
Automatica 158 (2023) 111265

I

s
o

y

i
i
n
o
r
n
f
f

m
t

h
0

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Robust and scalable distributed recursive least squares✩

lario Antonio Azzollini a, Michelangelo Bin a,b, Lorenzo Marconi a, Thomas Parisini b,c,d,∗
a Department of Electrical, Electronic, and Information Engineering, University of Bologna, Bologna, Italy
b Department of Electrical and Electronic Engineering, Imperial College London, London, UK
c KIOS Research and Innovation Center of Excellence, University of Cyprus, Cyprus
d Department of Engineering and Architecture, University of Trieste, Trieste, Italy

a r t i c l e i n f o

Article history:
Received 11 June 2022
Received in revised form 11 March 2023
Accepted 21 July 2023
Available online 13 September 2023

Keywords:
Distributed least squares
Robust estimation
Distributed optimization

a b s t r a c t

We consider a problem of robust estimation over a network in an errors-in-variables context. Each
agent measures noisy samples of a local pair of signals related by a linear regression defined by
a common unknown parameter, and the agents must cooperate to find the unknown parameter
in presence of uncertainty affecting both the regressor and the regressand variables. We propose a
recursive least squares estimation method providing global exponential convergence to the unknown
parameter in absence of uncertainty, and robust stability of the estimate, formalized in terms of input-
to-state stability, in presence of uncertainty affecting all the variables. The result relies on a cooperative
excitation assumption that is proved to be strictly weaker than persistency of excitation of each local
data set. The proposed estimator is validated on an adaptive road pricing application.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license
(http://creativecommons.org/licenses/by-nc/4.0/).
θ

1. Introduction

1.1. Problem overview and contribution

We consider a set of n ∈ N agents. Each agent i measures noisy
amples of a pair (yi, φi) of signals related by a linear regression
f the form

i(t) = φi(t)⊤θ, (1)

n which θ is a common unknown parameter. Agents exchange
nformation through a communication network, possibly discon-
ected and asymmetric. In this setting, we consider the problem
f distributed online asymptotic estimation of the unknown pa-
ameter θ . While this problem can be in principle solved with
independent local algorithms, each one trying to estimate θ

rom the local samples, communication permits agents to benefit
rom the information gathered by the other agents, and thus
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ensures faster convergence under excitation conditions that are
strictly weaker than persistency of excitation of each local data
set. Hence, looking for a distributed design is well motivated in
all those contexts where measurements are difficult or expensive,
when sensors are spatially distributed by construction, or simply
when faster convergence is needed. For ease of exposition, we
focus on the ‘‘single-variable’’ case where θ ∈ Rnθ for some nθ ∈

N and, for each i = 1, . . . , n, yi : N → R and φi : N → Rnθ . Nev-
ertheless, we remark that the proposed approach easily extends
to a multi-variable setting, where yi(t) ∈ Rm, φi(t) ∈ Rnθ×m and

∈ Rnθ×m for some m > 1, by suitably concatenating m single-
variable solutions. We consider a discrete-time setup where, at
each step, every agent collects its new samples, exchanges its
local state with a subset of other agents, and then updates its
local estimate of θ . This is repeated over an infinite time hori-
zon. We suppose that the measured samples are corrupted by
additive disturbances on which we make no prior assumption.
These disturbances can model measurement noise, unmodeled
dynamics/terms in (1), or any other sources of uncertainty in
the measurement process. As disturbances affect both yi and φi,
we are in an errors-in-variables context (Söderström, 2007). We
propose a decentralized estimation law by which each agent
can asymptotically estimate the common unknown parameter
θ in a robust way. In particular, we prove the existence and
robust stability of an aggregate steady-state trajectory that, if
a ‘‘cooperative excitation’’ condition holds, is associated with a
correct estimation of θ . Robustness is meant in the sense of input-
to-output and input-to-state stability (ISS) (Sontag & Wang, 1996)
with respect to the exogenous disturbances, and the main result
le under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
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f the article states that each agent’s asymptotic estimation error
f θ is bounded by a continuous function of the asymptotic mag-
itude of the disturbances. In particular, in case the disturbances
anish, exact convergence is achieved.

.2. Related works

Distributed estimation is a well-developed research field
oasting a large number of contributions from the control and
ignal processing community (see, e.g., Sayed, Tu, Chen, Zhao, &
owfic, 2013 for an overview). In particular, regarding the prob-
em described in Section 1.1, the vast majority of the approaches
resent in the literature are based on distributed versions of the
east squares (Breschi, Bemporad, & Kolmanovsky, 2020; Mateos &
iannakis, 2012; Mateos, Schizas, & Giannakis, 2009; Xie, Zhang,
Guo, 2021; Yu, Zhao, de Lamare, Zakharov, & Lu, 2019), the

east mean squares (Lopes & Sayed, 2008; Schizas, Mateos, & Gi-
nnakis, 2009; Xie & Guo, 2018a, 2018b, 2018c), or the total least
quares (Li, Zhao, & Lv, 2021) methods. Moreover, in addition to
he specific criterion to be optimized, the structure of the existing
lgorithms also depends on the network’s constraints, these being
osed in terms of connection topology and on the type and
uality of exchangeable information. In particular, one can divide
he existing approaches into three types: consensus (Breschi et al.,
020; Johansson, Keviczky, Johansson, & Johansson, 2008; Mateos
Giannakis, 2012; Mateos et al., 2009; Schizas et al., 2009; Xie
Guo, 2018b, 2018c), diffusion (Cattivelli, Lopes, & Sayed, 2008;
hen & Sayed, 2012; Lopes & Sayed, 2008; Sayed et al., 2013;
ie & Guo, 2018a; Xie et al., 2021; Yu et al., 2019), and incre-
ental (Cattivelli & Sayed, 2010; Lopes & Sayed, 2007) methods.
onsensus methods are based on a consensus mechanism aimed
t synchronizing the agents’ estimates of the parameter θ . Diffu-

sion methods, instead, are based on an aggregation step aimed
to process the information collected from the neighbors and
merge it with the local measurements. Each agent then computes
its own local estimate of the unknown parameter θ privately,
without any consensus protocol. At each iteration, the aggrega-
tion step may either be performed before the computation of
the estimate of θ (‘‘combine then adapt’’) or after (‘‘adapt then
combine’’). Generally speaking, consensus and diffusion methods
have no structural differences in terms of computational com-
plexity. However, diffusion strategies are typically preferable over
consensus strategies since they converge faster and reach lower
mean-square error deviations (Sayed et al., 2013; Tu & Sayed,
2012). Moreover, diffusion methods do not require the exchange
of the local estimates of θ and are therefore preferable for privacy
preservation. In addition, diffusion methods generally lead to
enhanced stability properties (Sayed et al., 2013). Both consensus
and diffusion methods, however, may require the exchange of a
significant amount of data, which have to be processed locally
in real time. Incremental methods aim to mitigate this prob-
lem for certain communication structures by exploiting cyclic
paths (Cattivelli & Sayed, 2010; Lopes & Sayed, 2007). However,
determining a cyclic path is NP-hard, and such paths are not
robust with respect to link and node failures, or to changes
in the communication topology (Sayed et al., 2013). Other ap-
proaches related to this work include the ‘‘partial diffusion’’
approaches of Arablouei, Doğançay, Werner, and Huang (2014)
and Rastegarnia (2019), which aim to mitigate the exchange
of data in diffusion methods, the sparse recursive least square
method of Liu, Liu, and Li (2014), aimed to reduce computational
complexity, and the data-adaptive censoring method proposed
in Wang, Yu, Ling, Berberidis, and Giannakis (2018), which could
be beneficial in large-scale networks. For what concerns the
uncertainty in the measurement of the signals (yi, φi) in (1), most
of the existing approaches model it in terms of stochastic additive
disturbances, and rely on the typical assumptions of indepen-
2

dence, stationarity, and Gaussianity. Moreover, except for rare
exceptions such as (Li et al., 2021), disturbances are only assumed
to affect yi and not φi, unlike this article. Notably, the recent
distributed least mean square methods of Xie and Guo (2018a,
2018b, 2018c) and the distributed least squares method of Xie
et al. (2021) relax the aforementioned assumptions, and thus
are potentially applicable to more involved stochastic feedback
systems. In addition, they introduce the concept of cooperative
excitation as a distributed relaxation of classical persistency of
excitation. A notion of cooperative persistency of excitation also
appeared before in the broader context of distributed adaptive
control, see, e.g., Chen, Hua and Sam Ge (2014), Chen, Wen,
Hua and Sun (2014) and Javed, Poveda, and Chen (2022). An
equivalent cooperative excitation property, which depends on the
data acquired by all the agents in the network, is also used in this
article to guarantee the main stability and robustness results.

In terms of the previously-defined terminology, the algorithm
proposed in this paper can be categorized as a combine-then-
adapt diffusion method. As anticipated in Section 1.1, contrary
to most existing approaches, we consider that both yi and φi
are affected by generic disturbance terms on which we make no
statistical assumption, and we shift the focus from unbiasedness
and consistency to stability and robustness (in terms of ISS). This
control-oriented methodology enables the use of distributed least
squares methods in complex feedback control systems, since ISS
opens the door to canonical nonlinear control techniques such as
small-gain methods (Jiang, Teel, & Praly, 1994). In a centralized
setting, recursive least squares algorithms with ISS guarantees
are studied in Bin (2022). This article parallels such results in a
distributed setting.

1.3. Notation

We denote by R and N the set of real and natural numbers,
respectively (0 ∈ N). By ⊂ we denote non-strict inclusion.
Given a family (Xi)i∈I of sets Xi, the elements of the Cartesian
product

∏
i∈I Xi are denoted by (xi)i∈I . These shall be interpreted

as column/row arrangements as needed. If A is a set, An denotes
the n-fold Cartesian product of A. If (S,≥) is a preordered set,
for every s ∈ S we let S≥s := {z ∈ S : z ≥ s}. If A1, . . . , An
are operators, we denote by diag(A1, . . . , An) their diagonal con-
catenation. By ⊗ we denote the Kronecker product and by σ (A)
the spectrum of an operator A. For p = 1, . . . ,∞, | · |p denotes
the vector, or operator induced, p-norm. We denote by Pn the set
of positive semi-definite symmetric operators on Rn. We write
A ≥ B if A − B ∈ Pn. The n-dimensional identity operator is
denoted by In and the n × m zero operator by 0n×m. Dimensions
are omitted when clear. A function γ : R≥0 → R≥0 is of class-K
(γ ∈ K) if it is continuous, strictly increasing, and γ (0) = 0. We
denote by ·

+ the shift operator, i.e. x+(t) = x(t + 1).

2. The framework

2.1. Samples acquisition

Let N := {1, . . . , n} denote the set of agents. At each time t ∈

N, each agent i ∈ N samples the signals (yi, φi) of the regression
(1) and obtains the samples

ξi(t) = yi(t) + δy,i(t), ϕi(t) = φi(t) + δφ,i(t), (2)

in which δi := (δy,i, δφ,i) : N → Rnδ , nδ := nθ + 1, represents the
exogenous perturbations adding to the measurements of yi and φi
and modeling, for example, noise affecting the measurement
process and/or unmodeled dynamics. Due to the presence of δi
affecting both the regressor φi and the regressand yi, estimating
θ is an errors-in-variables problem (Söderström, 2007). In the
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emainder of the paper, we let y := (yi)i∈N , φ := (φi)i∈N , δ :=

(δi)i∈N , ξ := (ξi)i∈N , ϕ := (ϕi)i∈N , and we make the following
uniform boundedness assumption.

Assumption 1. There exist ȳ, φ̄ > 0, such that |yi(t)| ≤ ȳ and
|φi(t)|∞ ≤ φ̄ for every i ∈ N and t ∈ N.

2.2. Information network

We assume that agents can exchange information over an
information network formally described by a family C = {Ii}i∈N of
sets Ii ⊂ N satisfying i ∈ Ii. We call C the information network, and
he set Ii the (inward) neighborhood of i. Each agent i can receive
nformation by all the agents k ∈ Ii, and can send information
o all the agents in the set Oi := {k ∈ N : i ∈ Ik}. It is not
equired that k ∈ Ii implies i ∈ Ik, so the network can be directed.
We denote by di the cardinality of Ii, and we associate with C the
djacency matrix A ∈ Rn×n, defined by letting Aik = 1 if k ∈ Ii and

Aik = 0 otherwise, where Aik denotes the (i, k)th entry of A. We
stress that Aii = 1 for all i ∈ N . Finally, we introduce the matrix
Λ := diag

(
d1, . . . , dn

)−1A.

2.3. Problem statement

We consider the problem of designing, for each agent i ∈

N , a recursive procedure that exploits the samples acquired by
(2) and the information coming from the neighboring agents to
determine, asymptotically, a ‘‘well-behaved’’ estimate θ̂i of the
unknown common parameter θ in (1), in the sense that the
following properties hold: (i) Nominal Exactness: In absence of
disturbances, i.e. when δ = 0, limt→∞ θ̂i(t) = θ for all i ∈

N . (ii) Robustness: If δ ̸= 0, the asymptotic estimation errors
must be related, in a continuous manner, to the ‘‘asymptotic
magnitude’’ of δ. Formally, there must exist κ ∈ K such that
lim supt→∞ |θ̂i(t) − θ | ≤ κ(lim supt→∞ |δ(t)|) for all i ∈ N and
all bounded δ. (iii) Decentralization: The update law of θ̂i must
only depend on the current samples produced by (2) and the in-
formation communicated by the agents j ∈ Ii. (iv) Scalability: The
update laws must be independent from ‘‘centralized’’ parameters
or quantities.

3. Distributed recursive least squares

3.1. The update laws

To approach the problem illustrated in Section 2.3, we propose
the following update law for each agent i ∈ N :

Ψ +

i =
µi

di

∑
k∈Ii

Ψk + (1 − µi)ϕiϕ⊤

i ,

η+

i =
µi

di

∑
k∈Ii

ηk + (1 − µi)ϕiξi,
(3)

with output

θ̂i = γi
(
Ψi, ηi

)
. (4)

In (3)–(4), Ψi and ηi are the state variables associated with agent
i and take their values in Pnθ and Rnθ respectively, the output θ̂i
is the estimate agent i has on θ and it takes values in Rnθ , ϕi and
i are the samples produced by (2), the parameters µi ∈ (0, 1)
re arbitrarily chosen, and the functions γi : Pnθ × Rnθ → Rnθ

are degrees of freedom fixed later in Section 3.5. We also let
Ψ := (Ψ ) and η := (η ) .
i i∈N i i∈N A

3

3.2. The aggregate system

Let Φ : (Rnθ )n → (Pnθ )
n and Ξ : (Rnθ )n × Rn

→ (Rnθ )n be
functions mapping ϕ = (ϕi)i∈N ∈ (Rnθ )n and (ϕ, ξ ) = ((ϕi)i∈N ,
(ξi)i∈N ) ∈ (Rnθ )n × Rn to Φ(ϕ) := (ϕiϕ⊤

i )i∈N and Ξ (ϕ, ξ ) :=

(ϕiξi)i∈N , respectively. Let W := diag(µ1, . . . , µn), F := WΛ⊗ Inθ ,
nd G := (In −W )⊗ Inθ . Then, the composition of (2) and (3) is a
ystem with input (y, φ, δ), state variable x := (Ψ , η) ranging in
he state space X := (Pnθ )

n
× (Rnθ )n, output θ̂ := (θ̂i)i∈N , and its

ynamics is described by
+

= g(x, y, φ, δ) (5)

here
(x, y, φ, δ) :=(FΨ , Fη)

+
(
GΦ(φ + δφ), GΞ (φ + δφ, y + δy)

) (6)

ith δφ := (δφ,i)i∈N and δy := (δy,i)i∈N . In (6), Ψ , η, Φ(·), and
(·) are interpreted as column concatenations. We define on X

he functional |x| := max
{
|Ψ |∞, |η|∞

}
.

.3. Existence and robust stability of a steady state

In this section, we study the stability properties and the
symptotic behavior of the aggregate system (5). In particular,
e show that (5) is ISS relative to a time-varying steady-state
olution t ↦→ (Ψ ⋆(t), η⋆(t)) defined by the unperturbed signals
φ, y) and with respect to the disturbance δ. Later in Section 3.4,
e shall prove that, if a suitable excitation condition is fulfilled,
uch steady-state solution (Ψ ⋆, η⋆) is associated with a correct
stimate of θ for all the agents. Let µ̄ := maxi=1,...,n µi. Since
i ∈ (0, 1) for all i ∈ N by definition, then µ̄ < 1. As a
onsequence, the operator F in (6) is Schur stable as established
y the following proposition.

roposition 2. |F |∞ ≤ µ̄ and, for all λ ∈ σ (F ), |λ| < 1.

roof. By definition of A in Section 2.2,
∑n

k=1 Aik = di for all i =

, . . . , n. Thus, |F |∞ = |WΛ|∞ = maxi=1,...,n
∑n

k=1 µid−1
i Aik = µ̄.

s | · |∞ is sub-multiplicative, then maxλ∈σ (F ) |λ| ≤ |F |∞ ≤ µ̄ < 1.

With the unperturbed signals φ and y we associate a signal
⋆
= (Ψ ⋆, η⋆) : N → X defined as

⋆(t) :=

t−1∑
s=0

F t−s−1GΦ(φ(s)),

η⋆(t) :=

t−1∑
s=0

F t−s−1GΞ (φ(s), y(s)).

(7)

et (Ψ ⋆
i )i∈N and (η⋆i )i∈N be such that Ψ ⋆ and η⋆ satisfy Ψ ⋆(t) =

(Ψ ⋆
i (t))i∈N and η⋆(t) = (η⋆i (t))i∈N at each t ∈ N. Then, Ψ ⋆

i (t) ∈ Pnθ
for all t ∈ N, since 0 ∈ Pnθ and φi(s)φi(s)⊤ ∈ Pnθ for all i ∈ N
nd s ∈ N. Moreover, we underline that x⋆ is only defined by the
nperturbed samples of (1), and it does not depend on δ or on the
ggregate state variable x. Finally, we observe that (x⋆, (y, φ, 0))
s a solution pair of (5) satisfying x⋆(0) = 0. The forthcoming
proposition establishes input-to-state stability of (5) relative to
x⋆ and with respect to the input δ. If δ = 0, the result implies
asymptotic convergence of x to x⋆. Thus, we refer to x⋆ as the ideal
steady state of x. Let µ := mini∈N µi and, with ȳ and φ̄ given by
Assumption 1, define

ω(s) := (1 − µ)(1 − µ̄)−1(2max{φ̄, ȳ}s + s2
)
. (8)

Then, ω ∈ K and the following holds (the proof is given in
ppendix A).
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roposition 3. Suppose that Assumption 1 holds. Then, there exists
α > 0 such that, for every solution pair (x, (y, φ, δ)) of (5), the
ollowing holds for all t ∈ N

x(t) − x⋆(t)| ≤ αµ̄t
|x(0) − x⋆(0)| + ω

(
sup

s∈N≤t−1

|δ(s)|∞

)
.

emark 4. The function ω, defined in (8), is quadratic. If the
stimation scheme (2), (3) has to be used as a component in a
arger control system, it might be useful to have a function ω
hich is sub-linear, as this is necessary to enforce small-gain

ike conditions with linear feedback. We remark that this can
e achieved as shown in Bin (2022) by ‘‘saturating’’ the terms
iϕ

⊤

i and ϕiξi in (3) within a ball of radius larger than φ̄2 and
ax{ȳ, φ̄}

2, respectively.

.4. Cooperative excitation and identifiability

Existence and robust stability of the steady-state trajectory x⋆
s always guaranteed if the signals y and φ are bounded. In this
ection we show that, under suitable excitation conditions, x⋆ is
also associated with a correct estimate of θ for each agent.

Lemma 5. For all i ∈ N and t ∈ N, Ψ ⋆
i (t)θ = η⋆i (t).

Lemma 5, proved in Appendix B, guarantees that the sought
parameter θ satisfies Ψi(t)θ = ηi(t) for all t ∈ N in the ideal
steady state x⋆, which is exponentially attractive when δ = 0.
However, it does not guarantee that θ can be uniquely deter-
mined by Ψ ⋆

i (t) and η⋆i (t), as in general Ψ ⋆
i (t) may be singular

or ill-conditioned. Identifiability of θ requires a further condition
formalized in this paper in terms of the following excitation
property.

Definition 6. With (εi, τi) ∈ R>0 × N, agent i ∈ N is said to be
(εi, τi)-excited if

∀t ≥ τi, Ψ ⋆
i (t) ≥ εiI. (9)

The following proposition directly follows from Lemma 5 and
connects Definition 6 and identifiability of θ .

Proposition 7. If agent i ∈ N is (εi, τi)-excited, then for all t ≥ τi,
Ψ ⋆

i (t) is invertible and θ = Ψ ⋆
i (t)

−1η⋆i (t).

In the remainder of the section, we further discuss the excita-
tion condition of Definition 6. In view of (7), for each t ∈ N, we
have

Ψ ⋆(t) =

t−1∑
s=0

F t−s−1G
(
φi(s)φi(s)⊤

)
i∈N

in which (φi(s))s=0,...,t−1 are samples of the regressor φi of agent
i, and F = WΛ⊗ I incorporates the information network. There-
fore, each matrix Ψ ⋆

i (t) is an ‘‘aggregate’’ quantity given by the
combination of terms of the kind φk(s)φk(s)⊤, obtained by mixing
the local endogenous samples (k = i) with those available to the
other agents of the network (k ∈ N \ {i}), all properly weighted
by the factors µi and filtered. As a consequence, the excitation
condition (9) is not only a property of the regressor measured by
agent i, but it depends on all the samples of all the other agents
of the network. Hence, the excitation condition of Definition 6 is
a ‘‘cooperative’’ condition. We also stress that, for each i ∈ N ,
Ψ ⋆

i only depends on the information network, the unperturbed
regressors (φj)j∈N , and the parameters (µj)j∈N . Instead, it does
not depend on the states x = (Ψ , η) of the algorithm (5) nor on
the uncertainties δ. Therefore, once the information network and
the parameters (µj)j∈N are fixed, (εi, τi)-excitation is an open-
loop assumption on the regressors (φ ) . In this connection,
i i∈N

4

it is worth comparing Definition 6 with the ‘‘cooperative per-
sistency of excitation’’ assumption of Chen, Hua et al. (2014)
(see also Chen, Wen et al., 2014 for a continuous-time version,
and Javed et al., 2022 for an extension to disconnected networks).
In the notation of this article, Chen, Hua et al. (2014, Def. 4) reads
as

∃α, T ≥ 0, ∀t ≥ 0,
t+T−1∑
s=t

∑
i∈N

φi(s)φi(s)⊤ ≥ αI. (10)

It is not difficult to see that, if the information network is strongly
connected (meaning that there is a path between every two
agents), then (10) implies that each agent i ∈ N is (εi, τi)-excited
for a suitable value of εi, τi, and µi depending on T and α in (10).
The converse is also true. Namely, if (9) holds for each i ∈ N , then
(10) holds for suitable values of T and α. This equivalence can be
extended also to the weaker notion of Javed et al. (2022) when
the information network is disconnected. To ease the technical
derivations, in this article it is more convenient to directly assume
(9) instead of (10).

One may wonder if the contribution of communication in
achieving (9) carries any advantages with respect to the case in
which agent i only uses its own samples to compute an estimate
of θ . In our setting, this is a well-posed question, since the
information network has no connectivity requirements to satisfy
(Proposition 2 holds for every adjacency matrix A). In particular,
for every i ∈ N , define Ψ L

i : N → Pnθ by letting Ψ L
i (0) := 0 and

Ψ L
i (t + 1) =

µi

di
Ψ L

i (t) + (1 − µi)φi(t)φi(t)⊤ (11)

or t ∈ N. Then, Ψ L
i represents the unperturbed steady-state

trajectory for Ψ (namely, the equivalent of Ψ ⋆) in case the in-
ormation coming from other agents is discarded in (3) (i.e. if

k∈Ii
Ψk is substituted by Ψi). Therefore, the condition Ψ L

i (t) ≥

εiI refers to an excitation property concerning only the local
ignal φi, hence called ‘‘local excitation’’. Lemma 8, whose proof is
mitted for space reasons, establishes that local excitation always
mplies that agent i is excited in the sense of Definition 6 if the
nformation coming from the neighboring agents is not discarded.

emma 8. For every i ∈ N , t ∈ N and εi > 0, we have
Ψ L

i (t) ≥ εiI H⇒ Ψ ⋆
i (t) ≥ εiI .

The converse implication is instead false in general. This is
roved by the following trivial example: take N = {1, 2} (n = 2),
1 = I2 = {1, 2}, µ1 = µ2 = 1/2, φ1(t) = (1, 0) and φ2(t) = (0, 1)
for all t ∈ N. For both i = 1, 2, Ψ L

i (t) is singular for every
t ∈ N. Hence, local excitation does not hold for any agent. Instead,
both agents are (1/8, 2)-excited according to Definition 6. Hence,
in view of Lemma 8 and the previous example, we conclude
that the excitation requirement in Definition 6 is strictly weaker
than local excitation. Moreover, we remark that such excitation
requirement may be weakened further if one uses regularization,
as explained later in Section 5.2.

3.5. State-to-output stability and design of γi

The only degrees of freedom of (3)–(4) that remain to be
fixed are the functions γi. In this section, we choose γi by fol-
lowing Bin (2022) in order to force a state-to-output stability
property (made precise by Lemma 9) that will be needed for the
main convergence result reported later in Section 4. At a first
glance, Proposition 7 seems to suggest that a reasonable choice
for γi(Ψi, ηi) is γi(Ψi, ηi) := Ψ −1

i ηi. This choice, however, is only
valid at the ideal steady state where Ψi = Ψ ⋆

i and ηi = η⋆i and
if agent i is (εi, τi)-excited for some (εi, τi). During the transitory,
indeed, Ψ (t) can be singular or of variable rank and, with such
i
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hoice of γi, we would fail to establish a relation between the
difference γi(Ψi(t), ηi(t))−γi(Ψ ⋆

i (t), η
⋆
i (t)) and the deviation x(t)−

x⋆(t) from the ideal steady state. Such a relation is needed to
bound |θ̂i − θ | by using the stability result of Proposition 3. To
avoid these problems, in this section we use the following con-
struction. With εi > 0 arbitrary and φ̄, ȳ given by Assumption 1,
efine compact the set

i :=

{
(Ψi, ηi) ∈ Pnθ × Rnθ : |Ψi|∞ ≤

(1 − µ

1 − µ̄

)
φ̄2

+ 1

|ηi|∞ ≤

(1 − µ

1 − µ̄

)
φ̄ȳ + 1, Ψi ≥

εi

2
I
}
.

hen, we pick γi : Pnθ × Rnθ → Rnθ in such a way that:

G1. γi is continuous and bounded.
G2. γi(Ψi, ηi) = Ψ −1

i ηi for all (Ψi, ηi) ∈ Γi.

hen, by means of the same arguments used in Bin (2022, Lemma
and Lemma 4), the following property can be established.

emma 9. For each i ∈ N , let γi be chosen such that G1 and G2
hold. Then, there exists ℓi > 0 such that

|γi(Ψi, ηi) − γi(Ψ ′

i , η
′

i)|∞ ≤ ℓi

(
|Ψi − Ψ ′

i |∞ + |ηi − η′

i|∞

)
olds for all (Ψi, ηi) ∈ Γi and all (Ψ ′

i , η
′

i) ∈ Pnθ × Rnθ .

In view of Proposition 2, from (7) we obtain |Ψ ⋆
i (t)|∞ ≤

Ψ ⋆(t)|∞ ≤ (1 − µ)(1 − µ̄)−1φ̄2 and |η⋆i (t)|∞ ≤ |η⋆(t)|∞ ≤

(1−µ)(1−µ̄)−1φ̄ȳ for all t ∈ N. Hence, if agent i is (εi, τi)-excited
with εi ≥ εi, then (Φ⋆

i (t), η
⋆
i (t)) ∈ Γi for all t ≥ τi, and Lemma 9

implies that the state-to-output stability property

|γi(Ψ ⋆
i (t), η

⋆
i (t)) − γi(Ψi(t), ηi(t))|∞ ≤ 2ℓi|x⋆(t) − x(t)| (12)

holds for every solution pair (x, (y, φ, δ)) of (5) and for all t ≥ τi.

emark 10 (Choice of γi). A possible choice of γi satisfying the
bove properties consists in taking γi(Ψi, ηi) as a vector with

kth component γi(Ψi, ηi)k := satθ̄i (ui,k), where ui,k is the kth
component of Ψ †

i ηi (·† denotes the Moore–Penrose pseudoin-
verse), θ̄i := 2(φ̄ȳ(1 − µ)(1 − µ̄)−1

+ 1)/εi, and sat⋆(·) :=

min{max{·, −⋆}, ⋆} denotes the standard saturation function.
See Bin (2022) for further details.

4. Main result

Let ω be the class-K function defined in (8) for which
Proposition 3 holds and, for each i ∈ N , let εi > 0 be the constant
used in the construction of the set Γi and ℓi > 0 be such that
emma 9 holds. Then, the following theorem establishes the main
esult of the paper, which relates the asymptotic estimation error
n θ to the ‘‘asymptotic magnitude’’ of the disturbance δ.

heorem 11. Suppose that Assumption 1 holds. Then, every solu-
ion pair (x, (y, φ, δ)) of (5) with δ bounded is bounded. Moreover,
if agent i ∈ N is (εi, τ ⋆i )-excited for some τi ∈ N and with εi ≥ εi,
hen

lim sup
t→∞

|θ̂i(t) − θ |∞ ≤ 2ℓiω
(
lim sup
t→∞

|δ(t)|∞

)
. (13)

roof. In view of (7), under Assumption 1 x⋆ is bounded. Then,
boundedness of x when δ is bounded follows by Proposition 3.
Moreover, by means of standard ISS arguments (see, e.g. Cai and
Teel (2009, Lemma 3.6)), one can deduce from Proposition 3 that

lim sup |x(t) − x⋆(t)| ≤ ω

(
lim sup |δ(t)|∞

)
. (14)
t→∞ t→∞

5

Finally, if agent i is (εi, τi)-excited with εi ≥ εi then, as shown
at the end of Section 3.5, (Ψ ⋆

i (t), η
⋆
i (t)) ∈ Γi for all t ≥ τi.

Since in this case Proposition 7 implies θ = Ψ ⋆
i (t)

−1η⋆i (t) =

γi(Ψ ⋆
i (t), η

⋆
i (t)) for t ≥ τi, then the claim follows from (12) and

(14).

As a direct corollary of Theorem 11 we obtain that, if every
agent i ∈ N is (εi, τ ⋆i )-excited for some τi ∈ N and with εi ≥ εi,
hen (13) holds for all i ∈ N . Hence, in this case, the robust
estimation problem introduced in Section 2.3 is solved.

5. Convergence, regularization and scalability

5.1. Exact convergence and convergence rate

For given i ∈ N , δ and (φ, y) satisfying Assumption 1, we
say that the limit (13) holds uniformly if the following property
holds: for every ϵ > 0 and r > 0, there exists t̄ > 0, such
hat every solution pair (x, (y, φ, δ)) with |x(0)| ≤ r satisfies
θ̂i(t) − θ |∞ ≤ 2ℓiω(lim supt→∞ |δ(t)|∞) + ϵ for all t ≥ t̄ .
heorem 11 and Proposition 3 guarantee that, if agent i ∈ N is
εi, τ

⋆
i )-excited for some τi ∈ N and with εi ≥ εi, then (13) is uni-

form. Moreover, we stress that, if limt→∞ δ(t) = 0, then (13) can
be strengthened to limt→∞ θ̂i(t) = θ , which is exact convergence,
nd convergence is exponential. Finally, we remark that, in this
nperturbed case, the excitation condition of Definition 6 is only
sufficient condition for convergence.

.2. On the use of regularizers

As the excitation condition of Definition 6 cannot be checked
priori in general, one may wonder whether such assumption
an be weakened. It turns out it is possible at the price, however,
f introducing a bias in the estimates. In particular, we can pick
rbitrarily a matrix Ωi ∈ Pnθ satisfying Ωi ≥ εiI and then choose
γi such that the following property holds in place of Item G2:

G2’. γi(Ψi, ηi) = (Ψi +Ωi)−1ηi for all (Ψi, ηi) ∈ Γ ′

i ,

n which Γ ′

i is defined by modifying Γi as follows

′

i :=

{
(Ψi, ηi) ∈ Pnθ × Rnθ : |ηi|∞ ≤

(1 − µ

1 − µ̄

)
φ̄ȳ + 1

|Ψi|∞ ≤

(1 − µ

1 − µ̄

)
φ̄2

+ |Ωi|∞ + 1, Ψi ≥
εi

2
I
}
.

Since Ψ ⋆
i (t) ∈ Pnθ , then Ψ

⋆
i (t) + Ωi ≥ εiI holds for all t ∈ N

and, hence, (Ψ ⋆
i (t) + Ωi, η

⋆
i (t)) ∈ Γ ′

i for all t ∈ N. Therefore,
he excitation condition of Definition 6 is not needed anymore
o conclude (12). Furthermore, in this case also the saturation
f γi (Item G1) can be avoided. Indeed, since Ψi(t) ∈ Pnθ for all
∈ N and all solution pairs (x, (y, φ, δ)) of (5), then Ωi ≥ εiI also
mplies Ψi(t) + Ωi ≥ εiI for all t ∈ N. Hence, by using the fact
that, for every A, B ∈ Pn satisfying A, B ≥ εI , and for every x, y ∈

Rnθ , one has |A−1x − B−1y|∞ = |(A−1
− B−1)x + B−1(x − y)|∞ ≤

(n/ε2)|x|∞|A − B|∞ + (
√
n/ε)|x − y|∞, we obtain

|(Ψ ⋆
i (t) +Ωi)−1η⋆i (t) − (Ψi(t) +Ωi)−1ηi(t)|∞

≤
nθ (1 − µ)φ̄ȳ

(1 − µ̄)ε2
|Ψ ⋆

i (t) − Ψi(t)|∞ +

√
nθ
ε

|η⋆i (t) − ηi(t)|∞,

hich implies (12) with 2ℓi = nθ (1−µ)φ̄ȳ(1−µ̄)−1ε−2
+

√
nθε−1.

Thus, if Ωi ≥ εiI , one can simply pick

γi(Ψi, ηi) := (Ψi +Ωi)−1ηi. (15)

Nevertheless, if Ωi ̸= 0, one cannot conclude (13) anymore.
Instead, one obtains the weaker inequality

lim sup |θ̂i(t) − θ |∞ ≤ ci(Ωi) + 2ℓiω
(
lim sup |δ(t)|∞

)
,

t→∞ t→∞
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Fig. 1. Road network.

in which ci(Ωi) ≥ 0 is a bias term (see Bin, 2022, Section 6.1 for
further details).

5.3. Remarks on scalability and decentralization

The update laws (3) are decentralized, since the update of
the state variables of each agent i only depends on the state
ariables of the neighboring agents k ∈ Ii. Moreover, the ‘‘gains’’
i are arbitrary, each agent can fix µi ∈ (0, 1) independently
rom the others. The construction of γi, however, uses centralized
uantities since the set Γi relies on the knowledge of µ, µ̄ and
he constants φ̄ and ȳ given by Assumption 1. Nevertheless, we
bserve that: (i) The quantities µ, µ̄, φ̄, and ȳ are only used to
stimate an a priori upper bound on the norm of Ψ ⋆

i and η⋆i . If
uch quantities are not available, an agent can either estimate
he upper bound by looking at the local quantities |Ψi(t)|∞ and
ηi(t)|∞, or take a very large upper bound that is likely to be
chieved. (ii) If agent i uses a regularization matrix Ωi ≥ εiI then,
s explained in previous Section 5.2, γi can be chosen as in (15),
nd thus no knowledge of µ, µ̄, φ̄, and ȳ is required anymore.
hus, in this case each agent can design γi independently from
he other agents and centralized quantities.

Overall, we can therefore conclude that (3) has good de-
entralization and scalability properties for what concerns the
efinition of the update laws. Finally, we observe that the func-
ion ω (defined in (8)), for which the claim of Proposition 3
olds, is proportional to the factor (1 − µ)(1 − µ̄)−1. Thus, while
he choice of each gain µi is independent from the others, the
ore similar the gains are, the better it is from the standpoint
f sensitivity to disturbances. In the limit case in which the gains
atisfy µ1 = · · · = µn, then (1 − µ)(1 − µ̄)−1

= 1, and ω does
not depend on them.

6. Application to road pricing

Given a road network, represented by a directed graph (V,N )
as in Fig. 1, with V a set of vertices representing crossings and
N ⊂ V2 the set of roads, the problem of road pricing pertains the
assignment of a toll τi to each road i ∈ N with the aim of mitigat-
ing congestion. Road pricing boasts a long academic history, espe-
cially in the economics community (Pigou, 1920; Small & Verhoef,
2007; Yang & Huang, 2005). The basic idea follows the principle
of marginal cost (or Pigovian tax): Efficiency is obtained when
each driver pays a toll balancing the externalities caused by their
journey. Formally, if di denotes the density of vehicles on road
i ∈ N , and ℓ(di) the corresponding latency (the average travel
time), then the marginal cost pricing theory suggests taking

τi = ℓ′(di)di, (16)

where ℓ′ denotes the derivative of ℓ (Yang & Huang, 2005,
sec. 3.2) (here we are assuming that the latency function ℓ is
the same for each road, assumption that is justified when con-
sidering similar roads as we do in the forthcoming simulations).
In this section, we consider the problem of adaptive decentralized
 r

6

marginal cost pricing described hereafter. We assume that with
each arc i there is associated a unique agent (labeled by i as
the corresponding arc). Agents aim to implement the marginal
cost policy (16) in a distributed way, with each agent responsible
of deciding the toll levied on its arc. To implement (16), agents
need the function ℓ′, which is unknown a priori (the uncertain
form of such functions is, indeed, one of the main obstacles
for the implementation of marginal cost pricing; see, e.g., Yang,
Meng, & Lee, 2004). Hence, ℓ′ must be estimated at run time. We
approach this problem by applying the methodology developed
in the previous sections. Specifically, we suppose that each agent
i can measure (with the due approximation) the density di(t) and
the corresponding latency ℓ(di(t)) on the associated road i at each
time t . In terms of (2), we thus have yi(t) = ℓ(di(t)) and φi(t) =

ψ1(di(t)), . . . , ψnθ (di(t))) for some arbitrary C1 basis-functions
k. Furthermore, we assume that agents can communicate with
hose associated with neighboring arcs. Namely, we assume that
n information network (Section 2.2) C = {Ii}i∈N is given with
i := {j ∈ N : j1 = i1 ∨ j1 = i2 ∨ j2 = i1 ∨ j2 = i2}
or all i ∈ N , where, for an arc k ∈ N , we let k1, k2 ∈

be such that k = (k1, k2). In this setting, we consider the
pproximation ℓ ≈

∑nθ
k=1 θkψk and we equip each agent with

he distributed estimation scheme (3)–(4) to find out the best
arameters θ1, . . . , θnθ from data. Specifically, with θ̂i denoting
he approximation of θ := (θ1, . . . , θnθ ) that agent i obtains
rom (4), each agent approximates ℓ′ by ℓ̂′

i := θ̂⊤

i ψ
′, where ψ ′

:=

ψ ′

1, . . . , ψ
′
nθ ). A similar problem has been considered in Poveda,

rown, Marden, and Teel (2017) where, however, each agent
stimates its own parameters alone without communicating with
thers. We stress that, in our context, estimating the parameters
in a collective way has the advantage that each agent can

xploit the information coming from the traffic data in other
oads. This is particularly useful for agents controlling empty
r low-congested roads, as otherwise they could not obtain a
eaningful estimate from their own measurements and thus levy
proper toll (this is formally captured by the difference between
xcitation according to Definition 6 and local excitation; see the
iscussion in Section 3.4). In the forthcoming simulation, we
onsider a road network represented by the graph shown in Fig. 1.
he simulation setting is the following. Arcs represent one-way
ingle-lane paths. Their length Li is measured in cells (a cell is the
iscrete unit of space) and, in the following, it is set to Li = 50
or all i ∈ N . Vehicles flows are simulated microscopically and
n discrete-time. Each vehicle v enters the network with a given
rigin Ov ∈ V and destination Dv ∈ V , and it has state variable
αv, cv) ∈ N × N, where αv represents the current arc and cv the
urrent cell occupied by v on αv . These variables are updated as

+

v =

{
αv if cv < Lαv or (J(αv), 1) is occupied
J(αv) otherwise

c+

v =

⎧⎨⎩
cv if cv = Lαv and (J(αv), 1) is occupied
1 if cv = Lαv and (J(αv), 1) is free
cv + Kv otherwise

n which Kv := sup{k ∈ N≤V : cv + k ≤ Lαv and (αv, cv +

) is not occupied for all h ∈ N≤k} denotes the maximal number
f cells that v can advance, where V = 4 denotes a common max-
mal speed (in cells per time units), and J(αv) is the first arc pro-
uced by a shortest-path algorithm finding the shortest weighted
ath1 between the current node to which αv is incident and the
ehicle’s destination Dv . Here, the weights on each i ∈ N at each
∈ N are given by wi(t) := Li/V + τi(t), namely, by the sum of an

1 This corresponds to the simplifying (yet widespread) assumption of fully
ational drivers with perfect knowledge of the network weights.
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xpected travel time Li/V when no congestion is present, and the
ime-equivalent of the toll levied on i at time t (here, we assume
hat all vehicles have a unitary value of time factor, so as we can
easure τi(t) in time units). The order of update of the vehicles

s chosen randomly at each time. Vehicles are removed once they
each their destination. We denote by Ht the set of all vehicles
n the road at time t . For the estimation phase, we pick nθ = 6
nd choose the basis functions ψ1, . . . , ψ6 as the elements of a
iorthogonal spline basis2 for L2([0, 1]) (Daubechies, 1992, pp.
71–280). Each agent is then equipped with the estimator (3)–(4).
or simplicity, the update of the estimation law is synchronized
ith that of the vehicles. The density di(t) and latency yi(t) =

(di(t)) on road i are estimated by each node from microscopic
bservations as di(t) ≈

cardHt
i

Li
and yi(t) ≈ Li · ( 1

cardHt
i

∑
v∈Ht

i
stv)

†,
here Ht

i := {v ∈ Ht
: αv(t) = i} is the set of vehicles on road

at time t , and stv is the speed of vehicle v at time t , estimated
s stv = cv(t) − cv(t − 1) if αv(t) = αv(t − 1), or stv = 1 other-

wise. The design of the parameters in (3)–(4) is made in a fully
decentralized way. In particular, the parameters µi are chosen as
µi = 0.99+ i1 · 10−3 (i1 denotes the tail node of arc i). Moreover,
for each i, γi is chosen as in (15) with Ωi = 10−3I . We stress that
the usage of the above-defined approximations of di(t) and yi(t),
which are quite rough macroscopic approximations obtained by
averaging microscopic quantities, is only theoretically justified
thanks to the robustness properties guaranteed by Proposition 3
and Theorem 11, which ensure that the employed least squares
algorithm remains stable for any bounded uncertainty in ℓ(di(t)),
di(t), and in the approximation of ℓ. Figs. 2–5 show the results
of a simulation running for T = 1000 units of time with the
inflow from node 1 to node 4 at full capacity and that from 6 to
4 at 80%. Namely, at each time t , after the update of the vehicles’
state variables, if the first cell of the first arc of the current
shortest path connecting 1 and 4 (resp. 6 and 4) is free, then with
probability 1 (resp. 0.8) a new vehicle v with origin–destination
pair (Ov,Dv) = (1, 4) (resp. (Ov,Dv) = (6, 4)) is added to the
network. In particular, Fig. 2 shows that, without tolls, all drivers
seek the path that would be the shortest in absence of congestion.
Consequently, we observe a high congestion concentrated in few
roads, which provokes a low traveling speed. Instead, Fig. 3 shows
a simulation where tolls are levied according to the adaptive
methodology described previously. As the figure clearly shows,
the levied tolls have the effect of distributing more equally the
drivers over the networks’ roads, with the consequence of a lower
congestion on each road and a larger mean speed. Fig. 4 shows
a comparison between these two simulations in terms of mean
congestion, mean speed, and mean travel time from the origin to
the destinations. As shown by the figure, the developed adaptive
pricing mechanism permits to more than double the mean speed
while more than halving congestion and travel time. Finally, for
the case where tolls are levied, Fig. 5 shows the dynamics of the
estimated parameters. As it can be seen from the figure, all agents
estimate similar parameters as expected.

7. Conclusions

We proposed a distributed recursive least squares algorithm
for the estimation of an unknown parameter over a network.
With respect to the other distributed approaches, the main nov-
elty of this work consists in the robustness property to gen-
eral bounded disturbances in all the variables, characterized in
terms of ISS. In addition, linear convergence is shown under
a cooperative excitation condition weaker than local excitation.
Scalability properties were also discussed, and the methodology
was validated on a road pricing example.

2 Specifically, ψk can be obtained in MATLAB as ψk(·) := 2−s/2ϕ(2−s
·−k) with

= −2 and where ϕ is the dual scaling function obtained with the command
avefun of the Wavelet Toolbox with argument ‘bior3.5’.
7

Fig. 2. Time series of the congestion (red) and mean speed (blue) on each road
in absence of tolls. The speed is normalized with respect to the maximum speed
V . The time series are averaged on a moving window of magnitude 15 time
units. Label (i, j) denotes the arc (road) from node i to node j in the graph of
Fig. 1. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 3. Time series of the congestion (red), mean speed (blue), and levied toll
(green) on each road in presence of tolls. The speed is normalized with respect
to the maximum speed V , the tolls are normalized with respect to the maximum
oll levied. The time series are averaged on a moving window of magnitude 15
ime units. Label (i, j) denotes the arc (road) from node i to node j in the graph
f Fig. 1. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Fig. 4. Comparison between performances when no tolls are levied (red) and
when tolls are levied (blue). The mean speed and the mean congestion are
computed by averaging the corresponding time series shown in Figs. 2 and 3
over the roads with non-zero occupation. The mean travel time is the average
of the time each driver takes to go from its origin to its destination. (For
interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 5. Estimated parameters when tolls are levied. Brighter and darker shades
of the same color are used to plot the time series of the same parameter for
different agents.

Appendix A. Proof of Proposition 3

Pick arbitrarily a solution pair (x, (y, φ, δ)) to (5), and let x⋆ be
defined as in (7). By direct solution, (5) yields

Ψ (t) = F tΨ (0) +

t−1∑
s=0

F t−s−1GΦ(φ(s) + δφ(s))

for all t ∈ N. Define Ψ̃ := Ψ − Ψ ⋆ and Φ̃(φ, δφ) := Φ(φ + δφ) −

Φ(φ). In view of (7), we obtain

|Ψ̃ (t)|∞ ≤ µ̄t
|Ψ̃ (0)|∞ + (1 − µ)

t−1∑
s=0

µ̄t−s−1
|Φ̃(φ(s), δφ(s))|∞,

for all t ∈ N, where we have used the fact that, by construction,
Ψ ⋆(0) = 0, |G|∞ = 1 − µ, and that, in view of Proposition 2,
F |∞ ≤ µ̄. Similar arguments show that, with η̃ := η − η⋆ and
Ξ̃ (φ, y, d) := Ξ (φ + δφ, y + δy) −Ξ (φ, y), we have

η̃(t)|∞ ≤ µ̄t
|η̃(0)|∞ + (1 − µ)

t−1∑
s=0

µ̄t−s−1
|Ξ̃ (φ(s), y(s), δ(s))|∞

for all t ∈ N. Next, observe that, for all a, b ∈ Rnθ and c, d ∈ R,
|aa⊤

− bb⊤
|∞ ≤ 2|a|∞|a − b|∞ + |a − b|2

∞
and |ac − bd|∞ ≤

|a|∞|c − d|∞ + |c|∞|a − b|∞ + |a − b|∞|c − d|∞. By using these
relations with a = φ(s), b = φ(s)+ δφ(s), c = y(s), and d = y(s)+
δy(s), in view of Assumption 1 we obtain max{|Φ̃(φ(s), δφ(s))|∞,
|Ξ̃ (φ(s), y(s), δ(s))|∞} ≤ 2max{φ̄, ȳ}|δ(s)| + |δ(s)|2 for all s ∈ N.
Hence, x̃ := x − x⋆ satisfies

|x̃(t)| = max
{
|Ψ̃ (t)|∞, |η̃(t)|∞

}
≤ µ̄t

|x̃(0)| +

(1 − µ

1 − µ̄

) (
2max{φ̄, ȳ}|δ|∞,t + |δ|2

∞,t

)
,

here we let |δ|∞,t := sups∈N≤t−1
|δ(s)|∞ and we used the fact

hat
∑t

s=0 µ̄
t−s−1

≤
∑

∞

s=0 µ̄
s
= (1 − µ̄)−1. □

ppendix B. Proof of Lemma 5

For every t ∈ N, we have Ψ ⋆
i (t)θ = η⋆i (t) for all i ∈ N if and

only if

Ψ ⋆(t)θ := (Ψ ⋆
i (t)θ )i∈N = η⋆(t). (B.1)

It thus suffices to prove that (B.1) holds for all t ∈ N. We proceed
by induction. Suppose that at some t ∈ N, (B.1) holds. Then, at
t + 1 we have Ψ ⋆(t + 1)θ − η⋆(t + 1) = F (Ψ ⋆(t)θ − η⋆(t)) +

G
(
Φ(φ(t))θ − Ξ (φ(t), y(t))

)
= G

(
Φ(φ(t))θ − Ξ (φ(t), y(t))

)
. By

definition of Φ and Ξ , and using (1), we obtain Φ(φ(t))θ :=

(φi(t)φi(t)⊤θ )i∈N = (φi(t)yi(t))i∈N = Ξ (φ(t), y(t)), and thus we
conclude thatΦ(t+1)θ−η(t+1) = 0, which implies Ψ ⋆(t+1)θ =

η⋆(t+1). Since Ψ ⋆(0) = 0 and η⋆(0) = 0, then (B.1) holds at t = 0.
Therefore, the claim follows by induction on t . □
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