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The Gradient Tracking Is a Distributed Integral Action
Ivano Notarnicola, Member, IEEE , Michelangelo Bin, Member, IEEE ,

Lorenzo Marconi, Fellow, IEEE , Giuseppe Notarstefano, Member, IEEE

Abstract— We revisit the recent Gradient Tracking algo-
rithm for distributed consensus optimization from a control
theoretic viewpoint. We show that the algorithm can be
constructed by solving a servomechanism control problem
stemming from the distributed implementation of a central-
ized gradient method. Moreover, we show that, if expressed
in proper coordinates, the Gradient Tracking embeds an
integral action fed by a signal related to the consensus er-
ror. Finally, we provide an alternative convergence analysis
based on Lyapunov arguments that also proves exponential
asymptotic stability of the optimal equilibrium.

Index Terms— Control for Optimization, Gradient Track-
ing, Integral Control, Distributed optimization

I. INTRODUCTION

Since the dawn of control theory, integral actions have
been fundamental components of control schemes [1] (the PID
being an eminent example), as they are able to generate steady-
state feedforward controls not computable in advance that
automatically balance unknown steady-state residual terms.
In this article, we revisit the recently proposed distributed
Gradient Tracking algorithm for consensus optimization prob-
lems under a new control-theoretic perspective. We find that it
fundamentally consists in a distributed integral action compen-
sating for the incomplete information sharing due to network
constraints.

More specifically, we build the Gradient Tracking algorithm
starting from a naive fully distributed gradient descent policy,
unavoidably characterized by a non-zero steady-state error
due to the lack of full connectivity. Then, we correct this
policy by adding a (distributed) servomechanism aimed at
automatically compensating such steady-state error. In this
way we are quite naturally led to the Gradient Tracking
algorithm in the form proposed in [2], which has the advantage
of a measurement-free initialization more robust to possible
uncertainty in the measurements. Next, we show that, by
means of a suitable change of coordinates related to the normal
form, the algorithm explicitly exhibits the expression of a
distributed integral action. Finally, under customary Lipschitz-
continuity and strong convexity assumptions, we provide an
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Studiorum - Università di Bologna, Bologna, Italy. The corresponding
author is I. Notarnicola ivano.notarnicola@unibo.it.

M. Bin is with the Department of Electrical and Electronic Engineering,
Imperial College London, London, UK.

This result is part of a project that has received funding from the
European Research Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant agreement No 638992
- OPT4SMART).

alternative convergence proof that is shorter and simpler1 than
existing ones [3]–[12]. Moreover, in addition to exponential
convergence, we also prove Lyapunov stability of the optimal
equilibrium.

Overall, our findings confirm that a control-informed ap-
proach to (distributed) optimization carries considerable ad-
vantages in terms of insight and tools for analysis, in this way
aligning with a recent trend concerning the applications of
control to optimization.

Related Literature: Distributed consensus optimization
over networks traces back to the early works [13]–[15], in
which the gradient method has been combined with consensus
averaging in order to design a distributed (sub)gradient algo-
rithm. This method has been later extended by the Gradient
Tracking algorithm analyzed in several variants, see, e.g., [3]–
[12]. In [16], [17] accelerated versions based on the heavy-
ball method and the Nesterov scheme have been proposed.
An extension to stochastic optimization is proposed in [18].

From an optimization viewpoint, the Gradient Tracking
algorithm is thought as embedding a tracking mechanism
that, based on dynamic average consensus [19], aims to
track the gradient of the global cost function by means of
neighboring communications only. Such “centralized gradient”
estimate is then used in the local gradient-based updates of
the agents. From a control viewpoint, instead, the Gradient
Tracking rather resembles an output-feedback controller, with
the tracking mechanism2 that is reminiscent of an observer.
Indeed, we emphasize that the estimate of the centralized
gradient is correct only at the optimal steady state, and not
during transitory.

Pioneering works approaching distributed optimization al-
gorithms from a control theoretic perspective are [20], [21].
In [22], distributed optimization methods are developed based
on continuous-time proportional-integral controllers. More re-
cently, geometric control tools have been used in [23]. In [24]
a passivity-based perspective is adopted to analyze distributed
optimization algorithms with delays. A distributed saddle-
flow is proposed in [25], where the convergence analysis
follows an output regulation approach. Recently, a contrac-
tion analysis for primal-dual dynamics has been investigated

1In particular, existing proofs are typically based on optimization-informed
approaches involving long lists of inequalities to show convergence properties
of some specific sequences. Other works rely on Lyapunov-like arguments or
control tools (as e.g., the small gain theorem) but do not fully exploit a system
theoretic perspective as the one we pursue in this paper.

2We stress that, throughout the paper, the term “tracking” is not intended in
the canonical sense of control theory, e.g., in the context of reference tracking.
Yet, it is only used in reference to the “tracking mechanism” embedded in
the Gradient Tracking algorithm.
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in [26], while a convergence analysis approach based on
semidefinite programming is given in [27]. In [28], primal-dual
algorithms are interpreted as proportional-integral controllers.
In [29] a general, canonical form for distributed optimization
algorithms based on gradients is proposed, while in [30] the
same methodology is extended to time-varying graphs. Finally,
building on [2], in [31] Gradient Tracking algorithms for
quadratic programs with sparse (possibly non-diagonal) gains
are investigated.

Organization: In Section II, we introduce the framework of
distributed consensus optimization and the Gradient Tracking
algorithm. In Section III, we derive the Gradient Tracking
by solving a control problem aimed at finding a distributed
implementation of a vanilla centralized gradient descent algo-
rithm. Here, we recover the Gradient Tracking in the canonical
coordinates of [2]. Moreover, by means of a suitable change
of coordinates, we show that the Gradient Tracking algorithm
embeds an integral action. Finally, in Section IV we provide
a proof of exponential stability of the optimal equilibrium.

II. THE GRADIENT TRACKING ALGORITHM

A. Distributed Consensus Optimization

In a consensus optimization problem, N ∈ N agents in a
network cooperatively seek a solution to the problem

min
x∈Rd

N∑
i=1

fi(x), (1)

in which, for each i = 1, . . . , N , the function fi : Rd → R
is known to agent i only. Hence, the function

∑N
i=1 fi to

be minimized, to which we shall refer as the global cost
function, is not individually accessible by the agents. We
consider Problem (1) under the following assumptions.

Assumption 2.1: For all i = 1, . . . , N , the function fi has
Lipschitz continuous gradient.

Assumption 2.2: The global cost function
∑N

i=1 fi is
strongly convex.

Under Assumption 2.2, Problem (1) admits a unique
global minimum, which we denote by3 x⋆ ∈ Rd. In
the following, we use the compact notation ∇F(x) :=
(∇f1(x1), . . . ,∇fN (xN )), for all x = (x1, . . . , xN ) ∈ RNd.
We underline that, by optimality, (1 ⊗ Id)

⊤∇F(1 ⊗ x⋆) = 0
with 1 := (1, . . . , 1) ∈ RN .

Agents communicate according to a directed and strongly
connected communication network formally represented by a
graph G = ({1, . . . , N}, E) with edge set E ⊆ {1, . . . , N}2.
We denote by Ni := {j ∈ {1, . . . , N} | (i, j) ∈ E} the
neighborhood of Agent i. The communication is synchronous.
As customary in consensus-based algorithms, we assume that
agents are equipped with properly defined weights that are
used to combine neighboring states. Specifically, we consider
two weight matrices R ∈ RN×N and C ∈ RN×N with positive
entries, i.e., rij ≥ 0 and cij ≥ 0, matching the communication
graph G in the sense that rij = cij = 0 ⇐⇒ (i, j) /∈ E .

3Throughout the paper, we use the roman x when referring to the optimiza-
tion variable of problem (1), and the italic x when referring to the agents’
estimates.

Moreover, we assume that R is row stochastic and C is column
stochastic, implying

R1 = 1, π⊤
RR = π⊤

R , CπC = πC , 1⊤C = 1⊤ (2a)

for some πR ∈ RN and πC ∈ RN with positive entries. In
view of the Perron-Frobenius theorem [32], we can choose πR

and πC so that

1⊤πR = 1, 1⊤πC = 1, π⊤
RπC > 0, (2b)

all of which shall be assumed in the remainder of the paper.
We stress that R and C need not be equal nor symmetric.

B. The Gradient Tracking Algorithm
The Gradient Tracking distributed algorithm combines a

gradient-based method and two averaging mechanisms aimed,
respectively, at aggregating the neighboring estimates and at
reconstructing (“tracking”) the current value of the gradient∑N

i=1 ∇fi(xi,k) of the global cost function, inaccessible to the
agents due to the network constraints. More specifically, each
agent i maintains a local state variable xi,k ∈ Rd (with k ∈ N
denoting the discrete time index) representing an estimate
of the optimal solution x⋆ of Problem (1), and an auxiliary
variable si,k ∈ Rd representing the aforementioned estimate
of the gradient of the global cost function. At each k ∈ N,
these variables are updated as

xi,k+1 =
∑
j∈Ni

rijxj,k − γsi,k (3a)

si,k+1 =
∑
j∈Ni

cijsj,k +∇fi(xi,k+1)−∇fi(xi,k), (3b)

in which, for all i = 1, . . . , N , xi,0 ∈ Rd is arbitrary and

si,0 = ∇fi(xi,0). (4)

Moreover, rij and cij are the (i, j)-th entries of R and C
introduced in Section II-A (cf. (2a)), while γ > 0 is a design
parameter, the stepsize, that must be chosen small enough to
ensure convergence, see, e.g., [3]–[12].

Due to the properties of R, Equation (3a) can be seen as
a forced consensus update law, where each agent tries to pull
its estimate towards the direction defined by its local estimate
si,k of the global cost function’s gradient. Equation (3b),
instead, implements a decentralized tracking algorithm for the
gradient of the global cost function, where the averaging term
aggregating the neighboring estimates sj,k employs column-
stochastic weights cij . Necessity of column stochasticity has
been already investigated in the context of push-pull gradient
methods, see, e.g., [11] and reference therein, and it will be
further discussed in Section III.

For the estimates produced by the Gradient Tracking algo-
rithm (15), the following convergence result holds.

Theorem 2.3: Let Assumptions 2.1 and 2.2 hold. Then,
every solution4 ((xi)i=1,...,N , (si)i=1,...,N ) of System (3) ini-
tialized according to (4) satisfies

lim
k→∞

|xi,k − x⋆| = 0

4Throughout the paper, by solution we shall always tacitly mean a maximal
solution defined on the whole time domain N.
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lim
k→∞

|si,k| = 0 (5)

exponentially, for all i = 1, . . . , N .
Several proofs of Theorem 2.3, as well as of similar results

concerning variations of (3), can be found in the literature. See,
for instance, [3]–[12]. In addition, by leveraging the control-
theoretic reinterpretation of the Gradient Tracking given in
forthcoming Section III, we provide in Section IV an alter-
native analysis based on Lyapunov arguments, which also
establishes asymptotic stability.

III. THE GRADIENT TRACKING AS A CONTROL PROBLEM

In this section, we show that the Gradient Tracking algo-
rithm can be obtained in a rather natural way by solving a
control problem where the “plant” is a vanilla distributed im-
plementation of the centralized gradient descent method, and
the “controller” is a servomechanism aimed at compensating,
at the steady state, for the lack of information due to the
network constraints. This approach highlights that the Gradient
Tracking algorithm embeds a distributed integral action pro-
cessing an error signal closely related to the consensus error.

Without loss of generality, in the remainder of the article
we focus on the scalar version of Problem (1) obtained with
d = 1. This simplifies the computations without limiting the
validity of the results. Indeed, all presented results apply also
to non-scalar optimization problems with d > 1 by properly
introducing Kronecker products.

A. From Centralized to Decentralized
We start from the standard gradient descent method applied

to Problem (1), reading as5

xk+1 = xk − γ 1
N 1⊤∇F(1xk), (6)

with γ > 0 the stepsize and x0 arbitrary. Under Assump-
tions 2.1 and 2.2, every sequence generated by (6) converges
at a linear rate (exponentially) to the optimal solution x⋆,
see [33]. The algorithm (6) requires the knowledge of the
gradient of the global cost function, and hence must be
executed by a central unit. As a first step toward a distributed
implementation of (6), we consider an algorithm made of N
identical copies of (6), each one executed by a different agent.
To this end, we define xk := 1xk, stacking N copies of xk,
and we write the following update laws derived from (6)

xk+1 = xk − γ 1
N 11⊤∇F(xk), (7)

initialized so as x0 ∈ span(1). Every sequence (xk)k∈N
generated by (7) satisfies xk ∈ span(1) for all k ∈ N, and
converges to 1x⋆.

Notice that the initialization x0 ∈ span(1) in (7) is neces-
sary for convergence. Nevertheless, such a constraint can be
relaxed by considering the following modification

xk+1 = Rxk − γ 1
N 11⊤∇F(xk) (8)

where R is the row stochastic matrix introduced in Section II-
A. Row stochasticity of R implies that the components of xk

5The scaling factor 1
N

in (6) is ineffective, but it is instrumental for the
successive derivations.

orthogonal to span(1) are filtered out, ensuring convergence
from an arbitrary initial condition.

While (8) is composed of N replicas, each one implemented
locally on a single agent, it is still not acceptable since
each replica needs access to all the gradients ∇fi, i =
1, . . . , N . Indeed, the matrix 1

N 11⊤ in (8) can be seen as
the weighted adjacency matrix of a complete graph. Towards
a fully-distributed implementation, we now focus on how
to relax such an all-to-all communication, with the aim of
obtaining a scheme in which each agent i only performs local
computations and only employs neighboring information. We
start by considering a general update law of the following form

xk+1 = Rxk − γ∇F(xk) + uk, (9)

in which x0 ∈ RN is arbitrary, R is as in (8), the term
−γ∇F(xk) = −γ col(∇f1(x1,k), . . . ,∇fN (xN,k)) is a lo-
cally computable term providing, for each agent i, a control
action equal to the local gradient ∇fi(xi,k), and uk :=
(u1,k, . . . , uN,k) is a further control input to be designed.
Clearly, taking R as a doubly stochastic matrix and u = 0 is
a feasible choice implementing the naive distributed gradient
method proposed, e.g., in [14]. However, with this choice
the resulting estimates converge to the optimum x⋆ only if
vanishing stepsizes are adopted, at the expense of a highly
degraded convergence and lack of alertness.

In general, convergence to the optimum x⋆ is obtained if
the generated sequence converges to an equilibrium xSS ∈ RN

fulfilling, at once, the following two properties:
P1. Consensus: xSS ∈ span(1).
P2. Optimality: 1⊤∇F(xSS) = 0.

We thus focus on the choice u in (9) to achieve both P1
and P2. Motivated by the algorithm (8), we add and subtract
γ 1
N 11⊤∇F(xk) in (9) to obtain

xk+1= Rxk− γ 1
N 11⊤∇F(xk)︸ ︷︷ ︸

Algorithm (8)

+uk+ γ( 1
N 11⊤− I)∇F(xk)︸ ︷︷ ︸

Mismatch

.

(10)
This reformulation highlights that the “control input” u must
be chosen to compensate for the mismatch between the
(non-implementable, but correct) centralized descent term
−γ 1

N 11⊤∇F(xk) and the locally computable (but incorrect)
gradient term −γ∇F(xk). We underline that this compensa-
tion property of u is not necessary at all times k, but only
at steady state. Indeed, u must be designed such that the
following hold.
R1. Existence of an Optimal Equilibrium: There exists a

state-input equilibrium pair (xSS, uSS) ∈ R2N for (9), such
that uSS satisfies uSS := −γ( 1

N 11⊤ − I)∇F(xSS).
R2. Attractiveness of the Equilibrium: All solutions of

System (9) converge to the equilibrium xSS.
We underline that, in view of (10), Item R1 implies that

xSS is an equilibrium of the centralized algorithm (8). Hence,
xSS is optimal in the sense that it satisfies P1 and P2. We
approach the problem of designing u ensuring R1 and R2 as
a canonical set-point control problem [34]. In particular, we
seek a feedback expression for u. Namely, we require u to be
generated as the output of a distributed dynamical system with
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xk+1 = Rxk − γ∇F(xk) + uk

servomechanism

∇F(xk)uk

Fig. 1. Block diagram of (13).

state z = (z1, . . . , zN ) ∈ RN , input ∇F(x), and described by
equations of the form6

zk+1 = H1zk +H2∇F(xk), z0 ∈ Z0,

uk = K1zk +K2∇F(xk),
(11)

for some Z0 ⊂ RN and some matrices H1, H2,K1,K2 of
suitable dimensions that match the network constraints.

In the following subsection, we pick a particular realization
of the controller (11) and show that R1 holds. Attractiveness
of the equilibrium xSS (Item R2) is instead the subject of the
next Section IV. Eventually, we show that the obtained closed-
loop system is indeed a representation in different coordinates
of the Gradient Tracking (3). Finally, we show that, in certain
coordinates, it can be seen as the interconnection between a
controlled system and an integral action.

B. Design of (11) and Compensation
We first notice that we can take K2 = 0 in (11) without loss

of generality, since (9) already has a decentralized gradient
term. Consequently, we can also pick K1 = I . Indeed, since
K1 must be invertible, this is always true up to a change of
coordinates. This leads to uk = zk for all k ∈ N. Second,
in order to guarantee that every equilibrium (xSS, zSS) of
the closed-loop system for which P1 and P2 hold satisfies
zSS = uSS = −γ( 1

N 11⊤ − I)∇F(xSS) = γ∇F(xSS), we
must ensure that I − H1 = 1

γH2. This suggests the choice
H2 = −γ(H1 − I). Finally, we notice that the previous
condition zSS = γ∇F(xSS) also implies 1⊤zSS = 0. As
better clarified below, without knowing zSS a priori this can be
achieved within the limits of the previous choices by taking
H1 column stochastic and

Z0 :=
{
z0 ∈ RN | 1⊤z0 = 0

}
. (12)

Hence, without loss of generality, we can take H1 = C, with
C the column stochastic matrix introduced in Section II-A.

In summary, the previous reasoning suggests choosing
K1 = I , K2 = 0, H1 = C, H2 = −γ(C − I), and (12)
as initialization set. The resulting (feedback) interconnection
of (9) and (11) reads as

xk+1 = Rxk − γ∇F(xk) + zk (13a)
zk+1 = Czk − γ(C − I)∇F(xk), (13b)

with x0 arbitrary and z0 ∈ Z0, initialized so as 1⊤z0 = 0.
Notice that the system (13) is distributed, in that each update

6The state z has N components, one for each agent. As it is shown later in
Section III-B, this turns out to be sufficient in the considered single-variable
case. Nevertheless, different choices are possible.

law only uses local information. A block diagram of (13) is
depicted in Figure 1.

We now study the reachable equilibria of (13). First, notice
that, in view of (13b), every equilibrium (xSS, zSS) of (13)
satisfies

0 = (C − I)zSS − γ(C − I)∇F(xSS)

=⇒ zSS − γ∇F(xSS) ∈ span(πC).

Moreover, (13a) implies

(I −R)xSS = −γ∇F(xSS) + zSS

=⇒ π⊤
R

(
zSS − γ∇F(xSS)

)
= 0.

Since π⊤
RπC > 0 (see (2)), the previous relations imply

zSS = γ∇F(xSS). (14)

This yields two consequences. First, from (13a) we ob-
tain xSS ∈ ker(I − R) = span(1), which is P1. Second,
we notice that every solution originating from Z0 satisfies
1⊤zk = 0 for all k ∈ N. Hence, every equilibrium reachable
from (12) necessarily satisfies 1⊤zSS = 0. Then, (14) implies
1⊤∇F(xSS) = 1⊤zSS = 0, which is P2. Hence, we have
shown that every equilibrium of (13) is a consensual stationary
point of Problem (1). We stress that Assumptions 2.1 and 2.2
play no role in establishing such property.

In view of Assumption 2.2, the latter condition actually
implies that xSS = 1x⋆ with x⋆ being the unique optimal
solution of Problem (1). Therefore, we conclude that there
is a unique equilibrium reachable from Z0 given by

(xSS, zSS) =
(
1x⋆, γ∇F(1x⋆)

)
.

Thus, we have shown that the equilibrium reachable by the
solutions of (13) with z originating in the set Z0 is necessarily
optimal, in the sense that all estimates are equal to the same
optimal solution x⋆ of Problem (1). The previous analysis
results from the additional steady-state constraints introduced
by the servomechanism (13b). Finally, we notice that, in view
of (14), the steady-state control action uSS satisfies

uSS = zSS = γ∇F(xSS) = −γ
(

1
N 11⊤ − I

)
∇F(xSS),

where we exploited the optimality of xSS which implies
1⊤∇F(xSS) = 0. This shows that uSS perfectly balances out
the mismatch term of (10). Hence, R1 holds.

Remark 3.1: As a special case, when both R and C are
doubly stochastic, the previous steady-state constraints become

zSS − γ∇F(xSS) ∈ span(1), 0 = 1⊤(∇F(xSS) + zSS),

which, in turn, imply that zSS has no component along in
the consensual direction 1. We also emphasize that the first
condition does not imply that ∇F(x) ∈ span(1).

An alternative characterization in terms of transfer functions
of (13) is possible setting γ∇F as input and x as output,
see, e.g., [29]. For undirected networks, this approach shows
a zero-pole cancellation in 1 and the presence of N − 1 zeros
in 1 (see also (20)).
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xk+1 = (R+ C − I)xk − γ∇F(xk) + uk

ek = (C − I)(R− I)xk

ηk+1 = ηk + ek

uk = −ηk

ekuk

Fig. 2. Block diagram of (19) highlighting the integral action embedded
in the Gradient Tracking algorithm.

C. On the Equivalence Between (3) and (13)

We now show that the obtained system (13) with the initial-
ization (12) is equivalent to the Gradient Tracking algorithm
in its original form (3). For, by following [2], we consider the
change of coordinates

z 7→ s := ∇F(x)− γ−1z.

In these new coordinates, (13) reads as

xk+1 = Rxk + γsk (15a)
sk+1 = Csk +∇F(xk+1)−∇F(xk), (15b)

which is precisely (3) written in compact form.
Moreover, in the new coordinates, the initialization con-

straint induced by the choice (12) reads as

0 = 1⊤(∇F(x0)− s0) =

N∑
i=1

(
si,0 −∇fi(xi,0)

)
, (16)

which shows that the initialization constraint (4) is a possible
choice for which (16) holds.

The coordinates (x, z), originally proposed in [2], will
be referred to as the “canonical coordinates”. A noteworthy
difference with the original coordinates (x, s) is that the former
is expressed in a usual causal form (all the quantities on the
right hand-side depend on the present time k). Moreover, the
initialization (12) does not require any initial measurement
(zi,0 = 0 for all i = 1, . . . , N is a feasible, fully decentralized
initialization), hence conferring on the algorithm robustness
with respect to possible uncertainties in the computations of
∇fi. This robustness property does not hold for the Gradient
Tracking (3) in the original coordinates (x, s), since the
initialization (4) requires the computation of ∇fi(xi,0), and
any error or uncertainty in it causes a persistent bias in the
estimates.

D. The Gradient Tracking Embeds an Integral Action

Before moving to the stability analysis carried out in Sec-
tion IV, we show that the Gradient Tracking algorithm embeds
an integral action processing the error signal

e := (C − I)(R− I)x, (17)

which, in turn, is closely related to the consensus error
(R − I)x. This makes an interesting connection with out-
put regulation theory [34] and with the concept of internal
model [34], [35].

With (13b) in mind, change coordinates according to

z 7→ η := (C − I)x− z. (18)

In the new coordinates, (13b) (and, thus, the Gradient Track-
ing (3)) reads as follows

xk+1 = (R+ C − I)xk − γ∇F(xk)− ηk (19a)
ηk+1 = ηk + (C − I)(R− I)xk︸ ︷︷ ︸

ek

. (19b)

The subsystem (19b) is an integrator processing the regulation
error (17). In control-theoretic terms, System (19) can be
interpreted as a closed-loop system involving a “plant” (9)
controlled by a proportional-integral (PI) control policy u =
(C − I)x − η, where (C − I)x is the proportional term and
−η the integral one. A graphical representation is given in
Figure 2.

Furthermore, we underline that, by denoting

ỹ := x− 1x⋆, ũ := −γ∇F(ỹ + 1x⋆) + (C − I)(ỹ + 1x⋆),

and changing coordinates from x to ỹ, we obtain

ỹk+1 = Rỹk − ηk + ũk

ηk+1 = ηk + (C − I)(R− I)ỹk,
(20)

which, seen as a system with input ũ and output ỹ, is in
“normal form” [34, Chapter 9]. Moreover, its zero dynamics
is precisely the integrator

ηk+1 = ηk,

so as (20) is not minimum-phase. Finally, we observe that the
value of η for which ỹ = 0 is

η◦ := −∇F(1x⋆) + (C − I)1x⋆.

In turn, this underlines that the optimality constraint P2 comes
from the condition 1⊤η◦ = 0 that, in view of (18), and as
explained in the previous section, comes from the initialization
1⊤z0 = 0 (or, also, from the original condition (4)).

We conclude this section by pointing out that the algo-
rithm expressed in normal form is not implementable in a
distributed way since the matrix (C − I)(R − I) involves
two-hop communication. Hence, the tracker subsystem of the
Gradient Tracking algorithm, either in original (15b) or in
canonical (13b) coordinates, can be interpreted as a distributed
implementation of a PI controller. In this respect, we stress
that the aforementioned integral action is associated to the
eigenvalue in 1 of the z dynamics (13b), and not of the x
dynamics (13a), which may or may not have an eigenvalue in
1 as well.

IV. STABILITY ANALYSIS

In this section, we consider System (13), representing the
Gradient Tracking algorithm in canonical coordinates, and
we study stability and attractiveness of the unique equilib-
rium (xSS, zSS) := (1x⋆, γ∇F(1x⋆)) reachable from Z0 as
introduced in Section III-B. In particular, we prove that such
equilibrium is attractive, in fact exponentially asymptotically
stable, provided that z0 ∈ Z0 with Z0 defined as in (12). We
also provide an estimate of the (linear) convergence rate. In
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doing so, we take advantage of the control-theoretic framework
presented in the previous sections and provide a Lyapunov-
based analysis.

As already mentioned, we assume for simplicity that d =
1. However, we remark that this can be done without loss
of generality, since all the arguments used in the proof can
be directly applied, component-wise, to the multidimensional
case where d > 1, the only difference being that (i) R and
C must be replaced by R ⊗ Id and C ⊗ Id (⊗ denotes the
Kronecker product), and (ii) the dimension of the matrices
introduced in the following must be consistently adapted.

A. Main Result
Consider the “error” coordinates[

xk

zk

]
7−→

[
x̃k

z̃k

]
:=

[
xk − 1x⋆

zk − γ∇F(1x⋆)

]
,

and further change coordinates as z̃k 7−→ (S⊤z̃k,1
⊤z̃k/N)

with S ∈ RN×(N−1) a matrix whose columns form an
orthonormal basis for the orthogonal complement of span(1).
Thus, S satisfies

S⊤1 = 0, S⊤S = IN−1, IN = SS⊤ + 1
N 11⊤. (21)

As C in (13b) is column stochastic, and since optimality of x⋆
implies 1⊤∇F(1x⋆) = 0, it follows that 1⊤z̃k+1 = 1⊤z̃k =
1⊤z̃0 = 1⊤z0 for all k ∈ N. Therefore, attractiveness of
the optimal equilibrium (xSS, zSS) for (13) with z0 ∈ Z0 is
implied by global attractiveness of the origin of the “reduced”
subsystem ξk := (x̃k, S

⊤z̃k), whose dynamics reads

ξk+1 =

[
R S
0 S⊤CS

]
︸ ︷︷ ︸

F

ξk − γ

[
IN

S⊤(C − I)

]
︸ ︷︷ ︸

G

uk

uk = ∇F
( [

IN 0N×(N−1)

]︸ ︷︷ ︸
H

ξk + 1x⋆

)
−∇F(1x⋆).

(22)
Therefore, from now on we focus on (22) only.

We first introduce some quantities instrumental for the
technical results that follow. Let V ∈ R(2N−1)×(2N−1) be
such that FV = V J , where J := diag(1, J2) is a Jordan
form of F . Notice that J2 is a Schur matrix. As (1N , 0) is an
eigenvector of F associated with the simple eigenvalue 1, we
can take without loss of generality

V =

[
1 V21

0 V22

]
, V −1 =

[
π⊤
R β⊤

K21 K22

]
, (23)

for some β ∈ RN−1, some K21 ∈ R(N−1)×N satisfying
K211 = 0, and with πR ∈ RN as in (2).

Let Π := diag(1,Π2), where Π2 = Π⊤
2 > 0 is the

unique solution7 of J⊤
2 Π2J2 − Π2 = −V ⊤

21SS
⊤V21 −

V ⊤
22V22. Then, Π = Π⊤ > 0 satisfies J⊤ΠJ − Π =

−V ⊤ diag(SS⊤, IN−1)V . Therefore, the matrix P :=
V −⊤ΠV −1 satisfies P = P⊤ > 0 and solves

F⊤PF − P = −
[
SS⊤ 0
0 IN−1

]
. (24)

7Existence and uniqueness follow by the fact that J2 is Schur and, being
V22 invertible in view of (23), −V ⊤

21SS
⊤V21 − V ⊤

22V22 is symmetric and
negative definite.

Lemma 4.1: Let F and G be as in (22) and P as in (24).
Then, with θ := π⊤

CπR > 0,

G⊤PF

[
1
N 11⊤

0

]
= θH

[
1
N 11⊤

0

]
=

θ

N
11⊤. (25)

The proof of Lemma 4.1 is postponed to Section IV-C.
Remark 4.2: An interesting interpretation of Lemma 4.1 is

related to passivity theory. Specifically, Equation (25) can be
seen as the input-output constraint imposed by the Kalman-
Yakubovich-Popov conditions [36, Lemma 3]. It implies that
System (22) with output matrix θH , when restricted to
Im col

(
1
N 11⊤, 0

)
, behaves as a passive system.

Finally, define the quadratic Lyapunov candidate ℓ(ξ) :=
ξ⊤Pξ. Then, the following theorem establishes the main result
of the section.

Theorem 4.3: Suppose that Assumptions 2.1 and 2.2 hold.
Then, there exist γ⋆, c > 0 such that, for every solution ξ
of (22) obtained with γ ∈ (0, γ⋆), the following holds

ℓ(ξk+1)−ℓ(ξk) ≤ −1

2

(
γc
∣∣ 1
N 1⊤x̃k

∣∣2 + ∣∣S⊤x̃k

∣∣2 + ∣∣S⊤z̃k
∣∣2)

(26)
for all k ∈ N.

The proof of Theorem 4.3 is postponed to Section IV-
B, while hereafter we underline two important consequences.
First, we observe that Theorem 4.3 implies exponential con-
vergence of (13) to the optimal equilibrium (1x⋆, γ∇F(1x⋆))
provided that the initialization z0 ∈ Z0 holds. Indeed, since
|ξk|2 = |x̃k|2+|S⊤z̃k|2 and |x̃k|2 = |11⊤x̃k/N+SS⊤x̃k|2 =
|1⊤x̃k|2/N + |S⊤x̃k|2, then

γc|1⊤x̃k/N |2 + |S⊤x̃k|2 + |S⊤z̃k|2 ≥ min{1, γc/N}|ξk|2

≥ min{1, γc/N}
maxσ(P )

ℓ(ξk)

with σ(P ) denoting the spectrum of P . Hence, (26) and
positive definiteness of ℓ imply

ℓ(ξk+1) ≤ µ2ℓ(ξk)

with µ2 := max{0, 1−min{1, γc/N}/(2maxσ(P ))}. Thus,
by induction, and by using |x̃k| ≤ |ξk|, we obtain

|x̃k| ≤ αµk |ξ0| , ∀k ∈ N (27)

with α :=
√

maxσ(P )/minσ(P ). Notice that (27) also
represents the explicit expression for the linear convergence
rate of the Gradient Tracking algorithm.

Second, we observe that, in view of the initialization z0 ∈
Z0, and since ξ leaves out the component 1⊤z̃, the equilibrium
(xSS, zSS) = (1x⋆, γ∇F(1x⋆)) is not Lyapunov stable in the
ordinary sense for (13). Nevertheless, (26) implies that it is
stable “modulo z0 ∈ Z0” in the following sense: for every
ϵ > 0, there exists δϵ > 0, such that every solution of (13) with
z0 ∈ Z0 and |x0 − xSS|+ |z0 − zSS| ≤ δϵ satisfies |xk − xSS|+
|zk − zSS| ≤ ϵ for all k ∈ N.

Finally, we remark that, since the variable 1⊤z̃ is marginally
stable, then the Gradient Tracking is not robust with respect to
additive perturbations with nonzero mean value acting on the
z dynamics (13b). A counterexample showing this fragility is
reported in [37, Sec. V].
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B. Proof of Theorem 4.3
For every solution ξ of (22), and every k ∈ N, the increment

∆k := ℓ(ξk+1)− ℓ(ξk) satisfies

∆k = ξ⊤k (F⊤PF − P )ξk (28a)

− 2γu⊤
k G

⊤PFξk (28b)

+ γ2u⊤
k G

⊤PGuk. (28c)

In light of (21), we can decompose ξ as

ξ =

[
1
N 11⊤x̃+ SS⊤x̃

S⊤z̃

]
=

[
1
N 11⊤x̃

0

]
︸ ︷︷ ︸

ξq

+

[
SS⊤x̃
S⊤z̃

]
︸ ︷︷ ︸

ξ⊥

, (29)

where the term ξq represents the “average component” of ξ,
while ξ⊥ the deviation from it.

In view of (24), and since S⊤1 = 0 by construction, the
quadratic term (28a) satisfies

ξ⊤k (F⊤PF − P )ξk

=

[
SS⊤x̃k

S⊤z̃k

]⊤ [−SS⊤ 0
0 −I

] [
SS⊤x̃k

S⊤z̃k

]
+

([
1
N 11⊤x̃k

0

]
+ 2

[
SS⊤x̃k

S⊤z̃k

])⊤[−SS⊤ 0
0 −I

] [
1
N 11⊤x̃k

0

]
︸ ︷︷ ︸

0

= −
∣∣S⊤x̃k

∣∣2 − ∣∣S⊤z̃k
∣∣2 .

(30)
We now focus on the second term (28b). First, we add

±∇F
(
Hξqk + 1x⋆

)
in the definition of uk in (22), obtaining

uk = ∇F
(
Hξqk + 1x⋆

)
−∇F(1x⋆)

+∇F(Hξk + 1x⋆)−∇F
(
Hξqk + 1x⋆

)
.

Under Assumption 2.2, we have(
∇F

(
Hξqk + 1x⋆

)
−∇F(1x⋆)

)⊤
Hξqk

=

(
N∑
i=1

∇fi
(

1
N 1⊤x̃k + x⋆

))⊤ (
1
N 1⊤x̃k

)
≥ c0

N2

∣∣1⊤x̃k

∣∣2 , (31)

for some c0 independent of γ, and for all k ∈ N. Moreover,
under Assumption 2.1 the following hold for all k ∈ N∣∣∇F

(
Hξqk + 1x⋆

)
−∇F(1x⋆)

∣∣ ≤ c1|ξqk|∣∣∇F(Hξk + 1x⋆)−∇F
(
Hξqk + 1x⋆

)∣∣ ≤ c1|ξ⊥k |,
(32)

with c1 being the Lipschitz constant of ∇F. Therefore, by
using Lemma 4.1 and the inequalities (31)-(32), we can bound
the term (28b) as follows

−2γu⊤
k G

⊤PFξk = −2γu⊤
k G

⊤PFξqk − 2γu⊤
k G

⊤PFξ⊥k

≤ −2γ
θ

N
u⊤
k Hξqk + 2γ

∣∣G⊤PF
∣∣ |uk|

∣∣ξ⊥k ∣∣
≤ −γ

2θc0
N2

∣∣1⊤x̃k

∣∣2 + γ
2 |H| c1

N
|ξ⊥k ||ξqk|

+ 2γ
∣∣G⊤PF

∣∣ |uk|
∣∣ξ⊥k ∣∣

≤ −γc2
∣∣ 1
N 1⊤x̃k

∣∣2 + γc3|ξ⊥k ||ξqk|+ γc4
∣∣ξ⊥k ∣∣2
(33)

with c2 := 2θc0, c3 := 2θ |H| c1/N+2
∣∣G⊤PF

∣∣ c1, and c4 :=
2
∣∣G⊤PF

∣∣ c1.
Finally, under Assumption 2.1, the last term (28c) can be

bounded as follows

γ2u⊤
k G

⊤PGuk ≤ γ2
∣∣G⊤PG

∣∣ |uk|2 ≤ γ2c5(|ξ⊥k |2 + |ξqk|
2),
(34)

with c5 :=
∣∣G⊤PG

∣∣ c21.
In view of (30), (33) and (34), we can upper bound the

increment ∆k in (28) as

∆k ≤ −
∣∣S⊤x̃k

∣∣2 − ∣∣S⊤z̃k
∣∣2 − γc2

∣∣ 1
N 1⊤x̃k

∣∣2
+ γc3|ξ⊥k ||ξqk|+ γc4

∣∣ξ⊥k ∣∣2 + γ2c5(|ξ⊥k |2 + |ξqk|
2)

≤
(
γ
c2
4

+ γ2c5 − γc2

) ∣∣ 1
N 1⊤x̃k

∣∣2
+

(
γ
c23
c2

+ γ2c5 + γc4 − 1

)( ∣∣S⊤x̃k

∣∣2 + ∣∣S⊤z̃k
∣∣2 ),

where, in the last inequality, we have used |ξ⊥k |2 =
∣∣S⊤x̃k

∣∣2+∣∣S⊤z̃k
∣∣2 and the Young’s inequality

2γc3
∣∣ξqk∣∣ ∣∣ξ⊥k ∣∣ ≤ γc3

(
ϵ
∣∣ξqk∣∣2 + ϵ−1

∣∣ξ⊥k ∣∣2)
with ϵ = c2/(2c3).

Therefore, for all γ ∈ (0, γ⋆), where

γ⋆ := min

{
c2

4(c23 + c4c2)
,

1

2
√
c5

,
c2
4c5

}
we get (26) for all k ∈ N, with c := c2. □

C. Proof of Lemma 4.1
Since π⊤

R1 = 1 and K211 = 0, we have

G⊤PF

[
1
N 11⊤

0

]
= G⊤V −⊤ΠJV −1

[
1
N 11⊤

0

]
= G⊤V −⊤

[
1 0
0 Π2J2

] [
1
N 1⊤

0

]
=
[
I (C − I)⊤S

] [πR

β

]
1
N 1⊤

=
(
πR + (C − I)⊤Sβ

)
1
N 1⊤. (35)

From (23), we get

F⊤V −⊤ =

[
R⊤ 0
S⊤ S⊤C⊤S

] [
πR K⊤

21

β K⊤
22

]
=

[
⋆ ⋆

S⊤(πR + C⊤Sβ) ⋆

]
where ⋆ is a placeholder for terms whose exact expression is
not relevant. On the other hand, it also holds

F⊤V −⊤ = (V −1F )⊤ = (JV −1)⊤ =

[
πR ⋆
⋆ ⋆

]
.

In view of the properties of S (see (21)), equating both
previous expressions for F⊤V −⊤ yields

S⊤(πR + C⊤Sβ) = β = S⊤Sβ

=⇒ S⊤(πR + (C − I)⊤Sβ) = 0

=⇒ πR + (C − I)⊤Sβ ∈ kerS⊤



9

=⇒ ∃ θ ∈ R s.t. πR + (C − I)⊤Sβ = θ1.

From the latter implication and (35), we obtain (25). The claim
of the lemma then follows from (2b), since

θ = π⊤
C (θ1) = π⊤

C (πR + (C − I)⊤Sβ) = π⊤
CπR.

V. CONCLUSIONS

We revisited the Gradient Tracking algorithm under the lens
of control theory. We found that the design of the algorithm
can be equivalently posed as a control problem, whose solution
consists in a distributed integral action applied to an error
signal related to the consensus error. With this novel interpre-
tation at reach, we provided an alternative convergence proof
for the Gradient Tracking, also establishing Lyapunov stability
of the equilibrium corresponding to the optimal solution of the
consensus optimization problem.
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