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Luis Jesús Martı́n León, Juan Luis Herrera, Javier Berrocal and Jaime Galán-Jiménez
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Abstract—In recent years, the number of devices connected
to the Internet (and hence the data traffic) has significantly
increased. The adoption of the Internet of Things paradigm, the
use of the MicroServices Architecture for applications and the
possibility of deploying such applications at different layers (fog,
edge, cloud), makes the selection of an appropriate deployment
a critical task for network operators and developers. In this
paper, an emulation framework is proposed to allow them
make a decision for the network, computing and application
deployment in the cloud continuum, while satisfying the required
Quality of Service. The framework is compatible both for IP and
SDN network paradigms and is extensible to different types of
scenarios thanks to its approach based on Docker containers.
The evaluation over a realistic network scenario shows that it
is extensible to any scenario and deployment required by the
research community working on the cloud continuum.

Index Terms—Cloud continuum, SDN, framework, Fog, IoT

I. INTRODUCTION

The Internet of Things (IoT) is an emerging technology
with a high significance related with technical, social and
economic aspects. Nowadays, it is common to use IoT devices
in different environments to perform daily tasks through mul-
tiple communication models, e.g., smart plugs, fridge sensors,
GPS, parking and agriculture sensors, etc. Moreover, it also
introduces new concepts about energy efficiency and security
in smart cities or smart homes.

IoT devices usually communicate with services, which are
pieces of software that are distributed throughout different
computing devices. The MicroService Architecture (MSA)
allows to split a monolithic application into multiple small
applications with independent responsibilities. The set of
ordered microservices belonging to an application is known
as workflow and user requests are associated a single type of
workflow.

The increase in the number of IoT devices presents a
direct impact over the traffic that is flowing through the
Internet. The number of devices connected to IP networks
is approximately three times the world’s population in 2023,
about 29.3 billion networked devices [1]. Along with new
applications that require strict Quality of Service (QoS) levels
such as, e.g., holoportation, metaverse, etc., the management
of large volumes of data flowing through the networks is a
challenge for network operators.

In an IoT-based network scenario, three layers must be
considered to optimize the QoS: i) the network layer, in which

network resources are managed to optimize the network QoS;
ii) the computing layer, where computing devices provide
computing resources to allow IoT applications run on top of
them; and iii) the application and services layer, for which the
QoS of applications is aimed to be optimized.

The application and service layer refers to IoT applications
which are designed following the MSA pattern. MSA applica-
tions can be differentiated through division into small loosely-
coupled microservices [2]. If simple tasks collaborate, more
complex functionalities can be handled. Moreover, distributed
implementation provides higher flexibility. Application logic
and device capacity directly affect the application perform-
ance, in other words, latency and response time. In order
to optimize the application QoS, the problem that aims at
optimally placing the set of microservices in an infrastructure
is known in the literature as the Decentralized Computation
Distribution Problem (DCDP) [3].

The computing layer focuses on a smart service distribu-
tion. Commonly, cloud computing was used to deploy IoT
applications. However, cloud servers tend to be far away from
IoT devices. Thus, it is convenient to move microservices to
fog computing nodes because they are closer to users and
the applications response time is lower. As result, fog nodes
location is crucial to optimize the QoS. Such problem is known
as Fog Node Placement Problem (FNPP) [4].

Finally, the network layer is in charge of communications. A
key aspect in MSA-based IoT application environments is the
scalability and flexibility of the network. Since microservices
are replicated in different network nodes, service discovery
must be carried out. The emergence of enablers such as
Software-Defined Networks (SDN) and Network Function Vir-
tualization (NFV) perfectly fit with the idea of decentralising
IoT applications using the MSA paradigm. SDN separates
control and data planes, whose correct interaction is crucial
for achieving the desired network QoS. Thus, the Controller
Placement Problem (CPP) [5] is a key problem to be solved
in this type of scenarios, putting the SDN controller wherever
the QoS from the switches is best.

Generally, companies tend to reduce the deployment cost
and improve the network performance. To achieve such goals,
a multi-objective deployment can be carried out [4] by solving
the CPP, DCDP and FNPP problems. In this paper, an emula-
tion framework is provided to emulate adhoc solutions from



researchers in terms of CPP, DCDP, FNPP and any combin-
ation of them. So far, there are no tools that can combine
a three-layered scenario considering application, computing
and network dimensions [6], [7], [8] the main goal of this
work is to propose a framework that would help researchers
and network operators to make a decision for the network,
computing and application deployment, while satisfying or
optimizing the QoS. Specifically, the main contributions of
this work are the following ones:
• The proposal of a framework to deploy IoT applications

based on microservices in a Fog-SDN based scenario.
There is the possibility to include different type of IoT
applications composed by different kind of microservices.

• The evaluation of the proposed framework over diverse
realistic IoT scenarios and use cases.

The remainder of this paper is structured as follows. Section
II describes the proposed framework and the modules it is
composed of. Section III analyzes the obtained results over
realistic use cases. Finally, Section IV concludes the work.

II. EFCC FRAMEWORK

In this section, the proposed framework, namely Emulation
Framework to evaluate network, computing and application
deployments in the Cloud Continuum (EFCC), is described
according to its different modules. EFCC is composed of 3
different modules: i) Dadosim file (Sec. II-A), ii) EFCC parser
(Sec. II-B), and iii) Kathará laboratory (Sec. II-C) with the
corresponding Docker containers.

A. Dadosim file

Dadosim file is a user personalized file that stores all the
data that is required as input by the framework. Dadosim
format is similar to JSON format and data is organized in
blocks as in Fig. 1a, which represents the scenario of Fig. 1b.
The different blocks are described next:
• Network: the framework supports two different types of

computer networks: IP and SDN. Depending on the type
of network, the behaviour of framework will be different.

• Microservices: list of different microservices to be used
by the applications in the framework. It is important to
differentiate microservices through their identifier, and
to indicate the URL of the Docker image which the
microservice is going to use.

• Hosts: in order to create the network topology, hosts must
be defined with an identifier and specific requirements
such as power (in CPU percentage) and memory (in
bits). Moreover, information about Capex (Capital Ex-
penditures), and Opex (Operating Expense) can also be
specified (they are not mandatory). Finally, a list with the
set of microservices that will be deployed at each host is
defined (it can be also empty).

• Switches: as in the case of hosts, switches are defined by
an identifier. When the attribute ”controller” matches with
the identifier and the ”deployed” attribute is true, then
this switch is directly connected to the SDN controller.
Furthermore, this block related to switches can have

optional metrics for the Capex and Opex. The route field
indicates the deployment path of the controller associated
with that switch. If it is not indicated, a single default
controller will be used.

• Workflows: a list with the different types of workflows
is required. Each workflow represents the information
associated to an IoT request by a specific user. The
first attribute is ”chain”, which represents a list with
the microservices that are going to take action in this
workflow. This chain is an ordered set of microservices
that must be executed according to the application re-
quirements. The IoT device will be deployed in the host
that it is indicated in the ”starter” attribute. Besides, the
docker image for the IoT application is defined in the
”iot image” attribute. If the last microservice requires to
send back a response to the IoT device that requested
the application, the ”response” attribute would be true,
whereas if the response is not necessary this attribute
is false. The last attribute for the Workflows block is
the chain deployment, which includes the information
of each microservice that is required by the workflow
(the same microservices indicated in the first attribute).
Every microservice has its node deployment (fog or
cloud), the port at which the microservice will listen
the incoming requests and a list of hosts and switches
with the route or path that the request should follow
to reach the destination. If the route is not specified, it
is automatically calculated by the framework using the
shortest path according to Dijkstra algorithm.

• Parameters: this block includes additional information
as the control message size to be able to, e.g., assess
the overhead in the network. It is open to new potential
parameters that the model to be evaluated by the user
could require.

• Links: to finally build the network topology, the set of
links with their source and destination nodes, as well as
their latency (in milliseconds) and capacity (in Bytes)
must be specified.

Some capacities metrics are expendable, that is to say, it is
possible to omit this attributes, for example, capex and opex
metrics in links, switches and hosts. The user must indicate the
file with ”.dadosim” extension to execute the Parser program
that is described in the next section II-B.

B. EFCC parser

Once the input data required by the framework is described
by means of the Dadosim file, a parser has been developed
with the goal of creating Docker containers [9] and connect
them to represent the Fog-SDN scenario with IoT applications
based on the MSA paradigm.

1) Containers: The elements of the previously explained
Dadosim file that have a direct translation onto a Docker
container are the network elements, i.e., switches (both for IP
and SDN networks) and the SDN controller if the scenario
is an SDN one. Moreover, a container is created for each
Cloud or Fog node that has a deployed microservice, whose



Figure 1. Dadosim structure

characteristics are specified in the Dadosim file (including the
microservice Docker image). Docker does not allow to use
more than one image within a container, which is an important
constraint. It must have as many containers as microservices.
In addition, microservices will receive requests from the IoT
devices deployed in the end hosts, and each of these IoT
devices also has a single Docker container associated with
it. For instance, in Fig. 2 Fog node has two microservices
deployed, which is translated into two Fog containers. It is
possible to deploy a microservice and an IoT device in the
same host, as the Docker containers are deployed in the same
way, that is to say, separated. If the user aims at effectively
limiting network metrics (bandwidth and delay) it is necessary
to have the iproute package installed within the Docker images
due to the fact that the tc command needs such library.
Otherwise, QoS values could not be gathered.

2) Workflows: Workflows translate requests coming from
IoT devices into microservices (deployed in Fog or Cloud
nodes). As previously explained, each workflow is composed
by a chain of microservices, which have functionalities that
are executed following an specific order. The objective is to
satisfy the request made by the IoT device defined as source
node. In Fig. 2, a representation of a workflow is shown in
red colour. This workflow is requested by the IoT device of
host 2 (H2 IoT device2) and requires microservices 2 and 3

Figure 2. Docker container view

located in the Fog node.
In the deployment chain of each microservice the user can

specify the port where it will be deployed within the host
(Fog or Cloud) and the route that the request will follow until
it reaches the host. The routing information will be reflected
in a JSON file as input for the configuration of our controller
(explained later in Sec. II-D). If any microservice does not
have such a route, Dijkstra algorithm will be executed to assess
the shortest path between the IoT device and the destination
host, where the microservice is deployed.

3) Creation and association of links and domains: Once
all the containers are created and ready, the Dadosim links are
registered. These links are in charge of connecting switches
and hosts to build the network topology. However, we find
a limitation due to the use of Docker technology. It will
be necessary to create multiple virtual links, as many as
containers correspond to a host, to replicate a real link in
several virtual links, due to the above mentioned restriction
(Docker only allows to store one microservice or IoT device
per container, Sec. II-B1). Real links are understood as those
links that are explicitly specified in the Dadosim input file.
Multiple virtual links make it possible to connect different
containers and assume the behavior of one unit. Since the
creation of the links is one of the most complex parts of
the framework, its main structure is presented in the form of
pseudocode.

Alg. 1 allows to achieve network connectivity by creating
and associating different domains with the containers that will
act as switches, IoT devices and microservices. First of all, it
is necessary to know if there is a microservice deployed on a
host or an IoT device, since it is possible to deploy different
microservices on the same host (lines 5-15). This number
is stored in order to create as many domains as necessary
(line 7). Once the domains have been created, it is necessary
to associate them with the link information among a switch
with the host IoT microservice/device or among two different
switches (lines 9,10,15). Next, the source and destination
nodes of each link is recorded according to its type (lines



Algorithm 1 Pseudo code of links creation
1: for all links in Dadosim do
2: if switch to switch link then
3: create and register the link
4: else
5: if (iotcounter + microservicecounter) > 1 then
6: if !domain then
7: Create domain
8: end if
9: link ← domain

10: linklist← link
11: else
12: if !domain then
13: Create domain
14: end if
15: link ← domain
16: end if
17: if switch to host link then
18: register link in source node
19: register link in destination node
20: else if host to switch link then
21: register link in destination node
22: register link in source node
23: end if
24: Add network getaway
25: end if
26: end for

17-23). Finally, the microservice/IoT device gateways of the
hosts will be added (line 24).

4) Domain features: Domains are considered as class C
networks whose network ID (by default) is built by concat-
enating a first part (by default 8), a second part (by default
0), a third part (by default 0) and the fourth and last part
corresponds to the host identifier. A new network ID is created
increasing by one unit the default address from the third part
to the first part when each of them fill up its range (0-255).
When we need to add a host to a network, its network ID
is used in such a way that the next available IP address is
considered.

C. Kathará laboratory and Docker containers

Kathará is a network virtualization tool that allows to
create and configure complex network topologies for testing
and emulation using containers [10]. Once we have collected
all the input information (Dadosim file) for the creation of
the environment in Kathará, we will proceed to write the
configuration files needed to run the scenario. To create and
configure containers to be used in the topology, the config-
uration file ”.startup” is used by Kathará, which allows us to
define the actions to be taken when each container is started.
Depending on the type of node that is considered (IoT devices,
microservices or switches), the configuration is different.
• IoT devices and microservices: IoT devices and mi-

croservices containers will configure their network in-
terfaces using the ifconfig command, indicating the IP
address of each interface, the netmask and the broadcast
addresses. The tc command will be used to limit the
bandwidth and delay of the corresponding interfaces.
Finally, the default gateway is registered for the host.

• Switches: the configuration file of a switch is more
complex than the previous ones since it will include
a set of Open vSwitch configuration commands. Such

commands are used to connect the interface of a switch
with the virtual ports that are necessary in each case. The
network interfaces will receive their IP address using the
ifconfig command and their delay and bandwidth will be
limited using the tc command.

Kathará uses the ”lab.conf” file to define the configuration
of the network topology to be created and emulated. This file
describes the Docker image per node, the type of shell, the
node processing capacity (for microservices and IoT devices),
the node memory capacity (for microservices or IoT devices)
and the association of its interfaces with its corresponding
domain. Additionally, a process has been designed to detect
problems in the deployment of the scenario in Kathará. When
all nodes finish their configuration, they create a text file in
the shared folder between the system and the virtual scenario
where they will write a message to indicate that they have
been successfully deployed. After starting the scenario in
Kathará we will execute a Python script that will check that
all containers have been deployed correctly and in case of any
error it will restart the environment.

D. POX controller

The proposed framework is devised to follow the SDN
paradigm and therefore a controller is required. For this reason,
POX controller [11] has been considered to act as SDN
controller thanks to its flexibility and degree of adaptation for
our case uses.

1) POX component behavior: In the following, the basic
network functions required to ensure connectivity between
IoT devices and microservices are explained. The controller
will be responsible of installing the necessary flow rules in
the SDN switches. The communication among switches and
the controller is provided by the OpenFlow (OF) protocol
and will allow traffic flows to be scheduled in the SDN
network. Routing decisions are responsibility of the user of
the framework, as already explained in Sec. II-A. In case no
routing is specified, the shortest path rule is considered.

2) POX component implementation: The implementation of
the custom POX component is done through a file written
in Python that will be used to build the Docker image.
Subsequently, this image will be assigned to the controller
container in the ”lab.conf” file. The controller container will
use the POX component along with the network data generated
by the EFCC Parser. The data needed to perform routing and
ensure network connectivity is stored in the data.json file,
which is located inside the controller directory. This file will
have all the information related to the network switches, the IP
addresses of each container that are part of a host, the gateways
for each container, the user-customized routes and the routing
tables of all switches in the network. The controller will use
this information in its various modules to manage all network
events and to be able to make the right decisions at all times.

E. IP networks

Although the proposed framework focuses on the emulation
over SDN networks, it is possible to perform the deployment



Figure 3. Scenario for the tests

over an IP network. In order to do this, it must be specified in
the ”network” field of the Dadosim file, as described in Sec.
II-A. Traditional IP and SDN paradigms have a number of
differences that affect the behavior of our proposed framework.
At first, no controller is required in an IP network. Instead,
distributed routing (RIP, OSPF) is considered by means of
Quagga tools [12]. The framework code is available in the
Bitbucket repository 1.

III. EXPERIMENTAL RESULTS

This section shows the functioning of EFCC Framework
over a realistic use case. The considered topology is rep-
resented in Fig. 3, which is composed of 7 SDN switches,
7 hosts and a SDN controller. For the same scenario, we
have considered two different Dadosim files: The first file
corresponds to a low-loaded scenario in which only 6 work-
flows are considered. Requests are made from all IoT devices
deployed in the different hosts toward the Fog and Cloud
nodes. In this case, each host has deployed the microservices
on which it makes requests, either in Cloud or in Fog. The
second Dadosim file increases the number of workflows to
evaluate the scalability over the resulting QoS. A total of 15
workflows are requested by IoT devices. Apart from the same
6 workflows of the first scenario, 9 additional workflows are
created. With the new workflows we consider all IoT devices
to make requests to all microservices deployed in Fog and
Cloud nodes.

Table I shows the information of each of the IoT requests,
including their ID, the starter node, and the workflow (i.e.,
chain of microservices). A differentiation of Cloud requests
and Fog requests has been made due to their difference in
the number of microservices per workflow. For each of the
experiments, ten executions have been carried out and the
average of the results obtained for both latency and bandwidth

1https://bitbucket.org/spilab/efcc/src/master/

Cloud requests
ID Starter Ms 1 Ms 2 Ms 3
1 h1 ecg cmp aes ecg
3 h3 ecg cmp aes ecg
5 h5 ecg cmp aes ecg
7 fog ecg cmp aes ecg
9 h2 ecg cmp aes ecg
11 h4 ecg cmp aes ecg
13 h1 ecg cmp aes ecg
15 h3 ecg cmp aes ecg

Fog requests
ID Starter Ms 1 Ms 2 Ms 3
2 h2 bpr aes bp -
4 h4 bpr aes bp -
6 cloud bpr aes bp -
8 h1 bpr aes bp -
10 h3 bpr aes bp -
12 h5 bpr aes bp -
14 h2 bpr aes bp -

Table I
WORKFLOWS

(a) Cloud requests

(b) Fog requests

Figure 4. Average latency per experiment

metrics was calculated.The traffic volume has been generated
with tools: Iperf (limited in time according to the test) and
Ping (limiting the number of packets to 20).

After executing EFCC Parser with the two Dadosim files,
the obtained results are shown in Figs. 4 and 5, showing the
average latency and the average bandwidth per IoT request.
Figure 4(a) shows the results obtained from the execution of
the workflows arriving at the cloud node. Ping tool has been
used to perform this experiment. It is observed that for the first
three experiments (common in the two scenarios) the small
scenario has always lower latency than the larger scenario due
to a slightly network congestion. Moreover, this figure shows
higher latency values than those obtained in Fig. 4(b), which



(a) Cloud requests

(b) Fog requests

Figure 5. Average bandwidth per experiment

depicts the latency of the requests made toward the Fog node.
This behavior is due to the fact that the Cloud node has a
higher latency in its network access link (see Fig. 3) and this
has an impact on the average of all requests arriving to it.

Figure 4(b) shows the average latency of the requests
arriving to the microservices deployed in the Fog. We can
notice that the results oscillate between the range of 0 ms and
1 ms, except in experiment 6. In this experiment we have an
outlier because the IoT device making the request is located in
the Fog node. The difference with the rest of the experiments
is that this IoT device is connected to the network through a
Fast Ethernet link with higher capacity and lower latency than
the WiFi links used by the rest of the hosts (see again Fig. 3).

Once latency has been analyzed, Fig 5(a) shows the results
of the experiment performed to measure the bandwidth of the
requests arriving to the Cloud node. This experiment has been
performed using the Iperf tool. Results obtained for the first
three workflows show that the bandwidth is higher in the small
scenario where there is a lower traffic volume. On the other
hand, we find a similar behavior to the previous figure (Fig.
4(b)), since experiment 7 performs a request from the Fog
node to the Cloud node, so that its access link to the network
is of type Fast Ethernet. The last outcome represented in Fig.
5(b) shows the results of the experiment performed on the Fog
node to measure its bandwidth. These results are very similar
to those obtained in the experiments performed on the Cloud
node (see Fig. 5(a)). The low-loaded scenario tends to have
higher bandwidth than the large one. In this case, experiment
6 is the one that shows an outlier result and it is due to the
fact that the Cloud node sends requests towards the Fog node

using a Fast Ethernet link in its network access.

IV. CONCLUSIONS

In this work, the framework EFCC has been proposed to
help researchers evaluate their deployment models in SDN-
Fog scenarios where IoT applications based on the MSA
paradigm are run. Since there are no tools that combine a
three-layered scenario considering application, computing and
network dimensions, EFCC will help researchers and network
operators to make a decision for the network, computing and
application deployment, while satisfying or optimizing the
QoS. The evaluation over a realistic network scenario shows
that it is extensible to any scenario and deployment required
by the research community working on the cloud continuum.
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