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Abstract— Transformers have significantly impacted the field
of Computer Vision (CV) and the Internet of Things (IoT), sur-
passing Convolutional Neural Networks (CNN) in various tasks.
However, ensuring the security of CV models for critical real-
world IoT applications such as autonomous driving, surveillance,
and biomedical technologies is crucial. The adversarial robustness
of these models has become a key research area, especially for
edge processing. This work evaluates the robustness of Swin tiny
and ConvNeXt tiny, specifically focusing on real-world patch
attacks in Object Detection scenarios. To ensure a fair com-
parison, we establish a level playing field between Transformer-
based and CNN architectures, examining their vulnerabilities
and potential defenses. Experimental results demonstrate the
susceptibility of the Swin tiny and ConvNeXt tiny models to
patch attacks, resulting in a significant decrease in average
precision (AP) for the ”Person” class. When trained adversarial
patches were applied, the AP drops to 12.8% and 15.2% for
Swin tiny and ConvNeXt tiny models, respectively, highlighting
their vulnerability to these attacks. This paper contributes to
securing CV models on IoT vision devices, providing insights into
the robustness of transformer-based architectures against real-
world attacks, and advancing the field of adversarial robustness
in embedded computer vision.

I. INTRODUCTION

In the past decade, Convolutional Neural Networks (CNNs)
have evolved remarkably, transforming from a niche research
topic to the most widely-used model architecture for visual
recognition tasks in academia and industry [1]. The advance-
ments in CNNs have revolutionized the field of Computer
Vision (CV), enabling breakthroughs in image classification
and object detection [2]. However, recent developments in
transformer-based architectures have started to gain significant
traction within the CV community, leading to the emergence
of novel state-of-the-art models that rely on the attention
mechanism [3]–[7].

Among these transformer variants, vision and Swin trans-
formers [4], [7] have made a particularly profound impact,
giving rise to a plethora of derived models that achieve
remarkable performance on image classification and object
detection tasks. The Attention mechanism employed by these
models allows them to capture complex spatial and long-range
dependencies in visual data, leading to enhanced representa-
tion learning and improved performance [8].

While the measured performance of these transformer-
based models is undeniably impressive, it is equally important
to consider their robustness in real-world scenarios, espe-
cially for critical applications such as autonomous driving
and biomedical technologies [9], [10]. Ensuring the security

(a) Unpatched Image (b) Patched Image

Fig. 1: Example of patch attack successfully used for hiding
people

and adversarial robustness of CV models has become an
increasingly important research area, as the deployment of
Artificial Intelligence (AI) systems in safety-critical contexts
necessitates the ability to withstand attacks and maintain
reliable performance [11].

This work investigates the adversarial robustness of
transformer-based models, specifically in real-world patch
attacks, also known as model evasion attacks, for object detec-
tion [12]. Patch attacks, as shown in Figure 1, are particularly
relevant in High-Performance Computing (HPC) edge Internet
of Things (IoT) applications, where limited computational
resources and strict latency constraints make them appealing
to attackers [11]. An attacker can manipulate the perception
system by exploiting vulnerabilities in the model’s response to
adversarial patches, potentially leading to severe consequences
in safety-critical scenarios [13].

This paper focuses on adversarial robustness in transformer-
based object detection algorithms for IoT vision embedded
systems. Firstly, we implement and evaluate patch attacks
against state-of-the-art transformer-based models, specifically
focusing on their vulnerability to adversarial patches. This
analysis provides insights into the susceptibility of these
models to targeted attacks and the potential impact on their
performance. Secondly, we evaluate the effectiveness of adver-
sarial training as a defense mechanism against patch attacks
in tiny transformer-based object detection algorithms. By
subjecting the models to adversarial training, we investigate
whether their robustness can be enhanced to better withstand



adversarial patch attacks. Finally, we conduct measurements
and comparisons to assess the robustness of both CNN-
and transformer-based algorithms under patch attacks and
adversarial training. Through these contributions, we aim to
improve the understanding of the vulnerabilities and defenses
of transformer-based models in the face of patch-based adver-
sarial attacks, providing valuable insights into the robustness
of these algorithms in real-world scenarios. The scientific
contribution can be summarized as follow:

• Implementation & evaluation of patch attacks against
state-of-the-art transformer-based object detection algo-
rithms;

• Evaluation of Adversarial Training for patch attacks
against tiny transformer-based object detection algorithm
such as Swin tiny with as few as 28M parameters;

• Measurements and comparisons for robustness of CNN-
and transformer-based algorithms under patch attacks and
adversarial training.

II. RELATED WORK

In recent years, transformer-based architectures have revo-
lutionized the field of CV by surpassing the performance of
CNNs in various tasks. However, the security and robustness
of CV models have become crucial considerations, particularly
for critical real-world applications such as autonomous driving
and biomedical technologies [14]. Consequently, research into
the adversarial robustness of these models has gained signifi-
cant importance. In this section, we explore relevant work in
the field, focusing on four key subsections: transformers for
CV, adversarial attacks, robustness of vision transformers, and
defence against adversarial patches. By examining the litera-
ture in these areas, we aim to comprehensively understand the
advancements, challenges, and strategies related to adversarial
robustness in the context of transformer-based models for CV.

A. Transformers for Computer Vision

Following their success in the field of Natural Lan-
guage Processing (NLP) [3], transformers, have recently been
adapted for CV tasks. Nevertheless, designing a transformer
network for image processing requires several adaptations. Un-
like human-written language in NLP, images represent inputs
with larger dimensionality, which makes it difficult to process
high-resolution images with transformer networks due to the
proportional increase in parameters and memory. Therefore,
the majority of recently proposed versions of transformers for
CV use either low-resolution images [15] or reduce the size of
the feature maps [4], [5] leading into the transformer network.
Despite these constraints, the introduction of transformers in
the CV field thus allowed for establishing new state-of-the-
art results [16][8] in object detection tasks, as done on the
well-established COCO dataset [17].

B. Adversarial Attacks

Driven by the widespread adoption of machine learning in
real-world applications, research on adversarial attacks against
deep learning models focuses on evaluating the robustness

of these models under artificially perturbed inputs [18]. An
adversarial attack can be defined as a perturbation that, added
to the input of a model, maliciously modifies the network’s
output. Generally, the perturbations are constrained in intensity
and/or localization to make them less identifiable and more
portable. Although many forms of perturbation are not practi-
cally reproducible in an authentic environment, so-called patch
attacks have proven effective in realistic settings.

Originally introduced by Brown et al. [19] for the image
classification task, patch attacks attempt to achieve misclas-
sification through malicious perturbations with a constrained
input image size. This category of attacks has proven a
viable way to craft adversarial examples applicable to real-
world cases. Generally, a patch is trained over multiple
images through backpropagation, and, to enhance its effec-
tiveness, random transformations sampled from a distribution
are applied to the patch before its application to the input
image. Such a technique is Expectation-over-Transformation
(EoT) [20].

Since patches are local perturbations, this category of at-
tacks has also been extended to object detection models that
intrinsically perform a local analysis of the input images. The
effectiveness of this strategy was proven by [21], an attack that
crafts malicious textures for stop signs, capable of causing
their misdetection or misclassification by a Faster R-CNN
model [22]. This technique was further improved by Chen
et al. [12] by applying the EoT algorithm to the training
procedure to obtain more robust textures.

Thys et al. [23] introduced another application of patch
attacks in object detection: evasion of people from surveillance
systems. The produced patch can hide a person from a
YOLOv2 [24] detector by degrading the objectness score of
the target bounding box. Using appropriate transformations
that mimic fabric creases, it is possible to craft patches print-
able on pieces of clothing like T-shirts [13] or jumpers [25].
Patches can be placed not only on the subjects’ clothes, but
they can also be applied directly on the camera lenses. This
method relies on the production of translucent patches [26]
applied on the lenses, which can be mistaken for benign
scratches or dirt, yet lead to the misdetection of target objects.

C. Robustness of Vision Transformers

To increase the robustness of CV systems against adversar-
ial attacks, Vision Transformers (ViTs) [4] have been inten-
sively studied. The original ViT has shown very limited or no
advantages in terms of robustness and transferability to other
models over CNNs for neither noise-based attacks [27] [28],
nor for patch-based ones [29], [30]. However, it is worth
mentioning that these works compare two very different archi-
tectures: ViT against ResNet-based [31] networks. Therefore,
they can offer only a limited overview of the real merits of
the self-attention networks concerning additional factors such
as the use of pre-trained networks or various architectural
components, thus an extended analysis could only prove
beneficial.



D. Defense Against Adversarial Patches
With the increased performance of patch attacks came the

requirement to maintain accuracy against adversarial patches.
Such a task is especially challenging due to the apparent
randomness of the patches in terms of pattern, dimension
relative to the target image, and localization within the image.
Therefore, an effective defense mechanism should preserve the
model’s accuracy without requiring prior knowledge about the
attack while introducing minimal computational overheads.

Conceptually, the approaches to robust classification or ob-
ject detection models against patch attacks can be categorized
into two classes. The first set of methods, commonly known
as adversarial training, relies on heuristically determining the
location of patches and eliminating them before performing
object detection. Ji et al. [32] adapt the YOLOv2 [24] network,
introducing an additional patch class that the model can
detect independently from the other objects in the image,
thus effectively separating the valuable information from the
malicious attack. In Segment and Complete [33], the authors
introduce an additional stage in the object detection pipeline,
firstly determining the adversarial patch location and masking
it at the pixel level, followed by performing object detection
on the so-cleaned image. Albeit empirically efficient, these
methods are prone to be rendered ineffective by adaptive
attackers, as shown by Chiang et al. [34] in the context of
image classification.

Conversely, certified defense mechanisms aim to maximize
the provable robustness of a system in generic settings. Han
el at. [35] leverage that patched images cluster Superfically
Important Neurons (SINs), thus proposing a certified defense
relying on SIN-based sparsification. Xiang et al. [36] draw
intuition from the aforementioned first class of techniques,
proposing a patch-agnostic masking method that eliminates ad-
versarial pixels, with the robustness intrinsically certifiable by
additionally removing duplicate bounding boxes for detected
objects. Although efficient in eliminating patch attacks, these
techniques increase the computational cost during inference,
thus limiting their applicability in real-time settings.

This paper significantly contributes to the field by assessing
the adversarial robustness of transformer-based models against
real-world patch attacks and comparing their performance with
traditional CNN architectures. This paper explores the adver-
sarial robustness of transformer-based models through imple-
menting and evaluating patch attacks, assessing adversarial
training, and comprehensive measurements and comparisons.
These contributions deepen our understanding of the strengths
and weaknesses of self-attention mechanisms, advancing the
field of adversarial robustness in CV. The findings of this study
hold great potential for enhancing the security and reliability of
CV models deployed on edge devices, thereby ensuring their
effectiveness and trustworthiness in real-world applications.

III. METHODOLOGY

A. Swin Transformer and ConvNeXt
One of the recent best-performing ViT models is the Swin

transformer [7], shown in Figure 2a. Instead of using regular

(a) Swin Transformer (b) ConvNeXt

Fig. 2: Architecture of analysed backbones.

self-attention, Swin restricts the span of its self-attention
mechanism (i.e. for each patch only neighboring ones are
considered) in a similar way to convolutional layers. The
model starts initially with smaller patches than a standard ViT
(4×4 px patches versus 16×16 px ones). After each block,
patches are merged together into progressively bigger ones.
The result is a hierarchical structure akin to dilated CNNs,
allowing higher resolution analysis while minimizing the com-
putational cost.

Given the similarity of the Swin transformer to CNNs,
ConvNeXt [37], depicted in Figure 2b, proposed the same
architecture with standard convolutional layers instead of the
Self-Attention ones. Insights from the vision transformers were
also used to model the structure of the convolutional layers by,
for example, using a bigger kernel (7×7) than the typical 3×3
kernel used in standard ResNets. The training procedure along
the image augmentation transforms was harmonized with
the ones of the Swin transformer. The resulting architecture
has proven to be very competitive in terms of performance
compared to vision transformers, with mean average precision
close to the latter on the COCO dataset [17].

These two models are used as backbones for extracting
features from images. For performing object detection, it is
necessary to have an additional model that uses these features
to generate predictions. For both models the original authors
proposed to use a mask R-CNN architecture [38], shown in
Figure 3, or its derivative cascade R-CNN [39], obtaining state-
of-the-art results on the COCO dataset [17]. This architecture
features two separate stages. After the backbone extracts
the features from the input image, the first stage of the
network, called Region Proposal Network (RPN), generates
a set proposal, i.e. boxes that have a probability (objectness)
of having an object inside. The RPN is a CNN-base feature
pyramid network that extracts and refines a hierarchical set of
feature maps into boxes. The proposal is first filtered with the
Non-Maximum Suppression (NMS) mechanism and passed to
the second stage called the Region of Interest (RoI) pooler,



Fig. 3: Mask R-CNN architecture

which selects and classifies the output bounding boxes.

B. Attack Details

As part of our contributions, we evaluated patch attacks,
building upon the attack proposed by Wu et al. [25]. In their
work, the attack targets explicitly mask R-CNN architectures,
generating adversarial patches that are easily printable. Tak-
ing inspiration from this previous research, we adapted the
attack methodology to assess the vulnerability of state-of-the-
art transformer-based object detection algorithms to similar
patch-based attacks. The attack loop and its effectiveness are
depicted in Figure 4. By leveraging the insights gained from
the work of Wu et al. [25] and applying them to transformer-
based models, we aim to advance our understanding of the
robustness of these models against patch attacks and contribute
to the development of more secure CV systems.

Patches are applied to the input image in the preprocessing
stage. After that, they are fed to the backbone and the RPN
stage like in the normal inference loop. After that, the propos-
als, instead of being passed to the RoI pooler stage, are used
by the attacker to refine the patch. Specifically, the goal is to
saturate the NMS mechanism with false positives in the area of
the target object. These false proposals degrade the objectness
score of true ones and induce the NMS filter to drop the latter.
As shown by Thys et al. [23], this approach results in more
effective patches than attacking the target class’s classification
score or mixed objectness-class classification scores. Given
a victim detector D, the core loss function of the attack is
defined as:

Lcore = Ej

(∑
s

max{obj(Ds,θ(xj , P )) + 1, 0}2
)

(1)

Generalization and printability of the patches is achieved in
two ways:

• Using an auxiliary total variation regularization loss Ltv

that ensures a smooth transition of colors across pixels.

The importance of the regularization is regulated with a
coefficient α such that:

L = Lcore + αLtv (2)

• Applying a set of random transformations on the patch
before inserting it on the image during training. The
random transformations used for this attack are rotation,
translation, scaling, variation of brightness, and contrast.

C. Adversarial Training

One of the main goals of this paper is to evaluate the robust-
ness of state-of-the-art computer vision by training adversarial
patches using an Adam optimizer [40] with a starting learning
rate of λ = 3×10−2.. All the patches were trained for 120000
iterations on the COCO dataset. After being normalized w.r.t.
the dataset, images were fed one-by-one (i.e. batch size of 1)
in order to have an equal comparison between all models,
including bigger ones. The target class is the same as the
original paper (i.e. ”Person”).

IV. IMPLEMENTATION

A. Implementation of Attack Loop

The similarity between the two models provides a unique
opportunity to analyze fairly the effect of self-attention on
the robustness of a detector. Therefore, one of our focuses
in implementing the attack is ensuring that tested detector
architectures share all the same components but the backbones
and the attack loop are identical.

Both original implementations of the detectors were based
on the library MMDet [41]. The rest of the detection loop is
built atop the maskR-CNN benchmarking framework [42] and
its implementation of mask R-CNN.

We used also the weights provided by the original authors.
By doing so we provide a fair comparison w.r.t. the training
of the detectors. All the core models (i.e. the backbones of the
detectors) were pre-trained on ImageNet [43] while the final
architecture was fine-tuned on the COCO dataset [17]. The



Fig. 4: Training loop (red path) of the attack compared with the detector training loop (grey one).

COCO dataset is also the reference dataset for training and
testing the patches.

The attack starts from a randomly initialized 250×150 px
patch. We used the annotation of the dataset to localize the
people inside the images. Then the patches were applied with
a random offset between 0 and 0.05 of the image height on y-
axis from the center of the target bounding box. Additionally,
the patches were scaled from their base sizes accordingly
to the ones of their targets. To make it more robust, the
patch is also randomly rotated with an angle in the interval
[−0.028π, 0.028π], while the contrast and the brightness are
scaled by a random factor draw respectively in the interval
[0.9, 1.1] and [0.8, 1.2].

V. RESULTS

In the realm of object detection, the commonly used per-
formance metric is Average Precision (AP) per class, which
provides a balanced assessment of precision and recall. How-
ever, when evaluating physical attacks, success rates using
a fixed detection threshold are often preferred due to their
interpretability. Nevertheless, manually selecting appropriate
thresholds for computing success rates can be challenging. To
address this challenge and ensure a comprehensive evaluation,
we report both the AP, which averages over all confidence
thresholds, and success rates in our experimental results sec-
tion. This section presents the AP results for Swin tiny and
ConvNeXt tiny providing insights into their performance under
the developed patch attacks and with a random patch of the
same size. By considering both the AP and success rates, we
thoroughly analyze the models’ robustness against adversarial
patches.

A. Adversarial Attack

All experiments have been performed on RTX-1080Ti GPU
with 12 GB of memory and an Intel Xeon E5-2640 CPU.

(a) Swin Transformer (b) ConvNeXt

Fig. 5: Example of trained patches

Figure 5 presents the trained patches of base size 250×150 px
for Mask R-CNN detectors with backbones Swin tiny and
ConvNeXt tiny, each comprising of 28M parameters. Table
I presents the AP results at various Intersection over Union
(IoU) thresholds for the ”Person” class when different patches
are applied.

When evaluating the Swin tiny model, the AP for clean
images is 50.3%. However, when a trained adversarial patch
is applied, the AP drops significantly to 12.8 %, indicating
the model’s vulnerability to the patch attack. Similarly, the
ConvNeXt tiny model achieves an AP of 51.4 % on clean
images, which decreases to 15.2 % when subjected to the
trained patch.

Interestingly, when a random patch is applied instead of the
trained patch, both models experience a less severe decline



Victim
Patch Clean Swin Tiny ConvNeXt Tiny Random

Swin Tiny 50.3 % 12.8 % 18.4 % 36.4 %
ConvNeXt Tiny 51.4 % 15.2 % 6.7 % 34.8 %

TABLE I: The AP@[IoU=0.5:0.95] on the class ”Person”
when the patches are applied

in performance. The AP for the Swin tiny model decreases
to 18.4 %, while the ConvNeXt tiny model reaches an AP
of 6.7 %. These results suggest that the trained patch is
more effective at fooling the models than randomly generated
patches.

Overall, the table highlights the impact of patch attacks on
the performance of the models, demonstrating their vulnera-
bility to carefully crafted adversarial patches and the varying
degrees of success achieved by different patches.

The attack proved to actively temper the performances of
both detectors as the trained patches were significantly more
effective than a random one. Unlike previous analysis on the
image classification task [29], the results show a significant
difference in terms of robustness between a transformer-based
architecture and a CNN. Moreover, the patches trained on the
Swin transformer generalize more effectively.

VI. CONCLUSION

This paper investigated the adversarial robustness of
transformer-based models against patch attacks in the context
of Object Detection. Through our evaluation, we demonstrate
the susceptibility of state-of-the-art Swin tiny and ConvNeXt
tiny models to patch attacks, leading to a significant decrease
in AP for the ”Person” class. We find that trained adversarial
patches result in a substantial decline in AP, highlighting the
vulnerability of these models to carefully crafted attacks. Our
main contributions include the implementation and evaluation
of patch attacks, an assessment of adversarial training for patch
attacks, and comprehensive measurements and comparisons
of robustness between CNN- and transformer-based models.
These contributions enhance our understanding of the strengths
and weaknesses of self-attention mechanisms and advance the
field of adversarial robustness in computer vision.
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