
13 May 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Designing a Hybrid Push-Pull Architecture for Mobile Crowdsensing using the Web of Things / Sciullo, Luca;
Montori, Federico; Zyrianoff, Ivan; Gigli, Lorenzo; Tinti, Davide; Di Felice, Marco. - ELETTRONICO. - (2023),
pp. 332-337. (Intervento presentato al convegno IEEE International Conference on Smart Computing
(SMARTCOMP 2023) tenutosi a Nashville, TN, USA nel 26-30 June 2023)
[10.1109/smartcomp58114.2023.00081].

Published Version:

Designing a Hybrid Push-Pull Architecture for Mobile Crowdsensing using the Web of Things

This version is available at: https://hdl.handle.net/11585/959688 since: 2024-02-20

Published:
DOI: http://doi.org/10.1109/smartcomp58114.2023.00081

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

https://hdl.handle.net/11585/959688
http://doi.org/10.1109/smartcomp58114.2023.00081

Designing a Hybrid Push-Pull Architecture for
Mobile Crowdsensing using the Web of Things

Luca Sciullo∗†, Federico Montori∗†, Ivan Zyrianoff∗†, Lorenzo Gigli∗†, Davide Tinti∗, Marco Di Felice∗†,
∗ Department of Computer Science and Engineering, University of Bologna, Italy

† Advanced Research Center on Electronic Systems “Ercole De Castro”, University of Bologna, Italy
Emails: {luca.sciullo, federico.montori, ivandimitry.ribeiro, lorenzo.gigli, marco.difelice3}@unibo.it, davide.tinti3@studio.unibo.it

Abstract—Mobile crowdsensing (MCS) is an emerging
paradigm that leverages the pervasive presence of mobile devices
to collect and analyze data from the environment. However,
the choice of a push- or pull-based architecture for MCS can
result in a loss of flexibility and limitations for the creators
of the campaigns (crowdsourcers). To address this issue, we
propose a hybrid push-pull architecture for MCS campaigns that
leverages the W3C Web of Things (WoT) to standardize the
interfaces and interactions of devices through well-consolidated
Web technologies. Our architecture supports different kinds of
campaigns at the same time and balances the amount of data with
its quality, enabling geo-localization of MCS workers to further
improve data quality. Furthermore, we present the design and
implementation of a WoT-enabled Android application for MCS.
We evaluate our proposal through simulations in a vehicular
scenario based on a real dataset, showing that the hybrid archi-
tecture provides greater flexibility to crowdsourcers, supporting
simultaneously the push and pull paradigms.

Index Terms—Mobile Crowdsensing, W3C Web of Things,
Smartphones, Android, simulations

I. INTRODUCTION

The modern era is marked by the widespread use of mobile
phones, which are ubiquitous and equipped with various
sensors, such as a camera, microphone, GPS, accelerometer,
digital compass, light sensor, and Bluetooth used as a prox-
imity sensor. According to the IDC Worldwide Smartphone
forecast 1, shipments of smartphones are expected to reach
1.53 billion units by 2026, increasing, even more, the presence
of such devices in our lives. This represents a significant
opportunity for leveraging the vast number of mobile devices
available to create a geographically distributed sensing in-
frastructure. Mobile crowdsensing (MCS) [1] is a paradigm
that leverages the participation of a large number of mobile
devices, such as smartphones, to collect and analyze data
about the physical world. In particular, entities interested in
collecting such data, defined as crowdsourcers, initiate a data
collection campaign to which mobile phone users, defined
as workers or participants, can subscribe and participate by
collecting sensor data and uploading it to the cloud. MCS can
be used in a wide range of different applications, including
environmental monitoring, healthcare, and traffic management.
However, the success of MCS is heavily reliant on user ac-
ceptance, and as such, rewards are often offered to incentivize

1https://www.idc.com

users to share their data. These rewards could be in the form of
discounts, benefits, or credit [2], but gamification of the data
collection [3] has been investigated too. Considering all these
aspects, several different architectures for MCS have been
proposed in the last years, which can be generally categorized
as either push-based or pull-based architectures [4].

In push-based architectures, workers are explicitly requested
to complete a task, which allows for more precise control over
who contributes to the campaign and ensures a higher quality
of collected data. On the other hand, pull-based architectures
require workers to intentionally retrieve the list of available
campaigns and decide freely to contribute without any specific
request from the server. This approach is particularly suitable
for phenomena of common interest that require multiple per-
spectives to be accurately described and can tolerate potential
lower-quality samples given the higher number of participants.
However, relying solely on a single push- or pull-based
architecture may result in a loss of flexibility, not only in the
architecture itself but also in the communication technologies
between the entities involved in the architecture. A push-based
interaction requires that the mobile device is reachable and
able to receive requests, while a pull-based interaction requires
the mobile device to simply send data to an external entity.
Once the architecture is deployed, crowdsourcers are limited to
a single way of interaction with the workers, which limits their
possibilities to dynamically adapt the campaigns to different
scenarios.

This paper presents a novel hybrid architecture that com-
bines both push- and pull-based approaches, resulting in
increased flexibility for campaign creators. To achieve this, we
leverage the W3C Web of Things, which aims to standard-
ize device interfaces and interactions using established Web
technologies. By enabling devices to expose their capabilities
through different Web protocols such as HTTP and MQTT,
our architecture allows for interaction with both push- and
pull-based approaches at the same time. More in detail, the
paper presents three main contributions:

• We propose a hybrid architecture both for push- and pull-
based MCS. The same architecture can support different
campaigns, granting full flexibility for the crowdsourcers.
Furthermore, the architecture enables the geo-localization
of workers, improving further the quality of data while
reducing the amount.

• We present the design and implementation of a W3C
WoT-compliant Android application for collecting, expos-
ing, and sending data to the campaigns. The application
follows the specifications of the W3C WoT servient [5],
as better described in Section IV.

• We validate our architecture by leveraging a traffic con-
trol campaign in a simulated scenario based on traffic
conditions on top of sensor data collected in a real traffic
dataset.

The rest of this paper is structured as follows: in Section II
we provide a brief introduction of the background in MCS
and technologies used for the geo-localization, and a review of
the W3C WoT standard and its components. Section III intro-
duces the architecture, while its implementation is described
in Section IV. Section V introduces the validation through
simulations, while conclusions and future works are discussed
in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we aim to introduce the current state of
knowledge in the field, which is fundamental for the proposed
architecture. Namely, we address the IoT-based architectures
for MCS, the W3C WoT standard, and LA-MQTT – an ex-
tension to the standard MQTT to support location awareness.
Further, we highlight our advances in each of the mentioned
topics.

A. Architectures for Mobile Crowdsensing

MCS has gained momentum in the last decades, driven by
the widespread adoption of mobile devices (e.g., smartphones,
IoT devices). However, this paradigm imposes a new breed
of demands on system architectures. They need to handle
multiple mobile workers and an intense data flow while
managing payments and privacy issues [6].

In the scope of this article, we focus on the task scheduling
features of MCS architectures, which is the process of allo-
cating tasks for workers. There are two well-defined strategies
for scheduling, namely push- and pull-based, also known
as pro-active and reactive [6], respectively. In push-based
architectures, the worker receives the request to perform a task
assigned by the crowdsourcer. On the other hand, in pull-based
architecture, the workers proactively decide when and to which
tasks they want to contribute.

The authors of [7] propose a push-based auction framework
for MCS where the platform acts as an auctioneer to recruit
workers for a sensing task. The proposed framework involves
workers submitting privacy-preserving versions of their data
and the platform selecting a subset of workers based on
their sensing capabilities. Another push-based architecture was
proposed in [8], where workers can trade their location privacy
for a higher chance of being selected to perform tasks. Since
individuals perceive their location privacy differently, each
worker can decide how much information they wish to dis-
close. In [9], the authors tackled the issue of task assignment
in push-based MCS. First, they create an assignment graph
for each available worker, considering their spatiotemporal

mobility and the dangling task list; then, they utilize an
optimization algorithm to match workers and tasks. Finally,
in [10] the authors propose a novel push-based framework
encompassing the spatiotemporal correlation of the sensed data
to reduce the number of allocated tasks while ensuring data
quality.

Among pull-based architectures, we highlight the Cost-
Aware Compressing Sensing (CACS) [11], in which each sens-
ing device calculates the probability of transmitting the sensed
data independently, taking into account factors such as the
device energy, the transmission cost, and the requirements for
real-time data. Another notable architecture was proposed in
[12], in which the authors leverage pull-based MCS to imple-
ment a reverse auction strategy that determines the size of the
incentive paid to workers. The existing literature has explored
various pull- and push-based MCS approaches, however, our
approach differentiates from the current state-of-the-art since
no architecture supports both methods simultaneously.

B. Web of Things

The Web of Things (WoT) paradigm aims to counter the
fragmentation of IoT environments by leveraging and extend-
ing well-known Web standards. The most notorious efforts
on the specification and standardization of the WoT paradigm
are developed by the World Wide Web Consortium (W3C)
WoT Interest Group, which established a detailed standard on
the implementation level [5]. It defines a standard protocol-
agnostic interface that enables easy interaction and integration
of heterogeneous IoT devices to platforms and applications
[13].

A Web Thing (WT) is an abstraction of a virtual or physical
entity that exposes a Thing Description (TD), which is the
formal information model and common representation of a
WT [14]. The TD describes the WT metadata, capabilities,
properties, and interactions described in a machine - and
human-understandable structure, i.e., JSON or JSON-LD. The
interaction with a given WT is implemented through protocol
bindings, which define the mapping of the possible device
interactions to different network protocols.

The execution environment of a WT is called servient.
The servient can interact with remote WTs by consuming
their TDs and can host and expose WTs, in fact performing
the role of client and server at the same time. Although
servient description is implementation-agnostic, the de facto
standard implementation is node-wot2, which is written in
Typescript and maintained by the W3C Working Group. There
are other servient implementations, as in Python [15] and Java
[16]. However, that are no servient implementations that can
natively be executed in Android.

Another critical WoT building block envisaged in the WoT
architecture [5] is the Thing Description Directory (TDD) [17].
The TDD is a WT indexer that enables search capabilities on
the registered WTs metadata (i.e., their TDs). Further, it allows
registering, deleting, and updating WTs dynamically.

2https://github.com/eclipse/thingweb.node-wot

App
MASTER

THING
DESCRIPTION
DIRECTORY

DASHBOARD

BROKER

MASTER

LAMQTT
BACKEND

Workers

Mobile
App

Web App

Front-end Front-end

Back-end

Fig. 1. The micro-services oriented architecture proposed.

A known shortcoming of the W3C WoT standard is the lack
of out-of-the-box conversion methods to dissonant interfaces
to its ecosystem. Implementation efforts are often needed to
integrate third-party Web services or other standard interfaces
(e.g., NGSI-LD) into the WoT. Recent advances filled that gap,
providing seamless integration of RESTful Web services [18]
and NGSI-based interfaces [19] to the W3C WoT ecosystem.
The current work can leverage those new developments by
offering – through the W3C WoT – plug-and-play capabilities
with the mentioned technologies. Our work represents mean-
ingful progress to the WoT standard. As far as we know, no
MCS architecture incorporates the WoT paradigm to handle
device heterogeneity.

C. LA-MQTT

MQTT is a lightweight publish-subscribe protocol that is
commonly used in IoT-based scenarios. However, the standard
MQTT protocol does not support location awareness, a key
feature for MCS or any application scenario that supports
Location-Based Services, since MCS campaigns are typically
restricted to a well-defined geographic area. LA-MQTT is an
extension to standard MQTT supporting spatial-aware com-
munications while considering privacy implications by adding
location-awareness [20]. In LA-MQTT, consumers are only
notified with relevant data in terms of location and topic.
Those features are implemented mainly through a back-end ap-
plication pluggable in standard MQTT brokers. Although the
subscribers are only notified on relevant data, the LA-MQTT
imposes some additional message exchanges to keep track
of the position of the devices; the mobile IoT nodes must
constantly update the broker, i.e., the location’s LA-MQTT
back-end.

III. SOFTWARE ARCHITECTURE

As described in Section II-A, the existing architectures
proposed for MCS are either push- or pull-based, with the
consequence of limited flexibility. This prevents the creation
of campaigns that can support both approaches, thus limiting
the possibilities of crowdsourcers to adapt the campaigns to a
different kind of scenario.

The architecture proposed is micro-services oriented, where
every macro-functionality has been integrated into a single
component and can be deployed independently. As shown in
Figure 1, the architecture consists of two front-end services
and four back-end components; in the first case, the Dashboard
module (DM) can be considered as the GUI of the system,
through which crowdsourcers can create new campaigns and
visualize the data collected, while the Mobile Application
(MA) is responsible for collecting data for the workers. The
back-end layer is composed of a Master Module (MM), an
MQTT broker (MQTT), a Thing Description Directory (TDD),
and the LA-MQTT (LA) module [20]. More in detail, through
the DM a crowdsourcer can create a new campaign, customiz-
ing its settings, such as the number of samples requested, the
geographic boundaries for data, the duration of the campaign,
the typology of sensors required, and whether the campaign
is push or pull-based. Furthermore, every campaign requires
a title and a brief description to be advertised to the workers.
The DM also lets crowdsourcers manage the campaigns,
visualizing the data collected or stopping an active campaign.
Every request made through the DM is then forwarded to the
MM to be handled and stored in a local storage. Every new
campaign is turned and deployed as a Web Thing (WT), hence
exposing all its interactions as affordances to be consumed by
a servient: this automatically enables multiple protocols for
the same interaction (like HTTP or MQTT), that can be used
for both the push and pull-based approaches. Once the WTs
have been produced and deployed, the MM advertises them
to the TDD, so the workers can discover and join them. The
TDD works also as a registry for the workers, where they can
register themselves in order to be selected directly from the
DM for a push-based campaign. The registration to the TDD is
automatically done by the MA of the workers, which also acts
as GUI through which the workers can interact with the rest of
the architecture. In particular, a worker can visualize the list of
active campaigns, select the ones it is interested in joining, and
start to collect data for a campaign according to its settings.
In the case of a push-based campaign, crowdsourcers will ask
for data on demand from the workers. This is possible through
the usage of the external MQTT broker, which enables bidi-

rectional communication between crowdsourcers and workers.
Additionally, if the crowdsourcer requires geo-localized data,
it can ask for data in a specific zone thanks to the use of the LA
module, as better depicted in Figure 3. On the contrary, in the
case of a pull-based campaign, the worker selects one of three
different approaches for sending the data: (i) automatic, where
data is sent automatically matching the campaign preferences;
(ii) customized, where data is sent according to a customized
interval; and (iii) manual, where workers send data manually.
The MA lets also workers specify what sensors are enabled
for the crowdsensing and the default interval between each
new data sent for the customized approach.

A. Architecture Interactions

The architecture interactions are detailed in Figure 2 and
Figure 3, respectively for the pull- and push-based approaches.
In the first case, asynchronously workers get registered to the
TDD. At one point, a crowdsourcer creates a new campaign
through the dashboard; this request is forwarded to the MM
which creates a WT with all the information of the campaign
and publishes it on the TDD. A worker can now manually
get the list of available campaigns and decide which ones to
join. Periodically, the worker collects data that is sent directly
to the MM, which stores it. Eventually, once the campaign is
over, the crowdsourcer can retrieve the campaign data from
the MM.

In the second case, we need to distinguish the flow of
operations for the classic push-based approach (blue dashed
arrows) and for the localized one (green dotted arrows), which
makes use of LA-MQTT. Like in the pull-based flow, we
can suppose that a worker registers on the TDD (0), but in
order to enable the geo-localization features of the architecture,
from this moment onwards it periodically sends its position to
the MQTT broker (3b), which forwards it to the LA (4b) in
order to be processed. When a crowdsourcer publishes a new
campaign (1) to the TDD through the DM (2), for the classical
approach it also retrieves the list of workers from the TDD (8a,
9a, 10a), thus it can decide which ones to query. The worker
can ask for the list of active campaigns from the TDD (5, 6)
and decide which ones to join (7), then it waits for the data
requests from the MM.

When the crowdsourcer starts the campaign (11), the MM
forwards the request for new data to a specific worker passing
through to the broker in case of the classical approach (12a),
or asking for new geo-localized data. For the latter purpose,
the request is again forwarded to the broker (13b), but the
broker retrieves the list of geo-localized workers from the
LA (14b, 15b). In both cases, the broker publishes the data
request (16) and the worker sends back the data to the MM
through the broker (18, 19) after collecting it (17). In the end,
asynchronously and after the campaign has been completed,
the crowdsourcer gets the data back from the MM (20) and
visualizes it through the DM (21).

We highlight that in both the previous cases no reward
system has been considered since it is out of the scope of

this paper, but any kind of reward can be integrated taking
advantage of the flexibility of the architecture presented.

The proposed architecture has been designed to grant a
strong decoupling of the services as well as the possibility to
replicate and spread them depending on the needs. This means
that no specific constraint has to be taken into account in
the deploying stage, hence the architecture can be considered
general-purpose and can be used in several different scenarios.
For example, let us can consider a smart city scenario, where
the municipality provides a shared TDD where every available
worker can register itself, offering its data to anyone who is
interested. In this case, a single TDD can be deployed for the
workers’ registration, while multiple different crowdsourcers
could host their private MM that interacts with the shared
TDD. This approach would have the benefit of conveying
all the workers into a single source, but at the same time
granting the privacy and security needed for a private company
interested in a crowdsensing campaign since the interactions
and data are handled by different MMs.

On the contrary, let us imagine a smart city scenario where
the municipality wants to collect data from distinct categories
of users, for instance distinguishing between normal and expert
users. This can be easily achieved through the deployment of
multiple TDDs, one for each category, and a single MM for
handling all the data flows. In this way, workers can only
join the campaigns that were designed for the category they
belong to, while the crowdsourcer can easily manage several
campaigns that can have different settings. We remark that
the way in which a user is assigned to a specific category
can be done in several ways, both online and offline, but the
details are out of the scope of this paper. The MQTT and LA
modules are used for supporting the bi-directional interactions
and can be deployed/replicated independently of the rest of
the architecture logic.

IV. IMPLEMENTATION

We here illustrate the implementation details of the architec-
ture modules. The DM is a front-end web application written
in Angular3 leveraging the the MapBox4 library to enable
geospatial data visualization and analysis. The MM 5 is a
Node.js application written in TypeScript that has a twofold
task: (i) it interacts with the other WoT-enabled components
of the architecture and it exposes every campaign as a single
WT; (ii) it saves and retrieves data from a local storage. For
the first task, it executes a WoT servient that has been written
using the mentioned node-wot framework . For the second
one, since the local storage is a MongoDB instance, it uses
the official MongoDB client library for interacting with the
database. Listing 1 shows how the campaign has been mapped
into a MongoDB collection. We remark that the settings of
a campaign can be easily customized through the DM. The
TDD contains the TDs of the registered workers and of the
campaigns. For this module, we used an already existing

3https://angular.io
4https://mapbox.com
5https://github.com/Daveeeeed/crowdsensing-wot-proxy

Pull-based interactions

THING DESCRIPTION
DIRECTORY

(TDD)

Get campaigns list

loop

Send data

Join campaign

BROKER
(MQTT)

Return campaigns list

MASTER
(MM)

Publish campaign

Send data

DASHBOARD
(DM)

WORKER
(MA)

Register

Get campaign data

Publish campaign

Collect data

Fig. 2. The interactions for the pull-based approach.

Push-based interactions

BROKER
(MQTT)

loop

LAMQTT
(LA)

9a. Get workers list

13b. Ask data by zone

loop

MASTER
(MM)

1. Publish campaign

21. Send data

19. Forward data

DASHBOARD
(DM)

THING DESCRIPTION
DIRECTORY

(TDD)

3b. Send position

18. Send data

16. Forward data request

WORKER
(MA)

0. Register

17. Collect data

7. Join campaign 6. Return campaigns list

5. Get campaigns list

20. Get campaign data

11. Start campaign
10a. Return workers list

12a. Ask campaign data

4b. Publish position

15b. Return workers

14b. Get workers by zone

2. Publish campaign

8a. Get workers list

Fig. 3. The interactions for the push-based approach.

implementation written in Go of TinyIoT 6, built following
the W3C specifications. The MQTT is a Mosquitto 7 broker,
while the LA is a Typescript application that can be executed
as a background process either on the same host of the MQTT
broker or on a separate host, as detailed in [20]. Finally, the
MA is an Android application, described in Section IV-A.

{
"_id": ObjectID,
"title": String,
"description": String,
"organization": String,

6https://github.com/TinyIoT/thing-directory
7https://mosquitto.org/

"ideal_submission_interval": Integer,
"points": Integer,
"pull_enabled": Boolean,
"push_auto_enabled": Boolean,
"push_input_enabled": Boolean,
"submission_required": Integer,
"type": Enum<SubmissionType>,
"area": {

"center_lat": Double,
"center_lng": Double,
"radius": Double,
"type": Enum<AreaType>

}
}

Listing 1. The MongoDB schema used for storing a campaign.

A. Mobile Application and Android Servient

This section presents the implementation of the MCS appli-
cation for the Android operating system, along with the details
that make the application a WoT servient. Since there are no
other implementations for Android, we took inspiration from
the aforementioned SANE servient [16]. Our implementationis
meticulously designed to enhance the features of mobile
devices, ensuring the following functional requirements: (i)
Expose through a TD the device’s internal sensors, including
the location; (ii) modify the TD metadata by setting its exposed
sensors and related visibility; (iii) Import a TD through a
file, URL or Discovery mechanisms; (iv) Consume a WT and
interact with it.

Four binding templates have been created in this imple-
mentation: HTTP, WebSocket, CoAP, and MQTT (including
the LA-MQTT support). These templates are independent
packages of the application, enabling straightforward addition
or removal. The system uses third-party libraries for these
built-in protocols: HTTP is powered by the Spark8 library,
which provides tools for starting an HTTP web server with
several configuration options. For CoAP, we choose Cali-
fornium9, while the WebSocket support is part of Netty10, an
asynchronous event-driven network application framework that
is highly performance-oriented and provides a scalable and
maintainable implementation. Finally, MQTT leverages the
Paho Android Service11 and connects directly with an already
created broker which is not part of the Servient or the device.
We strongly adapted the existing implementation to encompass
also LA-MQTT scenarios. The application is composed of a
client and a server part. Although both of them can be run
simultaneously, we decided to instantiate them separately at
the application level. This architectural choice is based on a
limitation that we face on the protocol side: when a protocol
configuration changes, it is necessary to restart the servient.
Therefore, by separating the logic of the client and the server,
it will only be necessary to restart one of the two components.

The client component does not need to manually set up
configurations for the protocols since all the required metadata
are already contained in the TD. After starting the servient, if
some consumed WTs are available (campaign WTs), the client
loads them, as shown in Figure 4(a). Now it is possible to click
on the row corresponding to a consumed WT and interact with
it through a dedicated detail page (Figure 4(b)). The server
can be run in “server-only” mode; once executing, it manages
the device sensors through a dedicated service that exposes
their values into the WT properties. The user can configure
which sensors to expose and which ones to keep private, thus
controlling his privacy.

8https://github.com/perwendel/spark
9https://github.com/eclipse-californium/californium
10https://github.com/netty/netty
11https://github.com/eclipse/paho.mqtt.android

(a) (b)

Fig. 4. List of the active campaigns and the detail of a campaign in the
Android App.

V. PERFORMANCE EVALUATION

In this section, we aim to validate our architecture by
leveraging an example campaign that wants to assess traffic
conditions on top of sensor data collected by a number
of workers. Specifically, the evaluation takes place through
traffic simulations over the city center of Bologna, Italy. Since
realistic traffic conditions are of utmost importance in order
to conduct rigorous simulated evaluations, we made use of
the Bologna Ringway dataset [21]. The dataset provides two
hours of real traffic data, which has been collected through the
installation of spires in correspondence with strategic nodes of
the road network.

The dataset has been loaded as a SUMO [22] configuration
and controlled via its TraCI interface using Python scripts.
The city center rendered via the SUMO GUI is shown in
Figure 5(a). Over 22.000 vehicles are moving through the city
center of Bologna from 12:00 AM to 2:00 PM and follow
their path from their spawn point to their ending point. By
participating in the “traffic conditions” MCS campaign, each
vehicle reports a number of sensor readings that altogether are
expected to be representative of the campaign object (e.g. GPS,
accelerometer, gyroscope, noise intensity in dB). All these
sensor readings, which are assumed to be sent over by the
MA to the MM within a single message, are hereafter defined
as “observation”.

According to our architecture, our campaign could poten-
tially be conducted as push-based or pull-based, based on
various conditions. The evaluation in this section aims to
show the structural and quantitative differences deriving from
the adoption of one or another and discusses under which
conditions the push-based mode is more convenient than the
pull-based one and vice versa. In the pull-based mode, we
assume that each participating worker periodically sends an

(a) SUMO GUI render of the simulated scenario
with the three zones of interest.

(b) Closeup of the center of all zones of interest.

 0

 50

 100

 150

 200

 250

 300

 350

 400

(c) Heatmap of the traffic intensity in the city
center.

Fig. 5. The simulation environment

observation to the MM, enclosed in a single HTTP message.
In our simulation, we set the update frequency to 20s.

For the push-based mode, as outlined in Section III, the MM
has to explicitly target a number of workers to execute the task
on demand, on top of contextual information possessed by the
MM itself that would designate certain workers as suitable.
In our use case, we imagined such a context to be given
by the location of the worker, as a crowdsourcer might be
more interested in getting traffic data from a location that
is particularly interesting (e.g., a trafficked junction, a spot
where there has been an accident or road work), for which
data would be crucial and, probably, more rewarded. For this
reason, we chose to evaluate here the usage of LA-MQTT for
the push-based scenario, where the crowdsourcer sets three
zones of interest with different granularity: a city-wide area
(radius 2.000m), a district-wide area (radius 1.000m), and a
PoI-wide area (radius 100m). The data flow takes place as
described in Section III, with the workers updating the MQTT
broker with their position every 20s and the MM requesting
an update to each worker within the zone of interest every
20s, to keep the comparison with its pull-based counterpart
meaningful. All three zones, shown in Figure 5(a), are circles,
centered at a roundabout for which a closeup view is shown
in Figure 5(b) during a running simulation. Figure 5(c) shows
the vehicle distribution over the city center – each point is
normalized by the number of vehicles passing through it on
an average of 10 minutes –, highlighting how the traffic is
mainly concentrated along the ring road and the main arteries
of the city, with some junctions getting quite crowded.

Our results aim to evaluate three fundamental metrics:
1) The total number of observations sent from the workers

to the MM. The higher the number, the higher the cover-
age, however, an excessive number of observations may
cause the crowdsourcer to reward too many contributors,
as well as observations being not meaningful for the
considered phenomenon (see point 3).

2) The total number of messages, which may give an
idea of the network load caused by the adoption of a
pull-based mode, which has a minimal data exchange
protocol, as opposed to a push-based mode, which needs
more interaction.

3) The number of relevant observations received by the
MM, which gives insights on the overall data quality of
the campaign. In this case, we consider relevant only
observations taken within the zone of interest.

Results assessing these metrics are shown in Figure 6 and are
all evaluated on top of the penetration rate of the application,
which is the ratio of vehicle drivers that participate in the
campaign – the total number is 22.210. Figure 6(a) shows the
number of observations using the two modes. The number of
observations sent using the pull-based mode does not change
on top of the zone of interest, thus we showed a single value
for that mode. It is evident how the number of observations
drops significantly for the push-based mode for a smaller zone
of interest. Figure 6(b) shows the overall number of messages,
which evidently validates how the pull-based scenario causes a
lower network load than its push-based counterpart, regardless
of the size of the zone of interest. This is expected, as the
LA-MQTT protocol needs additional messages and checks
that occur even if the actual observation is not sent. Finally,
Figure 6(c) shows the performance of the pull-based mode,
in terms of relevant observations, on top of the size of the
zone of interest. It is evident how a small zone of interest
yields poor performance, as pull-based workers would send
their observations even if they are not within the designed
area, causing the majority of the data to be low quality.

These results show that different scenarios can be suitable
for pull- or push-based campaigns on top of certain parame-
ters, in this case, the size of the zone of interest: push-based
mode yields better performances for a small zone, whereas
pull-based mode achieves nearly the same performance of
push-based mode for large areas with much lesser overhead.
This evaluation does not consider many other aspects – e.g., a
pull-based mode can be driven by the client application, which
may perform additional checks (i.e., being inside the zone of
interest); however, our architecture cannot enforce this. In fact,
given its standard WoT interface, we can envision multiple
entities developing a dedicated client application, which falls
outside the architecture responsibility. Nevertheless, this evalu-
ation shows that it might be more valuable to use either pull- or
push-based mode depending on the evaluated scenario. Thus,
it is crucial for a system to support both modes.

(a) Number of observations sent by all workers. (b) Number of messages sent by all workers. (c) Success ratio of both modes.

Fig. 6. Simulation results.

VI. CONCLUSIONS AND FUTURE WORKS

In this paper, we proposed a hybrid push- and pull-based
architecture for mobile crowdsensing campaigns, taking ad-
vantage of the W3C Web of Things to ensure flexibility
and standardization. Our architecture can support different
campaigns and enable geo-localization of workers, balancing
the amount and quality of collected data. Future research
could focus on (i) the support of hybrid campaigns, optimizing
the trade-off between the amount and quality of data in the
same campaign, (ii) privacy preservation, integrating all the
features of the LA-MQTT library, and (iii) an extension of
the evaluation by considering real large-scale scenarios, like a
smart city.

REFERENCES

[1] J. A. Burke, D. Estrin, M. Hansen, A. Parker, N. Ramanathan, S. Reddy,
and M. B. Srivastava, “Participatory sensing,” 2006.

[2] L. G. Jaimes, I. J. Vergara-Laurens, and A. Raij, “A survey of incentive
techniques for mobile crowd sensing,” IEEE Internet of Things journal,
vol. 2, no. 5, pp. 370–380, 2015.

[3] J. Hamari, J. Koivisto, and H. Sarsa, “Does gamification work?–a
literature review of empirical studies on gamification,” in 2014 47th
Hawaii international conference on system sciences. Ieee, 2014, pp.
3025–3034.

[4] M. Louta, K. Mpanti, G. Karetsos, and T. Lagkas, “Mobile crowd
sensing architectural frameworks: A comprehensive survey,” in 2016
7th International Conference on Information, Intelligence, Systems &
Applications (IISA). IEEE, 2016, pp. 1–7.

[5] W3C Working Group. (2021) WoT Reference Architecture (W3C
Recommendation 9 April 2020). [Online]. Available: http://www.w3.
org/TR/wot-architecture/

[6] A. Capponi, C. Fiandrino, B. Kantarci, L. Foschini, D. Kliazovich, and
P. Bouvry, “A survey on mobile crowdsensing systems: Challenges, so-
lutions, and opportunities,” IEEE Communications Surveys & Tutorials,
vol. 21, no. 3, pp. 2419–2465, 2019.

[7] W. Gong, B. Zhang, and C. Li, “Task assignment in mobile crowdsens-
ing: Present and future directions,” IEEE Network, vol. 32, no. 4, pp.
100–107, 2018.

[8] W. Jin, M. Xiao, M. Li, and L. Guo, “If you do not care about it, sell it:
Trading location privacy in mobile crowd sensing,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 2019,
pp. 1045–1053.

[9] L. Wang, Z. Yu, K. Wu, D. Yang, E. Wang, T. Wang, Y. Mei, and B. Guo,
“Towards robust task assignment in mobile crowdsensing systems,”
IEEE Transactions on Mobile Computing, pp. 1–1, 2022.

[10] L. Wang, D. Zhang, Y. Wang, C. Chen, X. Han, and A. M’hamed,
“Sparse mobile crowdsensing: challenges and opportunities,” IEEE
Communications Magazine, vol. 54, no. 7, pp. 161–167, 2016.

[11] L. Xu, X. Hao, N. D. Lane, X. Liu, and T. Moscibroda, “Cost-aware
compressive sensing for networked sensing systems,” in Proceedings of
the 14th International Conference on Information Processing in Sensor
Networks, ser. IPSN ’15. ACM, 2015, p. 130–141.

[12] T. Matsuda, T. Inada, and S. Ishihara, “Communication method using
cellular and d2d communication for reverse auction-based mobile crowd-
sensing,” Applied Sciences, vol. 12, no. 22, p. 11753, 2022.

[13] L. Sciullo, L. Gigli, F. Montori, A. Trotta, and M. D. Felice, “A survey
on the web of things,” IEEE Access, vol. 10, pp. 47 570–47 596, 2022.

[14] W3C Working Group. (2023) Web of Things (WoT) Thing
Description 1.1. [Online]. Available: https://www.w3.org/TR/
wot-thing-description11/

[15] A. G. Mangas and F. J. S. Alonso, “Wotpy: A framework for web of
things applications,” Computer Communications, vol. 147, pp. 235–251,
2019.

[16] H. Bornholdt, D. Jost, P. Kisters, M. Rottleuthner, D. Bade, W. Lamers-
dorf, T. C. Schmidt, and M. Fischer, “Sane: Smart networks for
urban citizen participation,” in 2019 26th International Conference on
Telecommunications (ICT), 2019, pp. 496–500.

[17] W3C Working Group. (2023) Web of Things (WoT) Discovery (W3C
Candidate Recommendation Snapshot 19 January 2023). [Online].
Available: https://www.w3.org/TR/wot-discovery/

[18] I. Zyrianoff, L. Gigli, F. Montori, C. Kamienski, and M. D. Felice,
“Two-way integration of service-oriented systems-of-systems with the
web of things,” in IECON 2021 – 47th Annual Conference of the IEEE
Industrial Electronics Society, 2021, pp. 1–6.

[19] I. Zyrianoff, A. Heideker, L. Sciullo, C. Kamienski, and M. Di Felice,
“Interoperability in open iot platforms: Wot-fiware comparison and in-
tegration,” in 2021 IEEE International Conference on Smart Computing
(SMARTCOMP), 2021, pp. 169–174.

[20] F. Montori, L. Gigli, L. Sciullo, and M. D. Felice, “La-mqtt: Location-
aware publish-subscribe communications for the internet of things,”
ACM Transactions on Internet of Things, vol. 3, no. 3, pp. 1–28, 2022.

[21] L. Bedogni, M. Gramaglia, A. Vesco, M. Fiore, J. Härri, and F. Ferrero,
“The bologna ringway dataset: Improving road network conversion in
sumo and validating urban mobility via navigation services,” IEEE
Transactions on Vehicular Technology, vol. 64, no. 12, pp. 5464–5476,
2015.

[22] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–
simulation of urban mobility: an overview,” in Proceedings of SIMUL
2011, The Third International Conference on Advances in System
Simulation. ThinkMind, 2011.

