our
9

results obtained considering real data highlight that there are many
factors to take into account, although certainly a larger user base
enables a better protection for users, which can send more precise loca-
tions while still being protected by similar measurements. To achieve
this, we have also presented the 𝑘-quasi-anonymity metric, focused
on understanding how frequent is a location in the remote server, so
that the user reporting such measurement is more exposed than others.
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We have also shown how urban dynamics impact on the privacy of
users, such as the kind of road in which the measurement took place,
which directly relates to the density of vehicles which may provide
measurements with similar locations. Clearly, this also depends on the
mobility of users, and on the set of possible locations which may be
sent.

The main future work on this topic is to enable workers to automat-
ically determine the optimal precision to use when sending data, which
can be done by examining the city dynamics and statistical historical
data.

Theorems and proofs

Theorem 1. Let 𝑙𝑝 be an MGRS location with precision 𝑝, then ∀𝑙′𝑝′ such
hat 𝑙′𝑝′ ⊂ 𝑙𝑝, then 𝑅(𝑙𝑝) ≤ 𝑅(𝑙′𝑝′ ).

Recall the definition of 𝑅 given in Eq. (1), we will have 𝑅(𝑙𝑝) =
𝑡𝑗−𝑡𝑙𝑎𝑠𝑡(𝑙𝑝)
𝑁(𝑙𝑝)+1

and 𝑅(𝑙′𝑝′ ) =
𝑡𝑗−𝑡𝑙𝑎𝑠𝑡′ (𝑙

′
𝑝′
)

𝑁(𝑙′
𝑝′
)+1 for a certain time slot 𝑡𝑗 . If we define

𝑡𝑙𝑎𝑠𝑡′ as the timestamp of the last measurement in 𝑙′𝑝′ , we will certainly
have that 𝑡𝑙𝑎𝑠𝑡 ≥ 𝑡𝑙𝑎𝑠𝑡′ , as the last measurement occurred in 𝑙′𝑝′ has also
occurred in 𝑙𝑝, while the opposite is not necessarily true. Furthermore,
we have that 𝑁(𝑙′𝑝′ ) ≤ 𝑁(𝑙𝑝), as all measurements in 𝑙′𝑝′ also belong to
𝑙𝑝. Upon these premises we can easily verify that if 𝑁(𝑙′𝑝′ ) ≤ 𝑁(𝑙𝑝) and
𝑡𝑙𝑎𝑠𝑡 ≥ 𝑡𝑙𝑎𝑠𝑡′ , then 𝑅(𝑙𝑝) ≤ 𝑅(𝑙′𝑝′ ).

Corollary 1. Let 𝑙𝑝 be an MGRS location with precision 𝑝, then ∀𝑝′ > 𝑝
we have that 𝑅(𝑙𝑝) < �̃�𝑝′ (𝑙𝑝).

Recall the definition of �̃� given in Eq. (2), we have that �̃�𝑝′ (𝑙𝑝) is
the average over a set of rewards 𝑅(𝑙′𝑝′ ) such that 𝑙′𝑝′ ⊂ 𝑙𝑝. Then, by
Theorem 1, for all the 𝑙′𝑝′ it holds 𝑅(𝑙𝑝) ≤ 𝑅(𝑙′𝑝′ ), hence their average is
also greater or equal to 𝑅(𝑙𝑝).
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