Supplementary Materials

Abbreviations

AF = Arcuate Fasciculus **BET = Brain Extraction Tool** CE-AVEC = "Area Vasta Emilia Centro" Ethics Committee CNS = Central Nervous System CST = Cortico-Spinal Tract DWI = Diffusion Weighted Imaging FA = Flip Angle FAT = Fronto Aslant Tract FLAIR = FLuid Attenuate Inversion Recovery FLIRT = FSL's Linear Image Registration Tool FMRIB = Functional Magnetic Resonance Imaging of the Brain FO = First Order FSL = FMRIB Software Library GL = Grey Level GLCM = GL Co-occurrence Matrix GLDM = GL Dependence Matrix GLRLM = GL Run Length Matrix GLZM = GL Zone Matrix GRE = GRadient Echo HC = Healthy Controls ICC = Intra-class correlation coefficient IFOF = Inferior Fronto-Occipital Fasciculus iLSQR = iterative least square LST = Lesion Segmentation Tool MNI = Montreal Neurological Institute (MNI)

MOG-IgG = antibodies against myelin oligodendrocyte glycoprotein MPRAGE = Magnetization Prepared RApid Gradient Echo MRI = Magnetic Resonance Imaging MS = Multiple Sclerosis NAWM = Normal Appearing WM NGTDM = Neighbouring Grey Tone Difference Matrix NMOSD = Neuromyelitis Optica Spectrum Disorder OR = Optic Radiation PD = Parkinson's Disease qMRI = quantitative MRI QSM = Quantitative Susceptibility Mapping ROI = Region of Interest SN = Substantia Nigra SNR = Signal-to-Noise Ratio SPM = Statistical Parametric Mapping $T_1w = T_1$ -weighted $T_2w = T_2$ -weighted TE = Echo Time TR = Repetition Time UF = Uncinate Fasciculus V-SHARP = Variable kernel Sophisticated Harmonic Artifact Reduction for Phase data VOI = Volume of Interest WM = White Matter

Materials and Methods

MR Protocol

	MPRAGE 3D T₁w	FLAIR 3D SPACE T₂w	HARDI DWI 2D EPI single-shot	QSM 3D GRE T ₂ *w
Plane	sagittal	sagittal	axial	axial
TR (ms)	2300	5000	4300	53
TE (ms)	2.98	428	98	9.42
ΔTE (ms)	NA	NA	NA	9.42
N° TEs	1	1	1	5
SR (mm³)	1x1x1	1x1x1	2x2x2	0.5x0.5x1.5
FA (°)	9	120	90	15
Scan time	~ 5'	~ 6'	~ 9'	~ 9'

Table S1: MR protocol (MPRAGE = Magnetization Prepared RApid Gradient Echo; FLAIR = FLuid Attenuated Inversion Recovery; SPACE = Sampling Perfection with Application optimised Contrast using different flip angle Evolution; HARDI = High Angular Resolution Diffusion Imaging; DWI = Diffusion Weighted Imaging; EPI = Echo Planar Imaging; QSM = Quantitative Susceptibility Mapping; GRE = Gradient-echo; TR = Time of Repetition; TE = Time of Echo; SR = Spatial Resolution; FA = Flip Angle; NA = Not Available)

For DWI measurements, single-shell (5 unweighted vols and 60 vols $b = 2000 \text{ s/mm}^2$) and multishell (8 unweighted vols, 8 vols $b = 300 \text{ s/mm}^2$, 30 vols $b = 1000 \text{ s/mm}^2$ and 64 vols $b = 2000 \text{ s/mm}^2$) sequences were used, with Anterior-Posterior (AP) phase encoding, and an additional sequence with inverted phase encoding (PA) (~ 4' scan time) to correct Echo-Planar Imaging (EPI) distortion artifacts, as in [43] and [50].

WM Tracts

The analysed WM tracts were: **Arcuate Fasciculus (AF)**, connecting the temporal and the inferior parietal cortex to locations in the frontal lobe and linking Broca's and Wernicke's areas (<u>language prediction and understanding</u>); **Cortico-Spinal Tract (CST)**, also known as pyramidal tract, is the major neuronal pathway providing <u>voluntary motor function</u>, connecting the cortex to the spinal cord to enable movement of the distal extremities; **Frontal Aslant Tract (FAT)** connects the superior frontal gyrus (pre-SMA Supplementary Motor Area) and SMA to the pars opercularis and pars triangularis of the inferior frontal gyrus and the anterior insula, it is strongly associated with <u>speech initiation</u>, verbal fluency and stuttering; **Inferior Fronto-Occipital Fasciculus (IFOF)**, large white matter tract associated with semantic language processing and goal-oriented behaviour; **Optic Radiation (OR)**, known as geniculocalcarine tract, connects the lateral geniculate nucleus to the primary visual cortex in the occipital lobe (<u>transmission of the visual input</u> passing through the retina, the optic nerve and the optic tract); **Uncinate Fasciculus (UF)** links the orbitofrontal cortex, involved in <u>face encoding</u> and in <u>processing famous names</u>, to the temporal pole, which is crucial in naming people.

Radiomic Features

Below, is a comprehensive list of the features extracted with Pyradiomics [51] (<u>https://pyradiomics.readthedocs.io/en/latest/features.html</u>), including their definition and explanation. They were divided into classes: First Order (FO), Shape 3D (S3D), Grey Level Co-

occurrence Matrix (GLCM), Grey Level Run Length Matrix (GLRLM), Grey Level Size Zone Matrix (GLSZM), Neighbouring Grey Tone Difference Matrix (NGTDM) and Grey Level Dependence Matrix (GLDM).

First order features

- X : set of N_p voxels included in the ROI
- N_p : number of non-zero bins
- P(i): first order histogram with N_g discrete intensity level
- p(i): normalised first order histogram $\frac{P(i)}{N_p}$
- c: optimal value which shifts the intensities to prevent negative values in X
- ϵ : arbitrary small positive number (~ 2.2 x 10⁻¹⁶)

1	10 th P	10 th percentile of X	
2	90 th P	90 th percentile of X	
3	Energy	$\sum_{i=1}^{N_p} (X(i)+c)^2$	It measures the magnitude of voxel values in an image, larger values mean a greater sum of the square of these values
4	Entropy	$-\sum_{i=1}^{N_p} p(i) \left(p(i) + \epsilon \right)$	It measures the uncertainty/randomness in the image values
5	Interquartile Range	75 th P – 25 th P	25 th and 75 th percentile of X
6	Kurtosis	$\frac{\mu_4}{\sigma_4} = \frac{\frac{1}{N_p} \sum_{i=1}^{N_p} (X(i) - \underline{X})^4}{(\sqrt{\frac{1}{N_p} \sum_{i=1}^{N_p} (X(i) - \underline{X})^2}}$	It measures the 'peakedness' of the distribution of values
7	Maximum	max (X)	Maximum value of the histogram of intensities
8	Mean Absolute Deviation (MAD)	$\frac{1}{N_p} \sum_{i=1}^{N_p} X(i) - \underline{X} $	Mean distance of all intensity values from the mean value of the image array
9	Mean	$\frac{1}{N_p} \sum_{i=1}^{N_p} X(i)$	
10	Median	50 th percentile of X	
11	Minimum	min (X)	Minimum value of the histogram of intensities
12	Range	max(X) - min(X)	
13	Robust MAD	$\frac{1}{N_{10-90}} \sum_{i=1}^{N_{10-90}} X_{10-90(i)} - \underline{X}_{10-90} $	MAD calculated on the subset of image array with GLs between the 10 th and the 90 th percentile
14	Root Mean Squared	$\sqrt{\frac{1}{N_p}\sum_{i=1}^{N_p}(X(i)+c)^2}$	It measures the magnitude of the image values; it is volume-confounded
15	Skewness	$\frac{\mu_{3}}{\sigma_{3}} = \frac{\frac{1}{N_{p}} \sum_{i=1}^{N_{p}} (X(i) - \underline{X})^{3}}{(\sqrt{\frac{1}{N_{p}} \sum_{i=1}^{N_{p}} (X(i) - \underline{X})^{2}}}$	It measures the asymmetry of the distribution of values with respect to the mean value

16	Total Energy	$V_{voxel} \sum_{i=1}^{N_p} (X(i) + c)^2$	Total Energy is the Energy scaled by the volume (mm ³)
17	Uniformity	$\sum_{i=1}^{N_g} p(i)^2$	It measures the homogeneity of the image array, where a greater uniformity implies a greater homogeneity or a smaller range of discrete intensity values
18	Variance	$\frac{1}{N_p} \sum_{i=1}^{N_p} (X(i) - \underline{X})^2$	It measures the spread of the distribution around the mean

Table S2: List of First Order (FO) features

Shape 3D features

- N_{v} : number of voxels included in the ROI
- N_f : number of faces (triangles) defining the Mesh
- V: volume of the mesh in mm³
- A: surface area of the mesh in mm²

1	Elongation	$\sqrt{rac{\lambda_{minor}}{\lambda_{major}}}$	[0,1], where 0 = the object is maximally elongated and 1 = the cross-section through the first and the second largest principal moment is circle-like
2	Flatness	$\sqrt{rac{\lambda_{least}}{\lambda_{major}}}$	[0,1], where 0 = flat object and 1 = non-flat object, sphere like
3	Least Axis Length	$4\sqrt{\lambda_{least}}$	It yields the smallest axis length of the ROI-enclosing ellipsoid and is calculated using the largest principal component
4	Major Axis Length	$4\sqrt{\lambda_{major}}$	It yields the largest axis length of the ROI-enclosing ellipsoid and is calculated using the largest principal component
5	Maximum 2D Diameter Column	Largest pairwise Euclidean distance between surface mesh vertices in the row-slice plane	Usually, coronal plane
6	Maximum 2D Diameter Row	Largest pairwise Euclidean distance between surface mesh vertices in the column-slice plane	Usually, sagittal plane
7	Maximum 2D Diameter Slice	Largest pairwise Euclidean distance between surface mesh vertices in the row-column plane	Usually, axial plane
8	Maximum 3D Diameter	Largest pairwise Euclidean distance between surface mesh vertices	Feret Diameter

9	Mesh Volume	$\sum_{i=1}^{N_f} V_i = \sum_{i=1}^{N_f} \frac{Oa_i \cdot (Ob_i \times Oc_i)}{6}$	Evaluated from the triangle mesh of the ROI
10	Minor Axis Length	$4\sqrt{\lambda_{minor}}$	It yields the second-largest axis length of the ROI- enclosing ellipsoid and is calculated using the largest principal component
11	Sphericity	$\frac{\sqrt[3]{36\pi V^2}}{A}$	(0,1] with 1 = perfect sphere
12	Surface Area	$\sum_{i=1}^{N_f} A_i = \sum_{i=1}^{N_f} \frac{1}{2} a_i b_i \times a_i c_i $	$a_i b_i$ and $a_i c_i$ are the edges of the <i>i</i> th triangle in the mesh, with vertices a_i , b_i and c_i . Area of each triangle in the mesh is calculated and then the total surface area is obtained.
13	Surface Volume Ratio	$\frac{A}{V}$	A lower value indicates a more compact (sphere-like) shape
14	Voxel Volume	$\sum_{k=1}^{N_{\nu}} V_k$	Approximating by multiplying the number of voxels in the ROI by the volume of a single voxel

Table S3: List of Shape 3D (S3D) features

Grey Level Co-occurrence Matrix features

A Grey Level Co-occurrence Matrix (GLCM) ($N_g \times N_g$, where N_g is the number of discrete intensity levels in the image) is a second-order joint probability function defined as $P(i, j | \delta, \theta)$, counting the number of times the combination of the *i*th and the *j*th level, separated by a distance δ along an angle θ occurs. Pyradiomics computes symmetrical GLCM by default.

$$\begin{split} \epsilon &: \text{arbitrary small positive number } (\sim 2.2 \times 10^{-16}) \\ P(i,j) &: \text{co-occurrence matrix for an arbitrary } \delta \text{ and } \theta \\ p(i,j) &: \text{normalised co-occurrence matrix equal to } \frac{P(i,j)}{\sum P(i,j)} \\ N_g &: \text{number of discrete intensity levels in the image} \\ p_x(i) &= \sum_{j=1}^{N_g} p(i,j) : \text{ marginal row probabilities} \\ p_y(j) &= \sum_{i=1}^{N_g} p(i,j) : \text{ marginal column probabilities} \\ \mu_x : \text{ mean grey level intensity of } p_x \text{ defined as } \sum_{i=1}^{N_g} p_x(i)i \\ \mu_y : \text{ mean grey level intensity of } p_y \text{ defined as } \sum_{j=1}^{N_g} p_y(j)j \\ \sigma_x : \text{ standard deviation of } p_x \\ \sigma_y : \text{ standard deviation of } p_x \\ p_{x+y}(k) &= \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) \text{ where } i+j=k \text{ and } k=2,3,\ldots,2N_g \\ p_{x-y}(k) &= \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j) \text{ where } |i-j| = k \text{ and } k = 0,1,\ldots,N_g \\ HX &= -\sum_{i=1}^{N_g} p_x(i)(p_x(i)+\epsilon) : \text{ entropy of } p_x \\ HY &= -\sum_{j=1}^{N_g} p_y(j)(p_y(j)+\epsilon) : \text{ entropy of } p_y \end{split}$$

$$HXY = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)(p(i,j) + \epsilon): \text{ entropy of } p(i,j)$$

$$HXY1 = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)(p_x(i)p_y(j) + \epsilon)$$

$$HXY2 = -\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_x(i)p_y(j)(p_x(i)p_y(j) + \epsilon)$$

1	Autocorrelation	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)ij$	Measure of the fineness and the coarseness of texture
2	Cluster Prominence	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i+j-\mu_x-\mu_y)^4 p(i,j)$	Measure of skewness and asymmetry of the GLCM (higher value: more asymmetry)
3	Cluster Shade	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i+j-\mu_x-\mu_y)^3 p(i,j)$	
4	Cluster Tendency	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i+j-\mu_x-\mu_y)^2 p(i,j)$	Measure of groupings of voxels with similar GL values
5	Contrast	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i-j)^2 p(i,j)$	Local intensity variation; the larger is, the grater is the disparity in intensity values among neighbouring voxels
6	Correlation	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p(i,j)ij - \mu_x \mu_y}{\sigma_x(i)\sigma_y(j)}$	From 0 (= uncorrelated) and 1 (perfectly correlated), it shows the linear dependency of grey level values to their respective voxels in the GLCM
7	Difference Average	$\sum_{k=0}^{N_g-1} k p_{x-y}(k)$	Relationship between occurrences of pairs with similar intensity values and occurrences of pairs with different intensity values
8	Difference Entropy	$\sum_{k=0}^{N_g-1} p_{x-y}(k)(p_{x-y}(k)+\epsilon)$	It measures the randomness/variability in the neighbourhood intensity value difference
9	Difference Variance	$\sum_{k=0}^{N_g-1} (k - DA)^2 p_{x-y}(k)$	It measures heterogeneity, setting higher weights on different intensity level pairs that deviate more from the mean
10	ld (Inverse difference)	$\sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{1+k}$	(homogeneity 1) Another measure of local homogeneity (higher with more uniform grey level)
11	ldm (Id moment)	$\sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{1+k^2}$	Measure of the local homogeneity of an image (weights opposite to the contrast)
12	ldmn (Idm normalised)	$\sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{1 + \frac{k^2}{N_g^2}}$	Measure of the local homogeneity of an image (weights opposite to the contrast)
13	ldn (ld normalised)	$\sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{1 + \left(\frac{k}{N_g}\right)}$	Another measure of homogeneity in an image

14	Imc1 (Information	HXY - HXY1	
14	measure of correlation 1)	max {HX, HY}	
15	Imc2 (Information measure of correlation 2)	$\sqrt{1-e^{-2(HXY2-HXY)}}$	
16	Inverse Variance	$\sum_{k=0}^{N_g-1} \frac{p_{x-y}(k)}{k^2}$	
17	Joint Average	$\mu_{x} = \sum_{i=1}^{N_{g}} \sum_{j=1}^{N_{g}} p(i,j)i$	Returns the mean GL intensity of the i^{th} distribution
18	Joint Energy	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (p(i,j))^2$	Measure of homogeneous patterns in the image
19	Joint Entropy	$-\sum_{i=1}^{N_g}\sum_{j=1}^{N_g}p(i,j)(p(i,j)+\epsilon)$	Measure of variability in the neighbourhood intensity values
20	MCC	$\sqrt{\text{second largest eigenvalue of }Q}$ $Q(i,j) = \sum_{k=0}^{N_g} \frac{p(i,k), p(j,k)}{p_x(i)p_y(k)}$	Maximal Correlation Coefficient, measure of complexity of the texture [0,1] (1 = flat region)
21	Maximum Probability	max(p(i,j))	Occurrences of the most predominant pair of neighbouring values
22	Sum Average	$\sum_{k=2}^{2N_g} p_{x+y}(k)k$	Occurrences of pairs with lower intensities with pairs with higher intensities
23	Sum Entropy	$\sum_{k=2}^{2N_g} p_{x+y}(k)(p_{x+y}(k)+\epsilon)$	Sum of neighbourhood intensity value differences
24	Sum Squares	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (i - \mu_x)^2 p(i, j)$	Or Variance, in the distribution neighbouring intensity level pairs

Table S4: List of Grey Level Co-occurrence Matrix (GLCM) features

Grey Level Run Length Matrix

A Grey Level Run Length Matrix (GLRLM) quantifies grey level runs, which are the length in numbers of consecutive pixels with the same grey value; the element $P(i, j|\theta)$ describes the number of runs with a grey level *i* and length *j* in the image along an angle θ . By default, the value of each feature is evaluated for each θ individually and then different values are averaged.

 ϵ : arbitrary small positive number (~ 2.2 x 10⁻¹⁶)

- N_g : number of discrete intensity levels in the image
- N_r : number of discrete run lengths in the image
- N_p : number of voxels in the image

 $N_r(\theta)$: number of runs in the image along angle θ equal to $\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} P(i, j|\theta)$ and $1 \le N_r(\theta) \le N_p$

 $P(\theta)$: run length matrix for an arbitrary direction θ

 $p(\theta)$: normalised run length matrix, defined as $p(\theta) = \frac{P(\theta)}{N_r(\theta)}$

1	GL Non-Uniformity (GLN)	$\frac{\sum_{i=1}^{N_g} (\sum_{j=1}^{N_r} P(\theta))^2}{N_r(\theta)}$	It measures the similarity of GL intensity value in the image
---	-------------------------	---	---

			(lower = greater similarity in intensity values)
2	GLN Normalised (GLNN)	$\frac{\sum_{i=1}^{N_g} (\sum_{j=1}^{N_r} P(\theta))^2}{N_r(\theta)^2}$	Normalised version of GLN
3	GL Variance (GLV)	$\Sigma_{i=1}^{N_g} \sum_{j=1}^{N_r} p(\theta) (i-\mu)^2,$ $\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(\theta) i$	Variance in grey level intensity for the runs
4	High GL Run Emphasis (HGLRE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} P(\theta) i^2}{N_r(\theta)}$	Measure of the distribution of the higher grey-level runs, higher values indicate a greater concentration of high grey level values in the image
5	Long Run Emphasis (LRE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} P(\theta) j^2}{N_r(\theta)}$	Measure of the distribution of long run lengths, greater when there are longer lengths and more coarse structural textures
6	Long Run High GL Emphasis (LRHGLRE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} P(\theta) i^2 j^2}{N_r(\theta)}$	It measures the joint distribution of long run lengths with higher grey-level values
7	Long Run Low GL Emphasis (LRLGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{P(\theta)j^2}{i^2}}{N_r(\theta)}$	It measures the joint distribution of long run lengths with lower grey- level values
8	Low GL Run Emphasis (LGLRE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{P(\theta)}{i^2}}{N_r(\theta)}$	Measure of the distribution of the lower grey-level runs, higher values indicate a greater concentration of low grey level values in the image
9	Run Entropy (RE)	$-\sum_{i=1}^{N_g}\sum_{j=1}^{N_r}p(\theta)(p(\theta)+\epsilon)$	Measure of the uncertainty/randomness in the run lengths and grey level distribution: higher values indicate more heterogeneity in the texture patterns
10	Run Length Non-Uniformity (RLN)	$\frac{\sum_{j=1}^{N_r} (\sum_{i=1}^{N_g} P(\theta))^2}{N_r(\theta)}$	It measures the similarity of run lengths, with lower values indicating more homogeneity among run lengths
11	RLN Normalized (RLNN)	$\frac{\sum_{j=1}^{N_r} (\sum_{i=1}^{N_g} P(\theta))^2}{N_r(\theta)^2}$	Normalised version of RLN
12	Run Percentage (RP)	$\frac{N_r(\theta)}{N_p}$	$\left[\frac{1}{N_p}, 1\right]$ Measure of the coarseness of the texture (higher values indicate more fine texture)

13	Run Variance (RV)	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(\theta)(j-\mu)^2$ $\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_r} p(\theta)j$	Measure of the variance in runs for the run lengths
14	Short Run Emphasis (SRE)	$\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{P(\theta)}{j^2}$	Measure of the distribution of short run lengths, greater when there are more short run lengths and more fine textural features
15	Short Run High GL Emphasis (SRHGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{P(\theta)i^2}{j^2}}{N_r(\theta)}$	It measures the joint distribution of shorter run lengths with higher grey-level values
16	Short Run Low GL Emphasis (SRLGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_r} \frac{P(\theta)}{i^2 j^2}}{N_r(\theta)}$	It measures the joint distribution of shorter run lengths with lower GL values

Table S5: List of Grey Level Run Length Matrix (GLRLM) features

Grey Level Size Zone Matrix

A Grey Level Size Zone Matrix (GLSZM) quantifies the grey level zones in an image, defined as the number of connected voxels that share the same intensity (distance = 1 according to the infinity norm – 36 connected regions in a 3D, 8-connected region in a 2D). In the matrix, the element P(i,j) is the number of zones with grey level *i* and size *j*.

 ϵ : arbitrary small positive number (~ 2.2 x 10⁻¹⁶)

 N_g : number of discrete intensity levels in the image

 N_s : number of discrete zone sizes in the image

 N_p : number of voxels in the image

 N_z : number of zones in the ROI, equal to $\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} P(i,j)$ and $1 \le N_z \le N_p$

P(i,j) : size zone matrix

p(i,j) : normalised size zone matrix, defined as $\frac{P(i,j)}{N_z}$

1	GL Non-Uniformity (GLN)	$\frac{\sum_{i=1}^{N_g} (\sum_{j=1}^{N_s} P(i,j))^2}{N_z}$	Variability of GL intensity values in the image - lower value indicating more homogeneity in intensity values
2	GLN Normalised (GLNN)	$\frac{\sum_{i=1}^{N_g} (\sum_{j=1}^{N_s} P(i,j))^2}{N_z^2}$	Normalised version of GLN
3	GL Variance (GLV)	$\Sigma_{i=1}^{N_g} \Sigma_{j=1}^{N_s} p(i,j)(i-\mu)^2,$ $\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_s} p(i,j)i$	Variance in GL intensities for the zones
4	High GL Zone Emphasis (HGLZE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} P(i,j)i^2}{N_z}$	It measures the distribution of higher grey-level size zones; high values

			indicate a greater proportion of higher grey-level values and size zones in the image
5	Large Area Emphasis (LAE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} P(i,j)j^2}{N_z}$	Measure of the distribution of large area zones; greater values indicate bigger size zones and more coarse texture
6	Large Area High GL Emphasis (LAHGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} P(i,j)i^2 j^2}{N_z}$	It measures the proportion in the image of the joint distribution of larger size zones with higher GL values
7	Large Area Low GL Emphasis (LALGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} \frac{P(i,j)j^2}{i^2}}{N_z}$	It measures the proportion in the image of the joint distribution of larger size zones with higher GL values
8	Low GL Zone Emphasis (LGLZE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} \frac{P(i,j)}{i^2}}{N_z}$	It measures the distribution of lower grey-level size zones; high values indicate a greater proportion of lower grey-level values and size zones in the image
9	Size Zone Non-Uniformity (SZN)	$\frac{\sum_{j=1}^{N_s} (\sum_{i=1}^{N_g} P(i,j))^2}{N_z}$	It measures the variability of size zone volumes in the image, with a lower value indicating more heterogeneity in size zone volumes
10	SZN Normalized (SZNN)	$\frac{\sum_{j=1}^{N_s} (\sum_{i=1}^{N_g} P(i,j))^2}{N_z^2}$	Normalised version of SZN
11	Small Area Emphasis (SAE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} \frac{P(i,j)}{j^2}}{N_z}$	Measure of the distribution of small size zones; greater values indicate smaller size zones and finer texture
12	Small Area High GL Emphasis (SAHGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} \frac{P(i,j)i^2}{j^2}}{N_z}$	Measure of the proportion in the image of the joint distribution of smaller size zones with higher GL values
13	Small Area Low GL Emphasis (SALGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_s} \frac{P(i,j)}{i^2 j^2}}{N_z}$	Measure of the proportion in the image of the joint distribution of smaller size zones

			with lower GL values
14	Zone Entropy (ZE)	$-\sum_{i=1}^{N_g}\sum_{j=1}^{N_s}p(i,j)(p(i,j)+\epsilon)$	Randomness of the distribution of zone sizes and grey levels. Higher values indicate more heterogeneity in the texture patterns
15	Zone Percentage (ZP)	$\frac{N_z}{N_p}$	Measure of the coarseness of the texture - $\left[\frac{1}{N_p}, 1\right]$, with higher values indicating a larger portion of the ROI consists of small zones (finer texture)
16	Zone Variance (ZV)	$\Sigma_{i=1}^{N_g} \Sigma_{j=1}^{N_s} p(i,j)(j-\mu)^2,$ $\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_s} p(i,j)j$	Variance in zone size volumes for the zones

 Table S6: List of Grey Level Size Zone Matrix (GLSZM) features

Neighbouring Grey Tone Difference Matrix

A Neighbouring Grey Tone Difference Matrix (NGTDM) is defined by the quantification of the difference between a grey value and the average grey values of its neighbours within distance δ . For each grey level *i*, the absolute difference in intensity is stored in the matrix.

 X_{ql} : set of segmented voxels

 $x_{gl}(j_x, j_y, j_z) \in X_{gl}$: grey level of a voxel at position $(j_x j_y j_z)$

The average grey level of the neighbourhood is:

 $\overline{A}_{l} = \overline{A}(j_{x}, j_{y}, j_{z}) = \frac{1}{W} \sum_{k_{z}=-\delta}^{\delta} \sum_{k_{y}=-\delta}^{\delta} \sum_{k_{z}=-\delta}^{\delta} x_{gl}(j_{x} + k_{x}, j_{y} + k_{y}, j_{z} + k_{z}) \text{ where}(k_{x}, k_{y}, k_{z}) \neq (0,0,0)$ and $x_{gl}(j_{x} + k_{x}, j_{y} + k_{y}, j_{z} + k_{z}) \in X_{gl}$ and *W* is the number of voxels in the neighbourhood that are also in X_{gl} .

 n_i : number of voxels in X_{gl} with grey level *i*

 $N_{v,p}$: total number of voxels in $X_{gl}(\sum n_i)$

 $N_{v,p} \leq N_p$, where N_p is the total number of voxels in the ROI

 p_i : grey level probability equal to $\frac{n_i}{N_n}$

$$s_i = \begin{cases} \sum_{n_i} |i - \underline{A}_i| \text{ for } n_i \neq 0\\ 0 \text{ for } n_i = 0 \end{cases}$$
: sum of the absolute differences for grey level *i*

 N_g : number of the discrete grey levels

 $N_{g,p}$: number of the grey levels where $p_i \neq 0$

1	Busyness	$\frac{\sum_{i=1}^{N_g} p_i s_i}{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} ip_i - jp_j }$	A measure of change from a pixel to its neighbour. High value: 'busy' image, rapid changes in intensity
---	----------	--	---

2	Coarseness	$\frac{1}{\sum_{i=1}^{N_g} p_i s_i}$	Measure of the average difference between the centre voxel and its neighbourhood; it indicates the spatial rate of change; higher values indicate a locally more uniform texture
3	Complexity	$\frac{1}{N_{v,p}} \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} i-j \frac{p_i s_i + p_j s_j}{p_i + p_j}$	With many primitive components in the image: the image is non- uniform and there are many rapid changes in grey level intensity
4	Contrast	$\frac{1}{N_{g,p}(N_{g,p}-1)} \sum_{i=1}^{N_g} \sum_{j=1}^{N_g} p_i p_j (i-j)^2$	Measure of the spatial intensity change, depending also on the overall grey level dynamic range. Contrast is high: large range of grey levels, large changes between voxels and their neighbourhood
5	Strength	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_g} (p_i + p_j)(i-j)^2}{\sum_{i=1}^{N_g} s_i}$	Measure of primitives in an image. Its value is high when the primitives are easily defined and visible

Table S7: List of Neighbouring Grey Tone Difference Matrix (NGTDM) features $(p_i \neq 0, p_j \neq 0)$

Grey Level Dependence Matrix

A Grey Level Dependence Matrix (GLDM) quantifies grey level dependencies in an image, defined as the number of connected voxels within a distance δ that are dependent on the centre voxel. A voxel with a grey level *j* is considered dependent on a centre voxel with a grey level *i* if $|i - j| \le \alpha$. P(i,j) describes the number of times a voxel with GL *i* with *j* dependent voxels in its neighbourhood appear in image.

 ϵ : arbitrary small positive number (~ 2.2 x 10⁻¹⁶)

 N_g : number of discrete intensity levels in the image

 N_d : number of discrete dependency sizes in the image

 N_z : number of dependency zones in the image, equal to $\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} P(i,j)$

P(i,j): dependence matrix

p(i,j) : normalised dependence zone matrix, defined as $\frac{P(i,j)}{N_z}$

1	Dependence Entropy (DE)	$-\sum_{i=1}^{N_g}\sum_{j=1}^{N_d}p(i,j)(p(i,j)+\epsilon)$	
2	Dependence Non-Uniformity (DN)	$\frac{\sum_{j=1}^{N_d} (\sum_{i=1}^{N_g} P(i,j))^2}{N_z}$	Measure the similarity of dependence throughout the image; lower values indicate more homogeneity

			among dependencies
3	DN Normalised (DNN)	$\frac{\sum_{j=1}^{N_d} (\sum_{i=1}^{N_g} P(i,j))^2}{N_z^2}$	Normalised version of DN
4	Dependence Variance (DV)	$\Sigma_{i=1}^{N_g} \Sigma_{j=1}^{N_d} p(i,j)(j-\mu)^2,$ $\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)j$	Measure the variance in dependencies in the image
5	GL Non-Uniformity (GLN)	$\frac{\sum_{i=1}^{N_g} (\sum_{j=1}^{N_d} P(i,j))^2}{N_z}$	Measure of the similarity of GL intensity value, lower GLN correlates with greater similarity in intensity values
6	GL Variance (GLV)	$\Sigma_{i=1}^{N_g} \Sigma_{j=1}^{N_d} p(i,j)(i-\mu)^2,$ $\mu = \sum_{i=1}^{N_g} \sum_{j=1}^{N_d} p(i,j)i$	Variance in grey level in the image
7	High GL Emphasis (HGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} P(i,j)i^2}{N_z}$	Measures the distribution of high grey-level values, with a higher value indicating a greater concentration of high grey-level values in the image
8	Large Dependence Emphasis (LDE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} P(i,j)j^2}{N_z}$	Measure of the distribution of large dependencies, with a greater value indicative of larger dependence and more homogeneous texture
9	Large Dependence High GL Emphasis (LDHGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} P(i,j) i^2 j^2}{N_z}$	Measure the joint distribution of large dependence with higher grey-level values
10	Large Dependence Low GL Emphasis (LDLGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} \frac{P(i,j)j^2}{i^2}}{N_z}$	Measure the joint distribution of a large dependence with lower grey- level values
11	Low GL Emphasis (LGLE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} \frac{P(i,j)}{i^2}}{N_z}$	Measures the distribution of low grey-level values, with a higher value indicating a greater concentration of low grey-level values in the image
12	Small Dependence Emphasis (SDE)	$\frac{\sum_{i=1}^{N_g} \sum_{j=1}^{N_d} \frac{P(i,j)}{i^2}}{N_z}$	Measure of the distribution of the small dependencies, a greater value indicates a smaller

			dependence and
			less homogeneous
			texture.
		Y 2002	Measures the joint
10	Small Dependence High GL Emphasis	$\sum_{i=1}^{N_g} \sum_{i=1}^{N_d} \frac{P(i,j)i^2}{2}$	distribution of small
13	(SDHGLE)		dependence with
	(00)	Nz	higher grey-level
			values.
			Measures the joint
	Small Dependence Low GL Emphasis	$\mathbf{\nabla}^{N_g} \mathbf{\nabla}^{N_d} \frac{P(i,j)}{p(i,j)}$	distribution of small
14		$\Delta_{i=1} \Delta_{j=1} i^{2}j^{2}$	dependence with
	(SDLGLE)	N _z	lower grey-level
		Z	values.

Table S8: List of Grey Level Dependence Matrix (GLDM) features

Results

Optimal number of GLs

		ICC threshold									
N GLS	0.90	0.89	0.88	0.87	0.86	0.85					
8	461	489	517	543	556	568					
16	525	570	605	624	636	648					
32	545	574	603	624	640	659					
64	555	589	613	626	652	667					
128	533	584	607	622	635	654					
256	531	568	592	612	623	640					
512	540	576	593	608	621	631					

Table S9: Number of robust features vs number of GLs used to quantize the images. Features were evaluated for all the VOIs (6 NAWM tracts and NAWM), leading to a total number of 749 (= 7 VOIs * 107 features). A feature was considered robust when the ICC over the 4 QSM reconstructions was higher than a set threshold, from 0.85 to 0.90 (GL = Grey Level, VOI = Volume of Interest, NAWM = Normal Appearing White Matter, ICC = Intra-class Correlation Coefficient, QSM = Quantitative Susceptibility Mapping)

Robustness analysis

Figure S1: Robustness analysis: Intraclass correlation coefficient matrix

ICC matrix (n° GLs = 64) for the six NAWM tracts (AF, CST, FAT, IFOF, OR, UF) and for the entire NAWM (7 VOIs * 107 features = 749). In the bottom panel, the same matrix is shown after an upper-thresholding operation, setting the threshold as 0.85, leaving the robust features (ICC > 0.85) in yellow and the non-robust ones (ICC < 0.85) in purple (ICC = Intra-class Correlation Coefficient, GL = Grey Level, NAWM = Normal Appearing White Matter, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus, VOI = Volume Of Interest)

	NAWM Tracts						
	AF	CST	FAT	IFOF	OR	UF	
FO (18)	18	12	18	13	17	12	9
GLCM (24)	24	24	24	24	24	23	19
GLRLM (16)	16	16	16	16	16	13	10
GLSZM (16)	16	11	13	14	15	9	9
NGTDM (5)	5	4	5	5	4	4	4
GLDM (14)	14	12	14	13	13	11	10
TOT (93)	93	79	90	85	89	72	61

Table S10: Number of robust features in NAWM Tracts and NAWM, divided into the different categories. Features were extracted setting 64 as binning and ICC was evaluated between the 4 QSM reconstructions, setting 0.85 as threshold (NAWM = Normal Appearing White Matter, ICC = Intra-class Correlation Coefficient, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus, FO = First Order, GL = Grey Level, GLCM = GL Co-occurrence Matrix, GLRLM = GL Run Length Matrix, GLZM = GL Zone Matrix, NGTDM = Neighbouring Grey Tone Difference Matrix, GLDM = GL Dependence Matrix)

First-order statistics analysis

CI CM feetures	NAWM Tracts							
GLCW features	AF	CST	FAT	IFOF	OR	UF		
Autocorrelation	0.977	0.877	0.958	0.914	0.905	0.910	0.849	
Cluster Prominence	0.962	0.857	0.948	0.883	0.945	0.810	0.808	
Cluster Shade	0.980	0.932	0.978	0.924	0.963	0.949	0.899	
Cluster Tendency	0.972	0.896	0.960	0.913	0.952	0.865	0.821	
Contrast	0.975	0.895	0.960	0.901	0.931	0.912	0.886	
Correlation	0.990	0.955	0.987	0.976	0.986	0.944	0.978	
Difference Average	0.978	0.902	0.955	0.922	0.932	0.912	0.898	
Difference Entropy	0.979	0.897	0.958	0.930	0.933	0.904	0.888	
Difference Variance	0.973	0.883	0.966	0.896	0.937	0.904	0.868	
ld	0.978	0.907	0.943	0.939	0.934	0.906	0.904	
ldm	0.978	0.908	0.942	0.940	0.934	0.906	0.904	
ldmn	0.975	0.895	0.960	0.902	0.931	0.912	0.887	
ldn	0.978	0.903	0.954	0.924	0.933	0.912	0.899	
lmc1	0.984	0.939	0.971	0.969	0.965	0.941	0.966	
lmc2	0.981	0.966	0.979	0.972	0.983	0.942	0.964	
Inverse Variance	0.980	0.906	0.943	0.931	0.934	0.912	0.883	
Joint Average	0.976	0.885	0.962	0.913	0.911	0.910	0.850	
Joint Energy	0.977	0.910	0.946	0.940	0.947	0.865	0.869	
Joint Entropy	0.977	0.900	0.957	0.928	0.944	0.889	0.859	
MCC	0.938	0.918	0.973	0.908	0.928	0.892	0.904	
Maximum Probability	0.973	0.916	0.931	0.938	0.949	0.862	0.870	
Sum Average	0.976	0.885	0.962	0.913	0.911	0.910	0.850	
Sum Entropy	0.977	0.911	0.969	0.932	0.956	0.892	0.842	
Sum Squares	0.972	0.894	0.958	0.910	0.949	0.865	0.822	

Table S11: ICC values (n° GLs = 64) for the GLCM features in the analysed NAWM VOIs. Considering 0.85 as the threshold, the robust features are highlighted in yellow, the others in purple. For features abbreviations, please refer to Tab. S4 (ICC = Intra-class Correlation Coefficient, GL = Grey Level, GLCM = Grey Level Co-occurrence Matrix, NAWM = Normal Appearing White Matter, VOI = Volume Of Interest, AF = Arcuate Fasciculus; CST = Cortico-Spinal Tract; FAT = Frontal Aslant Tract; IFOF = Inferior Fronto-Occipital Fasciculus; OR = Optic Radiation; UF = Uncinate Fasciculus)

	NAWM Tracts							
GLRLW features	AF	CST	FAT	IFOF	OR	UF	NAWW	
GLN	0.993	0.979	0.989	0.977	0.987	0.960	0.959	
GLNN	0.979	0.918	0.970	0.935	0.955	0.894	0.841	
GLV	0.970	0.881	0.959	0.905	0.944	0.859	0.814	
HGLRE	0.976	0.876	0.957	0.913	0.905	0.908	0.847	
LRE	0.976	0.902	0.926	0.948	0.938	0.890	0.909	
LRHGLRE	0.977	0.902	0.951	0.930	0.922	0.920	0.860	
LRLGLE	0.957	0.856	0.908	0.870	0.904	0.828	0.846	
LGLRE	0.959	0.864	0.937	0.867	0.881	0.825	0.837	
RE	0.975	0.943	0.975	0.931	0.961	0.904	0.911	
RLN	0.997	0.971	0.994	0.990	0.995	0.988	0.939	

RLNN	0.980	0.914	0.946	0.950	0.943	0.909	0.909
RP	0.979	0.912	0.940	0.950	0.941	0.905	0.914
RV	0.975	0.899	0.918	0.946	0.935	0.886	0.911
SRE	0.979	0.912	0.944	0.950	0.943	0.904	0.906
SRHGLE	0.976	0.873	0.958	0.910	0.902	0.905	0.850
SRLGLH	0.959	0.863	0.938	0.866	0.876	0.823	0.837

Table S12: ICC values (n° GLs = 64) for the GLRLM features in the analysed NAWM VOIs. Considering 0.85 as the threshold, the robust features are highlighted in yellow, the others in purple. For features abbreviations, please refer to Tab. S5 (ICC = Intra-class Correlation Coefficient, GL = Grey Level, GLRLM = Grey Level Run Length Matrix, NAWM = Normal Appearing White Matter, VOI = Volume Of Interest, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)

CL S7M factures	NAWM Tracts							
GLSZM features	AF	CST	FAT	IFOF	OR	UF		
GLN	0.977	0.938	0.960	0.958	0.960	0.946	0.944	
GLNN	0.965	0.866	0.972	0.910	0.934	0.889	0.790	
GLV	0.957	0.833	0.959	0.865	0.921	0.840	0.764	
HGLZE	0.972	0.870	0.950	0.916	0.904	0.897	0.834	
LAE	0.972	0.934	0.840	0.946	0.947	0.788	0.892	
LAHGLE	0.969	0.952	0.931	0.921	0.956	0.885	0.847	
LALGLE	0.953	0.866	0.730	0.956	0.952	0.670	0.873	
LGLZE	0.932	0.803	0.925	0.837	0.857	0.790	0.793	
SZN	0.965	0.891	0.941	0.909	0.928	0.913	0.907	
SZNN	0.937	0.826	0.917	0.865	0.903	0.862	0.904	
SAE	0.926	0.820	0.908	0.856	0.893	0.850	0.902	
SAHGLE	0.969	0.866	0.951	0.910	0.898	0.891	0.832	
SALGLE	0.881	0.768	0.896	0.794	0.830	0.720	0.776	
ZE	0.959	0.907	0.970	0.943	0.964	0.910	0.934	
ZP	0.984	0.910	0.956	0.943	0.953	0.927	0.921	
ZV	0.973	0.935	0.840	0.947	0.947	0.786	0.892	

Table S13: ICC values (n° GLs = 64) for the GLSZM features in the analysed NAWM VOIs. Considering 0.85 as the threshold, the robust features are highlighted in yellow, the others in purple. For features abbreviations, please refer to Tab. S6 (ICC = Intra-class Correlation Coefficient, GL = Grey Level, GLSZM = Grey Level Size Zone Matrix, NAWM = Normal Appearing White Matter, VOI = Volume Of Interest, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)

	NAWM Tracts							
NGI Divi leatures	AF	CST	FAT	IFOF	OR	UF		
Busyness	0.976	0.930	0.981	0.952	0.960	0.939	0.918	
Coarseness	0.998	0.993	0.990	0.996	0.998	0.983	0.984	
Complexity	0.936	0.844	0.923	0.864	0.830	0.844	0.817	
Contrast	0.978	0.890	0.942	0.904	0.958	0.895	0.867	
Strength	0.983	0.894	0.963	0.969	0.978	0.947	0.926	

Table S14: ICC values (n° GLs = 64) for the NGTDM features in the analysed NAWM VOIs. Considering 0.85 as the threshold, the robust features are highlighted in yellow, the others in purple. For features abbreviations, please refer to Tab. S7 (ICC = Intra-class Correlation Coefficient, GL = Grey Level, NGTDM = Neighbouring Grey Tone Difference Matrix, NAWM = Normal Appearing White Matter, VOI = Volume Of

	NAWM Tracts						
GLDW features	AF	CST	FAT	IFOF	OR	UF	
DE	0.978	0.967	0.969	0.956	0.977	0.945	0.891
DN	0.986	0.949	0.971	0.970	0.979	0.959	0.958
DNN	0.982	0.931	0.937	0.942	0.944	0.926	0.937
DV	0.970	0.915	0.914	0.941	0.932	0.887	0.935
GLN	0.992	0.964	0.984	0.973	0.982	0.951	0.941
GLV	0.971	0.887	0.959	0.906	0.946	0.860	0.818
HGLE	0.976	0.878	0.958	0.913	0.905	0.909	0.848
LDE	0.975	0.907	0.927	0.949	0.937	0.888	0.914
LDHGLE	0.977	0.922	0.927	0.943	0.952	0.930	0.870
LDLGLE	0.947	0.846	0.864	0.887	0.935	0.811	0.855
LGLE	0.960	0.869	0.937	0.868	0.883	0.825	0.839
SDE	0.983	0.909	0.954	0.941	0.950	0.926	0.917
SDHGLE	0.973	0.879	0.961	0.907	0.905	0.901	0.904
SDLGLE	0.931	0.820	0.864	0.847	0.832	0.791	0.835

Interest, AF = Arcuate Fasciculus; CST = Cortico-Spinal Tract; FAT = Frontal Aslant Tract; IFOF = Inferior Fronto-Occipital Fasciculus; OR = Optic Radiation; UF = Uncinate Fasciculus)

Table S15: ICC values (n° GLs = 64) for the GLDM features in the analysed NAWM VOIs. Considering 0.85 as the threshold, the robust features are highlighted in yellow, the others in purple. For features abbreviations, please refer to Tab. S8 (ICC = Intra-class Correlation Coefficient, GL = Grey Level, GLDM = GL Dependence Matrix, NAWM = Normal Appearing White Matter, VOI = Volume Of Interest, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)

Figure S2: Variance of susceptibility in the CST in MNI152 space - coronal slices

QSM atlas was obtained non-linearly registering 30 healthy control exams to the MNI152 space, and a pixelwise variance of the susceptibility measurements map was evaluated; in the figure, susceptibility variance of CST in MNI152 space (coronal slices) (QSM = Quantitative Susceptibility Mapping, CST = Cortico-Spinal Tract, MNI152 = Montreal Neurological Institute's 152 space)

Figure S3: Variance of susceptibility in the CST overlaid on locally generated QSM atlas – coronal slices QSM atlas was obtained non-linearly registering 30 healthy control exams to the MNI152 space, and a pixelwise variance of the susceptibility measurements map was evaluated; in the figure, susceptibility variance of CST in QSM atlas (coronal slices) (QSM = Quantitative Susceptibility Mapping, CST = Cortico-Spinal Tract, MNI152 = Montreal Neurological Institute's 152 space)

Figure S4: Variance of susceptibility in the CST in MNI152 space - axial slices

QSM atlas was obtained non-linearly registering 30 healthy control exams to the MNI152 space, and a pixelwise variance of the susceptibility measurements map was evaluated; in the figure, susceptibility variance of CST in MNI152 (axial slices) (QSM = Quantitative Susceptibility Mapping, CST = Cortico-Spinal Tract, MNI152 = Montreal Neurological Institute's 152 space)

Figure S5: Variance of susceptibility in the CST overlaid on locally generated QSM atlas – axial slices QSM atlas was obtained non-linearly registering 30 healthy control exams to the MNI152 space, and a pixelwise variance of the susceptibility measurements map was evaluated; in the figure, susceptibility variance of CST in QSM atlas (axial slices) (QSM = Quantitative Susceptibility Mapping, CST = Cortico-Spinal Tract, MNI152 = Montreal Neurological Institute's 152 space)

Texture analysis

Box plots showing texture features in NAWM tracts (5TE-QSM), in GLCM (difference entropy, maximal correlation coefficient, joint entropy, joint energy), and GLRLM (short run emphasis, run percentage, grey level variance, run entropy, run length non-uniformity normalised). CST is the one showing more uniformity in terms of texture, despite its wide extension (NAWM = Normal Appearing White Matter, TE = Time of Echo, QSM = Quantitative Susceptibility Mapping, GL = Grey Levels, GLCM = GL Co-occurrence Matrix, GLRLM = GL Run Length Matrix, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)

Figure S7: Texture features in NAWM tracts

Box plots showing texture features in NAWM tracts (5TE-QSM), in GLSZM (long area emphasis, zone percentage, grey level variance, zone entropy), NGTDM (complexity), and GLDM (small dependence emphasis, large dependence emphasis, dependence non-uniformity normalised, grey level variance). CST is the one showing more uniformity in terms of texture, despite its wide extension (NAWM = Normal Appearing White Matter, TE = Time of Echo, QSM = Quantitative Susceptibility Mapping, GL = Grey Levels, GLSZM = GL Size Zone Matrix, NGDTM = Neighbouring Grey Difference Tone Matrix, GLDM = GL Dependence Matrix, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)

Figure S8: GL non-uniformity in NAWM tracts

Box plots showing GL Non Uniformity in NAWM tracts (5TE-QSM), in GLRLM, GLSZM and GLDM, measure of variability in intensity values looking into run lengths, zones and dependences respectively; note the three measures are in agreement with each other, showing higher variability for CST and IFOF (NAWM = Normal Appearing White Matter, TE = Time of Echo, QSM = Quantitative Susceptibility Mapping, GL = Grey Levels, GLRLM = GL Run Lengths Matrix, GLSZM = GL Size Zone Matrix, GLDM = GL Dependence Matrix, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)

Robustness analysis in NAWM Tracts, L and R

Figure S9: Robustness sub-analysis by side: Intraclass correlation coefficient matrix

ICC matrix (n° GLs = 64) for the six NAWM tracts (AF, CST, FAT, IFOF, OR, UF) and for the entire NAWM, dividing left and right hemispheres (2 sides * 7 VOIs * 107 features = 1498). In the bottom panel, the same matrix is shown after an upper-thresholding operation, setting the threshold as 0.85, leaving the robust features (ICC > 0.85) in yellow and the non-robust ones (ICC < 0.85) in purple (ICC = Intraclass Correlation Coefficient, GL = Grey Level, NAWM = Normal Appearing White Matter, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus, VOI = Volume Of Interest)

Robust features across all VOIs

LEFT	+ RIGHT (ICC, nGLs = 64)	AF	CST	FAT	IFOF	OR	UF	NAWM
	10 th Percentile	0.962	0.946	0.948	0.919	0.942	0.909	0.947
	90 th Percentile	0.985	0.982	0.984	0.988	0.986	0.986	0.982
	Energy	0.936	0.935	0.94	0.915	0.922	0.906	0.892
	Kurtosis	0.986	0.907	0.874	0.956	0.982	0.921	0.881
FO	Mean	0.979	0.973	0.973	0.969	0.974	0.961	0.983
	Median	0.979	0.972	0.972	0.97	0.973	0.96	0.982
LEFT + RIGHT (ICC, nd 10th P 90th P 90th P 90th P Er Ku 90th P 90th P Er Ku MM Morrse different Inverse different Inverse different Inverse different Inverse different Inverse different Inverse different Joint Joint Joint Joint Maximal corre	RMS	0.964	0.947	0.953	0.93	0.942	0.925	0.903
	Skewness	0.988	0.943	0.978	0.943	0.981	0.958	0.956
	Total energy	0.936	0.935	0.94	0.915	0.922	0.906	0.892
	Cluster shade	0.98	0.932	0.978	0.924	0.963	0.949	0.899
	Contrast	0.975	0.895	0.96	0.901	0.931	0.912	0.886
	Correlation	0.99	0.955	0.987	0.976	0.986	0.944	0.978
	Difference average	0.978	0.902	0.955	0.922	0.932	0.912	0.898
	Difference entropy	0.979	0.897	0.958	0.93	0.933	0.904	0.888
	Difference variance	0.973	0.883	0.966	0.896	0.937	0.904	0.868
	Inverse difference	0.978	0.907	0.943	0.939	0.934	0.906	0.904
	Inverse difference moment	0.978	0.908	0.942	0.94	0.934	0.906	0.904
	Inverse difference moment norm	0.975	0.895	0.96	0.902	0.931	0.912	0.887
GLCM	Inverse difference norm	0.978	0.903	0.954	0.924	0.933	0.912	0.899
	Information measure of correlation 1	0.984	0.939	0.971	0.969	0.965	0.941	0.966
	Information measure of correlation 1	0.981	0.966	0.979	0.972	0.983	0.942	0.964
	Inverse variance	0.98	0.906	0.943	0.931	0.934	0.912	0.883
	Joint average	0.976	0.885	0.962	0.913	0.911	0.91	0.85
	Joint energy	0.977	0.91	0.946	0.94	0.947	0.865	0.869
	Joint entropy	0.977	0.9	0.957	0.928	0.944	0.889	0.859
	Maximal correlation coefficient	0.938	0.918	0.973	0.908	0.928	0.892	0.904
GLCM GLRLM (R = Run)	Maximum probability	0.973	0.916	0.931	0.938	0.949	0.862	0.87
	Sum average	0.976	0.885	0.962	0.913	0.911	0.91	0.85
	GL non uniformity	0.993	0.979	0.989	0.977	0.987	0.96	0.959
	Long R emphasis	0.976	0.902	0.9840.9880.9860.9860.9860.90.940.9150.9220.90600.8740.9560.9820.92100.9730.9690.9740.96100.9730.9690.9740.96100.9730.9700.9730.96600.9730.9310.9420.92500.9780.9430.9410.9580.9420.9780.9240.9630.94900.9780.9240.9310.91200.9660.9010.9310.91200.9550.9220.9320.91200.9580.9310.9340.90600.9580.9320.9340.90600.9430.9390.9340.90600.9430.9240.9330.91200.9430.9240.9330.91200.9540.9240.9330.91200.9710.9690.9650.94100.9730.9380.9440.88900.9460.9410.9470.86500.9570.9280.9440.88900.9730.9080.9280.89200.9460.9410.9110.9100.9510.9310.9110.9100.9540.9570.9360.9430.9040.9570.9310.9410.9040 </td <td>0.909</td>	0.909			
	Long R high GL emphasis	0.977	0.902	0.951	9530.930.9420.9259780.9430.9810.958940.9150.9220.9069780.9240.9630.949960.9010.9310.9129870.9760.9860.9449550.9220.9320.9129580.930.9330.9049660.8960.9370.9049430.9390.9340.9069420.940.9340.9069430.9240.9330.9129540.9240.9330.9129540.9240.9330.9129710.9690.9650.9419790.9720.9830.9429430.9310.9110.919460.940.9470.8659570.9280.9440.8899730.9080.9280.8929310.9330.9110.919890.9770.9870.969260.9480.9380.899510.9310.9220.929750.9310.9410.9059440.950.9430.9049580.9110.9040.9059660.9580.9430.9049580.9110.9020.9059660.9580.9280.913	0.86		
	R Entropy	0.975	0.943	0.975	0.931	0.961	0.904	0.911
GLRLM	R length non uniformity	0.997	0.971	0.994	0.99	0.995	0.988	0.939
(R = Run)	R length non uniformity norm	0.98	0.914	0.946	0.95	0.943	0.909	0.909
	R percentage	0.979	0.912	0.94	0.95	0.941	0.905	0.914
	R variance	0.975	0.899	0.918	0.946	0.935	0.886	0.911
	Short R emphasis	0.979	0.912	0.944	0.95	0.943	0.904	0.906
	Short R high GL emphasis	0.976	0.873	0.958	0.91	0.902	0.905	0.85
	GL non uniformity	0.977	0.938	0.96	0.958	0.96	0.946	0.944
GLSZM	Size Z non uniformity	0.965	0.891	0.941	0.909	0.928	0.913	0.907
(S = Size)	Z entropy	0.959	0.907	0.97	0.943	0.964	0.91	0.934
	Z percentage	0.984	0.91	0.956	0.943	0.953	0.927	0.921
NGTDM	Busyness	0.976	0.93	0.981	0.952	0.96	0.939	0.918

	Coarseness	0.998	0.993	0.99	0.996	0.998	0.983	0.984
	Contrast	0.978	0.89	0.942	0.904	0.958	0.895	0.867
	Strength	0.983	0.894	0.963	0.969	0.978	0.947	0.926
	D entropy	0.978	0.967	0.969	0.956	0.977	0.945	0.891
	D non uniformity	0.986	0.949	0.971	0.97	0.979	0.959	0.958
	D non uniformity norm	0.982	0.931	0.937	0.942	0.944	0.926	0.937
GLDM	D variance	0.97	0.915	0.914	0.941	0.932	0.887	0.935
(D =	GL non uniformity	0.992	0.964	0.984	0.973	0.982	0.951	0.941
Dependence)	Large D emphasis	0.975	0.907	0.927	0.949	0.937	0.888	0.914
	Large D high GL emphasis	0.977	0.922	0.927	0.943	0.952	0.93	0.87
	Small D emphasis	0.983	0.909	0.954	0.941	0.95	0.926	0.917
	Small D high GL emphasis	0.973	0.879	0.961	0.907	0.905	0.901	0.904

Table S16: List of robust features (ICC > 0.85) with the corresponding ICC value in the analysed NAWM tracts and NAWM, considering left and right sides together (GL = Grey Level, GLDM = GL Dependence Matrix, NAWM = Normal Appearing White Matter, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)

L	_EFT (ICC, nGLs = 64)	AF	CST	FAT	IFOF	OR	UF	NAWM
	10 th Percentile	0.962	0.944	0.948	0.914	0.942	0.905	0.946
LEFT (ICC, nGLs = 64) 10th Percentile 90th Percentile 90th Percentile 90th Percentile 90th Percentile Energy Kurtosis Mean Median Median Median RMS Skewness Total energy Cluster shade Contrast Contrast Difference average Difference entropy Difference variance Inverse difference Inverse difference moment Inverse difference moment norm Inverse difference moment norm Inverse difference norm Inverse difference norm Information measure of correlation 1 Inverse variance Joint average	0.984	0.981	0.983	0.987	0.984	0.986	0.982	
	LEFT (ICC, nGLs = 64) AF CST FAT IFOF OR UF 10 th Percentile 0.962 0.944 0.948 0.914 0.942 0.909 90 th Percentile 0.984 0.981 0.983 0.987 0.984 0.981 Energy 0.938 0.931 0.940 0.908 0.917 0.909 Kurtosis 0.982 0.925 0.873 0.963 0.971 0.943 Mean 0.980 0.972 0.972 0.967 0.972 0.967 0.972 0.967 0.972 0.974 0.978 0.944 Median 0.980 0.971 0.975 0.976 0.947 0.978 0.944 Total energy 0.938 0.931 0.940 0.908 0.917 0.909 0.944 0.948 0.917 0.904 Cluster shade 0.971 0.945 0.977 0.925 0.968 0.932 0.943 0.944 Difference average 0.980	0.906	0.893					
50	Kurtosis	s = 64) AF CST FAT IFOF OR UF h Percentile 0.962 0.944 0.948 0.914 0.942 0.905 h Percentile 0.984 0.981 0.983 0.987 0.984 0.986 Energy 0.938 0.931 0.940 0.908 0.917 0.906 Kurtosis 0.982 0.925 0.873 0.963 0.971 0.943 Mean 0.980 0.970 0.972 0.967 0.972 0.953 Median 0.980 0.970 0.970 0.969 0.970 0.978 Skewness 0.987 0.951 0.976 0.947 0.978 0.945 otal energy 0.938 0.931 0.940 0.908 0.917 0.906 uster shade 0.971 0.945 0.977 0.925 0.968 0.932 contrast 0.983 0.926 0.944 0.932 0.917 0.905 cence average	0.943	0.892				
FO	Mean	0.980	0.972	0.972	0.967	0.972	R UF F 142 0.905 1 184 0.986 1 117 0.906 1 171 0.943 1 172 0.959 1 173 0.924 1 174 0.924 1 175 0.924 1 177 0.906 1 178 0.924 1 177 0.906 1 168 0.934 1 162 0.913 1 164 0.903 1 164 0.914 1 171 0.908 1 184 0.917 1 1943 0.914 1 10.922 1 1 10.922 1 1 10.922 1 1 10.921 1 1 10.921 1 1 10.921 1 1	0.983
	Median	0.980	CS1 PA1 POP OK OF NAA 32 0.944 0.948 0.914 0.942 0.905 0.9 34 0.981 0.983 0.987 0.984 0.986 0.9 38 0.931 0.940 0.908 0.917 0.906 0.4 32 0.925 0.873 0.963 0.971 0.943 0.4 30 0.972 0.972 0.967 0.972 0.959 0.9 30 0.970 0.970 0.969 0.970 0.959 0.9 31 0.948 0.953 0.926 0.943 0.924 0.9 33 0.948 0.957 0.925 0.968 0.934 0.9 34 0.945 0.977 0.925 0.968 0.949 0.9 35 0.926 0.964 0.932 0.952 0.913 0.9 35 0.926 0.960 0.941 0.943 0.917	0.982				
	LEFT (ICC, nGLs = 64) AF CST FAT IFOF OR UF 10 th Percentile 0.962 0.944 0.948 0.914 0.942 0.905 90 th Percentile 0.984 0.981 0.983 0.987 0.984 0.986 Energy 0.938 0.931 0.940 0.908 0.917 0.906 Kurtosis 0.982 0.925 0.873 0.963 0.971 0.943 Median 0.980 0.972 0.972 0.970 0.969 0.970 RMS 0.963 0.948 0.953 0.926 0.943 0.924 Skewness 0.987 0.911 0.976 0.947 0.978 0.949 Total energy 0.938 0.931 0.940 0.948 0.931 0.940 0.948 0.931 Correlation 0.986 0.926 0.944 0.932 0.952 0.913 Correlation 0.988 0.926 0.944 0.948 0.941	0.904						
		0.949	0.957					
	Total energy	0.938	0.931	0.940	0.908	0.917	0.906	0.893
	Cluster shade	0.971	0.945	0.977	0.925	0.968	0.934	0.900
	Contrast	0.985	0.926	0.964	0.932	0.952	0.913	0.900
	Correlation	0.989	0.941	0.988	0.973	0.984	0.963	0.979
	Difference average	0.983	0.926	0.960	0.940	0.948	0.917	0.905
	Difference entropy	0.981	0.918	0.962	0.943	0.943	0.914	0.891
	Difference variance	0.982	0.918	0.966	0.929	0.951	0.908	0.881
	Image: Section of the sectio	0.922	0.906					
	Inverse difference moment	0.980	0.925	0.950	0.948	0.940	0.922	0.906
GLCM	Inverse difference moment norm	0.985	0.925	0.965	0.932	0.952	0.913	0.900
GLCIVI	Inverse difference norm	0.983	0.926	0.959	0.941	0.947	0.918	0.905
	FO 1.502 90 th Percentile 0.984 Energy 0.938 Kurtosis 0.982 Median 0.980 Median 0.980 RMS 0.963 Skewness 0.987 Total energy 0.938 Cluster shade 0.971 Contrast 0.985 Correlation 0.989 Difference average 0.983 Difference average 0.983 Difference variance 0.982 Inverse difference 0.980 Inverse difference norm 0.985 Inverse difference norm 0.983 Inverse difference norm 0.983 Information measure of correlation 1 0.981 Inverse variance 0.982 Joint average 0.973 Joint energy 0.977 Maximal correlation coefficient 0.933 Maximum probability 0.973	0.937	0.973	0.967	0.972	0.960	0.966	
	Information measure of correlation 1	0.981	0.948	0.980	0.972	0.981	0.951	0.965
	Inverse variance	0.982	0.930	0.951	0.944	0.942	0.921	0.904
	Joint average	0.973	0.899	0.965	0.927	0.938	0.888	0.867
	Joint energy	0.978	0.919	0.953	0.947	0.941	0.902	0.863
	Joint entropy	0.977	0.919	0.958	0.942	0.945	0.892	0.862
	Maximal correlation coefficient	0.933	0.895	0.972	0.924	0.909	0.923	0.893
	Maximum probability	0.973	0.914	0.935	0.941	0.938	0.873	0.864

	Sum average	0.973	0.899	0.965	0.927	0.938	0.888	0.867
	GL non uniformity	0.993	0.981	0.992	0.981	0.987	0.967	0.953
	Long R emphasis	0.976	0.913	0.935	0.953	0.939	0.922	0.908
	Long R high GL emphasis	0.972	0.907	0.956	0.942	0.951	0.907	0.889
	R Entropy	0.974	0.940	0.975	0.945	0.961	0.905	0.884
GLRLM	R length non uniformity	0.997	0.979	0.996	0.992	0.996	0.992	0.932
(R = Run)	R length non uniformity norm	0.980	0.929	0.953	0.955	0.946	0.928	0.908
	R percentage	0.979	0.925	0.949	0.955	0.943	0.927	0.913
	R variance	0.975	0.909	0.927	0.952	0.936	0.921	0.912
	Short R emphasis	0.979	0.926	0.951	0.955	0.945	0.927	0.904
	Short R high GL emphasis	0.973	0.888	0.964	0.926	0.938	0.890	0.876
	GL non uniformity	0.982	0.951	0.969	0.956	0.964	0.962	0.933
GLSZM	Size Z non uniformity	0.969	0.919	0.942	0.923	0.927	0.900	0.902
(S = Size)	Z entropy	0.958	0.871	0.968	0.936	0.956	0.911	0.934
	Z percentage	0.986	0.931	0.961	0.953	0.956	0.928	0.930
	Busyness	0.977	0.940	0.985	0.951	0.950	0.922	0.919
NGTOM	Coarseness	0.998	0.993	0.993	0.996	0.998	0.989	0.982
NGTDW	Contrast	0.983	0.922	0.948	0.930	0.972	0.899	0.877
	Strength	mity 0.993 0.981 0.992 0.981 0.987 asis 0.976 0.913 0.935 0.953 0.939 mphasis 0.972 0.907 0.956 0.942 0.951 0.974 0.940 0.975 0.945 0.961 formity 0.997 0.979 0.996 0.992 0.996 nity norm 0.980 0.929 0.953 0.955 0.946 je 0.975 0.909 0.927 0.952 0.949 0.955 0.943 je 0.975 0.909 0.927 0.952 0.943 je 0.979 0.926 0.951 0.955 0.943 asis 0.973 0.888 0.964 0.926 0.938 mity 0.982 0.951 0.956 0.945 ormity 0.969 0.919 0.942 0.923 0.927 0.958 0.871 0.968 0.933 0.956 0.966 <tr< td=""><td>0.976</td><td>0.966</td><td>0.914</td></tr<>	0.976	0.966	0.914			
	D entropy	0.980	0.961	0.971	0.961	0.973	0.955	0.882
	D non uniformity	0.987	0.960	0.976	0.973	0.980	0.963	0.948
	D non uniformity norm	0.987	0.946	0.948	0.952	0.956	0.933	0.940
GLDM	D variance	0.967	0.923	0.921	0.948	0.933	0.922	0.935
(D =	GL non uniformity	0.991	0.970	0.988	0.978	0.983	0.961	0.936
Dependence)	Large D emphasis	0.973	0.918	0.935	0.954	0.938	0.923	0.912
	Large D high GL emphasis	0.974	0.921	0.933	0.950	0.970	0.933	0.893
	Small D emphasis	0.986	0.930	0.960	0.952	0.955	0.929	0.923
	Small D high GL emphasis	0.980	0.891	0.966	0.909	0.938	0.892	0.920

Table S17: List of robust features (ICC > 0.85) with the corresponding ICC values in the analysed NAWM tracts and NAWM, considering the left side ($GL = Grey \ Level$, GLDM = GL Dependence Matrix, NAWM = Normal Appearing White Matter, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)

R	IGHT (ICC, nGLs = 64)	AF	CST	FAT	IFOF	OR	UF	NAWM
	10 th Percentile	0.963	0.948	0.950	0.926	0.947	0.917	0.948
	90 th Percentile	0.984	0.982	0.984	0.989	0.987	0.983	0.983
	Energy	1.110 0.363 0.348 0.350 0.326 0.347 0.9 ntile 0.984 0.982 0.984 0.989 0.987 0.9 0.938 0.941 0.946 0.923 0.931 0.9 0.938 0.941 0.946 0.923 0.931 0.9 0.938 0.941 0.946 0.923 0.931 0.9 0.938 0.911 0.948 0.957 0.977 0.9 0.978 0.974 0.974 0.971 0.976 0.9 0.978 0.973 0.972 0.971 0.975 0.9 0.965 0.948 0.954 0.936 0.945 0.9	0.911	0.894				
50	Kurtosis	0.984	0.911	0.948	0.957	0.977	0.911	0.883
FO	Mean	0.978	0.974	0.974	0.971	0.976	0.963	0.983
	Median	0.978	0.973	0.972	0.971	0.975	0.962	0.982
	RMS	0.965	0.948	0.954	0.936	0.945	0.930	0.904
	Skewness	0.986	0.946	0.978	0.957	0.980	0.955	0.958
	Total energy	0.938	0.941	0.946	0.923	0.931	0.911	0.894
CL CM	Cluster shade	0.985	0.941	0.978	0.955	0.957	0.930	0.897
GLCIVI	Contrast	0.970	0.885	0.962	0.947	0.940	0.938	0.889

	Correlation	0.982	0.961	0.979	0.976	0.986	0.929	0.977
	Difference average	0.976	0.894	0.955	0.946	0.941	0.934	0.904
	Difference entropy	0.979	0.893	0.955	0.940	0.941	0.925	0.894
	Difference variance	0.970	0.877	0.967	0.938	0.944	0.924	0.866
	Inverse difference	0.979	0.902	0.937	0.941	0.944	0.924	0.911
	Inverse difference moment	0.980	0.903	0.933	0.940	0.945	0.922	0.911
	Inverse difference moment norm	0.971	0.885	0.962	0.948	0.940	0.938	0.890
	Inverse difference norm	0.977	0.894	0.953	0.946	0.941	0.933	0.905
	Information measure of correlation 1	0.977	0.947	0.969	0.973	0.972	0.926	0.970
	Information measure of correlation 1	0.974	0.966	0.971	0.968	0.983	0.904	0.962
	Inverse variance	0.980	0.893	0.937	0.943	0.942	0.925	0.881
	Joint average	0.972	0.875	0.954	0.878	0.897	0.904	0.865
	Joint energy	0.978	0.910	0.925	0.921	0.970	0.895	0.868
	Joint entropy	0.979	0.893	0.945	0.926	0.949	0.906	0.862
	Maximal correlation coefficient	0.962	0.919	0.963	0.900	0.940	0.864	0.914
	Maximum probability	0.968	0.910	0.900	0.912	0.968	0.876	0.873
	Sum average	0.972	0.875	0.954	0.878	0.897	0.904	0.865
	GL non uniformity	0.994	0.976	0.989	0.973	0.987	0.966	0.951
	Long R emphasis	0.979	0.901	0.918	0.935	0.948	0.916	0.917
	Long R high GL emphasis	0.972	0.890	0.952	0.890	0.901	0.908	0.853
	R Entropy	0.973	0.936	0.964	0.931	0.961	0.892	0.887
GLRLM	R length non uniformity	0.999	0.970	0.997	0.994	0.996	0.993	0.947
(R = Run)	R length non uniformity norm	0.980	0.911	0.934	0.946	0.951	0.925	0.914
	R percentage	0.980	0.909	0.927	0.943	0.950	0.923	0.921
	R variance	0.978	0.898	0.909	0.929	0.947	0.913	0.919
	Short R emphasis	0.980	0.910	0.931	0.944	0.951	0.922	0.912
	Short R high GL emphasis	0.967	0.864	0.951	0.880	0.898	0.900	0.870
	GL non uniformity	0.979	0.938	0.968	0.966	0.970	0.946	0.945
GLSZM	Size Z non uniformity	0.961	0.875	0.948	0.933	0.928	0.913	0.914
(S = Size)	Z entropy	0.956	0.884	0.953	0.930	0.957	0.898	0.916
	Z percentage	0.982	0.894	0.950	0.961	0.955	0.941	0.928
	Busyness	0.972	0.931	0.975	0.941	0.947	0.946	0.936
NGTOM	Coarseness	0.997	0.992	0.993	0.995	0.997	0.980	0.983
NOTEM	Contrast	0.970	0.865	0.951	0.945	0.950	0.927	0.868
	Strength	0.985	0.904	0.982	0.970	0.983	0.933	0.912
	D entropy	0.975	0.969	0.958	0.955	0.979	0.927	0.883
	D non uniformity	0.990	0.938	0.981	0.974	0.982	0.961	0.959
	D non uniformity norm	0.979	0.918	0.940	0.960	0.953	0.941	0.943
GLDM	D variance	0.970	0.911	0.883	0.920	0.948	0.899	0.942
(D =	GL non uniformity	0.993	0.964	0.987	0.968	0.983	0.961	0.936
Dependence)	Large D emphasis	0.978	0.906	0.910	0.933	0.949	0.911	0.922
	Large D high GL emphasis	0.977	0.912	0.941	0.917	0.921	0.925	0.865
	Small D emphasis	0.980	0.893	0.947	0.961	0.954	0.942	0.924
	Small D high GL emphasis	0.957	0.865	0.946	0.925	0.915	0.924	0.909

Table S18: List of robust features (ICC > 0.85) with the corresponding ICC value in the analysed NAWM tracts and NAWM, considering the right side (GL = Grey Level, GLDM = GL Dependence Matrix, NAWM = Normal Appearing White Matter, AF = Arcuate Fasciculus, CST = Cortico-Spinal Tract, FAT = Frontal Aslant Tract, IFOF = Inferior Fronto-Occipital Fasciculus, OR = Optic Radiation, UF = Uncinate Fasciculus)