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Abstract
We consider the discrete-time Arrow-Hurwicz-Uzawa primal-dual algorithm, also
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1 Introduction

1.1 Problem overview, contribution, and literature review

In this article, we study the convergence and Lyapunov stability properties of the
following discrete-time first-order primal-dual algorithm

xt+1 = xt − γ

(
∇ f (xt ) +

r∑
i=1

λti∇gi (x
t )

)
, x0 ∈ R

n, (1a)

λt+1
i = max

{
0, λti + γ gi (x

t )
}
, λ0i ≥ 0, i = 1, . . . , r , (1b)

in which t ∈ N is the iteration counter, n, r ∈ N are arbitrary, xt ∈ R
n is the primal

variable, λti ∈ R≥0 are the dual variables, f : R
n → R and g = (g1, . . . , gr ) : R

n →
R
r are convex functions, and γ > 0 is a parameter called the stepsize. Algorithm (1)

gives an iterative procedure to compute a solution of the constrained optimization
problem

min
x∈Rn

f (x)

subj. to gi (x) ≤ 0, i = 1, . . . , r ,
(2)

and it is a slight variation of Uzawa’s original method [29]. In particular, when λti +
γ gi (xt ) ≥ 0 for all i = 1, . . . , r , Eqs. (1) take the formof a discrete-time version of the
Arrow-Hurwicz saddle-point dynamics [1] (see also [18]) applied to the Lagrangian
function of (2), which reads as

L(x, λ):= f (x) +
r∑

i=1

λi gi (x).

Indeed, (1) can be rewritten in compact form as

xt+1 = xt − γ
∂L

∂x
(xt , λt ), x0 ∈ R

n,

λt+1 = max

{
0, λt + γ

∂L

∂λ
(xt , λt )

}
, λ0 ∈ (R≥0)

r ,

in which the max operator acts component-wise. Hence, (1) is a first-order Lagrangian
method.

In his original paper [29], Uzawa provided a proof of non-local stability and conver-
gence of (1). However, his arguments were later found wrong (see, e.g., [25, Sec. 1]).
Other existing proofs, which can be found, for instance, in [25] and the classical text-
book [2], only provide local convergence guarantees to a saddle point of theLagrangian
function L . These results are based on the linear approximation of the algorithm around
the optimal point (see, e.g., [2, Sec. 4.4]) and, hence, can only guarantee convergence
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from a (possibly very small) neighborhood of the optimum, whose size is not guar-
anteed to increase as the stepsize γ decreases. Nonlocal convergence results have
been obtained in [15, 16] at the cost, however, of adopting a diminishing stepsize. An
extension of the latter results to a stochastic setting is studied in [30] in the context
of distributed network utility maximization. Other nonlocal, yet approximate, conver-
gence bounds have been given in [23] under the assumption of gradient boundedness.
Finally, it is worth noticing that versions of (1) tailored for quadratic programs have
been widely studied in the context of imaging; see, e.g., [3]. Despite the numerous
results and the long history of Algorithm (1), to the best of the authors’ knowledge, a
purely discrete-time analysis providing nonlocal convergence and stability guarantees
is still missing.

Interestingly, guarantees of such kind do exist for the continuous-time version of
Algorithm (1), which is also known as saddle-point or saddle-flow dynamics. See,
for instance, references [4–7, 9, 11, 12, 26] and extensions covering the augmented
Lagrangian version [28] of (1) and its proximal regularization [10]. In particular,
in continuous time one can achieve global [5–7, 9, 11] and even exponential [4, 26]
convergence in some cases, resulting in a sharp distinction between the continuous- and
discrete-time domains. However, the results attained for continuous-time algorithms
are typically not preserved under (Euler) discretization and, therefore, cannot be used
to assess equivalent properties on their (first-order) discretization. In particular, the
continuous-time algorithms cited above, for which global and/or exponential stability
guarantees do exist, typically consist in differential equations defined by a vector field
that is discontinuous at some relevant points. Yet, continuity is generally required to
apply the basic discretization theorems (see, e.g., [27, Sects. 2.1.1 and 2.3]).Among the
continuous-time algorithms employing continuous vector fields and ensuring global
convergence it is worth mentioning [13, Eq. (5)] (see also [8]). However, a simple
counterexample, similar to that reported later in Sect. 1.2, can be used to show that
the Euler discretization of such an algorithm cannot be globally convergent. Hence,
also in these cases, the continuous-time results are not directly extendable to cover the
algorithms’ discretization.

In view of the above discussion, to the best of the authors’ knowledge, a nonlocal
stability and convergence proof for the discrete-time algorithm (1) is still an open, long-
standing problem, even under strong convexity of f and convexity of g (whichwe shall
assume later on). In this article, we aim to fill this gap by providing a purely discrete-
time semiglobal asymptotic stability analysis for (1). As shown in Sect. 1.2, global
convergence is generically not possible for Algorithm (1); hence, a semiglobal result
is the best one can achieve in the general case. Specific contributions are highlighted
in the next section.

1.2 Contributions

Under widely adopted regularity and convexity assumptions on f and g detailed
later in Sect. 2.1, we prove that the minimizer of (2) (which is unique under the
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assumptions of the article) is semiglobally1 Lyapunov stable and exponentially attrac-
tive for Algorithm (1). More specifically, we show that there exists an equilibrium
(x�, λ�) ∈ R

n × R
r for (1), with x� being the optimal solution of (2) and λ� the

corresponding optimal Lagrange multiplier, and that, for every arbitrary compact set
�0 ⊆ R

n × R
r of initial conditions for (1), there exists γ � > 0, such that, for all

γ ∈ (0, γ �), the following properties hold:

1. Lyapunov stability: for every ε > 0, there exists δ > 0, such that |x0 − x�| < δ

and |λ0 − λ�| < δ imply |xt − x�| < ε and |λt − λ�| < ε for all t ∈ N.
2. Attractiveness: every solution 2 of (1) with (x0, λ0) ∈ �0 satisfies limt→∞ |xt −

x�| = 0 and limt→∞ |λt − λ�| = 0.
3. Exponential (or linear) convergence: there exist σ > 0 and μ ∈ (0, 1) (depending

on γ and �0) such that every solution of (1) with (x0, λ0) ∈ �0 satisfies

∀t ∈ N, |(xt , λt ) − (x�, λ�)| ≤ σμt |(x0, λ0) − (x�, λ�)|.

The previously-defined stability notion, known as Lyapunov stability [19], [17,
Ch. 4], is a continuity property of the algorithm’s trajectories with respect to variations
of the initial conditions. It guarantees that small deviations of the initial conditions
from the optimal point (x�, λ�) do not lead to large deviations from it along the
algorithm’s trajectories.Weunderline thatLyapunov stability, attractiveness, and expo-
nential convergence are guaranteed from an arbitrarily large compact initialization set
�0, provided that γ is chosen sufficiently small. This semiglobal result is strictly
stronger than its local counterpart that, indeed, would only guarantee the existence of
a (possibly very small) neighborhood �0 of (x�, λ�) from which the previous proper-
ties hold. However, it is also weaker than a global result, for which a single γ would
work for all possible initialization sets �0. Nevertheless, we observe that the lack of
global convergence is not a shortcoming of our analysis; indeed, global convergence
is, in general, not possible for (1). This can be seen by means of a simple counterex-
ample. Take n = r = 1, f (x) = x2 and g(x) = x2 − 1. Fix γ > 0 arbitrarily. Then,
every solution with initial conditions satisfying

x0 ≥ 2, λ0 ≥ 1 + √
2

2γ
(3)

diverges. In fact from (1), one obtains that, for all t ∈ N,

⎧⎪⎨
⎪⎩
xt ≥ 2,

λt ≥ 1 + √
2

2γ

�⇒

⎧⎪⎨
⎪⎩

|xt+1|2 = (1 − 2γ − 2γ λt
)2 |xt |2 ≥ 2|xt |2 ≥ 2,

λt+1 = λt + γ
(|xt |2 − 1

) ≥ λt ≥ 1 + √
2

2γ
.

1 We borrow the terminology from control theory (see, e.g., [14, Ch. 9]) and we say that a property P on
the solutions of (1) holds semiglobally if, for every arbitrary compact subset �0 ⊆ R

n × R
r of initial

conditions for (1), there exists γ̄ > 0, such that, for all γ ∈ (0, γ̄ ), P holds for all the trajectories generated
by (1) that originate in �0.
2 Here and throughout the article, a solution of (5) is meant as any function t → (x(t), λ(t)) solving such
recursive equations.
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By induction, one thus obtains that (3) implies xt ≥ 2 and λt ≥ 1+√
2

2γ for all t ∈ N

and, moreover, that |xt+1|2 ≥ 2|xt |2 holds for all t ∈ N. Hence, the trajectory x
diverges exponentially.

1.3 A systems-theoretic approach

Local stability and convergence results based on the linear approximation of the algo-
rithm’s equations cannot be easily extended to nonlocal results where the nonlinear
terms dominate. Instead, the analysis approach pursued in this article is based on the
theory of Lyapunov functions [17, Chapter 4], which is better suited to handle purely
nonlinear problems like the one considered in the paper. Finding a suitable Lyapunov
function is in general difficult, and a counterexample can be used to show that the
simple choice (x − x�)2 + (λ − λ�)2, used by Uzawa in the aforementioned article
[29], would not work. In this direction, it helps to look at (1) from a different perspec-
tive. Namely, by ignoring the “max” in the equation of λ, we can look at (1) as the
Euler discretization (with sampling time γ ) of the following continuous-time system
(consider r = 1 for simplicity)

ẋ = −∇g(x)λ − ∇ f (x),

λ̇ = g(x).

This is the equation of a nonlinear oscillator with ∇g(x) playing the role of the
natural frequency, and −∇ f (x) that of a nonlinear damping term. It is well-known
[17, Example 4.4], that Lyapunov functions for nonlinear oscillatorsmust have a cross-
term. This is what ultimately motivated the specific choice for the Lyapunov function
used in this article, formally defined in (25). In turn, the introduction of a suitable cross-
term, which can be seen as a modification of Uzawa’s Lyapunov candidate function,
turned out to be key for proving stability and convergence.

1.4 Organization and notation

Organization. In Sect. 2, we detail the basic assumptions and link the equilibria of (1)
to the optimal solution of (2). In Sect. 3, we state the main result of the paper proving
semiglobal exponential stability of the optimal equilibrium. Finally, the proof of the
main result is presented in Sect. 4.

Notation. Set inclusion (either strict or not) is denoted by ⊆. If S is a set and ∼ a
binary relation on it, for s ∈ S we let S∼s :={z ∈ S : z ∼ s}. The closed ball of
radius r centered at x̄ ∈ R

n is denoted by Br (x̄):={x ∈ R
n : |x − x̄ | ≤ r}. We

identify linear operators R
m → R

n with their matrix representation with respect to
the standard bases of R

m and R
n . If A, B ∈ R

n×n , A ≥ B means that A − B is
positive semidefinite. Given a scalar function f : R

n → R, we define its gradient
as ∇ f (·) = (∂ f (·)/∂x1, . . . , ∂ f (·)/∂xn) ∈ R

n . Given a vector field g : R
n →

R
r , we let ∇g(·):= [∇g1(·) · · · ∇gr (·)

] ∈ R
n×r . We equip R

n with the standard
inner product 〈x | y〉:=∑n

i=1 xi yi , and we denote the induced Euclidean norm by
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|x |:=√〈x | x〉. If x ∈ R
n and ∼ is a binary relation on R, x ∼ 0 means xi ∼ 0

for all i = 1, . . . , n. Similarly, max{0, x}:=(max{0, x1}, . . . ,max{0, xn}) and, for
y ∈ R

n , max{y, x}:=(max{y1, x1}, . . . ,max{yn, xn}). For notation convenience, we
write (x, y) in place of ((x, y)). For instance, Br (1, 2) is the closed ball of radius r
in R

2 centered at (1, 2) ∈ R
2. We denote by (·)+ the “shift” operator such that, for a

discrete-time signal x : N → R
n , x+(t) = x(t + 1). For brevity, in dealing with time

signals, we use the notation xt in place of x(t).

2 The framework

2.1 Standing assumptions and optimality conditions

We consider Algorithm (1) and Problem (2) under the following assumptions.

Assumption 1 The functions f and gi satisfy the following properties:

A. f is strongly convex and twice continuously differentiable;
B. for all i = 1, . . . , r , gi is convex and twice continuously differentiable;
C. there exists x̄ ∈ R

n such that gi (x̄) ≤ 0 for all i = 1, . . . , r .

The conditions asked by Assumption 1 are widely adopted [2]. In particular, they
imply that the optimization problem (2) has a unique solution, as established by the
lemma below.

Lemma 1 Suppose that Assumption 1 holds. Then, there exists a unique x� ∈ R
n

solving (2).

The proof of Lemma 1 is given in the Appendix. Throughout the article, we denote
by x� the unique optimal solution of (2). Moreover, we let

A(x�):={i ∈ {1, . . . , r} : gi (x
�) = 0}

denote the set of indices of the active constraints at x�. Then, in addition to Assump-
tion 1, we assume that x� is a regular point in the following sense.

Assumption 2 The vectors {∇gi (x�) : i ∈ A(x�)} are linearly independent.
Like Assumption 1, also Assumption 2 is customary [2]. In particular, Lemma 1

(hence, Assumption 1) and Assumption 2 imply that there necessarily exists a unique
λ� ∈ R

r such that the so-called KKT conditions hold (see, e.g., [2, Prop. 3.3.1])

∇ f (x�) + ∇g(x�)λ� = 0, (4a)

gi (x
�) ≤ 0, λ�

i ≥ 0, λ�
i gi (x

�) = 0, ∀i = 1, . . . , r . (4b)

Notice that Conditions (4) are also sufficient. Namely, if some (x�, λ�) satisfies (4),
then x = x� is the optimal solution of (2) (see, e.g., [2, Prop. 3.3.4]).
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2.2 Optimality and equilibria

Algorithm (1) can be rewritten in compact form as3

x+ = x − γ∇L(x, λ), x0 ∈ R
n, (5a)

λ+ = max
{
0, λ + γ g(x)

}
, λ0 ≥ 0, (5b)

where L(x, λ):= f (x)+〈λ | g(x)〉 denotes theLagrangian function associatedwith (2).
We remark that the initialization λ0 ≥ 0 is only assumed to simplify the analysis and
it is not necessary. Indeed, (5b) trivially implies λt ≥ 0 for all t ≥ 1 even if λ0 < 0.

The following lemma characterizes the equilibria of (5) in terms of the optimality
conditions (4).

Lemma 2 (x, λ) ∈ R
n × (R≥0)

r is an equilibrium of (5) if and only if it satisfies (4).

Proof The proof simply follows by noticing that x+ = x if and only if ∇L(x, λ) = 0,
which is (4a), and λ+ = λ if and only if 0 = max{−λ, γ g(x)}, which is equivalent
to (4b) since λ ≥ 0. ��

The discussion of Sect. 2.1 and Lemma 2 ultimately imply that (5) has a unique
equilibrium (x�, λ�) ∈ R

n × (R≥0)
r satisfying (4) and such that x� solves (2). In the

remainder of the article, we study the stability and exponential attractiveness properties
of such an equilibrium.

3 Main result

In this section,we state anddiscuss themain result of the article establishing semiglobal
exponential stability of the optimal equilibrium (x�, λ�) for Algorithm (5).

Theorem 1 Suppose that Assumptions 1 and 2 hold. Then, for every compact subset
�0 ⊆ R

n × (R≥0)
r of initial conditions for (5), there exists γ̄ > 0, and for every

γ ∈ (0, γ̄ ), there exist μ = μ(γ ) ∈ (0, 1) and σ = σ(γ ) > 0, such that every
solution (x, λ) of (5) with (x0, λ0) ∈ �0 satisfies

∀t ∈ N, |(xt − x�, λt − λ�)| ≤ σμt |(x0 − x�, λ0 − λ�)|. (6)

The proof of Theorem 1 is presented in Sect. 4. Clearly, (6) implies that the optimal
equilibrium (x�, λ�) is Lyapunov stable for (5) and semiglobally exponentially attrac-
tive with the convergence rate μ and the constant σ depending on γ . As shown in the
proof of the theorem (see, in particular, Sect. 4.7) for a fixed γ > 0, the constants μ

and σ are estimated as

μ:=
√
1 − 1

6
min

{
2, γ c0, γ 2k22

}
, σ :=√

3μ−T ,

3 With a slight abuse of notation, for ease of presentation we denote by ∇L(x, λ):=∂L(x, λ)/∂x the
gradient with respect to the x variable only.
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in which

T := 6(3K 2
0 − min{γ 2h2, ε2})

min
{
2, γ c0, γ 2k22

}
min

{
γ 2h2, ε2

} ,
for suitable positive constants c0, K0, h, k2, ε defined in the proof of Theorem 1 (see
Sects. 4.1 and 4.2). In particular, c0 is the convexity parameter of f such that (8) holds,
K0 > 0 is any scalar such that �0 ⊆ BK0(x

�, λ�) (see (7)), h:=mini /∈A(x�) |gi (x�)|,
k2 > 0 is the Lipschitz constant of (x, λ) → ∇L(x, λ) on a suitably-defined compact
superset of BK0(x

�, λ�) (see (9)), and ε > 0 is a possibly “small” scalar fixed in (18)
so that, for all x ∈ R

n satisfying |x − x�| ≤ ε, gi (x) < 0 for all i /∈ A(x�), and
∇gA(x)�∇gA(x) is uniformly positive definite.

The above estimates of μ and σ highlight the worst-case dependency of the con-
vergence properties of the algorithm from the stepsize (γ ), the convexity properties
of the cost function (c0), the “size” of the domain of attraction (K0), the smoothness
of the cost function and the constraint functions (k2), and the “regularity” (or inde-
pendence) of the active constraints (ε). In this respect, we observe that (6) only gives
a worst-case estimate of the error decrease, and it does not characterize exactly the
actual algorithm’s convergence rate.

4 Proof of Theorem 1

In this section, we prove Theorem 1. We organize the proof in seven subsections. In
Sects. 4.1 and 4.2, we first present some preliminary definitions and technical lemmas.
In Sect. 4.3, we construct a Lyapunov candidate function that, unlike the one used
by Uzawa in [29], includes a cross-term proportional to 〈x − x� | ∇g(x)(λ − λ�)〉.
In Sects. 4.4 and 4.5, we study the descent properties of such a Lyapunov candidate.
The analysis is divided into two cases, depending on how x is far from x�. It turns
out that the aforementioned cross-term is key to prove that the Lyapunov function
decreases when x is close to x�, as it produces a negative term proportional to |λ̃A|2
in the evolution equation of the Lyapunov candidate (see (46)). In turn, this term was
missing from Uzawa’s analysis in [29]. In Sect. 4.6, we use the Lyapunov candidate to
establish equiboundedness of the solutions and convergence to the optimum (x�, λ�).
Finally, in Sect. 4.7, we prove the exponential bound (6).

We fix now, once and for all, an arbitrary compact set �0 ⊆ R
n × (R≥0)

r for the
initial conditions of (5). We stress that �0 can be any, arbitrarily large, compact set.

4.1 Preliminary definitions

Consider a K0 > 0 be such that

�0 ⊆ BK0(x
�, λ�). (7)
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Let us fix once and for all

K ≥ 2K0 + 1,

and define

K :=BK (x�, λ�), Kx :=
{
x ∈ R

n : ∃λ ∈ R
r , (x, λ) ∈ K

}
.

Since f is strongly convex (Assumption 1-A), there exists c0 > 0 such that

∀x ∈ R, 〈x − x� | ∇ f (x) − ∇ f (x�)〉 ≥ c0|x − x�|2. (8)

Since K is compact, the smoothness assumptions 1-A and 1-B together with the
optimality conditions (4) imply the existence of k1, k2, k3, k4 > 0 such that

∀x, ξ ∈ Kx , |g(x) − g(ξ)| ≤ k1|x − ξ |,
∀(x, λ) ∈ K , |∇L(x, λ)| ≤ k2(|x − x�| + |λ − λ�|),
∀x, ξ ∈ Kx , |∇ f (x) − ∇ f (ξ)| ≤ k3|x − ξ |,
∀x, ξ ∈ Kx , |∇g(x) − ∇g(ξ)| ≤ k4|x − ξ |.

(9)

Moreover, we can define the following constants

k5:= sup
(x,λ)∈K

|∇L(x, λ)|, k6:= sup
x∈Kx

|∇g(x)|, k7:= sup
x∈Kx

|g(x)|. (10)

Let ra ≤ r denote the number of active constraints at x�. Without loss of
generality, we assume that these active constraints are associated with the indices
i ∈ A:={1, . . . , ra}. Thus, we have gi (x�) = 0 for all i ∈ A, and gi (x�) < 0 for all
i ∈ I:={ra + 1, . . . , r}. Let λA:=(λ1, . . . , λra ) collect all multipliers associated with
active constraints, and λI:=(λra+1, . . . , λr ) those associated with inactive constraints.
Let gA and gI be defined accordingly. Then

gA(x�) = 0, λ�
A ≥ 0, gI(x

�) < 0, λ�
I = 0. (11)

and, for all (x, λ) ∈ R
n × (R≥0)

r ,

|λ|2 = |λA|2 + |λI|2, ∇g(x)λ = ∇gA(x)λA + ∇gI(x)λI. (12)

Moreover, Assumption 2 implies

∇gA(x�)�∇gA(x�) > 0. (13)

Since ∇g is continuous (Assumption 1-B), there exist q > 0 and ε̄1 > 0 such that the
following conditions hold

∀x ∈ R
n, |x − x�| ≤ ε̄1 �⇒ ∇gA(x)�∇gA(x) ≥ q I , (14a)
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∀x ∈ R
n, |x − x�| ≤ ε̄1 �⇒ gI(x) < 0. (14b)

For ease of notation, define

α1 := q

k4k5 + k6(k3 + k4|λ�|) , α2 := k4k5 + k6(k3 + k4|λ�|)
2α1

+ k1k6,

α3 := 3k1k2k6 + k2k4k5
2

, α4 := k1k2k6 + 3k2k4k5
2

,

α7 := k2k6 + +β

2

(
Kk4k6 + k4k5 + k2k6

)
, α8 := β

2

(
k21k

2
6 + Kk4k6k

2
2

)
,

α9 :=β

(
k2k6
2

+ k26

)
+ k2k6, α10 := β

Kk4k6k22
2

,

α11 :=β

2

(
k4k5 + k2k6

1 + δ1 + δ21

δ1

)
+ k2k6

1 + δ1

δ1
+ k26 + βk26

1 + 2δ1
4δ1

+ βKk4k6,

(15)

in which we denote

β := 6
k22
q

, δ1 := k22
8α9

, δ2:=
{
0 if r = ra

c0
2(r−ra)(1+β)k1

if r < ra .
(16)

Next, define

h := min
i∈I |gi (x�)|, ε̄ := min

{
ε̄1,

h

4k1(1 + 2β)

}
, (17)

(notice that h > 0 in view of (11)) and we fix once and for all (and arbitrarily)

ε ∈ (0, ε̄). (18)

Finally, with

γ̄1 := 1

16K0k5
, γ̄2 := 1

2k5
, γ̄3:= 1

16K0k7
, γ̄4 := 1

2k7
, (19a)

γ̄5 := 1

βk6
, γ̄6 := c0ε2

β
(
4K 2

0 k4k5 + 2K0k6k7 + k5k6K ) + k27 + k25
, (19b)

γ̄7 := min

{
c0

2(k21 + 2k22 + βα2)
,

√
c0

2βα3

}
, γ̄8 := k22

2βα4
, (19c)

γ̄9 := min

{
1

2
√

α11
,

δ2

4(1 + β)k1

}
, γ̄10 := h

4α11K
, (19d)

γ̄11 := min

{
c0
8α7

,
1

2
3

√
c0
α10

,
k2

2
√
2α10

}
, γ̄12 := 2h

Kk22
, (19e)
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we fix arbitrarily, once and for all, the value of γ as

γ ∈ (0, γ̄ ), γ̄ := min
i=1,...,12

γ̄i . (20)

The specific value of each of the above-defined constants is motivated by the deriva-
tions carried out in the following subsections. We stated all the definitions here to
highlight that no circular dependencies arise. Specifically, one can readily verify that:
(i) the constants K0 and K only depend on the optimal point (x�, λ�) and the ini-
tialization set �0; (ii) the constants k1, . . . , k7, defined in (9)–(10), only depend on
the functions f and g, on (x�, λ�), and on the previously-defined constant K ; (iii)
q and ε̄1 in (14) only depend on g; (iv) β only depends on k2 and q; (v) δ1 and δ2
only depend on β and k1, k2, k6; (vi) the constants α1, . . . , α11 only depend on the
previously-defined quantities; (vii) h, ε̄ and, hence, ε, only depend on g, x�, ε̄1, k1 and
β; (viii) the remaining constants γ̄1, . . . , γ̄12 only depend on the previously-defined
constants.

4.2 Preparatory lemmas

In this subsection, we prove some preliminary technical lemmas that will be used in
the forthcoming analysis. For notational convenience, we let

x̃ = x − x�, λ̃ = λ − λ�.

In view of (5), these variables satisfy the recursion

x̃+ = x̃ − γ∇L(x, λ), (21a)

λ̃+ = max
{− λ�, λ̃ + γ g(x)

}
. (21b)

Since λ+ = max{0, λ + γ g(x)} ≥ λ + γ g(x) and since λ� ≥ 0 in view of (4), we
have −2〈λ+ | λ�〉 ≤ −2〈λ | λ�〉 − 2γ 〈λ� | g(x)〉. Therefore, we can write

|x̃+|2 = |x̃ − γ∇L(x, λ)|2 = |x̃ |2 − 2γ 〈x̃ | ∇L(x, λ)〉 + γ 2|∇L(x, λ)|2 (22a)

and

|λ̃+|2 = ∣∣λ+ − λ�
∣∣2 = |λ+|2 − 2〈λ+ | λ�〉 + |λ�|2

≤ |λ + γ g(x)|2 − 2〈λ | λ�〉 − 2γ 〈λ� | g(x)〉 + |λ�|2
≤ |λ|2 + |λ�|2 − 2〈λ | λ�〉 + 2γ 〈λ̃ | g(x)〉 + γ 2|g(x)|2
= |λ̃|2 + 2γ 〈λ̃ | g(x)〉 + γ 2|g(x)|2.

(22b)

Lemma 3 Suppose that Assumption 1 holds and let c0 > 0 be given by (8). Then,

∀(x, λ) ∈ R
n × (R≥0)

r , 〈x̃ | ∇ f (x) + ∇g(x)λ〉 − 〈λ̃ | g(x)〉 ≥ c0|x̃ |2.
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Proof Since λ� ≥ 0 and 〈x̃ | ∇ f (x)〉 ≥ 〈x̃ | ∇ f (x�)〉+c0|x̃ |2 (see the strong convexity
condition in (8)), we can write

〈x̃ | ∇ f (x) + ∇g(x)λ〉 − 〈λ̃ | g(x)〉
= 〈x̃ | ∇ f (x)〉 + 〈∇g(x)� x̃ − g(x) | λ〉 + 〈g(x) | λ�〉
≥ 〈x̃ | ∇ f (x�)〉 + c0|x̃ |2 + 〈∇g(x)� x̃ − g(x) | λ〉 + 〈g(x�) + ∇g(x�)� x̃ | λ�〉
= c0|x̃ |2 + 〈x̃ | ∇ f (x�) + ∇g(x�)λ�︸ ︷︷ ︸

=0

〉 + 〈g(x�) | λ�〉︸ ︷︷ ︸
=0 by (4)

+ 〈∇g(x)� x̃ − g(x) | λ〉︸ ︷︷ ︸
≥−〈g(x�) | λ〉≥0

by (4) and (23)with(w,y)=(x�,x)

≥ c0|x̃ |2,

where, in the first inequality, we also used convexity4 of the gi (cf. condition (23) with
the identification (w, y) = (x, x�)). ��
Lemma 4 Suppose that Assumption 1 holds, and let γ satisfy (20). Then, system (5)
satisfies

(x, λ) ∈ B2K0(x
�, λ�) �⇒ (x+, λ+) ∈ K .

Proof With reference to the constants introduced in (9)–(10), notice that, since γ <

min{γ̄1, γ̄2, γ̄3, γ̄4} (see 20) and B2K0(x
�, λ�) ⊆ K , then (19a), (21), and (22) imply

|x̃+|2 = |x̃ |2 − 2γ 〈x̃ | ∇L(x, λ)〉 + γ 2|∇L(x, λ)|2

≤ |x̃ |2 + γ 4K0k5 + γ 2k25 ≤ |x̃ |2 + 1

2

|λ̃+|2 ≤ |λ̃|2 + 2γ 〈λ̃ | g(x)〉 + γ 2|g(x)|2 ≤ |λ̃|2 + γ 4K0k7 + γ 2k27 ≤ |λ̃|2 + 1

2

for all (x, λ) ∈ B2K0(x
�, λ�). In the previous inequalities, we have used the fact that

γ < min{γ̄1, γ̄2, γ̄3, γ̄4} implies

γ 4K0k5 + γ 2k25 < γ̄14K0k5 + γ̄ 2
2 k

2
5 = 1

4
+ 1

4
= 1

2
,

γ 4K0k7 + γ 2k27 < γ̄34K0k7 + γ̄ 2
4 k

2
7 = 1

4
+ 1

4
= 1

2
.

Combining the previous inequalities, we then get

|x̃+|2 + |λ̃+|2 ≤ |x̃ |2 + |λ̃|2 + 1 �⇒ |(x̃+, λ̃+)| ≤ |(x̃, λ̃)| + 1 ≤ 2K0 + 1,

which implies (x+, λ+) ∈ K . ��
4 Being each gi convex and C

1 (Assumption 1-B), it satisfies

∀w, y ∈ R
n , gi (w) ≥ gi (y) + ∇gi (y)

�(w − y). (23)
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Lemma 5 Every solution of (5) satisfies λt ≥ 0 and |λ̃t+1 − λ̃t | ≤ γ |g(xt )| for all
t ∈ N.

Proof The fact that λt ≥ 0 for all t ≥ 0 is obvious. Regarding the second claim, pick
i ∈ {1, . . . , r} and t ∈ N arbitrarily. From (21b), we obtain

λ̃t+1
i = max

{
0, λti + γ gi (x

t )
}− λ�

i . (24)

First, assume that λti + γ gi (xt ) ≥ 0. Then (24) yields λ̃t+1
i − λ̃ti = γ gi (xt ), hence

|λ̃t+1
i − λ̃ti | = γ |gi (xt )|. On the other hand, suppose that λti + γ gi (xt ) < 0. Since

λti ≥ 0, then gi (xt ) < 0, and (24) implies

|λ̃t+1
i − λ̃ti | = | − λ�

i − λ̃ti | = | − λti | = λti ≤ −γ gi (x
t ) = γ |gi (xt )|.

Hence, in both cases, |λ̃t+1
i − λ̃ti | ≤ γ |gi (xt )|. As i was arbitrary, we obtain

|λ̃t+1 − λ̃t |2 =
∑

i=1,...,r

|λ̃t+1
i − λ̃ti |2 ≤ γ 2

∑
i=1,...,r

|gi (xt )|2 = γ 2|g(xt )|2,

which concludes the proof. ��

4.3 The Lyapunov candidate

Next, we propose the Lyapunov candidate used later to establish stability and conver-
gence. In this part, we prove some of its basic properties. Specifically, with β defined
in (16), we define the Lyapunov candidate

V (x, λ):=|x̃ |2 + |λ̃|2 + γβ〈x̃ | ∇g(x)λ̃〉. (25)

The following lemma shows that V is positive definite with respect to (x�, λ�).

Lemma 6 Suppose that Assumption 1 holds, and let γ satisfy (20). Then,

∀(x, λ) ∈ K ,
1

2
|(x̃, λ̃)|2 ≤ V (x, λ) ≤ 3

2
|(x̃, λ̃)|2. (26)

Proof As for the upper bound in (26), notice that (x, λ) ∈ K and γ < γ̄5 (see (19b))
imply

V (x, λ) ≤ |x̃ |2 + |λ̃|2 + γβk6|x̃ ||λ̃| ≤ |x̃ |2 + |λ̃|2 + γ
βk6
2

(|x̃ |2 + |λ̃|2)

≤ 3

2
(|x̃ |2 + |λ̃|2),
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in which, in the second inequality, we used the Young’s inequality |x̃ ||λ̃| ≤ 1
2 (|x̃ |2 +

|λ̃|2). Similarly, we obtain

|x̃ |2 + |λ̃|2 = V (x, λ) − γβ〈x̃ | ∇g(x)λ̃〉 ≤ V (x, λ) + γβk6|x̃ ||λ̃|
≤ V (x, λ) + 1

2
(|x̃ |2 + |λ̃|2),

which gives the lower bound in (26). ��
Next, we define

ρ := {(x, λ) : V (x, λ) ≤ ρ} , (27)

with

ρ:=3

2
K 2
0 . (28)

Then, the following lemma shows that the level set ρ lies in between BK0(x
�, λ�)

and B2K0(x
�, λ�).

Lemma 7 Suppose that Assumption 1 holds, and let γ satisfy (20). Then,

BK0(x
�, λ�) ⊆ ρ ⊆ B2K0(x

�, λ�).

Proof In view of Lemma 6, we have

(x, λ) ∈ BK0(x
�, λ�) �⇒ V (x, λ) ≤ 3

2
K 2
0 = ρ �⇒ (x, λ) ∈ ρ,

which proves the first inclusion. As for the second inclusion, we have

(x, λ) ∈ ρ �⇒ |(x̃, λ̃)|2 ≤ 2V (x, λ) ≤ 2ρ = 3K 2
0

�⇒ |(x̃, λ̃)| ≤ √
3K0 ≤ 2K0,

which implies (x, λ) ∈ B2K0(x
�, λ�). ��

In the next two subsections, we show that the Lyapunov candidate V in (25) is
strictly decreasing on ρ along the solutions of (5). We subdivide the proof in two
cases, corresponding to the partition of ρ in the following two sets

>ε
ρ :={(x, λ) ∈ ρ : |x − x�| > ε

}
, ≤ε

ρ :={(x, λ) ∈ ρ : |x − x�| ≤ ε
}
,

(29)

where, we recall, ε has been fixed to satisfy (18).
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As a preliminary step, common to both cases, we combine the inequalities (22) to
obtain

V (x, λ)+ ≤ |x̃ |2 + |λ̃|2 + γ 2
(
|g(x)|2 + |∇L(x, λ)|2

)
−2γ

(
〈x̃ | ∇L(x, λ)〉 − 〈λ̃ | g(x)〉

)
+ γβ〈x̃+ | ∇g(x+)λ̃+〉. (30)

4.4 Descent onÄ>"
�

We first focus on the last term of (30). In view of (21), and by adding and subtracting
proper cross terms, we obtain

γβ〈x̃+ | ∇g(x+)λ̃+〉 = γβ〈x̃ | ∇g(x+)λ̃+〉 − γ 2β〈∇L(x, λ) | ∇g(x+)λ̃+〉
= γβ〈x̃ | ∇g(x+)λ̃〉 + γβ〈x̃ | ∇g(x+)(λ̃+ − λ̃)〉

− γ 2β〈∇L(x, λ) | ∇g(x+)λ̃+〉
= γβ〈x̃ | ∇g(x)λ̃〉 + γβ〈x̃ | (∇g(x+) − ∇g(x))λ̃〉

+ γβ〈x̃ | ∇g(x+)(λ̃+ − λ̃)〉 − γ 2β〈∇L(x, λ) | ∇g(x+)λ̃+〉.
(31)

We recall that from Lemmas 4 and 7 it follows that

(x, λ) ∈ ρ �⇒ (x, λ) ∈ B2K0(x
�, λ�) �⇒ (x+, λ+) ∈ K . (32)

Therefore, if (x, λ) ∈ ρ , the bounds (9) and (10) apply to both (x, λ) and (x+, λ+).
In particular, we have

|∇g(x+) − ∇g(x)| ≤ γ k4|∇L(x, λ)|. (33)

Hence, as long as (x, λ) ∈ ρ , we can further manipulate (31) by using (33), (9), (10)
and Lemma 5 to obtain

γβ〈x̃+ | ∇g(x+)λ̃+〉 ≤ γβ〈x̃ | ∇g(x)λ̃〉 + γ 2βk4|∇L(x, λ)||x̃ ||λ̃|
+ γ 2βk6|x̃ ||g(x)| + γ 2βk5k6|λ̃+|

≤ γβ〈x̃ | ∇g(x)λ̃〉 + γ 2β
(
4K 2

0 k4k5 + 2K0k6k7 + k5k6K
)
,

in which we also used the fact that, since (x, λ) ∈ ρ , then |λ̃+| ≤ K as implied by
Lemma 4. Hence, by using Lemma 3 and γ < γ̄6 (see (19b)), from (30) we obtain

V (x, λ)+ − V (x, λ)

≤ −2γ c0|x̃ |2 + γ 2
(
g(x)2 + |∇L(x, λ)|2

)
+ γ 2β

(
4K 2

0 k4k5 + 2K0k6k7 + k5k6K
)
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≤ −2γ c0|x̃ |2 + γ 2
(
β
(
4K 2

0 k4k5 + 2K0k6k7 + k5k6K
)+ k27 + k25

)
≤ −2γ c0|x̃ |2 + γ c0ε

2.

Since (x, λ) ∈ >ε
ρ �⇒ |x̃ |2 ≥ ε2, we finally conclude that

∀(x, λ) ∈ >ε
ρ , V (x, λ)+ − V (x, λ) ≤ −γ c0ε

2 < 0. (34)

4.5 Descent onÄ≤"
�

Recall the decomposition of λ in λA and λI (Sect. 4.1), in which A = {1, . . . , ra}
is the set of indices i associated with active constraints (i.e., satisfying gi (x�) = 0)
and I = {ra + 1, . . . , r} that of indices i associated with inactive constraints (i.e.,
satisfying gi (x�) < 0). Notice that (11) implies λ̃I = λI. Moreover, since ∇g(x)λ̃ =
∇gA(x)λ̃A + ∇gI(x)λ̃I = ∇gA(x)λ̃A + ∇gI(x)λI, we can rewrite V as

V (x, λ) = VA(x, λ) + VI(x, λ), (35)

in which

VA(x, λ):=|x̃ |2 + |λ̃A|2 + γβ〈x̃ | ∇gA(x)λ̃A〉, (36a)

VI(x, λ):=|λI|2 + γβ〈x̃ | ∇gI(x)λI〉. (36b)

Notice that VA(x, λ) only depends on λA, and not on λI. In the next sectionswe analyze
the behavior of VA and VI on ≤ε

ρ .

4.5.1 Bounding VA(x,�)+ onÄ≤"
�

With slight abuse of notation, define

∇LA(x, λA):=∇ f (x) + ∇gA(x)λA, x+
A :=x − γ∇LA(x, λA), x̃+

A :=x+
A − x�.

(37)

We notice that, in view of (37), if λI = 0, then x+ = x+
A .

With the previous definitions in mind, notice that (12) implies

∇L(x, λ) = ∇LA(x, λA) + ∇gI(x)λI,

x̃+
A = x̃ − γ∇LA(x, λA) = x̃+ + γ∇gI(x)λ̃I.

In addition, bounds analogous to (9) and (22b) hold for LA and λA. Hence,
using (12), (22a), and proceeding as in (22b), we obtain

VA(x, λ)+ ≤ U (x, λ) + W (x, λ), (38)
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in which

U (x, λ):=|x̃ |2 + |λ̃A|2 + γ 2
(
|gA(x)|2 + |∇LA(x, λA)|2

)
− 2γ

(
〈x̃ | ∇LA(x, λA)〉 − 〈λ̃A | gA(x)〉

)
+ γβ〈x̃+

A | ∇gA(x+
A )λ̃+

A〉 (39)

and

W (x, λ):=E1 + E2 + E3 + E4,

E1:=γ 2
(
2〈∇LA(x, λA) | ∇gI(x)λI〉 + |∇gI(x)λI|2

)
,

E2:= − 2γ 〈x̃ | ∇gI(x)λI〉,
E3:= − γ 2β〈∇gI(x)λI | ∇gA(x+)λ̃+

A〉,
E4:=γβ〈x̃+

A | (∇gA(x+) − ∇gA(x+
A ))λ̃+

A〉. (40)

We notice that U (x, λ) only depends on λA, and not on λI.
In the following, we bound the two terms in (38) separately. As for U (x, λ), we

start by noticing that (4a), (8), (9), and (11) imply

|gA(x)| = |gA(x) − gA(x�)| ≤ k1|x̃ |, (41a)

∇LA(x�, λ�
A) = ∇L(x�, λ�) = 0, (41b)

|∇LA(x, λA)| = |∇LA(x, λA) − ∇LA(x�, λ�
A)| ≤ k2

(|x̃ | + |λ̃A|), (41c)

〈x̃ | ∇LA(x, λA)〉 − 〈λ̃A | gA(x)〉 ≥ c0|x̃ |2, (41d)

for all (x, λ) ∈ ρ . In particular, (41d) can be derived bymeans of the same arguments
used to prove Lemma 3 in view of (41b). Moreover, we observe that

(x, λ) ∈ ρ �⇒ (x+
A , (λA, 0)+) ∈ K �⇒ |x̃+

A |2 + |λ̃+
A |2 ≤ K 2. (42)

The implications (42) can be proved as follows. By Lemma 7, (x, λ) ∈ ρ �⇒
(x, λ) ∈ B2K0(x

�, λ�). Thus, |(x̃, (λ̃A, 0))| ≤ |(x̃, (λ̃A, λI))| = |(x̃, λ̃)| ≤ 2K0 where,
in the last equality, we have used λ�

I = 0. This implies (x, (λA, 0)) ∈ B2K0(x
�, λ�).

Moreover, by (37), λI = 0 �⇒ x+ = x+
A . Therefore, from Lemma 4 we obtain

(x+
A , (λA, 0)+) = (x+, (λA, 0)+) ∈ K , which proves (42).
Conditions (9), (37) and (42) also imply

∀(x, λ) ∈ ρ, |∇gA(x+
A ) − ∇gA(x)| ≤ k4|x+

A − x | = γ k4|∇LA(x, λA)|, (43)

which will be useful later in the forthcoming computations.
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Next, by using (9), (41), and Lemma 3, we obtain

U (x, λ) − VA(x, λ) = γ 2
(
|gA(x)|2 + |∇LA(x, λA)|2

)
− 2γ

(
〈x̃ | ∇LA(x, λA)〉 − 〈λ̃A | gA(x)〉

)
+ γβ〈x̃+

A | ∇gA(x+
A )λ̃+

A〉 − γβ〈x̃ | ∇gA(x)λ̃A〉
≤ (γ 2k21 + γ 22k22 − 2γ c0

)|x̃ |2 + γ 22k22 |λ̃A|2

+ γβ
(
〈x̃+

A | ∇gA(x+
A )λ̃+

A〉 − 〈x̃ | ∇gA(x)λ̃A〉
)

.

(44)

The last term in (44) can be expressed as

〈x̃+
A | ∇gA(x+

A )λ̃+
A〉 − 〈x̃ | ∇gA(x)λ̃A〉 = T1 + T2 + T3 + T4 + T5, (45)

in which

T1:=〈x̃ | (∇gA(x+
A ) − ∇gA(x))λ̃A〉,

T2:=〈x̃ | ∇gA(x+
A )(λ̃+

A − λ̃A)〉,
T3:= − γ 〈∇LA(x, λA) | ∇gA(x+

A )(λ̃+
A − λ̃A)〉,

T4:=γ 〈∇LA(x, λA) | (∇gA(x) − ∇gA(x+
A ))λ̃A〉,

T5:= − γ 〈∇LA(x, λA) | ∇gA(x)λ̃A〉.

We now proceed in bounding all termsT j , j = 1, . . . , 5, one-by-one.With α1 defined
in (15), by using (43) and the Young’s inequality we obtain

T1 ≤ γ k4|∇LA(x, λA)||x̃ ||λ̃A| ≤ γ k4k5|x̃ ||λ̃A| ≤ γ k4k5

(
1

2α1
|x̃ |2 + α1

2
|λ̃A|2

)
,

for all (x, λ) ∈ ρ . Conditions (41), (42) and Lemma 5 also imply

T2 ≤ |∇gA(x+
A )||x̃ ||λ̃+

A − λ̃A| ≤ γ k6|x̃ ||gA(x)| ≤ γ k1k6|x̃ |2,
T3 ≤ γ 2|∇gA(x+

A )||∇LA(x, λA)||gA(x)| ≤ γ 2k6k2k1(|x̃ |2 + |x̃ ||λ̃A|)
≤ γ 2k1k2k6

(
3

2
|x̃ |2 + 1

2
|λ̃A|2

)
,

T4 ≤ γ |∇LA(x, λA)||∇gA(x) − ∇gA(x+
A )||λ̃A|

≤ γ 2k4|∇LA(x, λA)|2|λ̃A| ≤ γ 2k2k4k5(|x̃ ||λ̃A| + |λ̃A|2)
≤ γ 2k2k4k5

(
1

2
|x̃ |2 + 3

2
|λ̃A|2

)
,

for all (x, λ) ∈ ρ .
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Finally, by using (41b) and ∇gA(x)�∇gA(x) ≥ q I for all (x, λ) ∈ ≤ε
ρ (see (14)

and (18)), we obtain

T5 = −γ 〈∇LA(x, λA) − ∇LA(x�, λ�
A) | ∇gA(x)λ̃A〉

= −γ 〈∇ f (x) − ∇ f (x�) | ∇gA(x)λ̃A〉 − γ |∇gA(x)λ̃A|2
− γ 〈(∇gA(x) − ∇gA(x�))λ�

A | ∇gA(x)λ̃A〉
≤ γ k6(k3 + k4|λ�

A|)|x̃ ||λ̃A| − γ q|λ̃A|2

≤ γ k6(k3 + k4|λ�|)
(

1

2α1
|x̃ |2 + α1

2
|λ̃A|2

)
− γ q|λ̃A|2, (46)

for all (x, λ) ∈ ≤ε
ρ .

In view of the previous bounds, and by using (15) and (16), we can further manip-
ulate (45) to obtain

〈x̃+
A | ∇gA(x+

A )λ̃+
A〉 − 〈x̃ | ∇gA(x)λ̃A〉

≤ γ

(
k4k5 + k6(k3 + k4|λ�|)

2α1
+ k1k6 + γ

3k1k2k6 + k2k4k5
2

)
|x̃ |2

+ γ

(
− q + (k4k5 + k6(k3 + k4|λ�|))α1

2
+ γ

k1k2k6 + 3k2k4k5
2

)
|λ̃A|2

= γ
(
α2 + γα3

)|x̃ |2 + γ

(
−1

2
q + γα4

)
|λ̃A|2

for all (x, λ) ∈ ≤ε
ρ .

Then, going back to (44), we get

U (x, λ) − VA(x, λ) ≤ γ
(
γ
(
k21 + 2k22 + βα2

)+ γ 2βα3 − 2c0
)
|x̃ |2

+ γ 2
(
2k22 + γβα4 − 1

2
βq

)
|λ̃A|2

for all (x, λ) ∈ ≤ε
ρ . By using the definition of β given in (16) and γ < γ̄7 (see (19c)),

we obtain

∀(x, λ) ∈ ≤ε
ρ , U (x, λ) − VA(x, λ) ≤ −γ c0|x̃ |2 + γ 2(γβα4 − k22

)|λ̃A|2.

By using γ < γ̄8 (see 19c), we can finally write

∀(x, λ) ∈ ≤ε
ρ , U (x, λ) ≤ VA(x, λ) − γ c0|x̃ |2 − γ 2k22

2
|λ̃A|2.

Summarizing the bounds derived so far, from (38) we obtain
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∀(x, λ) ∈ ≤ε
ρ , VA(x, λ)+ ≤ VA(x, λ) − γ c0|x̃ |2 − γ 2k22

2
|λ̃A|2 + W (x, λ),

(47)

and we can now proceed in bounding W (x, λ).
With reference to the definition of W (x, λ) in (40), we bound the terms E1, . . . ,E4

one-by-one. Consider term E1. By using (9), (10), and (41c), we obtain

2〈∇LA(x, λA) | ∇gI(x)λI〉 ≤ 2|∇LA(x, λA)||∇gI(x)||λI|
≤ k2k6|x̃ |2 + k2k6δ1|λ̃A|2 + k2k6

1 + δ1

δ1
|λI|2

for all (x, λ) ∈ ≤ε
ρ , in which δ1 is defined in (16). As a consequence, we obtain

∀(x, λ) ∈ ≤ε
ρ , E1 ≤ γ 2

(
k2k6|x̃ |2 + k2k6δ1|λ̃A|2 + k2k6

1 + δ1

δ1
|λI|2 + k26 |λI|2

)
,

(48)

Next, as for E2, we notice that λI ≥ 0 and convexity of each gi (see (23)) imply

〈x̃ | ∇gI(x)λI〉 =
r∑

i=ra+1

〈x̃ | ∇gi (x)λi 〉 =
r∑

i=ra+1

λi x̃
�∇gi (x)

≥
r∑

i=ra+1

λi (gi (x) − gi (x
�)) = 〈gI(x) − gI(x

�) | λI〉.
(49)

Hence,

∀(x, λ) ∈ ≤ε
ρ , E2 ≤ −2γ 〈gI(x) − gI(x

�) | λI〉. (50)

Furthermore, regarding E3, by means of the same arguments of Lemma 5, one can
show that |λ̃+

A − λ̃A| ≤ γ |gA(x)| ≤ γ k1|x̃ | for all (x, λ) ∈ ≤ε
ρ (in which we also

used (41a). Thus, in view of Lemma 4,

〈∇gI(x)λI | ∇gA(x+)λ̃+
A〉 ≤ |∇gI(x)||∇gA(x+)||λI|(|λ̃A| + |λ̃+

A − λ̃A|)
≤ k26 |λI|

(
|λ̃A| + γ k1|x̃ |

)

≤ k26δ1|λ̃A|2 + k26
1 + 2δ1
4δ1

|λI|2 + γ 2k21k
2
6

2
|x̃ |2,

which implies

∀(x, λ) ∈ ≤ε
ρ , E3 ≤ βγ 2

(
k26δ1|λ̃A|2 + k26

1 + 2δ1
4δ1

|λI|2 + γ 2k21k
2
6

2
|x̃ |2
)

.

(51)
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Lastly, for what concerns E4, we use (42) to obtain |λ̃+
A | ≤ K and |∇gA(x+) −

∇gA(x+
A )| ≤ k4|x+ − x+

A | ≤ γ k4|∇gI(x)λI| ≤ γ k4k6|λI| for all (x, λ) ∈ ≤ε
ρ . These

inequalities and (41c) imply

〈x̃+
A | (∇gA(x+) − ∇gA(x+

A ))λ̃+
A〉 ≤ |x̃+

A ||∇gA(x+) − ∇gA(x+
A )||λ̃+

A |
≤ γ Kk4k6|x̃+

A ||λI|
≤ γ Kk4k6 (|x̃ | + γ |∇LA(x, λA)|) |λI|
≤ γ Kk4k6((1 + γ k2)|x̃ | + γ k2|λ̃A|)|λI|

≤ γ Kk4k6

(
(1 + γ k2)2

2
|x̃ |2 + γ 2k22

2
|λ̃A|2 + |λI|2

)
,

for all (x, λ) ∈ ≤ε
ρ . Hence, we obtain

∀(x, λ) ∈ ≤ε
ρ , E4 ≤ γ 2βKk4k6

(
1 + γ 2k22

2
|x̃ |2 + γ 2k22

2
|λ̃A|2 + |λI|2

)
.

(52)

Using (40), (48), (50), (51), and (52), we obtain

W (x, λ) ≤ −2γ 〈gI(x) − gI(x
�) | λI〉

+ γ 2

(
k2k6 + βγ 2 k

2
1k

2
6

2
+ β

Kk4k6
(
1 + γ 2k22

)
2

)
|x̃ |2

+ γ 2
(
k2k6

1 + δ1

δ1
+ k26 + βk26

1 + 2δ1
4δ1

+ βKk4k6

)
|λI|2

+ γ 2

(
k2k6δ1 + βk26δ1 + γ 2β

Kk4k6k22
2

)
|λ̃A|2 (53)

for all (x, λ) ∈ ≤ε
ρ .

Finally, we can further bound (47) using (53) as

VA(x, λ)+ ≤ VA(x, λ) − 2γ 〈gI(x) − gI(x
�) | λI〉

+ γ

(
γ

(
k2k6 + βγ 2 k

2
1k

2
6

2
+ β

Kk4k6
(
1 + γ 2k22

)
2

)
− c0

)
|x̃ |2

+ γ 2
(
k2k6

1 + δ1

δ1
+ k26 + βk26

1 + 2δ1
4δ1

+ βKk4k6

)
|λI|2

+ γ 2

(
k2k6δ1 + βk26δ1 + γ 2β

Kk4k6k22
2

− k22
2

)
|λ̃A|2, (54)

for all (x, λ) ∈ ≤ε
ρ .
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4.5.2 Bounding VI(x,�)+ onÄ≤"
�

Consider now the function VI, defined in (36b). We start noticing that, since λ̃I = λI,
then (1b) implies

∀i ∈ I, |λ̃+
i |2 − |λ̃i |2 =

{
−|λi |2 λi + γ gi (x) ≤ 0

γ
(
2λi + γ gi (x)

)
gi (x) λi + γ gi (x) > 0.

In view of (14b) and (18), gi (x) < 0 holds for all i ∈ I and all (x, λ) ∈ ≤ε
ρ . Thus,

λi + γ gi (x) > 0 implies

γ
(
2λi + γ gi (x)

)
gi (x) = γ gi (x)λi + γ

(
λi + γ gi (x)

)
gi (x) < γ gi (x)λi .

Therefore, for every (x, λ) ∈ ≤ε
ρ , one has

|λ̃+
I |2 − |λ̃I|2 =

r∑
i=ra+1

(
|λ̃+

i |2 − |λ̃i |2
)

≤
r∑

i=ra+1

max{−|λi |2, γ gi (x)λi }.

(55)

We now consider the increment of the cross term in VI, which satisfies

〈x̃+ | ∇gI(x
+)λ+

I 〉 − 〈x̃ | ∇gI(x)λI〉 = 〈x̃ | (∇gI(x
+) − ∇gI(x))λ

+
I 〉

− γ 〈∇L(x, λ) | ∇gI(x
+)λ+

I 〉 + 〈x̃ | ∇gI(x)(λ
+
I − λI)〉.

Webound the three terms one by one. First, notice that (14b) and (55) imply |λ+
I | ≤ |λI|

for all (x, λ) ∈ ≤ε
ρ . Hence, proceeding as in previous section, we obtain

〈x̃ | (∇gI(x
+) − ∇gI(x))λ

+
I 〉 ≤ γ k4|x̃ ||∇L(x, λ)||λI| ≤ γ

k4k5
2

(
|x̃ |2 + |λI|2

)

and

−γ 〈∇L(x, λ) | ∇gI(x
+)λ+

I 〉 ≤ γ |∇L(x, λ)||∇gI(x
+)||λI|

≤ γ k2k6(|x̃ | + |λ̃|)|λI|

≤ γ
k2k6
2

(
|x̃ |2 + δ1|λ̃A|2 + 1 + δ1 + δ21

δ1
|λI|2

)

for all (x, λ) ∈ ≤ε
ρ . Lastly, since (14b) implies λ+

i − λi ≤ 0 for all i ∈ I and all
(x, λ) ∈ ≤ε

ρ , then using convexity of each gi (see (23)) as in (49), we obtain

〈x̃ | ∇gI(x)(λ
+
I − λI)〉 =

r∑
i=ra+1

(λ+
i − λi )x̃

�∇gi (x) ≤ 〈gI(x) − gI(x
�) | λ+

I − λI〉
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for all (x, λ) ∈ ≤ε
ρ .

Combining the previous bounds and (55), we can write

VI(x, λ)+ − VI(x, λ) = |λ̃+
I |2 − |λ̃I|2 + γβ〈x̃+ | ∇gI(x

+)λ̃+
I 〉 − γβ〈x̃ | ∇gI(x)λ̃I〉

≤
r∑

i=ra+1

max{−|λi |2, γ gi (x)λi } + γβ〈gI(x) − gI(x
�) | λ+

I − λI〉

+ γ 2 β

2
(k4k5 + k2k6) |x̃ |2 + γ 2βδ1

k2k6
2

|λ̃A|2

+ γ 2 β

2

(
k4k5 + k2k6

1 + δ1 + δ21

δ1

)
|λI|2, (56)

for all (x, λ) ∈ ≤ε
ρ .

4.5.3 Bounding V(x,�)+ onÄ≤"
�

Finally, we can merge the bounds (54) and (56) derived in previous Sects. 4.5.1 and
4.5.2 to obtain from (35) the following bound for V

V (x, λ)+ ≤ V (x, λ) +
r∑

i=ra+1

max{−|λi |2, γ gi (x)λi }

− 2γ 〈gI(x) − gI(x
�) | λI〉 + γβ〈gI(x) − gI(x

�) | λ+
I − λI〉

+
(
γ 2α7 + γ 4α8 − γ c0

)
|x̃ |2 + γ 2α11|λI|2

+
(

γ 2

(
δ1α9 − k22

2

)
+ γ 4α10

)
|λ̃A|2, (57)

for all (x, λ) ∈ ≤ε
ρ , in which α7, α8, α9, α10, α11 are defined in (15).

Grouping all terms involving λi for i ∈ I (recall that I = {ra + 1, . . . , r}), we can
rewrite (57) as

V (x+, λ+) ≤ V (x, λ) +
r∑

i=ra+1

�i +
(
γ 2α7 + γ 4α8 − γ c0

)
|x̃ |2

+
(

γ 2

(
δ1α9 − k22

2

)
+ γ 4α10

)
|λ̃A|2, (58)

in which

�i :=max{−|λi |2, γ gi (x)λi } + γ 2α11|λi |2
− 2γ (gi (x) − gi (x

�))λi + γβ(gi (x) − gi (x
�))(λ+

i − λi ).

Next, we derive a bound for �i . For each i ∈ I, we two cases may occur:
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C1. −|λi |2 ≥ γ gi (x)λi , which is true if and only if |λi | ≤ γ |gi (x)|;
C2. −|λi |2 < γ gi (x)λi , which is true if and only if |λi | > γ |gi (x)|.
In the first case C1, we have max{−|λi |2, γ gi (x)λi } = −|λi |2. Since (14b) and (55)
imply |λ+

i | ≤ |λi |, and hence |λ+
i − λi | ≤ 2|λi |, we can write

−2γ (gi (x) − gi (x
�))λi + γβ(gi (x) − gi (x

�))(λ+
i − λi )

≤ 2(1 + β)γ |gi (x) − gi (x
�)||λi |

≤ 2(1 + β)k1γ |x̃ ||λi | ≤ (1 + β)k1γ

(
δ2|x̃ |2 + 1

δ2
|λi |2

)
,

for all (x, λ) ∈ ≤ε
ρ , in which δ2 is defined in (16). The above inequality and γ < γ̄9

(see (19d)) lead to

C1 �⇒ �i ≤
(

γ 2α11 + γ
(1 + β)k1

δ2
− 1

)
|λi |2 + γ (1 + β)k1δ2|x̃ |2

≤ −1

2
|λi |2 + γ (1 + β)k1δ2|x̃ |2. (59)

In the second case C2, we have

max{−|λi |2, γ gi (x)λi } = γ gi (x)λi = γ gi (x
�)λi + γ (gi (x) − gi (x

�))λi .

Moreover, in view of (11), (17), and (18), gi (x�) = −|gi (x�)| ≤ −h for all i ∈ I.
Hence, using again |λ+

i − λi | ≤ 2|λi |, and |λi | ≤ K , and since (x, λ) ∈ ≤ε
ρ �⇒

|x̃ | ≤ ε, we obtain

�i = γ gi (x
�)λi − γ (gi (x) − gi (x

�))λi + γβ(gi (x) − gi (x
�))(λ+

i − λi ) + γ 2α11|λi |2
≤ γ

(
γα11K + (1 + 2β)|gi (x) − gi (x

�)| − h
)|λi |

≤ γ
(
γα11K + (1 + 2β)k1ε − h

)|λi |
for all (x, λ) ∈ ≤ε

ρ . Using γ < γ̄10 (see (19d), (17) and (18)) thus yields

C2 �⇒ �i ≤ −γ
h

2
|λi | ≤ −γ

h

2
|λi | + γ (1 + β)k1δ2|x̃ |2 (60)

for all (x, λ) ∈ ≤ε
ρ .

By joining (59) and (60), we thus obtain

∀(x, λ) ∈ ≤ε
ρ , �i ≤ 1

2
max

{
−|λi |2, −γ h|λi |

}
+ γ (1 + β)k1δ2|x̃ |2,

for all i ∈ I. Finally, including the latter inequality in (58), and using γ ≤ γ̄11
(see (19e)) and the definition of δ1 and δ2 (see (16)), we obtain

V (x+, λ+) ≤ V (x, λ) − 1

2

r∑
i=ra+1

min
{
|λi |2, γ h|λi |

}
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+
(
γ (r − ra)(1 + β)k1δ2 + γ 2α7 + γ 4α8 − γ c0

)
|x̃ |2

+
(

γ 2

(
δ1α9 − k22

2

)
+ γ 4α10

)
|λ̃A|2

= V (x, λ) − 1

2

r∑
i=ra+1

min
{
|λi |2, γ h|λi |

}

+ γ
(
γα7 + γ 3α8 − c0

2

)
|x̃ |2 + γ 2

(
γ 2α10 − 3k22

8

)
|λ̃A|2

≤ V (x, λ) − 1

2

r∑
i=ra+1

min
{
|λi |2, γ h|λi |

}
− 1

4
γ c0|x̃ |2 − 1

4
γ 2k22 |λ̃A|2

(61)

for all (x, λ) ∈ ≤ε
ρ .

4.6 Equiboundedness and convergence

The lemma below summarizes the results of the previous subsections.

Lemma 8 Suppose that Assumptions 1 and 2 hold, and let γ satisfy (20). Then

V (x, λ)+ − V (x, λ)

≤ −min

⎧⎨
⎩γ c0ε

2,
1

2

r∑
i=ra+1

min
{
|λi |2, γ h|λi |

}
+ 1

4
γ c0|x̃ |2 + 1

4
γ 2k22 |λ̃A|2

⎫⎬
⎭ ,

for all (x, λ) ∈ ρ .

Proof The proof directly follows from (34) and (61) since ρ = >ε
ρ ∪ ≤ε

ρ . ��
Lemma 8 ultimately enables us to conclude that the following implications hold

for all t ≥ 0

(xt , λt ) ∈ ρ �⇒ V (xt+1, λt+1) ≤ V (xt , λt )≤ρ �⇒ (xt+1, λt+1) ∈ ρ.

Since, in view of (7) and Lemma 7, we have

(x0, λ0) ∈ �0 ⊆ BK0(x
�, λ�) ⊆ ρ,

then we claim by induction on t that every solution of (5) originating in �0 satisfies

∀t ∈ N, (xt , λt ) ∈ ρ. (62)

Relation (62) implies that all the trajectories of (5) originating in�0 are equibounded.
Moreover, (62), Lemma 6, and Lemma 8 imply that every solution of (5) originating
in �0 satisfies V (xt , λt ) → 0 and (xt , λt ) → (x�, λ�).
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4.7 Convergence rate and exponential bound

We now conclude the proof of the theorem by establishing the claimed exponential
bound. As a first step, we prove the following lemma showing that, for every η > 0,
all solutions of (5) originating in �0 enter into an invariant set where V (x, λ) ≤
1
2 min

{
η2, ε2

}
in the same common time.

Lemma 9 Suppose that Assumptions 1 and 2 hold, and let γ satisfy (20). For every
η > 0, let

T := 6(2ρ − min{η2, ε2})
min

{
2, γ c0, γ 2k22

}
min

{
η2, ε2

} . (63)

Then, every solution of (5) originating in �0 satisfies

∀t ≥ T , V (xt , λt ) ≤ 1

2
min

{
η2, ε2

}
.

Proof Fix η > 0 arbitrarily and define

υ:=1

2
min

{
η2, ε2

}
.

Pick a solution (x, λ) of (5) originating in�0, and let τ ∈ N be such that V (xt , λt ) > υ

for all t ∈ N<τ and V (xτ , λτ ) ≤ υ. The existence of such τ is implied by the
convergence of (x, λ) to (x�, λ�) established in previous Sect. 4.6. In view of (62),
Lemma 8 implies V (xt , λt ) ≤ υ for all t ≥ τ . Therefore, to prove the lemma, it
suffices to show that τ ≤ T , with T defined in (63). By contradiction, suppose τ > T .
Then, V (xt , λt ) > υ for all t ∈ N≤T .

For each t ∈ N, let It1 ⊆ I be the set of i ∈ I such that λti ≤ γ h. Let I t2 = It\It1.
Then, we obtain (we omit the time dependency for readability)

r∑
i=ra+1

min
{
|λi |2, γ h|λi |

}
= |λI1 |2 + γ h

∑
i∈I2

|λi |.

Moreover, Lemma 8 and Lemma 6 (see (26)) imply

V (x, λ)+ − V (x, λ)

≤ max

⎧⎨
⎩−γ c0ε

2, −1

2
γ h
∑
i∈I2

|λi | − 1

4
min{2, γ c0, γ 2k22}

(
|x̃ |2 + |λ̃A|2 + |λI1 |2

)⎫⎬
⎭

= max

⎧⎨
⎩−γ c0ε

2, −1

2
γ h
∑
i∈I2

|λi | − 1

4
min{2, γ c0, γ 2k22}

(
|(x̃, λ̃)|2 − |λI2 |2

)⎫⎬
⎭ . (64)
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Since (x, λ) ∈ ρ implies |λi | ≤ K for all i ∈ I, then γ < γ̄12 (see (19e)) yields

1

4
min{2, γ c0, γ 2k22}|λI2 |2 − 1

2

∑
i∈I2

γ h|λi | ≤
∑
i∈I2

(
γ 2k22
4

|λi |2 − γ h

2
|λi |
)

≤ γ

2

∑
i∈I2

(
γ
k22K

2
− h

)
|λi | ≤ 0.

Hence, from (64) we obtain

V (x, λ)+ − V (x, λ) ≤ max

{
−γ c0ε

2, −1

6
min{2, γ c0, γ 2k22}V (x, λ)

}
.

Using t ≤ T �⇒ V (xt , λt ) > υ, we then obtain

V (xt+1, λt+1)

≤ V (xt , λt ) − min

{
γ c0ε

2,
1

12
min{2, γ c0, γ 2k22}min{η2, ε2}

}

= V (xt , λt ) − min

{
γ c0ε

2,
1

12
γ c0ε

2,
1

12
γ c0η

2,
1

12
min{2, γ 2k22}min{η2, ε2}

}

= V (xt , λt ) − min

{
1

12
γ c0ε

2,
1

12
γ c0η

2,
1

12
min{2, γ 2k22}min{η2, ε2}

}

= V − 1

12
min{2, γ c0, γ 2k22}min{η2, ε2}.

Namely,

∀t ∈ N≤T , V (xt+1, λt+1) ≤ V (xt , λt ) − χ(γ )

in which

χ(γ ):=1

6
min

{
2, γ c0, γ 2k22

}
,

υ = 1

12
min

{
2, γ c0, γ 2k22

}
min

{
η2, ε2

}
.

As V (x0, λ0) ≤ ρ (by Lemma 7) we thus obtain

V (xT , λT ) ≤ ρ − χ(γ )T = υ,

which contradicts V (xT , λT ) > υ, so that the proof follows. ��
The following lemma, instead, provides conditions for local exponential conver-

gence.
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Lemma 10 Suppose that Assumptions 1 and 2 hold, and let γ satisfy (20). Let μ ∈
[0, 1) and a ∈ (0, ρ) be such that

V (x, λ) ≤ a �⇒ V (x+, λ+) ≤ μ2V (x, λ).

Finally, let T ∈ N be such that every solution of (5) originating in �0 satisfies
V (xT , λT ) ≤ a. Then, every solution of (5) originating in �0 also satisfies

∀t ∈ N, |(x̃ t , λ̃t )| ≤ √
3μt−T |(x̃0, λ̃0)|.

Proof Pick a solution of (5) originating in �0. Lemma 8 and (62) and imply
V (xT , λT ) ≤ V (x0, λ0). Moreover, as a < ρ, Lemma 8 implies V (xt , λt ) ≤
V (xT , λT ) ≤ a for all t ≥ T .

Hence, in view of Lemma 6, we obtain

∀t ≥ T , V (xt , λt ) ≤ μ2(t−T )V (xT , λT ) ≤ μ2(t−T )V (x0, λ0) ≤ μ2(t−T ) 3

2
|(x̃0, λ̃0)|2

�⇒ ∀t ≥ T , |(x̃ t , λ̃t )|2 ≤ 2V (xt , λt ) ≤ 3μ2(t−T )|(x̃0, λ̃0)|2.

Instead, for t ≤ T , one has

|(x̃ t , λ̃t )|2 ≤ 2V (xt , λt ) ≤ 2V (x0, λ0) ≤ 3V (x0, λ0) ≤ 3μ2(t−T )V (x0, λ0),

where we used the fact that, since μ ∈ [0, 1), then μ2(t−T ) ≥ 1 for all t ≤ T . ��
With Lemmas 9 and 10 at hand, we can now prove the claimed exponential bound.

First, assume that

V (x, λ) ≤ a:=1

2
min

{
ε2, γ 2h2, 2ρ

}
. (65)

Using |x̃ |2 ≤ |(x̃, λ̃)|2 ≤ 2V (x, λ) and |λi |2 ≤ |(x̃, λ̃)|2 ≤ 2V (x, λ) for all i ∈ I (in
view of Lemma 6), we get that (65) implies

(x, λ) ∈ ≤ε
ρ ,

∀i ∈ I, |λi | ≤ γ h,

and, hence,

∀i ∈ I, min
{|λi |2, γ h|λi |

} = |λi |2.

Then, we can manipulate (61) exploiting Lemma 6 to assert that, if (65) holds, then

V (x+, λ+) ≤ V (x, λ) − 1

2
|λI|2 − 1

4
γ c0|x̃ |2 − 1

4
γ 2k22 |λ̃A|2

≤ V (x, λ) − 1

4
min

{
2, γ c0, γ 2k22

} (
|x̃ |2 + |λ̃|2

)
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≤
(
1 − 1

6
min

{
2, γ c0, γ 2k22

})
V (x, λ)

= μ2V (x, λ) (66)

with

μ:=
√
1 − 1

6
min

{
2, γ c0, γ 2k22

} ∈ [0, 1).

Thus, we have established the implication

V (x, λ) ≤ a �⇒ V (x+, λ+) ≤ μ2V (x, λ) (67)

a ∈ (0, ρ) defined in (65).
Next, we apply Lemma 9 with

η:=γ h,

obtaining that every solution of (5) originating in �0 satisfies

∀t ≥ T , V (xt , λt ) ≤ a (68)

in which T has the expression (63) with η = γ h.
The claim of the theorem finally follows from Lemma 10 in view of (65), (66), and

(68).

5 Conclusions

This article considered the long-standing open problem of nonlocal asymptotic sta-
bility of the popular discrete-time primal-dual algorithm (1) for convex, constrained
optimization. In particular, under due convexity and regularity assumptions, it is proved
that an optimal equilibrium exists, it is unique, and it is semiglobally asymptotically
stable. Namely, for every compact set of initial conditions, there exists a sufficiently
small stepsize, such that the sequences generated by the algorithm converge to the
optimal solution of the optimization problem and to the optimal Lagrange multipliers.
Moreover, convergence is exponential, and the optimal point is Lyapunov stable. As
shown in Sect. 1.2, global asymptotic stability cannot be established for the considered
algorithm, so as semiglobal guarantees are the best achievable in the general case.

The key idea inspiring the stability analysis pursued in the article was to look at
Algorithm (1) as a discrete-time dynamical system sharing many similarities with a
nonlinear oscillator. This motivated the usage of a non-trivial Lyapunov function with
a suitably-defined cross-term, unlike Uzawa’s previous attempt in [29].

Finally, it is worth remarking that the impossibility of global convergence of the
algorithm complicates the development of robustness corollaries, which cannot be
global in the size of the uncertainty. As a consequence, such shortfall poses new
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challenges in the design of distributed algorithms based on (1) and targeting, e.g.,
consensus optimization problems over networks [20–22, 24]. Future research will
mainly focus on this latter extension.
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A Proof of Lemma 1

First, notice that, since by 1-B each gi is continuous, then Gi :={x ∈ R
n : gi (x) ≤ 0}

is closed for all i = 1, . . . , r . Hence,G:=∩i=1,...,r Gi is closed. Condition 1-C further
implies that G is nonempty.

Since, by 1-A, f is continuously differentiable and strongly convex, it has a global
minimum z ∈ R

n at which ∇ f (z) = 0, and there exists m > 0 such that

∀w, y ∈ R
n, f (y) ≥ f (w) + ∇ f (w)(y − w) + m|y − w|2. (69)

In particular, (69) implies that, for all c > f (z), f −1([ f (z), c]) is compact.
Let (cn)n∈N be an increasing sequence satisfying cn → ∞. Then, (69) implies that

⋃
n∈N

f −1([ f (z), cn]) = R
n . (70)

Indeed, pick x ∈ R
n . Since cn → ∞, we can find nx ∈ N sufficiently large so that

cnx ≥ f (z) + |∇ f (x)||x − z|. Then, (69) applied with w = x and y = z implies
f (x) ≤ cnx , i.e., x ∈ f −1([ f (z), cnx ]). In view of this, we can assume without loss
of generality that, for all n ∈ N, ∅ �= An := f −1([ f (z), cn]) ∩ G.

Since f is continuous and An is compact and nonempty, for each n ∈ N there exists
xn ∈ An satisfying xn = argminx∈An

f (x).
Since cn+1 ≥ cn , then An ⊆ An+1 and, hence, f (xn+1) ≤ f (xn). The sequence

( f (xn))n∈N is therefore decreasing and lower-bounded by f (z). Hence, it has a limit
f∞:= limn→∞ f (xn) = infn∈N f (xn).
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By using (69) with (w, y) = (z, xn), we obtain

∀n ∈ N, m|xn − z|2 ≤ f (xn) − f (z) ≤ f (x0) − f (z).

Hence, the sequence xn has a converging subsequence that converges to some x� ∈ R
n

satisfying f (x�) = f∞.
Since G is closed and xn ∈ An ⊆ G for all n ∈ N, then x� ∈ G. Thus, x� it is

feasible for (2).
In view of (70), for every x ∈ G, there exists n̄ ∈ N such that x ∈ An̄ . Hence,

f (x) ≥ f (xn̄) ≥ f∞ = f (x�). Since x ∈ G was arbitrary, this shows that x� is a
minimum of f in G.

Finally, the uniqueness of x� follows by the fact that f is strongly convex and G is
a convex set since gi is convex for all i = 1, . . . , r . Indeed, suppose x̄ ∈ G is another
point satisfying f (x̄) = f (x�) = f∞. Then, |x̄ − x�| > 0 and, since G is convex, for
every t ∈ (0, 1), t x̄ + (1 − t)x� ∈ G. Since f is strongly convex then this implies
that, for some m > 0,

f (t x̄ + (1 − t)x�) ≤ t f (x̄) + (1 − t) f (x�)︸ ︷︷ ︸
= f∞

−mt(1 − t)|x̄ − x�|2 < f∞,

which violates the fact shown earlier that f (x) ≥ f∞ for all x ∈ G.
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