
18 April 2024

Alma Mater Studiorum Università di Bologna
Archivio istituzionale della ricerca

Optimizing the Response Time in SDN-Fog Environments for Time-Strict IoT Applications / Herrera, Juan
Luis; Galán-Jiménez, Jaime; Berrocal, Javier; Murillo, Juan Manuel. - In: IEEE INTERNET OF THINGS
JOURNAL. - ISSN 2327-4662. - ELETTRONICO. - 8:23(2021), pp. 17172-17185.
[10.1109/JIOT.2021.3077992]

Published Version:

Optimizing the Response Time in SDN-Fog Environments for Time-Strict IoT Applications

Published:
DOI: http://doi.org/10.1109/JIOT.2021.3077992

Terms of use:

(Article begins on next page)

Some rights reserved. The terms and conditions for the reuse of this version of the manuscript are
specified in the publishing policy. For all terms of use and more information see the publisher's website.

Availability:
This version is available at: https://hdl.handle.net/11585/959558 since: 2024-02-20

This is the final peer-reviewed author’s accepted manuscript (postprint) of the following publication:

This item was downloaded from IRIS Università di Bologna (https://cris.unibo.it/).
When citing, please refer to the published version.

http://doi.org/10.1109/JIOT.2021.3077992
https://hdl.handle.net/11585/959558

IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000 1

Optimizing the Response Time in SDN-Fog
Environments for Time-Strict IoT Applications

Juan Luis Herrera , Jaime Galán-Jiménez , Javier Berrocal , Member, IEEE, and

Juan Manuel Murillo , Member, IEEE

Abstract—This work has been published:
https://doi.org/10.1109/JIOT.2021.3077992 The Internet of
Things (IoT) paradigm offers applications the potential of
automating real-world processes. Applying IoT to intensive
domains comes with strict quality of service (QoS) requirements,
such as very short response times. To achieve these goals, the first
option is to distribute the computational workload throughout
the infrastructure (edge, fog, cloud). In addition, integration
of the infrastructure with enablers such as software-defined
networks (SDNs) can further improve the QoS experience,
thanks to the global network view of the SDN controller
and the execution of optimization algorithms. Therefore, the
best placement for both the computation elements and the
SDN controllers must be identified to achieve the best QoS.
While it is possible to optimize the computing and networking
dimensions separately, this results in a suboptimal solution.
Thus, it is crucial to solve the problem in a single effort. In
this work, the influence of both dimensions on the response
time is analyzed in fog computing environments powered by
SDNs. DADO, a framework to identify the optimal deployment
for distributed applications is proposed and implemented
through the application of mixed integer linear programming.
An evaluation of an IIoT case study shows that our proposed
framework achieves scalable deployments over topologies of
different sizes and growing user bases. In fact, the achieved
response times are up to 37.89% lower than those of alternative
solutions and up to 15.42% shorter than those of state-of-the-art
benchmarks.

Index Terms—Fog computing, edge computing, Internet of
Things (IoT), software-defined network (SDN)

I. INTRODUCTION

THE POPULARITY of IoT devices for the general public
has made them ubiquitous. We are surrounded by ev-

eryday objects (things) that are connected to the Internet and

Manuscript received January 00, 0000; revised January 00, 0000; accepted
January 00, 0000. Date of publication January 00, 0000; date of current
version January 00, 0000. This work was partially funded by the project
RTI2018-094591-B-I00 (MCI/AEI/FEDER,UE), by the 4IE+ Project (0499-
4IE-PLUS-4-E) funded by the Interreg V-A España-Portugal (POCTEP) 2014-
2020 program, by the Department of Economy, Science and Digital Agenda of
the Government of Extremadura (GR18112, IB18030), and by the European
Regional Development Fund. (Corresponding author: Juan Luis Herrera.)

The authors are with the Department of Computer Science and Com-
munications Engineering, University of Extremadura, Spain (e-mail: jlher-
rerag@unex.es).

Digital Object Identifier 00.000/JIOT.0000.0000000
Copyright (c) 2021 IEEE. Personal use of this material is permitted.

However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

run numerous IoT applications – programs that can interact
with the real world through IoT devices, obtain inputs from
their sensors and change the real world through their actuators.
This scenario makes IoT applications interesting for different
domains, both general-purpose domains, such as domotics, and
intensive domains, such as industry or healthcare.

The cloud computing paradigm is the most common option
for running these IoT applications [1]. In cloud computing, a
set of powerful servers, generally far away from IoT devices,
carry out the processing, while IoT devices need only to send
their requests to these servers. While a cloud-centric architec-
ture is enough for user-grade, general-purpose applications [2],
a purely cloud-centric architecture may not be enough to meet
the QoS requirements of complex and intensive applications.
Industrial Internet of Things (IIoT) applications such as factory
automation need very low response times [3], while Internet of
Medical Things (IoMT) applications can be very time sensitive
in executing artificial intelligence models [4]. Therefore, the
objective of this paper is to minimize the response time of
intensive IoT applications such as IIoT or IoMT applications.
Cloud computing servers are often far away from IoT devices
and thus may have latencies that may complicate the process
of obtaining a sufficiently short response time.

For this reason, other paradigms such as fog computing or
mist computing, which can be referred to under the umbrella
term fog computing [2], are emerging to support applications
with strict response-time requirements [2]. Fog computing
takes advantage of the computational capabilities of nodes
closer to end devices, as well as nodes of the devices them-
selves, by executing different parts of the IoT applications in
them. This approach makes it is easier to achieve shorter re-
sponse times than those possible by using pure cloud comput-
ing infrastructures. Therefore, in fog computing environments,
which nodes to use and which node should host which parts of
an application are decisions that must be made and affect the
provided response time [5]. The problem of making optimal
decisions, and thus distributing computations optimally, is
known as the decentralized computation distribution problem
(DCDP) [6].

A key element of the DCDP, and one of the main moti-
vations behind fog computing paradigms, is network latency
[5]: the latency from IoT devices to nearby fog devices is
smaller than that to the cloud. Hence, the execution time can
be shortened, which means that minimizing network latency,
through techniques such as routing optimization [7], is key

0000–0000/00$00.00 © 2020 IEEE

https://orcid.org/0000-0002-2280-2878
https://orcid.org/0000-0002-5476-7130
https://orcid.org/0000-0002-1007-2134
https://orcid.org/0000-0003-4961-4030

2 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

for correctly solving the DCDP. Software-defined networking,
a paradigm that allows networks to be programmed through
SDN controllers, allows for programmable routing optimiza-
tion [8], thus making this latency optimization scalable and
flexible as new devices are added to the infrastructure. In
fact, some proposals make use of multiple coordinated SDN
controllers in fog IoT infrastructures to improve the QoS
of the overall infrastructure [9]. Software-defined networking
allows network controllers to be notified when new devices are
added through discovery protocols [8], and it allows network
controllers to monitor networking and computing devices [8],
gathering performance information from the infrastructure,
which can be used to solve the DCDP.

While the control that SDNs provide allows for the latency
between computing devices to be optimized to a certain extent,
the SDN control latency can also be optimized. SDNs rely
on controllers for operation; therefore, the latency between
SDN switches and controllers affects the latency between any
two devices in the SDN [10]. This implies that if controllers
are placed in a way that minimizes this latency, the latency
between devices in the network will be minimized as well.
The problem of placing the controller optimally is known
in research works as the SDN controller placement problem
(CPP) [10].

Several authors have studied both the DCDP and the CPP
as separate problems [6], [10]–[18], providing partial solu-
tions that consider only one dimension. The DCDP solutions
assume that the network is a static entity that provides a
certain latency, while the CPP solutions assume that the traffic
flows do not change based on the latency achieved by the
network. However, solving each of these problems separately
may not result in sufficient response time optimization for
IoT applications with strict response-time requirements. The
decision of assigning a service to a node in a certain layer
should take into account the optimal network latency, which
depends on the controller placement; additionally, the decision
of where to place the controller should consider the steering of
traffic flows throughout the network, which depends on which
nodes are requesting services and which nodes are providing
them. Therefore, these dimensions affect each other. To fully
optimize the response time of IIoT, IoMT and other intensive
IoT applications, both problems should be solved together
so that their mutual influences and trade-offs can be taken
into account when merging them into a single new problem.
We define the resulting combined problem as the Fog-SDN
deployment problem. To the best of our knowledge, no prior
work has addressed this problem. The main contributions of
this work are as follows:
• A study of the relationship between the DCDP and the

CPP in intensive IoT environments with the objective
of better understanding the trade-offs between them.
Moreover, further motivation regarding the use of SDNs
for service discovery is provided.

• The formalization of optimal microservice deployment
and controller placement (i.e., a combination of the
DCDP and CPP) in a single effort, with the response
time as the objective.

• The proposal of a distributed application deployment

optimization (DADO) framework to contribute to the
solving of the Fog-SDN deployment problem. The DADO
framework includes an implementation based on mixed
integer linear programming (MILP) that makes it suitable
for design time optimization. Moreover, its combination
of the DCDP and CPP in a single optimization solution is
novel compared to state-of-the-art optimization solutions.

• The experimental evaluation of DADO in an IIoT sce-
nario, focused on the scalability of the solution, the trade-
off between latency and the response time, and the ability
to limit the tolerable delay.

This paper is structured as follows: Sec. II offers the
motivation for combining the CPP and the DCDP into the
Fog-SDN deployment problem through an illustrative IIoT
example. Sec. III proposes DADO, a solution to the Fog-
SDN deployment problem. Sec. IV evaluates DADO using
a setup based on the previously presented example. Sec. V
presents related work. Finally, Sec. VI concludes the paper
and highlights future challenges.

II. BACKGROUND

To illustrate the importance of combining the CPP and the
DCDP, a particular case study scenario is presented in this
section.

A. Scenario: Fog IIoT factory

The scenario presented in this section is based on the en-
vironment proposed in [12] since this work provides not only
an IIoT-based fog computing scenario but also enough details
about the infrastructure with which to apply and evaluate our
solution, DADO. In this scenario, a fog infrastructure based
on an SDN is deployed in a factory to transform it into a
cyber-physical smart factory by leveraging the IIoT [3]. An
IIoT device is installed in each robot; initially, only 10 robots
are part of the smart factory, but this system is expected to
grow over time if the company decides to invest further into
the transformation. Ten fog servers are placed in the same
factory to provide the IIoT devices with services. Each fog
server has a 800 MHz CPU and 1 GB of RAM [12] and is
directly connected to an SDN switch.

In this factory, an SDN is leveraged to provide service
discovery due to its properties as a modular, independent
and transparent solution [8]. In fact, an SDN is the quickest
mechanism for implementing service discovery by leveraging
overlay networks [19]. Because SDNs need at least one
controller, the factory uses the classic SDN control model
and co-locates the controllers with SDN switches [10]. Fig.
1 shows this cyber-physical IIoT system [3], divided into
three layers. The physical layer embodies the physical part
of the system, while the cyber part is divided into two layers:
the networking layer, which contains the SDN switches and
controllers, and the computing layer, which contains the IIoT
devices and fog servers.

In this infrastructure, an IIoT application is to be deployed
to monitor and manage the smart factory continuously by
gathering the statuses of the robots through the sensors
connected to the IIoT devices and processing them in fog

HERRERA et al.: OPTIMIZING THE RESPONSE TIME IN SDN-FOG ENVIRONMENTS FOR TIME-STRICT IOT APPLICATIONS 3

Figure 1: The presented scenario with the three involved
layers.

servers to provide commands accordingly. This application
was designed using a microservice architecture (MSA) and
therefore comprises different independent services that per-
form a certain type of processing, the functions of which
can be requested separately or can be combined through
workflows. Each microservice takes 100, 500 or 1000 MCycles
to run [12] depending on its computational complexity. Each
workflow comprises the execution of a certain functionality,
chaining between one and six microservices depending on the
number required to perform the functionality. The response
time is a combination of the execution time (i.e., the time
it takes to execute the microservices of a functionality) and
latency (i.e., the time it takes for one computer to communicate
to another in a network).

Fig. 2 shows how the locations of the microservices and
SDN controllers influence the response time: a sample work-
flow is shown, in which a command request functionality is
performed by chaining a microservice that aggregates informa-
tion from multiple sensors (M1) with another microservice that
analyzes the aggregated information to issue a corresponding
command (M5). In this figure, the box with the OpenFlow
logo represents the SDN controller, the dashed lines represent
SDN control messages and the solid lines represent application
messages. In Fig. 2a, M1 is located in fog server S1, and M5
is located in fog server S2. When the leftmost IIoT requests
a command, its message is sent to the SDN, with M1 as
the destination address. The SDN switch is unaware of M1’s
location; thus, it asks the SDN controller where M1 can be
found through an OpenFlow packet-in message to perform
service discovery. The SDN controller answers with a packet-
out message, and the switch routes the message to S1. Once
the data are aggregated on S1, the message requesting M5
is sent to the network to be analyzed. Again, the SDN switch
must request service discovery to find M5. After the packet-out
message arrives, the message is routed to S2. Finally, S2 issues
the command and sends it back to the IIoT device through the
network. In this exchange, messages must be sent 23 times
through the network, with each new transmission increasing
the delay due to latency. Fig. 2b shows a different strategy,
in which the IIoT device itself aggregates the information and
the SDN controller is placed closer. Because of these changes,
the IIoT device needs only to request M5. Because the SDN
controller is placed on the same SDN switch as that to which

the message is sent, service discovery is performed locally
with minimal latency. S1 analyzes the aggregated information
and sends back the command as previously. This new strategy
changes the number of message transmissions to four, thus
reducing the overall execution time. Therefore, two decisions
must be made to deploy this application optimally: i) in which
host to execute each microservice in the architecture and ii)
in which switch or switches to place the SDN controllers.

B. DCDP: Placing the microservices

The solution to the DCDP involves making the first de-
cision: selecting which microservices should run in the IIoT
devices themselves and which microservices should run in the
fog server. As shown in Fig. 2, while IIoT devices are not
as powerful as fog servers, executing some microservices in
them – especially those that are lightweight and requested very
often – allows parts of the workflows to be executed locally,
thus completely ignoring the network latency. The difference
is in how much faster these services can be executed when
they are placed in the fog and how large the latency between
the IIoT devices and fog servers is. If the latency to the fog
servers is larger than the difference in execution time, then it
is worthwhile to execute the microservices locally; however,
if the latency is smaller than this difference, then the response
time will be shorter if they run on fog servers. Therefore,
the choices for solving the DCDP are inherently related to
network latency. Thus, to optimize the response time through
the DCDP, the network latency should be optimized first.

C. CPP: Placing the SDN controllers

Solving the CPP is related to the other decision in the
scenario: where to place the SDN controllers. The placement
of the SDN controller plays a key role in control latency
and, by extension, is related to the overall network latency
[10]. Controller placement is strongly related to the network
topology but also to how traffic flows are steered through the
network [18]: while topology-wise, a node may seem optimal
for controller placement, it may not be optimal if that network
zone is not frequently used. This case is shown in Fig. 2b,
in which the controller is placed on the leftmost part of the
network because traffic flows are steered through that zone.

In this scenario, traffic is generated by the IIoT application
when a workflow cannot be executed fully locally; in these
cases, one host sends a message with the input data of the
microservice to the host that executes it. Once the microservice
is executed, the output data of the microservice are sent back.
The execution of M5 in Fig. 2b is a graphical example of
this. These messages generate two traffic flows: one to send
the input data and another one to send the response. Thus,
the decisions made while solving the DCDP may affect the
CPP: the choice to execute a microservice locally removes
traffic flows, which may make its area less suitable for con-
troller placement, while the choice to execute a microservice
remotely adds traffic flows, which may make that area more
suitable for controller placement. Suboptimal decisions in
solving the DCDP may lead to suboptimal decisions in solving
the CPP. Thus, to optimize the response time through the CPP,

4 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

(a) Fog deployment, suboptimal controller placement. (b) Mist and fog deployment, optimal controller placement.

Figure 2: Workflow execution with two different deployment strategies.

microservices should be placed in a way that optimizes the
response time.

D. Computing and networking trade-off

Considering the response time as the QoS metric to be
optimized in a deployment, such as in the scenario presented in
Sec. II-A, involves considering the inherent relationship and
trade-off between computing and networking. This relation-
ship partially comes from the characteristics of scenarios in
which the network is used to transmit computing-related data.
To optimize the performance, the network can be optimized
through the CPP, i.e., transmitting information with minimal
latency guarantees that computing can occur as soon as
possible. However, if the destinations of this information are
the slower hosts of the infrastructure, then the response time
will be slowed down by the computation being performed
on those hosts and, thus, still will not be optimal. Another
approach for response time optimization could be to optimize
how computing is divided and carried out through the DCDP.
However, the higher latency of an unoptimized network would
again slow down the response time. Therefore, treating each of
these layers separately can lead to suboptimal solutions due to
the lack of a complete view of the infrastructure environment
and context. As Sec. II-B and Sec. II-C show, the solution of
the CPP is required to solve the DCDP, and vice versa.

Thus, the relationship and trade-off between computing and
networking generate a bootstrapping problem: to optimize the
network layer through the CPP, the computing layer should
be optimized first through the DCDP, but to optimize the
computing layer through the DCDP, the network should be
optimized first through the CPP. Considering them separately
implies possibly making suboptimal decisions because of these
behavior differences, such as those shown in Fig. 2a. To
avoid potentially obtaining a suboptimal response time for
the IIoT application, both computing and networking should
be optimized at the same time to avoid this bootstrapping
problem.

III. DADO FRAMEWORK

In this section, the DADO framework is described. It
is aimed at mitigating the issues raised by the Fog-SDN
deployment problem. Taking as input statistics related to the
computational load of microservices, the computational power
of fog or cloud servers, the latency and capacity of links,
the workflows used by the requested functionalities, and the
network topology, DADO is able to provide as output infor-
mation on the placement of SDN controllers, the placement
of microservices at hosts and the paths taken by the traffic
flows. Moreover, this infrastructure description can be obtained
by leveraging the SDN [8]. Through a combination of all
these metrics, the optimal response time is provided. DADO
uses at its core a mixed integer linear programming (MILP)
formulation, as presented in the following.

DADO is aimed at optimizing the response time in fog
architectures, as well as in hybrid ones, for IoT applications
based on an MSA. Thus, the infrastructure will contain
SDN switches, IoT devices, fog servers and cloud nodes.
IoT devices, as well as fog and cloud servers, can execute
parts of the logic of the application, generate traffic and
consume this traffic – they are hosts. SDN switches have a
completely different behavior, forwarding traffic by applying
routes calculated by their assigned SDN controller. Therefore,
let the infrastructure be represented as a graph G = {V,L}.
Let H be a set of hosts and S be a set of SDN switches so
that the set of vertices V = H ∪ S. Let L be the links that
connect the different elements of the infrastructure.

Not all of these hosts have the same capabilities. Gener-
ally, fog servers are more powerful than IoT devices, with
cloud servers being the most powerful. This power can be
represented by the host’s speed in executing microservices,
as well as by the maximum amount of services the host can
execute. Thus, let a host h ∈ H be a tuple h =< Ph, rh >,
with Ph being the computational power of the host (measured
as its clock speed in Hz) and rh being the host’s total RAM,
measured in bytes. If other applications or services are running
on the host, then Ph is the computational power of the host

HERRERA et al.: OPTIMIZING THE RESPONSE TIME IN SDN-FOG ENVIRONMENTS FOR TIME-STRICT IOT APPLICATIONS 5

not being used for other applications or services (i.e., it can
be used by the IoT application) and rh is the host’s remaining
free RAM.

In this infrastructure, the links have two essential limita-
tions. First, the links affect latency since the transmission of
data over them is not instantaneous. Second, the links do not
have infinite capacity and therefore cannot be used to transfer
an unlimited amount of data. Thus, let a link lij ∈ L, with i
being the source of the link and j being its destination, be a
tuple lij =< δij , θij >, with δij being the link’s latency in
seconds and θij being the link’s maximum capacity in bytes
per second. If the link is also being used to transmit data
that are unrelated to the application being optimized, then θij
references only the capacity that is not in use by other traffic.

The IoT applications that DADO supports have an MSA and
can be seen effectively as a set of independent microservices.
We therefore have a set of microservices M , with each
microservice m ∈M being a tuple m =< ξm, Im, Om, rm >,
with ξm as the workload of executing the microservice (mea-
sured as the number of CPU cycles the microservice requires
to fully execute), Im as the size of the input data for the
microservice in bytes, Om as the size of the microservice’s
output data in bytes and rm as the amount of RAM the
microservice requires in bytes.

The execution model of DADO is based on workflows.
When an IoT device requests a certain functionality, this
functionality is provided by a workflow of one or more
microservices.

Where these microservices run depends on the solution
DADO generates. If the first microservice, or two consecutive
microservices, is run on the same host, then the network is
not used. If the microservice does not run on that device,
then the SDN is used to route the request to a host that
will run the service. Let W be a set of workflows, with
each workflow w ∈ W being an ordered set of tuples
w = {c1, c2, ..., c|w|}. Each tuple ci must have the exact same
format and values as those of one of the microservices in M
since each of these tuples represents the microservices that
are chained through the workflow to perform a functionality.
Therefore, with a slight abuse of notation, we can say that
w = {c1, c2, ..., c|w|}; ci ∈M∀i ∈ [1, |w|]. Let also WS(w, h)
be a binary function equal to 1 if workflow w is started by host
h and 0 otherwise. To execute the workflow, the data would
have to flow from whatever host starts the workflow to a host
that executes c1, from there to the one that executes c2, and
so on. Moreover, let ∆w;w ∈ W be the maximum tolerable
delay of the workflow in seconds.

We also propose the usage of the classic SDN control model
[10]. Each controller can be co-located with an SDN switch in
the network s ∈ S (i.e., the controller and the SDN switch are
in the same place). Each SDN switch is mapped to a controller
so that the switch communicates with the controller through
in-band traffic. Thus, let ψ be the maximum number of SDN
controllers to be placed, and let Ω be the size of the control
packets sent from each SDN switch to the controller.

After these parameters have been defined, we must set
different different decision variables, which must be changed
to optimize the deployment.

In the computing plane, let z be a three-dimensional binary
matrix, in which zwhca is 1 if host h is running the microservice
indexed as ca of workflow w and 0 otherwise. This allows
DADO to locate microservices in certain hosts. Let f be a
five-dimensional binary matrix, in which fhwca

ij is 1 if the
traffic host h generated as a consequence of the microservice
indexed as ca of workflow w is routed through the link lij
and 0 otherwise. This allows DADO to route the input and
intermediate output data of the microservices through the
network. Let f ′ be a four-dimensional binary matrix, in which
f ′hwij is 1 if the traffic host h generated in response to workflow
w is routed through the link lij and 0 otherwise. This allows
DADO to route the final output data of the microservices.

In the networking plane, let x be a binary vector in which xs
is 1 if an SDN controller is set up on switch s and 0 otherwise.
This allows DADO to place SDN controllers. Let y be a
binary matrix in which yss′ is 1 if SDN switch s is mapped
to controller s′ and 0 otherwise. This allows DADO to map
SDN controllers and switches. Let cf be a three-dimensional
binary matrix, in which cfsij is 1 if the control traffic switch s
generated is routed through the link lij and 0 otherwise. This
allows DADO to route the control data between SDN switches
and their mapped controllers.

We must also establish constraints that determine which
values are allowed for each variable under different conditions
and how changing these values affects the overall deployment.
We first assume that a microservice for a certain workflow can
be executed only in a single host.∑

h∈H

zwhca = 1;∀w ∈W,a ∈ [1, |w|] (1)

Then, each host cannot run unlimited microservices but only
as many as its memory allows.

∑
w∈W

|w|∑
a=1

zwhcarca ≤ rh;∀h ∈ H (2)

It is impossible to have more controllers than the maximum
amount. ∑

s∈S
xs ≤ ψ (3)

A switch can be mapped to only one controller at a time.∑
s′∈S

yss′ = 1;∀s ∈ S (4)

In addition, it can be mapped to a controller only if that
controller is actually placed.

yss′ ≤ xs′ ;∀s, s′ ∈ S (5)

Flow variables should be controlled in aggregate, according
to the classic flow constraints. When we account for microser-
vice data, we must consider three cases: the first microservice
of the workflow (c1), the response of the workflow and the
general case for the rest. In the case of c1, it can be stated that
i) traffic is generated only by the host that starts the workflow,
unless c1 is mapped to the same host (in that case, it will be

6 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

executed locally), and that ii) traffic is consumed by the host
that has c1 mapped, unless it is the same host that starts the
workflow. Formally:

∑
j∈V

fhwc1
ij − fhwc1

ji =


0 if i ∈ S

WS(w, h)(1− zwic1) if i = h

−WS(w, h)zwic1 otherwise.

∀i ∈ V, h ∈ H,w ∈W

(6)

In the case of the response, we can state that i) traffic is
generated only by the host with the last microservice mapped,
unless it is mapped to the host that started the workflow,
and that ii) traffic is consumed by the host that started
the workflow, unless it has the last microservice mapped.
Formally:

∑
j∈V

f ′hwij − f ′hwji =


0 if i ∈ S

zwhc|w|(1−WS(w, i)) if i = h

−zwhc|w|WS(w, i) otherwise.

∀i ∈ V, h ∈ H,w ∈W

(7)

We can derive a general case. Traffic is generated by the
host that has the previous microservice mapped, as long as
the current microservice is not mapped to that host, and it
is consumed by the host that has the current microservice
mapped, as long as that host does not have the previous
microservice mapped.

∑
j∈V

fhwca
ij −fhwca

ji =


0 if i ∈ S

zwhca−1
(1− zwica) if i = h

−zwhca−1
zwica otherwise.

∀i ∈ V, h ∈ H,w ∈W,a ∈ [2, |w|]

(8)

This formulation contains a multiplication of possible deci-
sion variables, which would make the problem nonlinear. We
can use some linearization techniques to solve this problem.
For this purpose, we create the following new variables:
z′iwhca

= zwhca−1
(1 − zwica), z′′iwhca

= zwhca−1
zwica . For them to

have these values, they must follow these constraints:

− zwhca−1
+ z′iwhca ≤ 0 (9)

− 1 + zwica + z′iwhca ≤ 0 (10)

zwhca−1
+ 1− zwica − z

′iw
hca ≤ 1 (11)

− zwhca−1
+ z′′iwhca ≤ 0 (12)

− zwica + z′′iwhca ≤ 0 (13)

zwhca−1
+ zwica − z

′′iw
hca ≤ 1 (14)

(8) can now be rewritten as a linear constraint:

∑
j∈V

fhwca
ij − fhwca

ji =


0 if i ∈ S
z′iwhca

if i = h

−z′′iwhca
otherwise.

∀i ∈ V, h ∈ H,w ∈W,a ∈ [2, |w|]

(15)

The flow constraints for the control flows (i.e., the flows
of the SDN controllers) are similar. Flow is produced by
switches and received by SDN controllers, except for co-
located controllers and switches. We consider in-band control
traffic; i.e., these control flows are routed through the same
network that the application traffic passes through, and no
separate links exist specifically for control flows.

∑
j∈V

cfsij − cfsji =


0 if i ∈ H
1− ysi if i = s

−ysi otherwise

∀i ∈ V, s ∈ S

(16)

With these flow constraints in place, we must also account
for the maximum link capacity:

∑
h∈H

∑
w∈W

[(

|w|∑
a=1

fhwca
ij Ica)+(f ′hwij Ocn)] +

∑
s∈S

[cfsijΩ] <= θij

∀lij ∈ L
(17)

A constraint should also be added to consider the maximum
tolerable delay for each workflow. To assess this delay, we
must consider both the computing time and latency to calcu-
late it. To simplify this computation, the function SW (i) is
defined, which is 1 if i ∈ S and 0 otherwise.

∑
h∈H

∑
lij∈l

(

|w|∑
a=1

(
zwhcaξca
Ph

+fhwca
ij δij) + f ′hwij δij

+SW (j)
∑

lk,m∈L

cf jkmδkm) ≤ ∆w∀w ∈W

(18)

The model also requires an objective function to determine
which metric must be optimized by changing the values of
the future decision variables. In our case, the objective is the
average response time of all workflows. Formally, the objective
function is represented by (19).

∑
h∈H

∑
lij∈l

∑
w∈W

(

|w|∑
a=1

(
zwhcaξca
Ph

+fhwca
ij δij) + f ′hwij δij

+SW (j)
∑

lk,m∈L

cf jkmδkm)

(19)

(19) can be separated into three terms, as shown above.
The first term is the execution time, which depends on the

HERRERA et al.: OPTIMIZING THE RESPONSE TIME IN SDN-FOG ENVIRONMENTS FOR TIME-STRICT IOT APPLICATIONS 7

workload of each microservice and the power of the host on
which the microservice runs. The second term is the network
latency, which depends on the latency of the links used to
transmit information. The third term is the control latency of
the path taken by each workflow.

Therefore, the final MILP problem is formulated as mini-
mize (19) subject to (1-7) (9-18).

The proposed DADO formulation is meant to be integrated
into the development process of time-strict IoT applications.
Concretely, the current formulation of DADO is designed to
be implemented as part of the design phase. System and
network administrators are expected to provide DADO with
the infrastructure’s definition, either factual or planned, as a
graph containing the parameters defined in the formulation
(e.g., link latency, host computational power, link capacity or
number of SDN controllers). Then, developers should provide
the characteristics of their IoT application (e.g., the number of
microservices, definitions of the workflows, tolerable delays or
microservice specifications). The infrastructure description, as
well as the application description, are the inputs to the DADO
formulation, which should be implemented using an automatic
solver such as the Python MIP library [20]. The output of
the formulation gives different information to each participant:
network administrators can see where SDN controllers are to
be placed, how they should be set up or which routes are more
congested. System administrators know which nodes are going
to be loaded the most, as well as where each microservice
should be deployed. Finally, developers are provided infor-
mation about the expected response time or if specific parts
of the infrastructure should be scaled up to achieve the target
response time (e.g., more powerful servers, faster links or more
SDN controllers).

IV. PERFORMANCE EVALUATION

In this section, a setup based on the scenario presented in
Sec. II-A is shown, and tests are conducted using this setup to
evaluate the performance of DADO and compare it with the
performance of other deployment strategies.

A. Evaluation setup

In Sec. II-A, we presented a well-defined scenario that is our
basis for evaluating DADO, the details of which are taken from
[12]. Additionally, we estimated values for the parameters
that were not reported in the original case study, such as the
number of SDN controllers or the length of functionalities.
Finally, in [12], IIoT devices are considered to be unable to
compute. However, to evaluate the performance of DADO in
environments where mist layer devices are available for de-
ployment, we equip the IIoT devices with devices such as the
Arduino Pro Portenta H7 [21], a microcontroller designed for
IIoT applications, and the inexpensive single-board computer
Raspberry Pi Zero [22], which enables IIoT devices to act as
complete computers at a relatively low cost.

We test scenarios that allow evaluations of the scalability
and performance of DADO under different conditions. Specif-
ically, we consider microservices that took 100, 500 or 1000
MCycles to run, placing between 1 and 4 SDN controllers,

with each device requesting between 1 and 4 functionalities.
Each functionality workflow can be 1, 2, 3 or 6 microservices
long, and the hardware specifications of the IIoT devices stated
above are considered. The topologies considered are labeled by
their sizes as small (10 IIoT devices, 10 fog servers), medium
(25 IIoT devices, 15 fog servers) and large (50 IIoT devices, 25
fog servers), also based on [12]. To analyze the optimization
achieved by DADO and the capacity to set tolerable delays,
we set the maximum tolerable delay for all workflows to 4
seconds. In general, the evaluation is performed by setting a
default value for all parameters, varying the values of one or
more parameters and testing over the three topologies. The
default values used are those defined in our initial case study:
microservices of 500 MCycles, 1 SDN controller, 2 requests
per device, noncomputing IIoT devices and 1-microservice-
long functionalities. These values are also shown in Table I.

Table I: Evaluation parameters

Parameter Values Unit
Microservice workload 100, 500, 1000 MCycles
Number of SDN controllers 1, 2, 3, 4 Controllers
Requests per device 1, 2, 3, 4 Requests
Functionality length 1, 2, 3, 6 Microservices
Topology size 20, 40, 80 Nodes
Maximum tolerable time 4 Seconds

IIoT device hardware
Noncomputing,

Arduino Pro Portenta H7,
Raspberry Pi Zero

The evaluation has several objectives: We investigate the
validity of DADO and perform tests to show the scalability
of DADO as IIoT devices request more functionalities and
its computational scalability. This demonstration is crucial,
since a company may not deem the investment worthwhile if
the response time increases significantly as the system grows.
Another key objective is to evaluate the trade-off between
latency and response time, to determine if DADO selects a
solution with higher latency and reduced execution time only if
said solution results in a lower overall response time. We also
test whether the tolerant delay constraint is useful for setting
a maximum delay for the workflows. Moreover, we compare
DADO against alternative deployment strategies to evaluate
the reduction in response time. Since routing is also involved,
we determine whether higher link loads affect the scalability
of the proposal. Finally, we evaluate the optimization time
required by the computation of DADO.

B. Evaluation results

The results presented in this section are acquired by com-
bining the solutions obtained by DADO and the values for the
parameters previously discussed and calculating the values of
the different metrics that are shown to analyze the expected
behavior of DADO under different conditions.

In Fig. 3, the scalability of the solution is evaluated by
testing the deployment of applications in all three topologies
with increasing numbers of microservices, as well as by
increasing the number of functionalities requested. These tests
are performed with a single SDN controller, microservices
of 500 MCycles and noncomputing IIoT devices. We draw

8 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

� � � 	
�"��!������!%����"� ! �������#���

��

���

��

���

��

���

��

�
��

��
��
$
��
#�

��
��

���
 �

��
 �

�!�
�
��
�
�

����� ��#��� ������"��!������!%
�
�

�
�

���� ��������

���� ��������

(a) Small topology.

� � � 	
�"��!������!%����"� ! �������#���

���

���

���

��	

��

���

�
��

��
��
$
��
#�

��
��

���
 �

��
 �

�!�
�
��
�
�

����� ��#��� ������"��!������!%
�
�

�

���� ��������

���� ��������

(b) Medium topology.

� � � 	
�"��!������!%����"� ! �������#���

���

���

���

��	

��

���

�
��

��
��
$
��
#�

��
��

���
 �

��
 �

�!�
�
��
�
�

����� ��#��� ������"��!������!%
�
�

�

���� ��������

���� ��������

(c) Large topology.

Figure 3: Request scalability analysis.

four major conclusions from these results: First, the solution
is scalable. When the number of requests per device increases,
the response time remains stable. This result implies that
the solution provides a good scaling and therefore is able to
maintain the response time. The second conclusion, however,
is that the solution can scale only as long as the architecture
has enough resources to deploy the expected applications;
the points labeled Infeasible are the estimated positions for
parameter values that require more resources (e.g., memory
or networking capacity) than the architecture has available,
rendering DADO unable to produce solutions. Third, the
functionality length (in microservices) is very relevant to the
response time, mainly because a functionality workflow with
more microservices implies a heavier computational load (e.g.,
a 2-microservice-long functionality carries twice the computa-
tional load of a single-microservice-long functionality) but also
because there is an extra cost in latency if these microservices
are not executed on the same host. Finally, as the IIoT
devices-per-fog-servers ratio rises in larger topologies, fewer
microservices per request can be supported, but the results are
very similar under all topologies. This also applies to the rest
of the performed analyses; therefore, for the remainder of the
paper, we show the results for a single topology, while the rest
of the results are provided as additional content. In summary,
DADO provides scalable solutions to deploy applications as
long as the architecture has sufficient capabilities to manage
the given application.

Fig. 4 shows the scalability of the application for com-
putational load changes in the small topology. These tests
are performed with a single SDN controller, 2 requests per
device and noncomputing IIoT devices. First, the slope is
steeper when functionalities are longer, which implies that
the greater the number of microservices that are executed
on a functionality workflow, the longer it takes to execute
said workflow, responding to the nature of this service com-
position (e.g., a single-microservice-long functionality with
1 GCycle microservices has to execute 1GCycle, whereas a
2-microservice-long functionality would have to execute 2
GCycles). However, the relationship is not directly propor-
tional: while a single-microservice-long functionality with 1

��� ���
�� ��� ����

�������������� ����
�!�����

���

��	

���

��	

���

��	

���

��	

�
��
��
��

��
��
��
��
���
��
��
��
���
�
��
��
�

�����������������������������!
� � �

Figure 4: Computational scalability analysis in the small
topology.

GCycle microservices and a 2-microservice-long functionality
with 500 MCycle microservices have the same computational
workload, the response time of the shorter functionality is
slightly lower, by 6 ms. This outcome occurs because of the
communication latency, since there is a communication delay
between each of the microservices in the functionality work-
flow that does not exist for a single microservice. In addition,
while shorter functionalities have lower response times, longer
functionalities can be parallelized, and their microservices can
be used for other requests, thus compensating for that slight
overhead. Overall, DADO provides a solution that is able to
minimize the effect of latency in the response time.

Fig. 5 shows the analysis of the scalability of the application
under different topologies. These tests are performed with a
single SDN controller, 1 request per device, microservices of
500 MCycles and noncomputing IIoT devices. These results
further prove the scalability of the solutions provided by
DADO, with only a slight increase in response time as the
topology size doubles or even triples. The main conclusion
to draw from the results is that the IIoT application that is
to be implemented, as explained in Sec. II, can be scaled
into a larger network without causing a significant increase

HERRERA et al.: OPTIMIZING THE RESPONSE TIME IN SDN-FOG ENVIRONMENTS FOR TIME-STRICT IOT APPLICATIONS 9

�� �� �� 	�
� ��
�������#���$���������

��

���

���

���

���

��

���

�
��
��
��
"
��
!�
��
��
���

��
��

��
���
�
��
��
�

�������!���������� ����������#
� � �

Figure 5: Comparison of response times under different
topologies.

� � � �

 ����������
������������

��	

��

���

���

���

��	

��

�
��
��
��
"
��
!�
��
��
���

��
��
��
���
�
��
��
�

��������!���������� ����������#
� � �

�����

����	

����

�����

�����

�����

�
��
��
��
"
��
!�
��
��
���
��
��
#�
��
�

Figure 6: Latency and controller analysis in the small topology.
Solid lines show the response time, and dashed lines show the
latency.

in response time and thus that system growth will not result
in a serious QoS decrease.

Fig. 6 presents an analysis of the effect of adding SDN
controllers on the latency and response time in the small
topology. The solid lines show the response times and refer to
the leftmost Y-axis, while the dashed lines show the latency
and refer to the rightmost Y-axis. These tests are performed
with 2 requests per device, microservices of 500 MCycles
and noncomputing IIoT devices. When short functionalities
(1 microservice per functionality) are considered, latency
does not decrease steeply when a single controller is added.
Nonetheless, the decrease becomes steeper as more controllers
are added. For longer functionalities (2 microservices per
functionality), latency rises when there is an even number of
controllers: reaching 0.8 ms in the case of 2 controllers and 0.4
ms in the case of 4. Despite this phenomenon, latency declines
steeply when odd numbers of controllers are considered, with
a minimum of 17.6 ms in the case of 3 controllers. On even
longer functionalities (3 microservices per functionality), the
latency decreases almost linearly, an average of 2.4 ms per
controller, as the number of controllers increases. However,
the response time decreases slightly and steadily as controllers

�%$��%#&*) $� �'�* $% ��(&��''-
��%����'�,�'��)-&�

���

���

���

��	

��

���

���

���

�
%'

!�
"%

,
��

+�
'�

��
�'�

(&
%$

(�
�)

#
��

�(
�

����
�%������

�%�����

�%�*"���&& $�

Figure 7: Performance benchmark of DADO in the medium
topology.

are added in every case. In the case of 2 microservices per
functionality, we find that the response time decreases for 1
ms and 0.4 ms for 2 and 4 controllers, respectively. This result
is interesting because the decrease in response time comes
with an increase in latency of a similar amount. The essential
conclusion is that the effects of adding SDN controllers
over latency heavily depend on how traffic flows are steered,
providing further indication that the computing and networking
dimensions affect one another’s QoS. Furthermore, the latency
rises for two-microservice-long functionalities as a result of a
trade-off – DADO chooses a deployment with higher latency
because it decreases the execution time and minimizes the
overall response time, something that would not be as simple
if both dimensions were considered separately. Thus, DADO
is able to find the solution to this trade-off between execution
time and latency, which not only enables a smart computation
distribution scheme, offloading computation when latency is
low enough for it to be worth it, but also enables smart
controller placement that considers and complements these
offloading decisions.

In Fig. 7, the performance of DADO is compared against
that of other solutions in the medium topology. Concretely,
DADO is compared with deploying the application directly
in the fog and placing the SDN controllers in the nodes
with the highest betweenness centrality (HBC) and highest
closeness centrality (HCC). Moreover, the ModuleMapping
solution, proposed in [23], is used as a benchmark. Fog
deployments with the HBC and HCC are performed by
matching microservices with fog servers in a round-robin
fashion, making sure that the total memory of the fog servers
is never surpassed. ModuleMapping, on the other hand, is a
microservice placement method for IoT applications in fog
environments, created specifically to serve as a benchmark.
Due to the lack of methods that jointly include microservice
deployment, routing optimization and controller placement,
the focus has been placed on service placement in the case
of ModuleMapping. Thus, in all three cases, the routing is
still optimized through the formulation proposed by DADO.

10 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

��� ��� ��� 	�� ����
�������� ������!�����
#�����

�

�

�

�

��
��
��
!
��
 �
��
��
���

��
��
��
���
�
��
��
�

�������� ���������������������#
�
�

�
��"�������������������#

����������

Figure 8: Maximum tolerable delay compliance of DADO in
the small topology.

These tests are performed with a single SDN controller, 2
requests per device, 2-microservice-long functionalities and
microservices of 500 MCycles on different IIoT devices.
These values allow a test focused on microservice deployment
while maintaining similar values to those of previous tests.
Focusing on the HBC and HCC, the analysis clearly shows
that DADO provides shorter response times and is able to
speed up the response time by up to 37.89%. The largest
differences between the HBC, the HCC and DADO appear
for the most powerful device, Raspberry Pi, because of the
hybrid deployment capabilities of DADO. While the HBC and
HCC solve the DCDP only on the fog layer, DADO uses all
available layers to optimize the response time. This outcome
is clearly shown on Arduino hardware: DADO refuses to
deploy in this type of device due to the fact that the derived
slow execution would increase the response time. Nonetheless,
hybrid deployment is not the only factor of DADO enhance-
ment, as ModuleMapping also features this capability. Moving
to ModuleMapping, we also find that DADO consistently
obtains lower response times. The largest speed-up is found
with the Arduino devices, in which the difference is approx-
imately 198 ms. While ModuleMapping considers only the
capabilities of devices and microservices for the deployment,
DADO has a holistic view of the architecture, network and
application. Therefore, it is able to change the placement of
SDN controllers and the paths taken by traffic to shorten
the response time. Moreover, network latency is considered
to deploy different microservices in a single workflow. We
conclude that DADO outperforms the considered benchmarks.

Fig. 8 shows the impact of maximum tolerable delays in the
solutions DADO yields. The solid light green line represents
the maximum tolerable delay, while each dot represents a
successful deployment, and a cross indicates deployments that
could not fulfill the delay. These tests are performed with a
single SDN controller, 1 request per device and noncomputing
IIoT devices. Most configurations of microservices per func-
tionality and microservice power can be deployed, but for 6-
microservice-long functionalities and 1 GCycle microservices,
DADO determines that it is infeasible to satisfy the constraint.

� �� 	�
� �� ���
�������������

���

���

��	

��

���

���

�

��
��
��
��
��
��
�

������������ ��������������������
� � � 	

Figure 9: Empirical CDF of the link load in the medium
topology.

Table II: Multivariate analysis of the response time.

Coefficient Std. Error P-value
Intercept 1.2276 0.272 2.3 · 10−5

Topology size 0.0002 0.003 0.935
SDN controllers -0.0163 0.052 0.757
Requests per device -0.0051 0.069 0.941
Functionality length 0.6503 0.046 2.5 · 10−23

Cycles per microservice -1.1725 0.091 3.3 · 10−21

IIoT device hardware -0.3071 0.171 0.077

If it were to be relaxed, the response time of the workflows
would be at the point indicated by the cross, 7.5244 seconds,
almost double the defined maximum tolerable delay. There-
fore, because of the delay constraint, DADO indicates that
the delay cannot be met without scaling up the computational
power.

In Fig. 9, the empirical CDF of the link load in the medium
topology is depicted. These tests are performed with a single
SDN controller, 2 requests per device, 1-microservice-long
functionalities, noncomputing IIoT devices and microservices
of 500 MCycles. The main conclusion to draw from these
results is that there is a directly proportional relationship
between the number of requests per device and the link load.
If one request per device is considered, all links present a
load below 46%. If more requests are made, the higher bound
rises to 91.42%. This increase comes from the fact that, from
two requests onward, at least one fog node is always fully
loaded. Therefore, more traffic flows need to reach it through
its unique link, which results in link load increase. Another
interesting result is that the majority of the links are not heavily
loaded: the median load is approximately 11.42% for one
request, 22.85% for two requests, 34.28% for three requests
and 22.85% for four requests, all of which are well below
50%. Finally, we determine that the paths of traffic flows are
all 2 hops long. This result implies that the workflows are
launched, executed and returned back to the source IIoT node.
Thus, DADO is scalable networkwise as well.

To statistically validate the results described above, we
performed a multivariate analysis evaluating the impact of
a set of parameters on the response time, which is set as
the dependent variable. Table II shows the results of this

HERRERA et al.: OPTIMIZING THE RESPONSE TIME IN SDN-FOG ENVIRONMENTS FOR TIME-STRICT IOT APPLICATIONS 11

�� �� 	�

���������������������

���

���

���

���

�
��

�
��
���

��
��
��
��
��

��
��
��
�

��������
������������������������
� � � �

Figure 10: Average optimization times of DADO.

analysis. The independent variables are topology size (the
number of nodes), the number of SDN controllers, the number
of requests per device, the length of functionalities, the number
of cycles per microservice and the type of IIoT hardware as
a binary variable (0 for noncomputing and Arduino, 1 for
Raspberry Pi). The R2 coefficient of this analysis is 0.841.
This analysis indicates that the size of the application, mainly
expressed through the length of the functionalities and the
cycles per microservice, is the most statistically significant
variable for the response time. However, they are bound to be
in balance: to reduce the cycles per microservice, the number
of microservices per functionality must be increased, increas-
ing the microservice length and likely adding overhead. To
shorten a functionality, different microservices can be merged
into a single microservice, but the resulting microservice is
heavier (i.e., more cycles per microservice) and often requires
more memory. Other interesting conclusions can be extracted
from the coefficients of each variable, which explain how the
response time increases or decreases as the coefficients are
modified (e.g., adding a controller reduces the response time
to 0.0163 s).

More conclusions can be drawn from the overall results of
the performance analysis, especially related to implementing
DADO in real scenarios. First, DADO is able to identify when
an infrastructure needs to scale by labeling a deployment as
infeasible. In our experiments, most scalability issues were
related to a lack of computing power to run all the required
microservices. Moreover, the evaluation shows that the main
bottleneck for performance in this case study is computa-
tional power, since the infrastructure does not contain very
powerful servers. However, we believe that this bottleneck
is infrastructure-specific and may even be application-specific
(e.g., an application with light computing requirements but
large amounts of data may be limited by the network). In
addition, DADO can be used to analyze the computational
scalability, as reported in Fig. 4, and the performance gains
from the addition of controllers, as shown in Fig. 6, which
serves as a method for finding the specific bottleneck in each
situation and planning the infrastructure and deployment more
effectively.

In Fig. 10, the average optimization times for DADO are an-

alyzed in all three topologies. These tests were conducted with
a single SDN controller, 1-microservice-long functionalities,
noncomputing IIoT devices and 500 MCycle microservices.
The main outcome from this analysis is the fact that the
response time exponentially increases with the topology size.
Optimizing smaller topologies takes between 12 and 73 sec-
onds, whereas optimizing the medium topology takes between
381 and 1041 seconds and optimizing the larger topology
requires between 4664 and 20982 seconds. Moreover, the
more requests per device there are, the more time is required
to optimize. This phenomenon is due to the fact that each
request requires new microservices to be deployed and new
traffic flows to be routed, thus generating a larger problem.
Furthermore, the impact of these new microservices and traffic
flows needs to be considered to optimize the rest of the
requests. Therefore, the MILP solution for DADO is mainly
suitable during the design time, and it can be leveraged only
during the execution time in small topologies, where it can be
optimized within seconds.

Since the Fog-SDN deployment problem is a combination
of the DCDP and the CPP, both of which have been proven
to be NP-hard [10], [13], and the combination of any given
NP-hard problem with another problem is, by definition, also
NP-hard, the Fog-SDN deployment problem is also NP-hard.
This NP-hardness is reflected in the limitations of DADO.
The MILP solution of DADO can be feasibly applied only to
infrastructures with under 300 nodes. In larger infrastructures,
the formulation indicates that nearly 18 exabytes of memory
would need to be allocated. Furthermore, with the current
implementation of DADO, adapting the deployment to changes
in the environment implies re-running the proposed solution
from the beginning due to the characteristics of the MILP
version. This makes the MILP version of DADO suitable
for design-time optimization, as there are no strict timing
limitations on the optimization time. As future work, we plan
to add heuristic solutions to DADO. These heuristics will allow
DADO not only to be executed periodically in short loops
but also to reuse previous solutions as the basis for further
optimization, enabling DADO to adapt the deployment to new
conditions over time.

V. RELATED WORK

In an attempt to shorten response times in different ap-
plications, researches are studying fog computing paradigms
both to apply these paradigms and to standardize them.
Yousefpour et al. [2] surveyed the different cloud and fog
computing paradigms, providing insights into their similarities
and differences. Though in this paper, we evaluate DADO
in a hybrid fog and mist computing scenario, DADO is
designed to optimize deployments that make use of other fog
computing paradigms as well, such as pure fog computing.
Bellavista et al. [5] surveyed different proposals that leverage
the fog computing paradigm for use in IoT applications as an
approach to support the strict response-time requirements of
some of these applications. However, these proposals mostly
involve different platforms that make use of fog computing and
provide services such as communication, security or resource

12 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

virtualization that simplify the deployment of IoT applications
in fog environments; most do not provide solutions for opti-
mizing deployment on the proposed platforms.

The problem that must be addressed when optimizing the
deployment of microservices to a fog computing infrastructure,
focusing on the computing dimension, is the DCDP. The term
DCDP was coined by Choudhury et al. [6], who solved the
DCDP in mist computing environments. The main idea behind
the DCDP in their work is the replication of an application’s
cloud services in smartphones and IoT devices to enhance their
response time, allowing nearby devices to consume the repli-
cated services within an ad hoc network. This solution to the
DCDP focuses on optimizing the resources used for replication
in the mist layer while delivering an appropriate response time
instead of focusing on delivering optimal response times or
optimizing the networking dimensions in other fog computing
environments, as DADO does. Mukherjee et al. present in [24]
an approach to the DCDP able to deploy microservices to
the fog considering the delay due to the execution time and
the energy consumption of service execution. Sun et al. [12]
propose a double-auction heuristic scheme for optimizing
the deployment of IIoT applications in a fog environment.
The response times offered by fog servers and required by
services are assessed as prices, and an auction-based algorithm
is leveraged to optimize the deployment. However, they do
not optimize the response time and instead try to optimize
the number of services that can be successfully deployed.
Several proposals for solutions to the DCDP that use a variety
of techniques such as MILP, heuristics or game theory are
surveyed in [13]. Although some partially optimize network
latency through routing, as DADO does, none optimize the
latency of the network through SDN controller placement.

Fog computing paradigms, while supporting QoS require-
ments that are difficult to support with cloud computing,
also have challenges that need to be addressed, such as the
previously discussed service discovery problem. [8] presents
a proposal for applying SDNs as a solution to these challenges
that is transparent to the different hosts involved in the
network. Other research efforts, such as [14] and [25], solve
the DCDP using an underlying SDN. Although these solutions
are also built to support IoT applications, they do not consider
the effects on latency of SDN controller placement.

On the networking plane, the SDN CPP is a well-known
problem that has a significant impact on network latency. [16]
adds the idea of dynamic flows to the CPP, providing a solution
to the CPP that not only works for predefined, static flows
but can also be varied in response to flow variation (e.g.,
because of changes in routing or traffic). Although this is a
relevant contribution to the CPP, the relationship between the
networking and computing planes is not considered. [18] not
only solve the CPP with a Varna-based heuristic approach but
also classify the CPP into 12 types based on the SDN features
that are considered. DADO is a type 4, uncapacitated CPP,
but it also adds routing capabilities that are not considered
in this classification; in addition, it relates the computing and
networking planes. Finally, [10] surveys several proposals for
CPP solutions that use techniques similar to those used in
solutions to the DCDP but also fail to integrate the computing

plane as DADO does.
Moreover, there is a similar problem to the DCDP in the

networking field when the network function virtualization
(NFV) paradigm is leveraged: function orchestration in service
function chaining (SFC). NFV allows networking equipment,
such as routers or switches, to perform network functions (e.g.,
firewall, access lists) without dedicated boxes (i.e., virtual
network functions). In SFC, a network flow can request for
some of these virtual network functions to be performed over
it, in a concrete order. SFC is very similar to the MSA in IoT
applications: a set of services that can be called independently
or jointly by following a sequence. Function orchestration in
SFC consists of finding the optimal routes for said flows, as
well as the optimal placement for virtual network functions, for
SFC requests to be fulfilled. The main conceptual difference
is that a flow in SFC has a defined source and destination,
and functions have to be performed along the way. In an
MSA, if the source has every microservice deployed to it,
there may be no flow at all. Furthermore, even if the flow
exists, there is no defined destination in an MSA, as every
host that deploys one or more of the requested microservices
is a possible destination. In [26], an approach to solving this
problem is presented, which optimizes the energy consumption
and network side-effect of optimal function placement. Several
algorithms are presented, including algorithms for online and
offline optimization. A similar approach is found in [27].
In this case, the failure probability is also accounted for in
the optimization objective. Furthermore, the system can be
triggered in response to failures to perform failure recovery
with minimal network side-effects. Despite the similarities
between problems, DADO is conceptually different from them,
as the problem DADO solves is not related to SFC.

Table III presents a categorization and comparison of the
presented works for quick reference. As depicted, DADO is
the only system that considers both service and controller
placement. While both the DCDP and CPP are well known, to
the best of our knowledge, no other work integrates the DCDP
and the CPP into a single, cohesive problem as DADO does,
nor does any other work take into account the relationship
and influences between the two problems. Therefore, the
contribution of DADO is the integration of the CPP and the
DCDP to provide optimal response times for IIoT applications.

VI. CONCLUSIONS AND FUTURE WORK

The potential for real-world interactions that IoT provides
has drawn interest regarding the use of IoT in intensive do-
mains such as industry or healthcare [3], [4]. IoT applications
from these domains are critical, and as such, achieving an
optimal response time becomes crucial. Bringing computing
resources closer to the edge through fog computing is essential
for this achievement but not enough to obtain it. Service
discovery, monitoring and routing optimization must also be
considered. Moreover, modern IoT applications require ser-
vice discovery and monitoring to be performed transparently.
All these services can be provided by an underlying SDN.
However, to achieve optimal QoS, it is necessary to optimize
the deployment of microservices and the placement of SDN

HERRERA et al.: OPTIMIZING THE RESPONSE TIME IN SDN-FOG ENVIRONMENTS FOR TIME-STRICT IOT APPLICATIONS 13

Table III: Categorization of related work

Work Category Service
place-
ment

Controller
place-
ment

Routing
optimiza-
tion

[6] DCDP Yes No No
[24] DCDP Yes No No
[12] DCDP Yes No No
[13] DCDP Yes No No
[14] DCDP

with SDN
Yes No No

[25] DCDP
with SDN

Yes No No

[16] CPP No Yes No
[18] CPP No Yes No
[10] CPP No Yes Yes
[26] SFC Yes No Yes
[27] SFC Yes No Yes

DADO Fog-SDN
Deploy-
ment
Problem

Yes Yes Yes

controllers. This work defines and formalizes the problem of
optimizing fog computing and SDN infrastructures for QoS-
strict IoT applications with an MSA. To do so, the optimization
efforts from both the computing and the networking dimen-
sions are merged. By optimally distributing microservices
between nodes, optimally placing SDN controllers and taking
into account the mutual influences between both dimensions,
optimal decisions are made, and suboptimal solutions are
avoided. To solve the joint problem of computation distribu-
tion and controller placement, a framework named DADO is
proposed. The performance evaluation over an IIoT scenario
shows that DADO provides scalable deployment plans that
trade-off execution time and latency optimally. Moreover,
DADO reduces the response time by up to 37.89% by op-
timizing deployment and allowing for hybrid (e.g., fog and
mist layer) fog computing deployments, as well as providing
scalable solutions.

In the future, we expect to extend DADO. First, we intend
to develop heuristics that will allow DADO to be applied to
infrastructures larger than 300 nodes while still finding near-
optimal solutions. Moreover, heuristics will allow DADO to
reuse previous solutions in the adaptation process during the
execution time. We also intend to add mobility considerations
to these heuristics, allowing DADO to consider and trade off
the QoS degradation of maintaining a deployment plan with
the cost of a reconfiguration. Finally, we intend to expand
DADO to consider other QoS features, such as reliability, and
to combine these QoS features to develop a multiobjective
version of DADO.

REFERENCES

[1] J. Singh, T. Pasquier, J. Bacon, H. Ko, and D. Eyers, “Twenty Security
Considerations for Cloud-Supported Internet of Things,” IEEE Internet
of Things Journal, vol. 3, no. 3, pp. 269–284, jun 2016.

[2] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Ni-
akanlahiji, J. Kong, and J. P. Jue, “All one needs to know about fog
computing and related edge computing paradigms: A complete survey,”
Journal of Systems Architecture, vol. 98, pp. 289–330, 2019.

[3] H. Xu, W. Yu, D. Griffith, and N. Golmie, “A Survey on Industrial In-
ternet of Things: A Cyber-Physical Systems Perspective,” IEEE Access,
vol. 6, pp. 78 238–78 259, 2018.

[4] L. Greco, G. Percannella, P. Ritrovato, F. Tortorella, and M. Vento,
“Trends in IoT based solutions for health care: Moving AI to the edge,”
Pattern Recognition Letters, vol. 135, pp. 346–353, 2020.

[5] P. Bellavista, J. Berrocal, A. Corradi, S. K. Das, L. Foschini, and
A. Zanni, “A survey on fog computing for the internet of things,”
Pervasive and Mobile Computing, vol. 52, pp. 71 – 99, 2019.

[6] B. Choudhury, S. Choudhury, and A. Dutta, “A Proactive Context-
Aware Service Replication Scheme for Adhoc IoT Scenarios,” IEEE
Transactions on Network and Service Management, vol. 16, no. 4, pp.
1797–1811, 2019.

[7] N. Wang, K. H. Ho, G. Pavlou, and M. Howarth, “An overview of rout-
ing optimization for internet traffic engineering,” IEEE Communications
Surveys and Tutorials, vol. 10, no. 1, pp. 36–56, mar 2008.

[8] A. C. Baktir, A. Ozgovde, and C. Ersoy, “How can edge computing
benefit from software-defined networking: A survey, use cases, and
future directions,” IEEE Communications Surveys Tutorials, vol. 19,
no. 4, pp. 2359–2391, 2017.

[9] P. Bellavista, C. Giannelli, T. Lagkas, and P. Sarigiannidis, “Quality
management of surveillance multimedia streams via federated sdn con-
trollers in fiwi-iot integrated deployment environments,” IEEE Access,
vol. 6, pp. 21 324–21 341, 2018.

[10] T. Das, V. Sridharan, and M. Gurusamy, “A survey on controller
placement in sdn,” IEEE Communications Surveys & Tutorials, pp. 472–
503, 2019.

[11] A. Carrega, M. Repetto, P. Gouvas, and A. Zafeiropoulos, “A middleware
for mobile edge computing,” IEEE Cloud Computing, vol. 4, no. 4, pp.
26–37, 2017.

[12] W. Sun, J. Liu, Y. Yue, and H. Zhang, “Double Auction-Based Resource
Allocation for Mobile Edge Computing in Industrial Internet of Things,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 10, pp. 4692–
4701, 2018.

[13] A. Brogi, S. Forti, C. Guerrero, and I. Lera, “How to place your apps in
the fog: State of the art and open challenges,” Software: Practice and
Experience, vol. 50, no. 5, pp. 719–740, 2020.

[14] Z. Lv and W. Xiu, “Interaction of Edge-Cloud Computing Based on SDN
and NFV for Next Generation IoT,” IEEE Internet of Things Journal,
vol. 7, no. 7, pp. 5706–5712, 2019.

[15] B. Zhang, X. Wang, and M. Huang, “Multi-objective optimization con-
troller placement problem in internet-oriented software defined network,”
Computer Communications, vol. 123, pp. 24–35, 2018.

[16] M. T. I. ul Huque, G. Jourjon, and V. Gramoli, “Revisiting the controller
placement problem,” in 2015 IEEE 40th Conference on Local Computer
Networks (LCN), 2015, pp. 450–453.

[17] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, “Dynamic controller provisioning in
software defined networks,” in Proceedings of the 9th International
Conference on Network and Service Management (CNSM 2013), 2013,
pp. 18–25.

[18] A. K. Singh, S. Maurya, and S. Srivastava, “Varna-based optimization:
a novel method for capacitated controller placement problem in SDN,”
Frontiers of Computer Science, vol. 14, no. 3, p. 143402, 2020.

[19] P. Bellavista, C. Giannelli, and D. D. P. Montenero, “A reference
model and prototype implementation for sdn-based multi layer routing
in fog environments,” IEEE Transactions on Network and Service
Management, 2020.

[20] T. A. Toffolo and H. G. Santos, “Python-MIP,” 2020. [Online].
Available: https://www.python-mip.com/

[21] Arduino, “Arduino Pro,” 2020. [Online]. Available: https://www.
arduino.cc/pro/hardware/product/portenta-h7

[22] Raspberry Pi Foundation, “Raspberry Pi Zero,” 2018. [Online].
Available: https://www.raspberrypi.org/products/raspberry-pi-zero/

[23] M. Taneja and A. Davy, “Resource aware placement of iot application
modules in fog-cloud computing paradigm,” in 2017 IFIP/IEEE Sym-
posium on Integrated Network and Service Management (IM). IEEE,
2017, pp. 1222–1228.

[24] M. Mukherjee, V. Kumar, S. Kumar, R. Matamy, C. X. Mavromoustakis,
Q. Zhang, M. Shojafar, and G. Mastorakis, “Computation offloading
strategy in heterogeneous fog computing with energy and delay con-
straints,” in ICC 2020-2020 IEEE International Conference on Commu-
nications (ICC). IEEE, 2020, pp. 1–5.

[25] M. Huang, W. Liu, T. Wang, A. Liu, and S. Zhang, “A Cloud-MEC
Collaborative Task Offloading Scheme with Service Orchestration,”
IEEE Internet of Things Journal, vol. 7, no. 7, pp. 5792–5805, 2019.

https://www.python-mip.com/
https://www.arduino.cc/pro/hardware/product/portenta-h7
https://www.arduino.cc/pro/hardware/product/portenta-h7
https://www.raspberrypi.org/products/raspberry-pi-zero/

14 IEEE INTERNET OF THINGS JOURNAL, VOL. 0, NO. 0, JANUARY 0000

[26] M. M. Tajiki, S. Salsano, L. Chiaraviglio, M. Shojafar, and B. Akbari,
“Joint energy efficient and qos-aware path allocation and vnf placement
for service function chaining,” IEEE Transactions on Network and
Service Management, vol. 16, no. 1, pp. 374–388, 2018.

[27] M. M. Tajiki, M. Shojafar, B. Akbari, S. Salsano, M. Conti, and
M. Singhal, “Joint failure recovery, fault prevention, and energy-efficient
resource management for real-time sfc in fog-supported sdn,” Computer
Networks, vol. 162, p. 106850, 2019.

Juan Luis Herrera received a Bachelor’s degree
in software engineering from the University of Ex-
tremadura in 2019. He is a researcher in the Com-
puter Science and Communications Engineering De-
partment of the University of Extremadura. His main
research interests include the IoT, fog computing and
SDNs.

Jaime Galán-Jiménez received a Ph.D. in computer
science and communications from the University
of Extremadura in 2014. He is currently with the
Computer Science and Communications Engineer-
ing Department, University of Extremadura, as an
Assistant Professor. His main research interests are
SDNs, 5G network planning and design, and mobile
ad hoc networks.

Javier Berrocal (IEEE Member) is a cofounder
of Gloin. His main research interests are software
architectures, mobile computing, and edge and fog
computing. Berrocal has a Ph.D. in computer science
from the University of Extremadura, where he is
currently an Associate Professor.

Juan M. Murillo (IEEE Member) is a cofounder
of Gloin and a Full Professor at the University of
Extremadura. His research interests include software
architectures, mobile computing, and cloud comput-
ing.

	Introduction
	Background
	Scenario: Fog IIoT factory
	DCDP: Placing the microservices
	CPP: Placing the SDN controllers
	Computing and networking trade-off

	DADO framework
	Performance evaluation
	Evaluation setup
	Evaluation results

	Related work
	Conclusions and future work
	References
	Biographies
	Juan Luis Herrera
	Jaime Galán-Jiménez
	Javier Berrocal
	Juan M. Murillo

