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ABSTRACT

In this chapter, the authors evaluate several basic image processing and advanced image pattern recogni-
tion techniques for automatically analyzing bioimages, with the aim of designing different ensembles of 
canonical and deep classifiers for breast lesion classification in ultrasound images. The analysis starts 
from convolutional neural networks (CNNs) in a square matrix that is used to feed other CNNs. The novel 
ensemble, named TakhisisNet, is the combination by sum rule of the whole set of the modified CNNs 
and the original one. Moreover, the performance of the system is further improved by combining it with 
some handcrafted features. Experimental results obtained on the well-known OASBUD breast cancer 
dataset (i.e., the open access series of breast ultrasonic data) and on a large set of bioimage classifica-
tion problems show that TakhisisNet obtains very valuable results and outperforms other approaches 
previously tested in the same datasets.
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INTRODUCTION�

Breast cancer is one of the main causes of death for women living in western countries (Wild & Stewart, 
2014). The diagnosis and the detection of a breast lesion relies upon ultrasound images. This technique 
is safe, low cost and let radiologists discriminate between benignant and malignant lesions with a very 
high accuracy. However, the need of an expert doctor to read ultrasound images increases the cost of 
screening and makes the diagnosis process operator-dependent (Byra, 2018).

In order to support radiologists, the recent innovation in the analysis of digital images led researchers 
to propose automatic classifiers with the purpose of discriminating between benignant and malignant 
tumors. E.g. automatic systems based on manually engineered features extracted from ultrasound images 
and fed into machine learning classifiers like Support Vector Machines (SVMs) are proposed in (Cheng, 
Shan, Ju, Guo, & Zhang, 2010). However, the recent rise of deep learning lead to the first attempts to 
use convolutional neural networks to recognize and classify malignant lesions in medical images (Saikia, 
Bora, Mahanta, & Das, 2019).

Convolutional neural networks (CNNs) are a class of neural networks designed to perform image 
classification, image segmentation and object recognition (Krizhevsky, Sutskever, & Hinton, 2012). One 
of the first successful attempt to use CNNs for image classification can be found in (Krizhevsky et al., 
2012), where the authors designed a CNN able to outperform any previous classifier on the ImageNet 
challenge 2012. Since then, every winner of the ImageNet challenge was a CNN. Nowadays, modern 
CNNs obtain superhuman accuracies on ImageNet (He, Zhang, Ren, & Sun, 2015).

CNNs have already been used on several medical datasets reaching very high performance. In (Pereira, 
Pinto, Alves, & Silva, 2016) authors used deep CNNs with very small kernels to perform brain tumor 
segmentation from MRI images; in (Esteva et al., 2017) it is shown that a single CNN could detect 
keratinocyte carcinomas and malignant melanomas with the same accuracy as expert dermatologists; 
in (Chi et al., 2017) a fine-tuned version of GoogleNet (Szegedy et al., 2015) is proposed trained to 
classify thyroid nodules from ultrasound images; the work in (Lakhani & Sundaram, 2017) presented 
a system to detect pulmonary tuberculosis from radiographies using AlexNet (Krizhevsky et al., 2012) 
and GoogleNet (Szegedy et al., 2015). In (Byra, 2018) authors proposed a deep learning based method to 
classify breast cancer from ultrasound images. They used the OASBUD (Open Access Series of Breast 
Ultrasonic Dataset), a publicly available dataset containing 52 benignant lesions a 48 malignant lesions 
(Piotrzkowska-Wróblewska, Dobruch-Sobczak, & Byra Michałand Nowicki, 2017). Their approach 
consisted in combining Fisher Linear Discriminant Analysis (Welling, 2005) and neural style transfer 
(Gatys, Ecker, & Bethge, 2016).

In this chapter we propose a novel method for the digital classification of breast cancer based on 
CNNs. The architecture of CNN consists of several convolutional and pooling layers stacked at the begin-
ning of the network. These layers are usually followed by one or more fully connected layers. While the 
first layers of a CNN can be interpreted as trained feature extractors, the fully connected layers can be 
thought as a classifier. In particular, the last fully connected layer, after a softmax normalization, returns 
a probability distribution of the predicted label over the set of the possible classes. Our idea consists in 
replacing a pooling layer with other CNNs architectures. To be more precise, we add a reshape layer 
that takes the output of a pooling layer and randomly puts its entries in a square matrix. If the number 
of features is not a perfect square, the matrix can be padded with some zeros. After this reshape layer, 
we feed other CNNs with the new matrix. The CNNs on top are trained end-to-end with the first CNN 
and each of them return its own set of probability distributions. The final ensemble, resulting from the 



218

Digital�Recognition�of�Breast�Cancer�Using�TakhisisNet
�

sum rule of such probability distribution is named TakhisisNet, since it is a multi-head convolutional 
neural network.

Finally, to improve the performance of the system we have experimented the combination by sum 
rule of TakhisisNet with a set of Support Vector Machine (SVM) trained on handcrafted features. 

The chapter is organized as follows. The background describes the prior art for CNNs and the ar-
chitecture of the two models used in this work: Vgg16 and GoogleNet, After that, the authors describes 
the proposed method, including the architecture of the TakhisisNet. In the Materials section the authors 
describe the Breast Ultrasound dataset and other medical datasets used during experimentation, and 
explain the details of the experimental setup. After that, the authors present the classification results 
along with a discussion of the findings. Finally, the conclusions for the study are presented.

BACKGROUND

The topology of CNN is divided into multiple learning stages composed of a combination of several 
types of layers: i.e. convolutional layers, non-linear processing units, subsampling layers, fully connected 
layers (Liu et al., 2017). 

A convolutional layer takes a multi-channel image as an input and outputs a new multi-channel im-
age, which is the discrete convolution between the input and a bank of convolutional kernels (filters). 
This kind of layers mimics the visual systems of a human eye. Depending on the weights of the ker-
nel, convolutional layers can highlight specific geometric features of the input image like corners and 
boundaries. Besides, they can interpret the color of a pixel depending on the surrounding context. For 
example, a little square containing alternated red and yellow pixels will look orange: that is the founding 
principle of many painting techniques like pointillism. This means that the human eye cannot see the 
difference between images that might be far from each other in terms of matrix distance. Convolutional 
layers with suitable weights can compute an approximation of the average of the pixel colors in a small 
square and mimic this property of human vision, in particular when the input image is noisy. Output of 
the convolutional kernels is given to non-linear processing units, which helps in learning abstraction and 
embeds non-linearity in the feature space. This non-linearity produces different patterns of activations 
for dissimilar responses and thus facilitates in learning of semantic differences in images. Convolutional 
layers do not decrease the dimension of their input, as a neural network layer is often supposed to do. 
Hence, they are often followed by a pooling layer. A standard pooling layer is a subsampling unit that 
divides every channel of the input image in little squares with potential overlap and outputs a new im-
age that has only one pixel for every square of the original image. Since a square has a larger dimension 
than a single pixel, these layers perform dimensionality reduction. The aim of subsampling is not only to 
summarize the results but also to make the input invariant to geometrical distortions. The last layers of 
a convolutional network are usually one or more fully connected layers, which are trained to perform a 
classification task. Unlike pooling and convolution, a fully connected layer performs a global operation: 
it takes input from the previous layer and makes a non-linear combination of selected features, which are 
used for the classification of data. The general architecture of a standard CNN can be found in Figure 1.
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We performed our experiments using two different CNN architecture: VGG16 and GoogleNet. 
VGGnet (Simonyan & Zisserman, 2015) is a very heavy network that was runner-up in the ImageNet 

Challenge in 2014. VGGnet (figure 2) is one of the most used architectures for feature extraction from 
images, due to the simplicity of its uniform architecture. VGGNet is a linear combination of convolu-
tional layers and pooling layers followed by 3 fully connected layers. Each Convolutional layer has the 
same configuration including a different number of small size filters (3×3 kernel). Each Max Pooling 
is designed to half the size of the image. The main limitation of VGG is its high computational cost: 
despite of the use of size filters, VGG require about 140 million parameters, most of which are given by 
fully connected layers. VGG16 is a 16 layers deep VGGNet.

GoogleNet (Szegedy et al., 2015) is a light network that won the ImageNet Challenge in 2014. GoogleNet 
implements a novel element, named inception module (figure 3), which is a subnetwork consisting of 
parallel convolutional filters whose outputs are concatenated. GoogleNet uses batch normalization, image 
distortions and RMSprop optimizer. The use of inception modules that strongly reduce the number of 
parameters, therefore GoogleNet architecture consists of 22 layers but requires only 4 million parameters.

Figure 1. Standard CNN architecture

Figure 2. VGGNet architecture
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RESEARCH�METHODOLOGY:�TAKHISISNET�ARCHITECTURE�

In this chapter we propose a novel CNN architecture based on the fusion of several network: TakhisisNet 
is a multi head CNN which owes its name to the fictional character of Takhisis, a five-headed dragon. 
The architecture of the proposed ensemble is shown in figure 4. The “body” of the network is a standard 
CNN architecture (VGG16 or GoogleNet in this work), from which we extract the output of the Global 
Average Pooling layer for GoogleNet and the output of the last max pooling for Vgg16. 

To be more precise, we add a set of reshape layers that take input from Global Average Pooling layer 
for GoogleNet and from last max pooling for Vgg16, and randomly reshape it into a square matrix (if 
the number of features is not a perfect square, the matrix is padded with some zeros). After the reshape 
layers, we feed other “head”-CNNs with the new matrices. The “head”-CNNs are trained end-to-end 
with the “body” CNN and each of them returns its own set of probability distributions. Then, we make 
our predictions by averaging the probability distributions of all the “head”-CNNs and summing it to the 
probability distribution of the body-CNN. 

Besides, it creates an ensemble of neural networks trained end-to-end. In the experiments we used 
architectures with ten “heads”, each head is a different CNN whose input is the output of a reshape layer. 
Besides, we used the same architecture for the “body” CNN and for the “heads”. In the tests reported 
in this chapter we used 10 “heads” which are finally fused, by weighted sum rule, to the “body” to give 
the response of TakhisisNet. Before the fusion the scores of both “body” and “heads” are normalized 
to mean 0 and standard deviation 1 (before the normalization the scores of the heads are combined by 
sum rule); moreover, the weight of “body” is 2 and the weight of “heads” is 1.

Figure 3. GoogleNet architecture
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In our experiments we evaluated two different implementations of the reshape layers: the first one is 
based on a simple randomization of the position of the features inside the output matrix, the second is 
based on pre-processing the output vector according to a continuous wavelet transform before reshaping.

The Wavelet Transform is signal decomposition onto a set of basis function, which is derived from a 
single prototype wavelet by scaling (dilatations and contractions) as well as translations (shifts).

In this work we use the Meyer mother wavelet (Daubechies, 1992), an orthogonal wavelet that is 
indefinitely differentiable with infinite support. The number of scales has been set to the length of the 
feature vector and in the case of feature vector larger than 5000, we reduce it to 5000 to avoid huge 
computational time. Then the output of the wavelet is resized to the size required by the CNN.

Materials

In order to validate our architecture, we performed experiments on several well-known medical datasets 
and we test our TakhisisNet on a Breast Ultrasound dataset. 

The medical datasets used for preliminary validation, see Table 1, include: the Chinese hamster ovary 
cells (a proteomic profiling dataset), the 2D HELA, a dataset of cell images from fluorescence micro-
scope acquisition, Locate Endogenous and Locate Transfected, two database of pattern for subcellular 
location and 6 biological dataset from the IICBU Biological Image Repository (FlyCel, Terminal bulb 
aging, Lymphoma, Muscle aging, Liver gender, Liver aging) https://ome.grc.nia.nih.gov/iicbu2008/, 
and three cancer datasets: the Human colorectal cancer dataset, the breast grading carcinoma and the 
Laryngeal dataset (Moccia et al., 2017). The 13 datasets are summarized in table 1, where the number 
of classes and samples for each dataset are reported. 

Figure 4. Proposed TakhisisNet architecture
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The protocol used in our experiments is five-fold cross-validation for 12 of 13 datasets. Since the 
Laryngeal dataset (Moccia et al., 2017) came already divided in training and testing, we used the sug-
gested testing protocol in that dataset. 

As to breast cancer classification is concerned, we used the OASBUD (Open Access Series of Breast 
Ultrasonic Data) (Piotrzkowska-Wróblewska, Dobruch-Sobczak, & Byra Michałand Nowicki, 2017), 
a freely available breast lesion dataset1. The dataset includes raw ultrasound data recorded from breast 
focal lesions corresponding to 52 and 48 scans from malignant and benign lesions of different people, 
respectively. Two orthogonal scans are available for each lesion, therefore in our system the final score 
of each lesion is obtained as the sum of the scores of the two orthogonal scans. 

Table 1. Descriptive Summary of the Medical Datasets: ShortName, Name, the number of classes (#C), 
number of samples (#S), URL for downloading, Reference.

Dataset Name #C #S URL for Download

CH Chinese hamster 
ovary cells 5 327 http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html#cho

HE 2D HELA 10 862 http://ome.grc.nia.nih.gov/iicbu2008/hela/index.html

LO Locate 
Endogenous 10 502 http://locate.imb.uq.edu.au/downloads.shtml

TR Locate 
Transfected 11 553 http://locate.imb.uq.edu.au/downloads.shtml

RN Fly Cell 10 200 http://ome.grc.nia.nih.gov/iicbu2008/rnai/index.html

TB Terminal bulb 
aging 7 970 https://ome.grc.nia.nih.gov/iicbu2008

LY Lymphoma 3 375 https://ome.grc.nia.nih.gov/iicbu2008

MA Muscle aging 4 237 https://ome.grc.nia.nih.gov/iicbu2008

LG Liver gender 2 265 https://ome.grc.nia.nih.gov/iicbu2008

LA Liver aging 4 529 https://ome.grc.nia.nih.gov/iicbu2008

CO
Human 
colorectal 
cancer

8 5000 https://zenodo.org/record/53169#.WaXjW8hJaUm

BGR breast grading 
carcinoma 3 300 https://zenodo.org/record/834910#.Wp1bQ-jOWUl

LAR Laryngeal 
dataset 3 1320 https://zenodo.org/record/1003200#.WdeQcnBx0nQ
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In figure 5 some samples from the OASBUD dataset are shown. Since the dataset is quite small, we 
used the leave-one-out cross validation as testing protocol: the test set consisted of 2 images from the 
same lesion and the training set consisted of all remaining images.

SOLUTIONS�AND�RECOMMENDATIONS

In order to validate the TakhisisNet architecture we perform experiments in several medical image 
classification tasks. In all the experiments the class distribution has not been maintained when splitting 
the datasets between training and testing (according to the k-fold cross validation testing protocol), and 
all the input images has been evaluated without ad hoc preprocessing. Since CNNs need input images 
of a fixed size, we have used the following approach: first the input image is padded to square size to 
maintain the aspect ratio, then it is resized using bilinear interpolation. 

Figure 5. Samples form the OASBUD dataset
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The evaluation of the proposed approaches and the comparison with the literature is performed ac-
cording to two of the most used performance indicators in image classification: accuracy and AUC. 
Accuracy is the ratio between the number of true predictions and the total number of samples, while 
AUC, i.e. the Area Under the ROC-curve, is a performance indicator mainly used for 2-class problems 
which can be interpreted as the probability that the classifier will assign a higher score to a randomly 
picked positive sample than to a randomly picked negative one (Huang & Ling, 2005). To validate the 
experiments the Wilcoxon signed rank test (Demšar, 2006) has been used.

In the first experiment we evaluate the proposed architecture on several well-known medical datasets, 
comparing the performance of TakhisisNet with its “body”-CNN (i.e. GoogleNet or VGG16) and the 
ensemble of its “heads”-CNNs. For fine-tuning the networks on each image classification problem we 
have used the following parameter configuration: learning rate 0.0001, miniBatch size 30, twenty-five 
epochs to train the “body” CNN, and 100 epochs for training each “head” of the TakhisisNet after the 
reshape layers. During the training phase a simple data augmentation has been performed (only for 
“body”, not for the “heads”) including reflection and scaling on both x and y axes. 

In table 2 the performance, in terms of accuracy, of TakhisisNet and its components is reported: the 
“body” is the standard CNN model (VGG16 or GoogleNet) fine-tuned on the specific dataset, the “heads” 
is the fusion by average rule of the 10 heads of the network. From the results in table 2 it is clear that 
TakhisisNet outperforms both its components in almost all the datasets. 

In table 3 the performance obtained varying the reshape method (random or wavelet) is reported. 
Even if the results in table 2 suggests that VGG16 performs better than GoogleNet in almost all the 
tested problems, we selected GoogleNet as base model for next experiments since its requirements in 
terms of memory occupancy and GPU time for training are much lower than for VGG16. Moreover, for 
a sake of time only a subset of datasets have been evaluated in table 3. For a better comparison some 
results of table 2 are replicated in table 3. In the last two lines of table 3 we also report the performance 
of other two ensemble: ENS_HEADS, is the fusion between Heads based on Random and Heads based 
on Wavelet; ENS_TAK, is the fusion between the two TakhisisNet, the one based on Random and the 
other based on Wavelet.

Table 2. Performance (accuracy) obtained by TakhisisNet vs. Body vs. Heads varying the base model 
(GoogleNet and VGG16) and using the standard random method for the reshape layer.

MODEL METHOD
DATASET

Avg
CH HE LO TR RN TB LY MA LG LA BG LAR

GoogleNet

Heads 88.62 83.60 92.00 86.55 44.50 59.18 72.00 60.83 97.33 93.14 80.67 85.76 78.68

Body 95.08 86.74 93.00 92.73 45.00 57.84 73.33 82.08 91.67 83.43 86.00 85.08 81.00

TakhisisNet 95.38 87.79 93.80 92.73 49.50 60.10 74.40 83.33 94.00 88.00 87.67 85.83 82.71

VGG16

Heads 94.15 89.88 91.00 85.45 55.50 63.71 78.67 71.67 99.00 96.19 84.00 88.03 83.10

Body 99.69 93.60 98.20 93.27 69.50 61.44 80.80 85.00 85.33 88.57 93.00 91.44 86.65

TakhisisNet 99.69 93.72 98.00 93.64 72.50 64.12 83.47 86.25 87.67 91.62 93.00 91.89 87.96
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From the accuracies reported in Tables 2 and 3 and considering the results of the Wilcoxon signed 
rank test, the following conclusions can be drawn:

• TakhisisNet outperforms the base CNN architecture (“body”) with a p-value of 0.005 for both 
GoogleNet and Vgg16 models;

• ENS-heads outperforms with a p-value of 0.1 both heads-Random and heads-Wavelet;
• Unfortunately, there is not a static performance difference between ENS-Tak and TakhisisNet-

Random or between ENS-Tak and TakhisisNet-Wavelet.

The second experiment is focused to the main aim of this work, breast ultrasound image classifica-
tion. For computational reasons, due to the onerous testing protocol used in the breast ultrasound dataset 
(i.e. leave-one-out) we have run tests using only GoogleNet. In table 4 the performance of TakhisisNet 
(based on GoogleNet) are compared with other ensembles designed for a sake of comparison. 

The first ensemble, named ENS_HAND is the combination of several SVM (Chang & Lin, 2011) 
classifiers trained with different handcrafted descriptors (L. Nanni, Brahnam, Ghidoni, & Lumini, 2018): 

1.  Multithreshold LPQ (MLPQ) (L. Nanni, Brahnam, Lumini, & Barrier, 2014) is a multi-threshold 
approach applied the LPQ descriptor. The MLPQ features used in our experiments are extracted 
and combined according to the method proposed in (L. Nanni et al., 2014).

2.  Gaussian Of Local Descriptors (GOLD) (Serra, Grana, Manfredi, & Cucchiara, 2015) is a descriptor 
that models the local features distribution with a multivariate Gaussian, without any quantization.

3.  Full BSIF (Loris Nanni, Paci, Caetano dos Santos, Brahnam, & Hyttinen, 2016) is an extension 
of the Binarized Statistical Image Feature (Kannala & Rahtu, 2012) that assigns each pixel of the 
input image a n-bit label obtained by means of a set of n linear filters. Full BSIF is a multi-threshold 
extension of BSIFT used to create an ensemble of classifiers. 

4.  Full RIC, is a multiscale Rotation Invariant Co-occurrence of Adjacent LBP (RIC) (Nosaka & 
Fukui, 2014). This variant extracts RIC features using different parameter settings, i.e. varying the 

Table 3. Performance (accuracy) obtained by TakhisisNet vs. Body vs. Heads varying the reshape method 
(random and wavelet) and using GoogleNet as base model. The last two rows report the performance 
of two ensembles.

MODEL 
(reshape method) METHOD

DATASET
Avg

CH HE LO TR RN LG LA BG

GoogleNet 
(random)

Heads 88.62 83.60 92.00 86.55 44.50 97.33 93.14 80.67 83.30

Body 95.08 86.74 93.00 92.73 45.00 91.67 83.43 86.00 84.20

TakhisisNet 95.38 87.79 93.80 92.73 49.50 94.00 88.00 87.67 86.10

GoogleNet 
(wavelet)

Heads 88.92 84.19 92.40 84.18 34.00 94.00 94.10 72.33 80.51

Body 95.08 86.74 93.00 92.73 45.00 91.67 83.43 86.00 84.20

TakhisisNet 95.69 87.67 93.40 93.09 47.50 92.67 88.00 87.33 85.66

ENS_heads 90.77 86.28 94.20 89.27 44.00 97.00 93.71 79.67 84.36

ENS_Tak 95.69 87.91 93.60 93.09 49.50 93.67 88.19 87.00 86.08
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LBP radius and displacement among the LBPs. The values used in our experiments are: (1, 2), (2, 
4) and (4, 8).

5.  LETRIST, the descriptor proposed in (Song, Li, Meng, Wu, & Cai, 2017): a descriptor that explicitly 
encodes the joint information within an image across feature and scale spaces.

A detailed description of each of these descriptors along with information about the parameter sets 
used for each descriptor can be found in APPENDIX 1.

The second ensemble, named ENS_DEEP is the combination of several GoogleNets trained with 
different parameters or data augmentation methods (all the combination have been considered) for a 
total of 24 CNNs: 

1.  Batch Size ∈{10, 30, 50, 70}
2.  Learning rate ∈ {0.0001, 0.001}
3.  Data Augmentation ∈ {left-right reflection; 4 side reflection + scaling; 4 side reflection + scaling 

+ roto-translation}

The third ensemble, named ENS_TH is the fusion by the sum rule between TakhisisNet2 and 
ENS_HAND; notice that before the fusion the scores of both TakhisisNet and ENS_HAND have been 
normalized to mean 0 and standard deviation 1. 

The first line of table 4 is the most performing stand-alone GoogleNet belonging to the ensemble 
ENS_DEEP chosen considering the performance directly on the test set. Even if in many papers the tun-
ing of parameters is performed selecting the best configuration on the test set, this practice can generate 
overfitting and it useful only to find an over bound to the performance. Therefore, the resulting network 
is named GoogleNet_OF. The second line is the most performing GoogleNet selected on the base of 
the performance in the training set. The third line is a VGG16 network fine-tuned on in the OASBUD 
dataset. The last two lines of table 4 report the best results published in the literature on this dataset.

From the analysis of table 4 it is clear that the proposed system TakhisisNet obtains performance 
higher that that reported in the literature (Byra, 2018)(Antropova et al., 2017). Another clear result is 

Table 4. Comparisons in the OASBUD dataset in terms of AUC

Method AUC
GoogleNet_OF 0.855

GoogleNet 0.822

VGG16 0.849

ENS_DEEP 0.874

TakhisisNet 0.877

ENS_HAND 0.887

ENS_TH 0.891

(Byra, 2018) 0.847

(Antropova, Huynh, & Giger, 2017) 0.826
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the usefulness of the ensemble: GoogleNet obtains an AUC of 0.822, drastically lower than the 0.877 
obtained by TakhisisNet. The highest AUC value is equal to 0.887 and has been obtained by the ensemble 
ENS_TH designed by the fusion of both deep learning and handcrafted features: this fact highlights 
the diversity among the two methods that can be exploited to improve the overall performance in an 
ensemble. The ROC curves calculated for the worst and the best performing classifiers (the stand-alone 
GoogleNet (yellow curve), TakhisisNet (blue curve) and ENS_TH (green curve)) are shown in figure 
6. The difference between AUC values was statistically significant according to the Wilcoxon signed 
rank test (p-value < 0.1). 

It is interesting to stress the high performance obtained by ensemble of texture descriptors; it outper-
forms the method based on CNN. As already show in other works, handcrafted descriptors can outperform 
deep learning approaches if a large training set is not available, as in the problem faced in this work.

Another interesting result is that we apply the same CNN ensemble validated on several medical 
datasets and we use a set of handcrafted descriptors that we have already proposed in the literature 

Figure 6. ROC curves of the proposed methods: GoogleNet (yellow curve), TakhisisNet (blue curve) and 
ENS_TH (green curve)
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(L. Nanni, Brahnam, Ghidoni, & Lumini, 2018); we have not optimized our ensemble for the breast 
ultrasound cancer dataset. That dataset is quite small, so it is risky to optimize a given approach on that 
dataset, e.g. in (Byra, 2018), see Figure 7, the performance of their approach is not very stable, to choose 
which layer to feed their classifier considering the performance on the test set could overfit the system.

As already stressed, the main problem with CNNs is that they need a large training set for the training/
tuning step; we expect to obtain better performance when more patients will be available. For example, 
the method proposed in (Antropova, Huynh, & Giger, 2017) obtains an AUC of 0.826 in the breast 
dataset tested in this paper, instead in a larger dataset of 1125 breast lesions an higher performance is 
obtained: AUC of 0.872. 

As shown in Figure 6 our system does not obtain a 100% true positive rate (TPR) with an acceptable 
false positive rate (FPR), the same problem occurs with (Byra, 2018); anyway also considering those 
performance indicators we obtain state of the art performance:

With a TPR of ~0.65 our approach obtains an FPR of 0.1, instead (Byra, 2018) obtains a TPR ~0.55 
with an FPR of 0.1.

FUTURE�RESEARCH�DIRECTIONS

Usually, neural networks require large amounts of training data in the order of millions of images, especially 
when the resolution is low. Nonetheless, our experiments based on fine-tuning pre-trained networks and 

Figure 7. Performance reported in (Byra, 2018) using different layers of VGG19 for the classification; 
“image” means that the raw imaged are used for feeding their classifier
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the fusion of several CNNs shows that very high performance can already be achieved with few training 
images resulting in performance comparable or even higher than handcrafted descriptors. Although this 
work used a supervised training approach, i.e. the training images were manually labeled as malignant 
or benign lesion, there are several attempts in the literature aimed at unsupervised or semi-supervised 
training of neural networks (Rasmus, Valpola, Honkala, Berglund, & Raiko, 2015)(Erhan, Courville, 
Bengio, & Vincent, 2010) with some works the medical field (Kallenberg et al., 2016). Therefore, we 
expect that in the future the size of the training set would not be a problem, given the availability of 
large datasets of medical images that could be used for training neural networks in an unsupervised, or 
semi-supervised mode. Finally, we try to couple our idea also to other CNN architectures. 

CONCLUSION

The purpose of the present chapter was to propose a novel CNN architecture named TakhisisNet, based 
on the fusion of a “body”-CNN of a set of “heads”-CNN trained end-to-end with the body. We have 
tuned and evaluated TakhisisNet on the digital classification of bio-images, and encouraged by the good 
accuracy achieved, we applied this promising network to breast ultrasound image. The experimental 
results demonstrate the promising performance of our classification system with a higher AUC than 
stand-alone approaches. It was unexpected that in this dataset our ensemble of handcrafted descriptors 
(ENS_HAND) performs better than other famous deep learning approaches: this fact is probably due to 
the small dimension of the training set; this fact is exploited to maximize the classification performance 
in this dataset by fusing the proposed TakhisisNet with the handcrafted ensemble. Our approach out-
performs state of the art methods of the same dataset. 

Even if the proposed system has shown to be robust also with a small training set, we hope that a 
further improvement can be obtained using large amounts of unlabeled data made available from the 
very high number of screening participants. Further study for semi-supervised training of TakhisisNet 
will be explored.

Finally, we share the MATLAB code of TakhisisNet for research purposes at https://github.com/
LorisNanni.
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KEY�TERMS�AND�DEFINITIONS

AUC: The “Area Under the ROC Curve” (AUC) measures the entire two-dimensional area underneath 
the entire ROC curve. One way of interpreting AUC is as the probability that the model ranks a random 
positive sample more highly than a random negative sample.

Convolutional Neural Networks: A convolutional neural network (CNN) is a type of artificial neural 
network used in image recognition and processing that is specifically designed to process pixel data by 
means of learnable filters.

Deep Learning: Deep learning is a subset of machine learning that models high-level abstractions 
in data by means of network architectures, which are composed of multiple nonlinear transformations.

Ensembles of Classifiers: An ensemble of classifiers is a set of classifiers whose individual deci-
sions are combined in some way (typically by weighted or unweighted voting) to classify new samples.

k-Fold-Cross Validation: Cross-validation is a statistical method used to estimate the skill of ma-
chine learning models. This approach involves randomly dividing the set of observations into k groups, 
or folds, of approximately equal size. At each round one different fold is treated at turn as a validation 
set, and the method is trained on the remaining k-1. Finally, the performance are combined (e.g. aver-
aged) over the rounds.

Leave-One-Out Testing Protocol: Leave-one-out cross-validation (LOOCV) is a particular case 
of k-fold-cross validation where k is the dimension of the set of observations, therefore each test set 
includes only one sample.

Machine Learning: Machine learning is an application of artificial intelligence that provides systems 
the ability to automatically learn and improve from experience without being explicitly programmed. 
Machine learning focuses on the development of computer programs that can access data and use it 
learn for themselves.
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ROC Curve: A receiver operating characteristic (ROC) curve is a graph showing the performance 
of a classification model at all classification thresholds. This curve plots two parameters: True Positive 
Rate vs. False Positive Rate.

ENDNOTES

1  Available at https://doi.org/10.5281/zenodo.545928
2  In this test, each CNN that built TakhisisNet is coupled with different learning rate and batch size 

(the same values of ENS_DEEP), moreover to boost performance we have used 20 heads instead 
10
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APPENDIX

In this appendix each of the descriptors used to build the ensemble ENS_HAND is briefly described.
Multithreshold LPQ: MLPQ (L. Nanni et al., 2014) is a multi-threshold approach applied the LPQ 
descriptor. LPQ (Ojansivu & Heikkilä, 2008) is a texture descriptor that uses the local phase informa-
tion extracted from the 2-D short-term Fourier transform computed over a rectangular neighborhood of 
radius R at each pixel position in an image. In (L. Nanni et al., 2014) a multi-threshold version of the 
simple binary quantizer of LPQ is proposed where the different pixels are encoded with 3 values using 
a set of thresholds τ around zero:
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According to (L. Nanni et al., 2014) the quantization is performed using to the following thresholds τ 
Î {0.2, 0.4, 0.6, 0.8, 1} and concatenating the resulting descriptors. In this study we combine sets of 
MLPQ extracted by varying the following parameters: the neighborhood size (R Î {1, 3, 5}), the scalar 
frequency, (a Î {0.8, 1, 1.2, 1.4, 1.6}), the correlation coefficient between adjacent pixel values PÎ{0.75, 
0.95, 1.15, 1.35, 1.55, 1.75, 1.95}. Each descriptor is used to train a different SVM classifier which are 
fused by sum rule. 
Gaussian Of Local Descriptors: GOLD (Serra et al., 2015) is an improvement of the Bag of Word 
(BoW) approach (Csurka, Dance, Fan, Willamowski, & Bray, 2004). The original BoW method extracts 
local features to generate a codebook, which is used to encode the local features into codes that form a 
global image representation. The codebook generation step is performed through clustering methods on 
the training set. GOLD is a four-step process that generates the codebook via a flexible local feature rep-
resentation that is obtained by a parametric probability density estimation. Differently from BoW, GOLD 
does not requires neither quantization nor a training set. The steps for extracting GOLD features are: 

1.  Feature extraction: dense SIFT descriptors (Cox & Pinto, 2011) are extracted on a regular grid of 
the image.

2.  Spatial Pyramid Decomposition: the image is decomposed by a multilevel recursive method, and 
features are softly assigned to regions according to a local weighting.

3.  Parametric probability density estimation: for each region local mean and covariance of extracted 
local descriptors are inferred, according to as a multivariate Gaussian distribution.

4.  Projection on the tangent Euclidean space: the final description is the mean concatenated to the 
projection the covariance matrix on the tangent Euclidean space.

The resulting GOLD descriptor is fed into an SVM classifier with a histogram kernel.
Full BSIF: (Loris Nanni et al., 2016) is an extension of the Binarized Statistical Image Feature (BSIF) 
(Kannala & Rahtu, 2012) that assigns each pixel of the input image a n-bit label obtained by means 
of a set of n linear filters. The original BSIF is a local image descriptor constructed by binarizing the 
responses to n linear filters which, differently to previous binary descriptors, are learnt from natural im-
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ages using independent component analysis (ICA). BSIF assigns an n-bit label to each pixel of an image 
using a set of n linear filters. The BSIF descriptor has two parameters: the filter size d (filters are d×d) 
and the number n of features extracted. In the original BSIF the binarization of a digit di (the result of 
the application of a filter on a pixel) is performed according to a fixed threshold τ=0:
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Full BSIF is a multi-descriptor version of BSIF obtained by varying the parameters of filter size (d Î {3, 
5, 7, 9, 11}) and a threshold τ for binarizing (τ Î {-9, -6, -3, 0, 3, 6, 9}). The resulting 35 combinations 
of descriptors are used each to train a different SVM that are combined by sum rule.
Full RIC: this is a multiscale Rotation Invariant Co-occurrence of Adjacent LBP (RIC-LBP) (Nosaka 
& Fukui, 2014). The RIC-LBP features are variants of the standard LBP designed to simultaneously 
have characteristics of rotation invariance and a high descriptive ability. LBP (Ojala, Pietikainen, & 
Maenpaa, 2002) is an operator that describes a local region as a binary pattern obtained by thresholding 
the difference between a center pixel and its neighboring pixels. LBP represents the magnitude relation 
of intensities, therefore it is robust against changes in illumination among image patterns, but it does 
not preserve structural information among binary patterns. The CoALBP (Nosaka, Ohkawa, & Fukui, 
2011) uses LBP pairs to keep such structural information: the histogram feature generated from CoALBP 
contains information on the structure of the image, since it describes the frequency of LBP pairs that are 
located near each other. Rotation invariant is reached in RIC-LBP by using a map table that maps together 
all the LBP pairs which have rotation equivalence according to a rotation angle θ. Finally, an RIC-LBP 
histogram is generated from for the entire image. He multi-scale variant of RIC-LBP extracts RIC-LBP 
features using different parameter settings, i.e. varying the LBP parameters radius and displacement 
(P,R). The values used in our experiments are: (1, 2), (2, 4) and (4, 8). }). Each resulting descriptor is 
used to train a different SVM which are combined by sum rule.
LETRIST: (Song et al., 2017) the Locally Encoded TRansform feature hISTogram descriptor is a his-
togram representation that explicitly encodes the joint information within an image across feature and 
scale spaces. It consists of the following three major steps: first local texture structures are characterized 
by a set of transform features their correlation is calculated by applying linear and non-linear operators 
on the extremum responses of directional Gaussian derivative filters in scale space. Second, these trans-
form features are binarized into by scalar quantization. Third, the discrete texture codes are aggregated 
into a compact histogram representation using cross-scale joint coding. In this work we used the default 
parameter proposed in the MATLAB toolbox (https://github.com/stc-cqupt/letrist). 

This research was previously published in Opportunities and Challenges in Digital Healthcare Innova-
tion; pages 151-169, copyright year 2020 by Medical Information Science Reference (an imprint of IGI 
Global).


