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DENSITY OF NOETHER-LEFSCHETZ LOCI OF POLARIZED IRREDUCIBLE

HOLOMORPHIC SYMPLECTIC VARIETIES AND APPLICATIONS

GIOVANNI MONGARDI AND GIANLUCA PACIENZA

Abstract. In this note we derive from deep results due to Clozel-Ullmo the density of Noether-
Lefschetz loci inside the moduli space of marked (polarized) irreducible holomorphic symplectic
(IHS) varieties. In particular we obtain the density of Hilbert schemes of points on projective
K3 surfaces and of projective generalized Kummer varieties in their moduli spaces. We present
applications to the existence of rational curves on projective deformations of such varieties, to
the study of relevant cones of divisors, and a refinement of Hassett’s result on cubic fourfolds
whose Fano variety of lines is isomorphic to a Hilbert scheme of 2 points on a K3 surface. We
also discuss Voisin’s conjecture on the existence of coisotropic subvarieties on IHS varieties and
relate it to a stronger statement on Noether-Lefschetz loci in their moduli spaces.

1. Introduction

Recently Markman and Mehrotra [MaMe, Theorems 1.1 and 4.1] and Anan’in and Verbitsky [AV]
have shown the density, in the corresponding moduli spaces, of Hilbert schemes of points on a
K3 surface and of generalized Kummer varieties. The first purpose of this note is to check that
the corresponding statement in the polarized case holds true. It turns out that a more general
polarized density statement can be deduced without much effort from deep results contained in
[CU]. Precisely, we have the following (see Section 2 for all the relevant definitions and Section 3,
Theorem 3.13, for a slightly more general statement).

Theorem 1.1. Let X be an irreducible holomorphic symplectic variety with Λ = H2(X,Z) and
H a primitive ample line bundle on it. Let M0

Λ be a connected component of the moduli space of
MΛ marked polarized deformations of (X,H). Let N ⊂ Λ be a sub-lattice of signature (m,n),
with m ≤ 1. Let us denote by DN be connected the Noether-Lefschetz locus of points t ∈ M0

Λ such
that N ⊂ Pic(Xt). Suppose that b2(X)− rank(N) ≥ 3. Then, if not empty, the locus DN is dense
in M0

Λ with respect to the euclidean topology.

Notice that as we require N ⊂ Pic(X) and the signature of the Beauville-Bogomolov quadratic
form on Pic(X) is (1, rk Pic(X) − 1), the condition on the signature of N is a necessary one. By
taking the sub-lattice generated by the exceptional class we immediately deduce the following.

Corollary 1.2. Let Λ be a K3[n] lattice (respectively a generalized Kummer lattice). Let M0
Λ be

a connected component of MΛ containing a marked Hilbert scheme of n-points on a K3 surface
(respectively a marked generalized Kummer variety). Let h ∈ Λ be a class with square (h, h) > 0
and consider the locus M+

h⊥
⊂ M0

Λ of points where the class h remains algebraic and belongs to
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Key-words : Hilbert schemes of points on K3 surfaces; generalized Kummer varieties; holomorphic symplectic
varieties; rational curves; coisotropic subvarieties; cubic fourfolds.
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the positive cone. The locus in M+
h⊥

consisting of marked pairs (X,ϕ) such that X is birational to

the Hilbert scheme S[n] for some projective K3 surface S (respectively to a generalized Kummer
variety Kn(A), for some abelian surface A) is dense in M+

h⊥ (in the euclidean topology).

Although largely expected to be true we believe that these density statements can be very useful
in practice. For this reason we think it is convenient to have a general density result such as
Theorem 3.13 that can be easily applied in very different geometrically meaningful contexts. As
an illustration of this we present several applications and hope that others will follow. The
first one concerns the existence of special subvarieties of IHS varieties. Precisely we discuss the
existence of coisotropic subvariety with constant cycle orbits (see Section 4 for the definitions
and the motivation), predicted by a conjecture by Voisin [Voi15]. Using Theorem 1.1 we observe
that to prove a strengthtening of this conjecture it is sufficient to check it on a Noether-Lefschetz
sublocus in the moduli space (see again Section 4, and in particular Theorem 4.12, for the precise
statements).

As a by-product of our approach we then provide a proof of the existence of primitive rational
curves whose Beauville-Bogomolov dual lies in (a multiple of) any ample linear system on de-
formations of Hilbert schemes of points on a K3 surface, respectively of generalized Kummer
varieties. The primitivity of the curve appears to be significant in light of the recent preprint
[OSY] where the authors show that it is not always possible to rule a divisor with rational curves
of primitive class. The existence of primitive rational curves has already found an application in
[MO].

We further prove that the density statement obtained in Theorem 3.13 yields a refinement of
a result due to Hassett. Namely we show the density, among special cubic fourfolds of any
discriminant d, of those whose Fano varieties of lines are birational to an Hilbert square of a K3
of fixed degree.

Then we turn to cones of nef divisors on IHS varieties and deduce from the shape of these cones
on certain dense subloci in the moduli space the same information on the whole moduli space.
This was first observed in [BHTv2] for deformations of Hilbert schemes of points on K3’s and
works the same for deformations of generalized Kummer varieties.

Finally as a by-product of our Theorem 3.13 (see Corollary 3.17 for the precise statement) we
obtain the density of moduli spaces of sheaves on a K3 (or on an abelian surface) inside the

Noether-Lefschetz locus of IHS of K3[n] (or generalized Kummer)-type possessing a non-zero
isotropic class. This is one of the key steps in [Mat17] where Matsushita proves a famous conjecture
about the numerical characterization of the existence of a (rational) lagrangian fibration for IHS

manifolds of K3[n] (or generalized Kummer)-type.

Acknowledgments. We wish to thank O. Benoist, B. Hassett, E. Macrì and M. Verbitsky for
useful conversations at different stages of this work. We also thank Qizheng Yin for pointing out
several inaccuracies in the first version of the paper.

2. Preliminaries

For the basic theory of irreducible holomorphic symplectic (IHS) manifolds we refer the reader
to [Be83, Huy99]. Let X be an IHS manifold and let Λ be a lattice such that H2(X,Z) ∼= Λ. A
marking ϕ of X is an isometry ϕ : H2(X,Z) ∼= Λ. A marked IHS manifold is a pair (X,ϕ), where
X is a IHS manifold and ϕ a marking of X. A symplectic form on X will be denoted by σX . The
square of a class a ∈ H2(X,Z) with respect to the Beauville-Bogomolov quadratic form on X will
be denoted by a2.
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Recall that the the positive cone CX is the connected component of the cone of positive classes
(with respect to the Beauville-Bogomolov quadratic form) containing a Kähler class. Let M0

Λ be
the connected component of the moduli space of marked IHS manifolds containing (X,ϕ). Let
ΩΛ

∼= Gror++(Λ⊗R) be the period domain, which is parametrised by positive oriented two planes
inside Λ⊗ R. Let

p : M0
Λ → ΩΛ

be the period map, where p(X,ϕ) is the positive oriented plane generated by ϕ(σX + σX) and
iϕ(σX−σX). Let h ∈ Λ be a class of positive square and consider the sublattice h⊥. Let Ωh⊥ ⊂ ΩΛ

be the set of periods orthogonal to h, which is isomorphic to Ωh⊥ := Gror++(h
⊥ ⊗R). Let M+

h⊥
be

the set {(Y, ψ) ∈ M0
Λ, such that ψ−1(h) ∈ CY }.

The restricted period map from M+
h⊥

to Ωh⊥ is surjective, by [Huy99] and generically injective
(this is a direct consequence of Verbitski’s global Torelli theorem [Ver], as the positive cone CY

coincides with the cone of Kähler classes for very general (Y, ψ) ∈ M+
h⊥

, see [Mar2, Theorem 2.2,

item (2) and (4)], [Mar2, Proposition 5.3] and [Huy99, Corollaries 5.7 and 7.2]). A version of
global Torelli that we will use is the following.

Theorem 2.1 ([Huy11], Corollary 6.2). Two IHS manifolds X and X ′ are bimeromorphic if and
only if there exists a Hodge isometry ϕ : H2(X,Z) → H2(X ′,Z) which is composition of maps
induced by isomorphisms and parallel transport.

The local complex structure of M+
h⊥

is given by the local deformation space Def(Y, ψ−1(h)) which

parametrizes deformations of Y where the class ψ−1(h) remains algebraic. We have a natural quo-
tient map Ωh⊥ → Ωh⊥/Mon2(Λ, h) := Fh, where Mon2(Λ, h) is the subgroup of the monodromy
group Mon2(Λ) ⊂ O(Λ) of parallel transport operators fixing the class h ∈ Λ. Such groups have

been determined for manifolds of K3[n] or Kummer type in [Mar1] and [Mon2]. This quotient
map induces a quotient map M+

h⊥ → Fh and moreover the space Fh is quasi-projective as proven
in [GriHS10, Thm. 3.7].

Remark 2.2. In the following, we will sometimes work with the local deformation space

Def(X,ψ−1(h)).

Using the Torelli theorems above, plus the study of the monodromy group one gets (cf. [Mar2,
Theorem 1.10]) that its quotient by the group Mon2(X,h) can be considered as an euclidean open
subset of the algebraic space Fh. Therefore algebraic families like the Hilbert scheme are well
defined in this local setting.

For our purposes it will be relevant also to use deformations of pairs (X, [C]), where X is IHS and
C is a curve on it, therefore we will make frequent use of the following duality, induced by the
quadratic form on H2(X): we embed H2(X,Z) into H2(X,Z) by the usual embedding of lattices
Λ∨ → Λ ⊗ Q (that is, we use the intersection pairing between H2 and H2 to see an element [C]
of the latter as the form [C] · −). We call D the dual divisor to a primitive curve C ∈ H2(X,Q)
if D = aC for a positive integer a and D is primitive. Conversely, we call C the dual curve
to a primitive divisor D if C = D/div(D), where div(D) is the positive generator of the ideal
D ·H2(X,Z).

3. Density of Noether-Lefschetz loci

Let Λ be a lattice of signature (3, n), n ≥ 2 and let h ∈ Λ be an element of positive square. Let
L be h⊥ and let t ∈ L be a element of negative square. Let G ⊂ O(Λ) be a subgroup of finite

3



index of the orthogonal group O(Λ). Let ΩL := Gror++(2, L⊗R) be the Grassmannian of positive
oriented two planes, which is the period domain associated to the lattice L. Notice that

Gror++(2, L ⊗R) = SO(2, n)/SO(2)×SO(n)

(see e.g. [Ver, Sections 1.7 and 2.4]). In this section, we will prove that the set of periods
orthogonal to an element in the G orbit of t is dense. In particular, we will apply this result when
Λ ∼= H2(X,Z) for some IHS manifold X. This density result in the non polarized setting (that is,
inside ΩΛ := Gror++(2,Λ ⊗ R)), was proved by Anan’in and Verbitsky:

Proposition 3.1 (Proposition 3.2 and Remark 3.12 [AV]). Let T be a lattice of signature (m, r),
m ≥ 3 and r ≥ 1. Let Γ be a group of finite index in O(T ) and let τ be an element of T .
Let Gror++(2, T ⊗ R) be the Grassmannian of positive oriented two planes. The set of elements in
Gror++(2, T⊗R) orthogonal to an element in the orbit of τ by the group Γ is dense in Gror++(2, T⊗R).

In our situation, one could work with this result and extend it to the polarized case as is done in
a special case in [Mat17, Lemma 3.6], however it is more convenient for us to adopt an algebraic
approach using powerful results of Clozet and Ullmo [CU]. Instead of working with the period
domain ΩL, let us work with a quotient of it by an arithmetic subgroup Γ (which, in practice,
will be the group of isometries of Λ fixing h or a finite index subgroup of it like the monodromy
group). This variety is isomorphic to

Γ\SO(2, n)/SO(2)×SO(n).

The appropriate language to use the aforementioned results is that of Shimura varieties, which is
rather separate from the subject of this paper, therefore we will keep it as simple as possible. For
the interested reader, a good reference on the topic is [Mil]. A Shimura variety is obtained from
a Shimura datum, which amounts to the following by [Mil, Proposition 4.8]:

Definition 3.2. A Shimura datum (G,D) consists of the following:

• A semisimple algebraic group G defined over Q of non compact type,
• A Hermitian symmetric domain D,
• An action of G(R)+ on D defined by a surjective homomorphism G(R)+ → Hol(D)+ with

compact kernel.

In our setting the datum will be (SO(2, n), SO(2, n)/(SO(2)×SO(n))) with the obvious action of G
on D, so that the kernel is SO(2) × SO(n).

Definition 3.3. A connected Shimura variety is defined by the inverse system of quotients Γ\D,
where Γ runs over arithmetic subgroups of Gad(Q)+ whose pre image in G(Q)+ is a congruence
subgroup

So, for the purpose of density, a statement on the Shimura variety associated to D then works, by
continuity of the quotient maps giving the inverse system, on all quotients of D by commensurable
arithmetic subgroups. We will be interested in special Shimura subvarieties, which are those
usually called of Hodge type as they are related to variations of Hodge substructures, see [Moo,
Proposition 2.8].

Definition 3.4. Given a Shimura datum (G,D), a datum (H,DH) defines a Shimura subvariety
of Hodge type if

• (H,DH) is a Shimura datum and H ⊂ G
• There is a closed immersion between the Shimura varieties associated to the above Shimura

data.
4



Under the above hypothesis, all connected components of the closed immersion are of Hodge type.
Moreover, such a subvariety will be called strongly special if there is no intermediate parabolic
subgroup between H and G.

Not all varieties of Hodge type have this form, but these suffice for our purposes by [Moo, Remark
2.6].

Remark 3.5. In our situation, we want to consider the Shimura variety associated to the datum

(SO(2, n), SO(2, n)/(SO(2)×SO(n)))

and the divisors where a specific class λ is kept algebraic, which are associated to the datum

(Stab(λ), SO(2, n − 1)/(SO(2)×SO(n−1))),

where the symmetric domain is given by the orthogonal to λ. Notice that the group Stab(λ) is
actually maximal parabolic in SO(2, n), so that these divisors of Hodge type are actually strongly
special.

The main result we want to use is the following:

Theorem 3.6. [CU, Theorem 4.6] Let S be a Shimura variety and let Sn be a sequence of
strongly special Shimura subvarieties. Then there exists a subsequence Snk

and a strongly special
Shimura subvariety M which contains every Snk

and coincides with their euclidean closure.

As a consequence of this we have the following.

Proposition 3.7. Let Λ′ be a lattice of signature (3, n), n ≥ 1 and let h ∈ Λ′ be a class of
positive square. Let L′ := h⊥ and let λ ∈ Λ′ be a class which is not in the O(Λ′)-orbit of h. Let
ΩL′ := Gror++(2, L

′ ⊗R) be its period domain. Let G ⊂ O(Λ′) be a group of finite index. Then the
set DG,λ of periods orthogonal to an element in the orbit Gλ is dense in ΩL′.

Proof. Let Γ be the subgroup of G fixing h, then we have a continuos map

π : ΩL′ → Fh,Γ :=Γ\ ΩL′ .

Notice that DG,λ is saturated in the fibres of this map, that is π−1(π(DG,λ)) = DG,λ. Therefore,
it is enough to prove density in Fh,Γ. For every element of α ∈ G/Γ, we can define a Γ-orbit of
an element λα, where λα is the projection of gλ in L′ for some representative g ∈ G of α. Notice
that λα depends on the choice of a representative g of α, but we will be considering all possible
representatives. We can consider the associated divisors DΓ,λα

, which are (associated to) strongly
special Shimura subvarieties as stated before. All points of them correspond to h-polarized Hodge
structures such that the period is orthogonal to an element in the G orbit of λ, hence their union
is the locus we are considering.
Notice that G/Γ is an infinite set as it is commensurable to the integral part of O(3, n)/O(2, n).
Moreover also the Γ orbits of all λα are infinite, as the pairing q(h, gλ) takes infinitely many values
(which implies that the square q(λα) takes infinitely many values). Therefore we have infinitely
many divisors of the form DΓ,λα

. By Theorem 3.6 the closure of the infinite union of all the
divisors DΓ,λα

can only be contained in a (strongly special) Shimura subvariety By dimension
reasons it has to coincide with the whole space, hence our claim. �

Remark 3.8. Notice that, when G = Mon2(Λ) and Γ = Mon2(Λ, h), the space Fh,Γ coincides
with the (connected) moduli space of polarized IHS manifolds considered in [GriHS10].

Proposition 3.7 can then be applied to prove density of the Noether-Lefschetz loci, whose definition
is recalled below.
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Definition 3.9. Let X be an IHS manifold, with ϕ : H2(X,Z) ∼= Λ an isometry, and H a
primitive ample line bundle on X. Let L ⊂ Λ be a sub-lattice of signature (2,m) with m ≥ 2
such that H ∈ L⊥. Let MΛ be the moduli space of marked polarized deformations of (X,H). Let
M0

L ⊂ MΛ be a connected component of the moduli space parametrizing marked polarized IHS
deformations (Xt,Ht, ϕt) of (X,H,ϕ) such that the period of Xt lies in L. Let N ⊂ Λ be a sub-
lattice of signature (a, b) with a ≤ 1 and let us denote by DN the locus of t ∈ M0

L such that there
exists a primitive embedding N ⊂ Pic(Xt). Then DN is called a Noether-Lefschetz locus.

Remark 3.10. Let Λ be the K3 lattice. Consider P := 〈2d〉, for some integer d ≥ 2 and
N := 〈−2〉. Then DN parametrizes projective K3 surfaces of degree 2d possessing a −2-curve
(without requiring a given intersection between the −2-curve and the polarization).

Remark 3.11. The existence of a primitive embedding N ⊂ Pic(Xt) is equivalent to the existence
of a g ∈ O(Λ) (or in a finite index subgroup G ⊂ O(Λ)) such that ϕ−1

t (g ·N) ⊂ Pic(Xt).

Remark 3.12. Notice that the manifolds appearing in DN have periods contained in the sublocus
of the period domain of dimension at least

rank(L)− rank(N)− 2.

Therefore, by the surjectivity of the period map restricted to each connected component of the
moduli space [Huy99], the locus DN is clearly non empty if the above number is positive.

We are now ready to state and prove our main density result.

Theorem 3.13. Keep notation as in Definition 3.9. Suppose that N is of signature (a, b), with
a ≤ 1 and that we have rank(Λ) − rank(N) ≥ 3. Then, if not empty, the Noether-Lefschetz locus
DN is dense in M0

L.

As noticed in the Introduction, the condition on the signature of N is a necessary one.

Proof of Theorem 3.13. Let N ⊗ Q = 〈l1, . . . , la+b〉, where li ⊥ lj for i 6= j, li ∈ Λ. Moreover,
we can suppose that all li apart for l1 have negative square. By the condition on the rank of N
and its signature, notice that N⊥ ⊂ Λ has signature at least (2, 1). Let G be any group of finite
index inside O(Λ). We will prove the result by induction on a+ b. For a+ b = 1, this is precisely
the content of Proposition 3.7. Let us consider the lattices Mr = 〈l1, . . . , lr〉 and let Gr be the
stabilizer in G of Mr. For every class [α] of G/Gr and every representative α ∈ [α], we have a
different projection Rr,α of α ·Mr inside L. Notice again (as in the proof of Proposition 3.7) that
the Rr,α’s depend on the choice of the representative but we will consider all possible choices. Let

Λi,α := R⊥
r,α ⊂ L. By the inductive step, periods in the union

∪α∈GΛr,α

are dense in ΩL, therefore it suffices to prove that, for any α, periods in Λr,α orthogonal to an
element in the G/Gr+1 orbit of Mr+1 are dense. What we are considering is the union of loci of
the form

Dr+1,β := {P ∈ ΩΛr,α , P ⊥ gMr+1 for some g ∈ G such that [g] = β}.

Here, β ∈ G/Gr+1. These loci are either divisors in ΩΛr,α or they are empty if Rr+1,β is not

negative definite. As 〈lr+1〉 = M⊥
r ⊂ Mr+1 is negative definite, this locus is empty if and only

if ΩΛr,α was already empty. Therefore the density statement we want is precisely the content of

Proposition 3.7 with Λ = M⊥
r , L = Λi,α, λ = lr+1 and group G/Gr, which has finite index in

O(M⊥
r ) and we are done.

�
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Remark 3.14. As made clear in the proof the statement of the theorem holds for G = O(Λ),
but the analogous density statement holds for any finite index subgroup of it, like the group of
monodromy operators (which has finite index by [Ver, Theorem 1.16], see also [Huy11, Remark
6.7]).

The above theorem has some nice consequences also in the K3 case, as an example it can be
used to prove that Kummer K3 surfaces obtained from an abelian surface of polarisation (1, d)
are dense in the moduli space of degree 2e polarized K3 surfaces, for any d and e. Notice the
following simpler case.

Example 3.15. Let F4 be the moduli space of degree 4 K3 surfaces. We denote its elements
by (S,H), where H is a nef divisor. By the above theorem, the subset of polarized K3 surfaces
(S′, L′) with a nef class H ′ of square 4, and an additional −2 curve E such that H ′ · E = 0 are
dense in F4. However, notice that the polarization H might not be a combination of H ′ and E,
as the proof of 3.7 uses rational periods. Here, N = 4⊕−2, P = 4 and L = U2 ⊕E8(−1)2 ⊕−4.

For all the known deformation types of holomorphic symplectic varieties we have several interesting
dense Noether-Lefschetz subloci. We start with Hilbert scheme of points on K3 surfaces and
generalized Kummer varieties:

Proof of Corollary 1.2. Let (X,H) be a polarized manifold of K3[n]-type. Let N := 〈−2(n − 1)〉
be a rank one lattice. Then, by Theorem 3.13 the Noether-Lefschetz locus DN of N is dense in
the deformation of (X,H) (of course this follows also immediately from [CU]). We now claim
that all points in DN correspond to IHS varieties birational to Hilbert schemes of points. We can
choose a specific embedding of N into Λ := H2(X,Z) such that N⊥ is unimodular. With such
a choice, elements in the Noether-Lefschetz locus have the same Hodge structure of an Hilbert
scheme of points on a K3 surface S, where S is the only K3 with the Hodge structure of N⊥.
Thus, if instead of the O(Λ) orbit of N we take the Mon2(Λ) orbit of it, by Remark 3.14 and the
version of Global Torelli given in Theorem 2.1 we get our claim.

The same proof works, mutatis mutandis, also for generalized Kummer varieties. �

The above result, in the non polarized case, is the content of [MaMe].

Remark 3.16. In the proof of the non polarized case by Markman and Mehrotra [MaMe], the
authors prove additionally that the locus of actual Hilbert schemes (and not manifolds birational
to them) is dense in moduli. Their proof is based on the fact that, for general non projective
Hilbert schemes, there are no different birational models of it. In the projective case this is false
in general, e.g. take the Hilbert square of a degree two K3 and the Mukai flop on the plane it
contains.

The following result can be proven with the use of Theorem 3.13 in a way analogous to Corollary
1.2, unless the moduli spaces considered are zero dimensional. We also present a different proof.

Corollary 3.17. Let Λ be a lattice either isomorphic to the second cohomology group of a Hilbert
scheme of n points on a K3 or to a that of generalized Kummer. Let L ⊂ Λ a sub-lattice of
signature (1,m) with m ≥ 2 and let ML be the moduli space of manifolds deformation equivalent
to the Hilbert scheme of n points on a K3 or a generalized Kummer which contain primitively
L⊥ inside their Picard lattice. Suppose ML is not empty. Then the locus of ML corresponding to
moduli spaces of sheaves (or their Albanese fibre) on a K3 surface (respectively abelian) is dense.

7



Proof. By [Fuj] (see also [Ca83]) points M
proj
L corresponding to projective IHS are dense in

ML. Now let M0
L ⊂ M

proj
L be a irreducible component corresponding to marked projective

IHS (X,ϕ, hX ) such that ϕ(hX) = h, for a given positive class h ∈ Λ. Apply Theorem 3.13 to
L′ := 〈L⊥, h〉⊥, and N := 〈−2(n − 1)〉 (as in Corollary 1.2). This proves the density of Hilbert
schemes and a fortiori that of moduli spaces of sheaves on K3 surfaces. As usual the same proof
works for generalized Kummer varieties. �

Alternative proof of Corollary 3.17. Let us consider the period domain ΩL, where L := P⊥ inside
the appropriate lattice Λ (either U3⊕E8(−1)2⊕ (−2n+2) or U3⊕ (−2n−2)). We have a natural
(surjective) period map from ML to ΩL. By a classical results [Vbook, Proposition 17.20] the
locus corresponding to manifolds with maximal Picard rank is dense in ΩL and so is its preimage
in ML. Let Y be any of these maximal Picard rank manifolds. Regardless of the deformation
class, the Picard lattice N := Pic(Y ) has rank at least 5 and the discriminant group N∨/N is
a finite group with length at most three by elementary lattice theory (its complement in Λ has
a discriminant group with at most two generators). Therefore, by [Nik, Corollary 1.13.5], we
have that N = U ⊕ N ′ for some N ′. By [Add, Proposition 4] and [MW, Proposition 2.3], this
actually implies that these manifolds are moduli spaces of sheaves (or Albanese fibres of them)
on a surface. Indeed, the condition in the above cited result is that a specific lattice containing
Pic(Y ) contains a copy of U , and clearly this is our case. �

Example 3.18. Let X be a manifold deformation equivalent to O’Grady’s ten dimensional man-
ifold. Let H ⊂ Pic(X) be a primitive positive class. Then the locus of manifolds birational to
a moduli space of sheaves on a K3 surface is dense in the deformations of (X,H). This holds
because such resolutions have an extra algebraic class given by the exceptional divisors, hence
Proposition 3.7 applies to the parallel transport of this class on X. The equivalent statement
holds for the six dimensional O’Grady’s manifold. Here, N = 〈−6〉 (for a specific choice of an
embedding in Λ = U3 ⊕ E8(−1)2 ⊕A2(−1).

Corollary 3.17 is interesting in its own, as many of the applications of density results so far only
use it (or at least, can work with it). In the following paragraphs we present two such examples
which seem particularly important to us.

3.1. Mori cones. The goal of the section is to provide an alternative proof of the main result of
[BHT], namely the description of the Mori cone of any projective deformation of a K3[n]. Notice
that the strategy we follow here was already presented in [BHTv2]. This strategy could not work
due to the lack of the suitable density result. We find it interesting to describe it again, as it can
analogously lead to the description of the Mori cone of the projective deformations of the O’Grady
examples as soon as the Mori cone is known for these (see [MZ] for important progress in this
direction). We take the occasion to notice that an analogous statement holds for deformations of
generalized Kummers.

The precise result is the following.

Theorem 3.19 ([BHT], Theorem 1, for the K3[n]-type). Let (X,hX ) be a polarized IHS of K3[n]-
type (respectively of generalized Kummer type). The Mori cone of X has the same description

of the Mori cone of a K3[n] (resp. of a generalized Kummer), namely the Mori cone of Xin
H2(X,R)alg is generated by classes in the positive cone and the image under θ∨ of the following

{a ∈ Λ̃alg : a
2 ≥ −2 (respectively a2 ≥ 0), |(a, v)| ≤ v2/2, (hX , a) > 0}.

We refer the reader to [BHT] for the relevant definition. Here we want only to stress the rôle of
density in the proof. We recall the following important deformation theoretic result.
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Proposition 3.20 ([BHTv2], Proposition 5). Let X be a projective IHS. Let R ⊂ X be an extremal
rational curve of negative square. Consider a projective family π : X → B over a connected curve
B with π−1(b) = X, for a certain b ∈ B, such that the class [R] remains algebraic in the fibers of
π. The the specialization of R in π−1(b0) remains extremal for all but finitely many b0 ∈ B.

Proof of Theorem 3.19. The fact that the above classes are actually in the Mori cone does not
depend on density. See [BHT, p. 948] for its proof.

For the other inclusion, consider the rank 2 sublattice P ⊂ H2((K3)[n],Z) generated by h and
by the dual class R∨ (or rather its saturation). As in Definition 3.9 let L := P⊥ and inside
the connected component M0

L containing (X,hX ) consider a general connected curve B passing
through (X,hX ).

By Proposition 3.20 an extremal rational curve with negative square remains extremal on the
generic point of B. The generic point of B corresponds to a moduli space of sheaves on a
projective K3 surface, as by Theorem 3.13 moduli spaces of sheaves on projective K3 surfaces
are dense in M0

L, hence in B. By [BM, Theorem 12.2], the statement holds for moduli spaces of
sheaves on projective K3 surfaces and the desired inclusion follows. The proof works verbatim if
X is a projective deformation of a generalized Kummer by replacing [BM, Theorem 12.2] with
[Yos, Proposition 3.36]. �

3.2. Lagrangian fibrations. It is conjectured that a non-trivial integral and primitive movable
(resp. nef) line bundle L on a 2n-dimensional IHS manifold X with qX(L) = 0 induces a ra-
tional (resp. regular) Lagrangian fibration. Precisely we should have that L is base-point-free,
h0(X,L) = n+ 1 and the morphism

X → PH0(X,L)∨

is surjective, with connected Lagrangian fibers. Several important results have been obtained
in recent years on this problem. Matsushita [Mat99, Mat01] first proved that the image B of
a morphism f from such an X must be a Q-factorial, klt n-dimensional Fano variety of Picard
number 1 and f is a Lagrangian fibration, as soon as B is normal and 0 < dim(B) < 2n. The fact
that B must be the projective space was proved later by Hwang, under the stronger assumption
that B is smooth. Bayer-Macrì [BM, Theorem 1.5] (resp. Yoshioka [Yos, Proposition 3.36])
proved the conjecture for moduli spaces of Gieseker stable sheaves on a projective K3 (respectively
abelian) surface. Independently Markman [Mar3, Theorem 1.3] proved the conjecture for a general
deformation X of a (K3)[n]. Markman’s result can be extended to any deformation of a (K3)[n]

thanks to a result due to Matsushita [Mat15] insuring that if an irreducible holomorphic symplectic
manifold X admits a Lagrangian fibration, then X can be deformed preserving the Lagrangian
fibration. Later Matsushita [Mat17, Corollary 1.1] proved that if X is a deformation of (K3)[n]

or of a generalized Kummer, any non-trivial integral and primitive line bundle L with qX(L) = 0
such that c1(L) belongs to the birational Kähler cone of X, induces a rational Lagrangian fibration
over the projective space. His proof uses, among other things three main ingredients: Lagrangian
fibrations deform well in moduli [Mat15]; the conjecture holds on moduli spaces (by [BM, Theorem
1.5] and [Yos, Proposition 3.36]); moduli spaces are dense in the Hodge locus of [c1(L)]. The
latter is now proved in [Mat17, Lemma 3.6] and can as well be obtained as a particular case of our
Corollary 3.17. Notice that the non-emptyness follows from Markman [Mar3] for deformations of
K3[n] and Wieneck [Wie] for deformations of generalized Kummers.
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4. Equivalent conjectures

Let X be a 2n-dimensional IHS projective variety. The Chow group CH0(X) of 0-cycles is non
representable by Mumford’s theorem (cf. [Vbook, Chapitre 22]). Nevertheless, by the Bloch-
Beilinson conjecture, the CH0(X) should have an inner structure under the form of a decreasing
filtration F •

BB := F •
BBCH0(X) satisfying some axioms (see [Vbook, Chapitre 23]). While this

conjecture appears to be out of reach, Beauville, inspired by the multiplicative splitting on the
Chow ring of abelian varieties [B86] and by the case of K3 surfaces [BV], suggested in [B07] to
investigate an interesting consequence of a (conjectural) splitting of this filtration, called “weak
splitting property”. This property consists in the injectivity of the cycle-class map when restricted
to the sub-algebra generated by classes of divisors. This conjecture of Beauville gave rise to several
works in the last years [Voi08, Voi12, Fer11, Fu, Rie, Lat, FLV, SYZ, SY, Yin]. Very recently cf.
[Voi15], Voisin developed a different approach to the study of the filtration F •

BB and its conjectural
splitting. For any integer 1 ≤ i ≤ n, she considers

Si(X) : {x ∈ X : dimOx ≥ i},

where Ox is the orbit of x under rational equivalence. Notice that a subvariety Y of such an
orbit is a constant cycle subvariety of X (cf. [Huy14]), i.e. a subvariety whose points are all
rationally equivalent in X. Using Mumford’s theorem, one can show that any of the (possibly
countably many) irreducible components of Si(X) has dimension ≤ 2n − i. Then Voisin defines
SiCH0(X) ⊂ CH0(X) to be the subgroup generated by classes of points in Si(X). In this way
she obtains a descending filtration S•CH0(X) on CH0(X) and she conjectures that it should be
opposite to the Bloch-Beilinson filtration and thus provides a splitting of it, in the sense that, for
any i = 1, . . . , n

SiCH0(X) ∼= CH0(X)/F 2n−2i+1
BB CH0(X).

In this direction an important rôle is played by the following

Conjecture 4.1 ([Voi15], Conjecture 0.4). Let X be a 2n-dimensional holomorphic symplectic
variety. For any i = 1, . . . , n there exists a component Z of Si(X) of maximal dimension 2n− i.

She then observed that if Conjecture 4.1 holds (and if of course the Bloch-Beilinson filtration
exists), then the map

SiCH0(X) → CH0(X)/F 2n−2i+1
BB CH0(X)

is surjective. Back to Conjecture 4.1, Voisin observed that if Z ⊂ Si(X) has maximal dimension
2n − i then Z is swept by i-dimensional constant cycle subvarieties, which are the orbits Oz of
its points z ∈ Z. Conjecture 4.1 has been proved in the following cases: for i = 2 and X a very
general double EPW sextic, [Fer11]; for i = n and X having a Lagrangian fibration ([Lin15a]);
for a generalized Kummer and any i ([Lin15b]); for the Fano variety of line on a cubic 4fold and
the LLSV 8fold and any possible i, [Voi15]; for moduli spaces of stable objects on a K3 surface,
[SYZ]; for i = 1 when X is deformation equivalent to the punctual Hilbert scheme of a K3 surface
(respectively when X is deformation equivalent to a generalized Kummer) in [CP] (resp. in [MP]).

To state our results, let us first define the following:

Definition 4.2. Let X be an IHS projective variety, let H be a divisor of positive square on X
and let Z ⊂ X be a subvariety of pure codimension i.

(i) Z is called a Voisin coisotropic subvariety if Z ⊂ Si(X).
(ii) A Voisin coisotropic subvariety Z ⊂ X is said to have RCC orbits if the orbits Oz of its

points with respect to rational equivalence are rationally chain connected.
(iii) If a Voisin coisotropic subvariety Z ⊂ X has RCC orbits, these are called of type m(H∨),

for a certain integer m > 0, if, for a general point z ∈ Z, any two points of Oz are
connected by a chain of rational curves of class m(H∨).
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Here, the curve class H∨ is the class H/div(H) under the embedding H2(X,Z) → H2(X,Q) given
by lattice duality, and the divisibility div(H) is the positive generator of H ·H2(X,Z).

The aim of this section is to relate (a strengthening of) Conjecture 4.1 to an existence conjecture
on Noether-Lefschetz loci.

The main tools will be Theorem 3.13 and an easy, yet useful density principle which we state
and prove below. This principle simply says that to prove the existence of Voisin’s coisotropic
subvariety with (good) RCC orbits of a given type it is sufficient to have existence on a dense
subset of the relevant moduli spaces.

To make things precise we introduce some terminology and notations. Given a polarized IHS
variety (X,h) we will consider the moduli space of genus zero stable maps M0(X, [h]

∨) of class
[h]∨ ∈ H2(X,Z). If M is an irreducible component of M0(X, [h]

∨) we will denote by C →M the
universal curve above it and consider the natural evaluation morphism ev : C → X.

Theorem 4.3. Let 1 ≤ k ≤ n be an integer. Suppose there exists a subset D ⊂ M+
h⊥

which is
dense with respect to the euclidean topology and such that for all t ∈ D:

(i) there exists an irreducible component Mt of the moduli space of genus zero stable maps
M0(Xt, [ht]

∨) of dimension 2n− 2 and
(ii) the image of evaluation morphism evt : Ct → Xt has dimension 2n− k.

Then any X in M+
h⊥

contains a Voisin coisotropic subvariety Z of codimension k with RCC orbits

of type (a multiple of) [hX ]∨.

Definition 4.4. The RCC orbits ruled by rational curves verifying items (i) and (ii) of Theorem
4.3 will be called good.

Remark 4.5. Using e.g. [OSY, Proposition 2.1] one can check that the RCC orbits of Voisin’s
coisotropic subvarieties of type H, where H is a primitive divisor, are good.

Example 4.6. Let (S,H) be a very general K3 surface of degree 4 and let C ∈ |2H| be a general
curve with only 5 nodes as singularities (that is, a curve of geometric genus 4). Let R be the

rational curve inside S[5] given by a g15 on the normalization of C. Its class is 2H∨ − 8τ5 and, as
we let the curve C and the linear series on it vary, we obtain exactly a 8 dimensional family of
such curves, which can be proven analogously to [KLM2, Prop. 3.6] using the fact that, under
suitable generality assumptions, the curve normalization of C is a Brill-Noether general curve by
[CFGK, Cor. 8.5]. Therefore, the locus Z they cover is a Voisin’s coisotropic subvariety of type
2(H∨ − 4τ5) with good RCC orbits.

Proof of Theorem 4.3. In order to prove the theorem it is sufficient to prove that given any holo-
morphic symplectic variety X in M+

h⊥
the conclusion holds on (a contractible open subset of) the

subset B := Def(X)h⊥ of the Kuranishi space Def(X) of deformations of X parametrizing those
where the class of h remains algebraic. We will first show it on an open subset U ⊂ B and then
derive the conclusion on the whole B.

Let π : X → B be the universal family. Consider the relative moduli space of genus zero stable
maps M 0(X /B, [h]∨). By abuse of notation we denote by [h]∨ the class of the section of the
local system R4n−2π∗Z whose value at the point b ∈ B is the class in H2(Xt,Z) dual to ϕ−1

t (h).

By hypothesis M 0(X /B, [h]∨) has dense image in the base B. Since it is a scheme of finite type,
there exists an irreducible component M dominating the base and such that the restrictions M|b

over the points t ∈ D contain the components Mt given by the hypothesis of the theorem. Denote
by C → M the universal curve and by ev : C → X the evaluation morphism over B.
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Consider the set

Bbad := {b ∈ B : M|b is reducible}.

By [FGAe, Théorème 9.7.7] we have either

(a) B \Bbad contains an open subset ;

or

(b) Bbad contains an open subset.

In case (a), let U ′ ⊂ (B \Bbad) be the open subset. By definition for all b ∈ U ′ we have that M|b

is irreducible.

Inside U ′ consider the open sublocus U of points b where the rank of the evaluation morphism
evb restricted to C|b is maximal and the dimension of M|b is constant. By density U ∩ D 6= ∅.
Therefore we have that

dim(M|b) = dim(M|b) = 2n− 2

and

rk(evb) = 2n − k.

Set Zb := evb(C|b). By dimension count, for all b ∈ U , through the general point of Zb we have a
k-dimensional RCC subvariety (contained in Zb) and the theorem is proved over U in this case.

In case (b), one proceeds mutatis mutandis in a similar way.

In both cases by construction any two points of Zb can be joined by a rational curve of the same
class.

To conclude the proof of the theorem, let X0 in Def(X)h⊥ \ U . Let T ⊂ Def(X)h⊥ be a curve
passing through X0 and not contained in Def(X)h⊥ \U . Up to shrinking T we may suppose that
(T \ [X0]) ⊂ U . Define Z0 ⊂ X0 to be the limit, for t ∈ (T \ [X0]), of the subvarieties Zt ⊂ Xt

having dimension 2n − k and covered by k-dimensional RCC subvarieties, whose existence has
been shown before. Let x0 ∈ Z0 be a point and {xt ∈ Xt}t∈(T\[X0]) a set of points converging to
it. Let Ft ⊂ Xt be a k-dimensional RCC subvariety containing xt and let F0 be the limit of the
Ft’s. It is RCC, as limit of RCC’s. Therefore also X0 contains a (2n− k)-dimensional subvariety
Z0 ⊂ X0 which is covered by k-dimensional RCC subvarieties and the theorem is proved.

�

We state the following conjectures, the first one being a slight strengthening of Voisin’s original
conjecture.

Conjecture 4.7. Let X be a 2n-dimensional IHS projective variety. For any i = 1, . . . , n there
exists a primitive positive divisor Hi, a positive integer mi > 0 and a codimension i Voisin’s
coisotropic subvariety Zi ⊂ X with good RCC orbits of type mi(Hi)

∨.

The advantage of coisotropic subvarieties with RCC orbits is that we control easily their degen-
erations, while fixing the type allows to deal with a parameter space (of stable genus zero maps)
which will be of finite type.

Remark 4.8. The recent preprint [OSY] shows that in certain cases the integers mi can be strictly
greater than one.

Conjecture 4.9. Let M+
h⊥

be the moduli space of polarized deformations of a projective IHS
variety X, DN ⊂ MH the Noether-Lefschetz locus corresponding to a lattice N such that b2(X)−
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rank(N) ≥ 3 and U ⊂ DN a dense subset. Then, for every t ∈ U and every 1 ≤ i ≤ dim(X)/2,
there exist an integer m > 0 and a codimension i Voisin’s coisotropic subvariety Zt,i ⊂ X with
good RCC orbits of type m(Ht)

∨, where Ht ∈ Pic(Xt) is the primitive polarization such that
ϕt(Ht) = h.

Conjecture 4.10. Let M+
h⊥ be the moduli space of polarized deformations of a projective IHS

variety X, DN ⊂ MH the Noether-Lefschetz locus corresponding to a lattice N such that b2(X)−
rank(N) ≥ 3 and U ⊂ DN a dense subset. Then, for every t ∈ U , for every divisor Pt ∈ Pic(Xt)
of positive square and every 1 ≤ i ≤ dim(X)/2, there exist an integer mi > 0 and a codimension
i Voisin’s coisotropic subvariety Zt,i ⊂ X with good RCC orbits of type mi(Pt)

∨.

Conjecture 4.11. Let M+
h⊥

be the moduli space of polarized deformations of a projective IHS

variety X. Then, for every t ∈ M+
h⊥

, for every positive divisor Pt ∈ Pic(Xt) and every 1 ≤
i ≤ dim(X)/2, there exist an integer mi > 0 and a codimension i Voisin’s coisotropic subvariety
Zt,i ⊂ X with good RCC orbits of type mi(Pt)

∨.

Theorem 4.12. Let X be a projective IHS variety with b2(X) ≥ 4. Then the 4 above conjectures
4.7, 4.9, 4.10 and 4.11 are equivalent.

Proof of Theorem 4.12. Clearly, Conjecture 4.11 implies Conjecture 4.10 which implies Conjecture
4.9. Let us show that Conjecture 4.9 implies Conjecture 4.7. Manifolds in the Noether-Lefschetz
locus DN are dense in the moduli space M+

h⊥
by Theorem 3.13. As Conjecture 4.9 holds on DN ,

we can apply Theorem 4.3 to obtain Conjecture 4.7. Finally, let us prove that the first Conjecture
implies the last. Again, this is a simple corollary of Theorem 4.3. Indeed, let H ∈ Pic(X) be any
primitive positive class and let (Y,HY ) be a very general deformation of (X,H). By Conjecture
4.7, we have a rational curve of class mH∨ which connects any two points in a general fibre of a
codimension i coisotropic variety. As (Y,HY ) is very general, the only curve classes are given by
the multiples of H∨

Y and thus we can apply Theorem 4.3 to obtain the result for (X,H). �

5. Existence of rational curves via density

In this section we will use linear series on surfaces to construct a dense set of points corresponding
to IHS containing a rational curve for the moduli spaces of pairs of deformations of K3[n] type
or generalized Kummer varieties type. By Theorem 4.3, this will be enough to prove that all
such IHS contain a rational curve whose Beauville-Bogomolov dual class is (a multiple of) the
polarization. The result of this section is the following:

Theorem 5.1. Let (X,H) be a polarized manifold of K3[n] type or of Kummer type, with H
ample and primitive. Then there exists a rational curve whose class is dual to |H|.

As it is convenient when working with this deformation classes, we will use the index ǫ ∈ {0, 1}

to distinguish between them. Therefore in the following Sǫ and S
[n]
ǫ will be a K3 surface and its

Hilbert scheme of n points when ǫ = 0 or an abelian surface and its generalized Kummer when
ǫ = 1. When H ⊂ Sǫ is a divisor, we will denote with {H} the connected component of Hilb(Sǫ)
containing |H|. We will use nodal curves, therefore we use the following result from [CK] and
[KLM].

Proposition 5.2. Let (Sǫ,H) be a general polarized K3 or abelian surface of genus p := pa(H).
Let δ and n be integers satisfying 0 ≤ δ ≤ p− 2ǫ and n+ ǫ ≥ 2. Then the following hold:

(i) There exists a g1n+ǫ on the normalization of a curve in {H} with δ nodes as singularities
if and only if

(5.1) δ ≥ α
(
p− δ − ǫ− (n− 1 + 2ǫ)(α+ 1)

)
,
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where

(5.2) α =
⌊ p− δ − ǫ

2(n − 1 + 2ǫ)

⌋
;

(ii) whenever nonempty, the scheme of these linear series is equidimensional of dimension
min{p − δ, 2(n − 1 + ǫ)}.

We have a natural map from the g1n+ǫ on the curve to the Hilbert scheme S[n+ǫ] which, up to

translation, lands in S
[n]
ǫ . The class of this rational curve Rp−δ

n in S
[n]
ǫ is computed in [KLM2,

Lemma 3.3] and is equal to H−(p−δ+n−1+ǫ)τn, where τn is the class of a fibre of the exceptional
divisor 2∆n of the Hilbert-Chow morphism. Let e = GCD(2n−2+4ǫ, p−δ+n−1+ǫ), f = (p−δ
and d = (2n − 2 + 4ǫ)/e. Then the class dH − f∆n is the class of a divisor whose dual curve is

Rp−δ
n .

Let us construct enough curves to obtain a dense subset of all moduli spaces of pairs: Let g = p−δ
be the geometric genus and let k = g−ǫ modulo 2(n−1+2ǫ) be in the interval [0, 2(n−1+2ǫ)−1].

Let α = (g − ǫ− k)/(2n − 2 + 4ǫ) and let δmin be (g−ε−k)
2 (α− 1) + kα.

Proposition 5.3. Keep notation as above, then for all g ≥ n, all r ∈ N and all pairs (Sε,H)
of genus g + r + δmin there exists a curve in {H} with δmin + r nodes, geometric genus g and

a g1n+ǫ on its normalization such that the associated rational curve Rg,δmin+r in S
[n]
ǫ has class

H − ((g − ǫ) + (n− 1 + 2ǫ))τn and square (2r − 2 + 2ǫ)− (n−1+2ǫ−k)2

2(n−1+2ǫ) .

Proof. The existence statement is clear, as α is as in (5.2) and δmin is the minimal number of
nodes satisfying (5.1), therefore this is a direct consequence of Prop. 5.2. If we write the genus of
(S,H) as (g − ǫ− k) + r + δmin + ǫ+ k, standard algebraic computations give us that

g + δmin =
(g + ǫ+ n− 1)2)− k2

4(n− 1 + 2ǫ)
−
n− 1 + 2ǫ− 2k

4
+ ǫ.

Therefore the square of Rg,δmin+r is

q(Rg,δmin+r) = (2r − 2 + 2ǫ)−
(n− 1 + 2ǫ− k)2

2(n− 1 + 2ǫ)
.

�

From the class of the above curve, it is clear that the divisibility of the dual divisor Dg,r,δmin
is

determined by the integer k: H − ((g− ǫ)+ (n− 1+ 2ǫ))τn = H − (α+1/2)∆n − kτn = L− k′τn,

where L is a class in H2(S
[n]
ǫ ) and −n + 1 − 2ǫ ≤ k′ < n − 1 + 2ǫ. Hence the dual divisor has

divisibility t, where t is the order of k′ modulo 2n − 2 + 4ǫ.

Proposition 5.4. The set of pairs (S
[n]
ǫ ,Dg,r,δmin

) with Dg,r,δmin
dual to the curves Rg,δmin+r of

Prop. 5.3, D2
g,r,δmin

= 2d and div(Dg,r,δmin
) = t is dense in all connected components of M2d,t.

Proof. We wish to consider the curves Rg,δmin+r. As proven in [CP, Thm. 2.4] for Hilbert
schemes and [MP, Thm. 4.2] for Kummers, for every connected component of M2d,t there exists

k′ ∈ [−n+ 1− 2ǫ, n − 1 + 2ǫ] and (Sǫ,H
′) polarized surface such that (S

[n]
ǫ , tH ′ + k′∆) is in the

desired connected component of M2d,t. Clearly, we can replace tH ′ with tL for any L ∈ H2(S[n],Z)
with L2 = H ′2 as tL+ k′∆ will have the same monodromy invariant of tH ′ + k′δ. Therefore, for
any t, d and any connected component of M2d,t, there are r and Sǫ such that (Sǫ,Dg,r,δmin) is in
the desired component, and this happens for countably many g ≥ n+ ǫ. �
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Summing all of these, we are ready to prove Theorem 5.1.

Proof. Let (X,H) be a polarized pair (of the appropriate deformation types) and let M ⊂ M2d,t

be its component of the moduli space of pairs. By Prop. 5.4, there is a dense subset of M whose
points have a family of rational curves of class dual to H. As the moduli space of stable rational
curves is closed, there are rational curves on every element of M . �

Remark 5.5. In [OSY, Corollary A.3] the authors discovered a numerical condition insuring, for

projective deformations of K3[n]s, the existence of a uniruled divisor ruled by rational curves hav-
ing primitive class. The condition is also necessary if the curves are irreducible (e.g. at the general
point in the corresponding moduli space). Nevertheless the numerical condition holds at most in
a finite number of cases in each dimension 2n (even letting the degree of the polarization vary).
Therefore in these sporadic cases, the primitive rational curves that we construct in Theorem 5.1
must then cover coisotropic sub-varieties of codimension > 1.

For higher-dimensional subvarieties the deformation theory can either be understood in the smooth
case (cf. [LePa] which generalizes the Lagrangian case, done in [Voi89]), but it is not sufficient to
conclude the existence for a general X, or it is very difficult to control in the singular case (see
[Le] for some partial results in this direction). Our hope is that, with some further work, this new
approach via density can be successfully used to obtain the existence of constant cycle isotropic
subvarieties of dimension ≥ 2, a problem which seems to be a challenging one.

6. Fano varieties of lines of special cubic fourfolds

The goal of the section is to observe that it is possible to deduce immediately from Theorem 3.13
a generalization of some results obtained by Hassett on the Fano variety of lines of special cubic
fourfolds. We need to recall the basic definitions and results.

A cubic fourfold is smooth cubic fourfold hypersurface in P5. We consider the coarse moduli
space C parametrizing cubic fourfolds. Following Hassett [Hass00] a cubic fourfold X is said to be
special if it contains an algebraic surface not homologous to a complete intersection. We collect
many of Hassett’s result in the following statement.

Theorem 6.1. (i) (see [Hass00, Theorem 3.1.2 and Proposition 3.2.4]) A cubic fourfold X
is special (of discriminant d) if and only if the lattice H4(X,Z) ∩ H2,2(X) contains a
primitive lattice of rank 2 and discriminant d, which contains the class h2, where h denotes
the hyperplane class.

(ii) (see [Hass00, Theorem 4.3.1]) Let d ≥ 8 be an integer. The set Cd of special cubic fourfolds
of discriminant d is not empty iff d ≡ 0, 2(mod 6),

(iii) (see [Hass00, Theorem 3.2.3]) Assume d ≥ 8 is an integer : d ≡ 0, 2(mod 6). Then the set
Cd is an irreducible algebraic divisor of C .

On the other hand it is well known, thanks to Beauville and Donagi [BD85, Proposition 2], that
the Fano variety of lines F (X) on a cubic fourfold X is an IHS variety deformation equivalent to
the Hilbert scheme of two points on a K3 surface. Varying the cubic fourfold we get a complete
family of such deformations, i.e. a whole connected component of the relevant moduli space.

Moreover they showed (see [BD85, Proposition 4]) that the natural Abel-Jacobi map yields an
isomorphism of Hodge structures

H4(X,Z) → H2(F (X),Z).

More precisely (see [BD85, Proposition 6]) we have an isomorphism of polarized Hodge structures

(6.1) H4(X,Z)(−1)h2 → H2(F (X),Z)g
15



where g is the class of the hyperplane section of F (X) in the Plücker embedding and H2(F (X),Z)g
(respectively H4(X,Z)(−1)h2) denotes the classes orthogonal to g (respectively the classes orthog-
onal to h2 in H4(X,Z) endowed with the opposite sign of the intersection form). Finally recall
that by Voisin [Voi86] we know that the natural period map for cubic fourfold is a open immersion.

The question is to understand when F (X) is isomorphic to (and not only deformation of) the
Hilbert scheme of 2 points on a K3. Hassett proved the following necessary condition.

Proposition 6.2 (Proposition 6.1.3, [Hass00]). Assume that the Fano variety of a generic special

cubic fourfold of discriminant d is isomorphic to S[2] for some K3 surface S. Then there exist

positive integers m and a such that d = 2m2+m+1
a2 .

Then he also obtained the following sufficient condition.

Theorem 6.3 (Theorem 6.1.4, [Hass00]). Assume that d = 2(m2 +m+1) where m is an integer
≥ 2. Then the Fano variety of a generic special cubic fourfold X of discriminant d is isomorphic
to S[2], where S is a K3 surface.

Our main result is the following.

Theorem 6.4. For every integer d such that the set Cd of special cubic fourfolds of discriminant
d is not empty, those whose Fano variety of lines is birational to a K3[2], of a fixed degree 2e0,
are dense in the euclidean topology.

Proof. By Voisin’s Torelli theorem and the isomorphism of polarized Hodge structures (6.1) we can

see Cd as a divisor in the period domain ΩΛ, where Λ ∼= H2((K3)[2],Z). By [Hass00, Proposition
3.2.4], up to automorphisms fixing h2, there exists a unique primitive sublattice K ⊂ H4(X,Z)

of rank 2 and discriminant d, which contains the class h2. Let K̃ ⊂ H2(F (X),Z) be its image
via the isomorphism (6.1). By Theorem 6.1, items (ii) and (iii), Cd corresponds, via the period

map MΛ → ΩΛ, to the image of a connected component M0
L, where L is (K̃)⊥. Now take

N ⊂ H2((K3)[2],Z) to be the rank 2 sublattice generated by the exceptional class e and by a
class hS orthogonal to e and of square 2e0. Notice that DN is the locus of manifolds birational
to S[2], where S is a K3 surface having a positive class of degree 2e0. Then by Theorem 3.13 the
(non-empty) set DN is dense in M0

L and we are done. �

Remark 6.5. In [DM, Proposition 5.18], a similar density statement was proved, namely that
there are countable degrees 2e for a general K3 surface S such that S[2] ∼= F (X) for some cubic
fourfold X and these cubic fourfolds are dense in the euclidean topology. This result differs from
ours in two ways: it is stronger as the Fano of lines on these cubic fourfolds are actually isomorphic
to Hilbert schemes and not only birational, however it is at the same time weaker in the sense
that we can obtain density also by fixing a degree 2e0 for the K3 without letting it vary.

Remark 6.6. By Proposition 6.2, for all integers d 6= 2m2+m+1
a2

the euclidian density given by
Theorem 6.4 is the best result one can obtain.

References

[Add] N. Addington, On two rationality conjectures for cubic fourfolds, Math. Res. Lett. 23 (2016), no. 1,
1–13.

[AV] S. Anan’in, M. Verbitsky, Any component of moduli of polarized hyperkähler manifolds is dense in its
deformation space. J. Math. Pures Appl. (9) 101 (2014), no. 2, 188–197.

[Art] M. Artin, Algebraization of formal moduli II, Ann. of Math., 91 (1970), 88–135.
[BHTv2] A. Bayer, B. Hassett, Yu. Tschinkel, Mori cones of holomorphic symplectic varieties of K3 type,

arXiv:1307.2291v2.

16

http://arxiv.org/abs/1307.2291


[BHT] A. Bayer, B. Hassett, Yu. Tschinkel, Mori cones of holomorphic symplectic varieties of K3 type, Annales
E.N.S., 48 (2017), 41–50.

[BM] A. Bayer, E. Macrì, MMP for moduli spaces of sheaves on K3s via wall-crossing: nef and movable
cones, Lagrangian fibrations. Inventiones math. 198 (2014), no. 3, 505–590.

[Be83] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differential Geom.
18 (1983), no. 4, 755–782.

[B86] A. Beauville, Sur l’anneau de Chow d’une variété abélienne. Math. Annalen 273, 647–651 (1986).
[B07] A. Beauville, On the splitting of the Bloch-Beilinson filtration. Algebraic cycles and motives (vol. 2),

London Math. Soc. Lecture Notes 344, 38–53; Cambridge University Press (2007).
[BD85] A. Beauville, R. Donagi, La variété des droites d’une hypersurface cubique de dimension 4. C.R.A.S.

301 (1985), 703–706.
[BV] A. Beauville, C. Voisin, On the Chow ring of a K3 surface. J. Algebraic Geom. 13 (2004), 417–426.
[Ca83] F. Campana, Densité des variétés hamiltoniennes primitives projectives, C. R. Acad. Sci. Paris Série

1. 297 (1983) 413–416.
[CFGK] C. Ciliberto, F. Flamini, C. Galati and A.L. Knutsen, Moduli of nodal curves on K3 surfaces, Adv.

Math. 309 (2017) 624–654.
[CK] C. Ciliberto and A.L. Knutsen, On k-gonal loci in Severi varieties on general K3 surfaces, J. Math.

Pures Appl. 101 (2014), 473–494.
[CP] F. Charles, G. Pacienza, Families of rational curves on holomorphic symplectic varieties,

arXiv:1401.4071v2 [math.AG].
[CU] L. Clozel, E. Ullmo, Equidistribution de sous-variétés spéciales, Ann. of Math. 161 (2005), 1571–1588.
[DM] O. Debarre, E. Macrì, Unexpected isomorphisms between hyperkähler fourfolds, International Mathe-

matics Research Notices, rnx333, https://doi.org/10.1093/imrn/rnx333.
[Fer11] A. Ferretti, The Chow ring of double EPW sextics. Rend. Mat. Appl. (7) 31 (2011), no. 3-4, 69–217.
[FGAe] B. Fantechi, L. Göttsche, L. Illusie, S. L. Kleiman, N. Nitsure, A. Vistoli, Fundamental algebraic

geometry. Grothendieck’s FGA explained, Mathematical Surveys and Monographs vol. 123, Amer.
Math. Soc. 2005.

[Fu] Lie Fu, Beauville-Voisin conjecture for generalized Kummer varieties, I.M.R.N. (2015), no. 12, 3878–
3898.

[FLV] Lie Fu, R. Laterveer, Ch. Vial, The generalized Franchetta conjecture for some hyper-Kähler varieties,
arXiv:1708.02919.

[Fuj] A. Fujiki, On primitively symplectic compact Kähler V-manifolds of dimension four. in Classification
of algebraic and analytic manifolds. Progr. Math. 39 (1983), 71-250.

[FP] W. Fulton, R. Pandharipande, Notes on stable maps and quantum cohomology. Algebraic geometry–
Santa Cruz 1995, 45–96, Proc. Sympos. Pure Math., 62, Part 2, Amer. Math. Soc., Providence, RI,
1997.

[GriHS10] V. Gritsenko, K. Hulek, G. K. Sankaran, Moduli spaces of irreducible symplectic manifolds. Compos.
Math. 146 (2010), no. 2, 404–434.

[Hass00] B. Hassett, Special cubic fourfolds. Compositio Math. 120 (2000), 1–23.
[Huy97] D. Huybrechts, Birational symplectic manifolds and their deformations. J. Diff. Geom. 45 (1997),

488-513.
[Huy99] D. Huybrechts, Compact hyperkähler manifolds: Basic results. Invent. Math. 135 (1999), 63–113.
[Huy11] D. Huybrechts, A global Torelli theorem for hyperkähler manifolds [after M. Verbitsky]. Séminaire

Bourbaki: Vol. 2010/2011. Exposés 1027–1042. Astérisque No. 348 (2012), Exp. No. 1040, x, 375–403.
[Huy14] D. Huybrechts, Curves and cycles on K3 surfaces. Algebraic Geometry 1 (2014), 69–106.
[KV] L. Kamenova, M. Verbitsky, Families of Lagrangian fibrations on hyperkaehler manifolds, Advances in

Math. 260 (2014), 401–413.
[KLM] A. L. Knutsen, M. Lelli-Chiesa, and G. Mongardi, Severi varieties and Brill-Noether theory of curves

on abelian surfaces, arXiv:1503.04465 to appear in Crelle’s Journal https://doi.org/10.1515/crelle-
2016-0029

[KLM2] A.-L. Knutsen, M. Lelli-Chiesa, G. Mongardi, Wall divisors and algebraically coisotropic subvarieties of
irreducible holomorphic symplectic manifolds, arXiv:1507.06891, to appear in the Trans. AMS, DOI:
https://doi.org/10.1090/tran/7340.

[Lat] R. Laterveer, A remark on Beauville’s splitting property, Manuscripta Math. 156 Issue 1–2, (2018),
pp. 117–125

[Le] Ch. Lehn, Deformations of Lagrangian subvarieties of holomorphic symplectic manifolds, Math. Res.
Letters 23 (2016) number 2, 473–497.

[LePa] Ch. Lehn, G. Pacienza, Stability of coisotropic fibrations on holomorphic symplectic manifolds,
arXiv:1512.08672v2 [math.AG]. To appear in the Annali S.N.S. di Pisa.

[Lin15a] H.-Y. Lin, On the Chow group of zero-cycles of a generalized Kummer variety, Advances in Mathematics
298 (2016), 448–472.

17

http://arxiv.org/abs/1401.4071
http://arxiv.org/abs/1708.02919
http://arxiv.org/abs/1507.06891
http://arxiv.org/abs/1512.08672


[Lin15b] H.-Y. Lin, Lagrangian constant cycle subvarieties in Lagrangian fibrations, International Mathematics
Research Notices, rnx334, https://doi.org/10.1093/imrn/rnx334.

[Mar1] E. Markman, Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflec-
tions. Kyoto J. Math. 53 (2013), no. 2, 345?403.

[Mar2] E. Markman, A survey of Torelli and monodromy results for holomorphic-symplectic varieties. Complex
and differential geometry, 257–322, Springer Proc. Math., 8, Springer, Heidelberg, 2011.

[Mar3] E. Markman. Lagrangian fibrations of holomorphic-symplectic varieties of K3
[n]-type. In Anne Frühbis-

Krüger et al., editor, Algebraic and Complex Geometry, volume 71. Springer Proceedings in Math.,
2014.

[MaMe] E. Markman, S. Mehrotra, Hilbert schemes of K3 surfaces are dense in moduli, arXiv:1201.0031

[math.AG]. Math. Nach. 290, no. 5-6 (2017), 876–884 https://doi.org/10.1002/mana.201600161.
[Mat99] D. Matsushita, On fibre space structures of a projective irreducible symplectic manifold. Topology, 38

no. 1 (1999), 79–83.
[Mat01] D. Matsushita, Addendum to: On fibre space structures of a projective irreducible symplectic manifold.

Topology, 40 no. 2 (2001), 431–432.
[Mat15] D. Matsushita, On deformations of Lagrangian fibrations, arXiv:0903.2098v2 [Math.AG], June 2015.

In: Faber C., Farkas G., van der Geer G. (eds) K3 Surfaces and Their Moduli. Progress in Mathematics,
315. Birkhäuser,

[Mat17] D. Matsushita, On isotropic divisors on irreducible symplectic manifolds, arXiv:1310.0896 [Math.AG],
May 2014. Now available in “Higher Dimensional Algebraic Geometry: In Honor of Professor Yujiro
Kawamata?s 60th Birthday” , Advanced Studies in Pure Mathematics 74 (2017) 291–312.

[Mil] J.S. Milne, Introduction to Shimura varieties, available on the author’s webpage
www.jmilne.org/math/xnotes/svi.pdf.

[MZ] C. Meachan, Z. Zhang, Birational geometry of singular moduli spaces of O’Grady type, Adv. Math.,
296 (2016), 210–267.

[Mon2] G. Mongardi, On the monodromy of irreducible symplectic manifolds, Alg. Geom. (2016) no. 3, 385–391.
[MO] G. Mongardi, J. C. Ottem, Curve classes on irreducible holomorphic symplectic varieties,

arXiv:1805.12019.
[MP] G. Mongardi, G. Pacienza, Polarized parallel transport and uniruled divisors on deforma-

tions of generalized Kummer varieties, International Mathematics Research Notices rnw346,
https://doi.org/10.1093/imrn/rnw346.

[MW] G. Mongardi, M. Wandel, Induced automorphisms on irreducible symplectic manifolds, J. Lond. Math.
Soc. (2) 92 (2015), no. 1, 123–143.

[Moo] B. Moonen, Linearity properties of Shimura varieties, I, J. Algebraic Geom. 7 (1998), 539–567.
[Nik] V. V. Nikulin, Integral symmetric bilinear forms and some of their applications, Izv. Akad. Nauk SSSR

Ser. Mat., 43:1 (1979), 111-177.
[OSY] G. Oberdieck, J. Shen and Q. Yin, Rational curves in the Fano varieties of cubic 4-folds and Gromov-

Witten invariants, arXiv:1805.07001v1.
[Rie] U. Riess, On Beauville’s Conjectural Weak Splitting Property, Int. Math. Res. Not. IMRN 2016, no.

20, 6133–6150.
[SY] J. Shen, Q. Yin, K3 categories, one-cycles on cubic fourfolds, and the Beauville-Voisin filtration,

arXiv:1712.07170v1.
[SYZ] J. Shen, Q. Yin, X. Zhao Derived categories of K3 surfaces, O’Grady’s filtration, and zero-cycles on

holomorphic symplectic varieties, arXiv:1705.06953v2.
[Ver] M. Verbitsky, A global Torelli theorem for hyperkahler manifolds, Duke Math. J. 162, Number 15

(2013), 2929–2986.
[Vbook] C. Voisin, Théorie de Hodge et géométrie algébrique complexe. Cours Spécialisés [Specialized Courses]

10. Société Mathématique de France, Paris, 2002.
[Voi86] C. Voisin. Théorème de Torelli pour les cubiques de P5, Invent. Math. 86, (1986), 577–601. + Erratum.
[Voi89] C. Voisin. Sur la stabilité des sous-variétés lagrangiennes des variétés symplectiques holomorphes. Com-

plex projective geometry (Trieste, 1989/Bergen, 1989), 294–303, London Math. Soc. Lecture Note Ser.,
179, Cambridge Univ. Press, Cambridge, 1992.

[Voi08] C. Voisin, On the Chow ring of certain algebraic hyper-Kähler manifolds, Pure and Applied Mathe-
matics Quarterly, Volume 4, Number 3, (Special issue in honor of Fedya Bogomolov), 2008.

[Voi12] C. Voisin, Rational equivalence of 0-cycles on K3 surfaces and conjectures of Huybrechts and O’Grady,
Recent Advances in Algebraic Geometry, editors C. Hacon, M. Mustaţă et M. Popa, London Mathe-
matical Society Lecture Notes Series 417, Cambridge University Press, 422–436 (2015).

[Voi15] C. Voisin, Remarks and questions on coisotropic subvarieties and 0-cycles of hyper-Kähler varieties,
“K3 Surfaces and Their Moduli”, Progress in Math, Proceedings of the Schiermonnikoog conference
2014, Birkhäuser.

[Wie] B. Wieneck, Monodromy Invariants and Polarization Types of Generalized Kummer Fibrations,
arXiv:1606.09010v2 [math.AG].

18

http://arxiv.org/abs/1201.0031
http://arxiv.org/abs/0903.2098
http://arxiv.org/abs/1310.0896
http://arxiv.org/abs/1805.12019
http://arxiv.org/abs/1805.07001
http://arxiv.org/abs/1712.07170
http://arxiv.org/abs/1705.06953
http://arxiv.org/abs/1606.09010


[Yin] Q. Yin, Finite-dimensionality and cycles on powers of K3 surfaces, Comm. Math. Helvetici, 90, Issue
2, 2015, pp. 503–511.

[Yos] K. Yoshioka, Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an
abelian surface, arXiv:1206.4838.

Alma Mater studiorum Universitá di Bologna Dipartimento di Matematica, Piazza di Porta San

Donato 5, Bologna, 40126 Italia

E-mail address: giovanni.mongardi2@unibo.it

Institut Elie Cartan de Lorraine, Université de Lorraine, B.P. 70239, F-54506 Vandoeuvre-lès-

Nancy Cedex France

E-mail address: gianluca.pacienza@univ-lorraine.fr

19

http://arxiv.org/abs/1206.4838

	Copertina_postprint_IRIS_UNIBO (2) - Copy
	1804.09440
	1. Introduction
	2. Preliminaries
	3. Density of Noether-Lefschetz loci
	3.1. Mori cones
	3.2. Lagrangian fibrations

	4. Equivalent conjectures
	5. Existence of rational curves via density
	6. Fano varieties of lines of special cubic fourfolds
	References


