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Affordable microwave soil moisture detector  

 

Abstract— Monitoring the content of soil moisture is crucial in defining soil conditions and irrigation that affect 
agricultural efficiency. Accordingly, inexpensive and reliable devices are essential. Electromagnetism could be 
exploited for quantification of soil moisture, and in particular the real and imaginary part of the scattering parameter 
(S11). Several sensors have been developed, but some limits were encountered, such as interference due to soil 
constituents and a cost that is not always affordable. We developed an inexpensive cheap and rapid instrumental chain 
based on the response of a cavity antenna in the frequency range from 1.5 to 3 GHz. Very low-cost components were 
assembled and used: a miniaturized commercial vector network analyzer and a homemade cavity antenna. The 
antenna should be placed in contact with soil without being inserted. Tests were carried out directly in the field with a 
moisture content ranging from 1% to 45%. Starting from spectral variables (real and imaginary part of S11), partial 
least square regression models have been developed for estimation of moisture content (%). The main results show 
R2 values of 0.872 with root mean square error) of 4.1% (imaginary part, segmented validation). In light of the results 
obtained, the user-friendly device developed can be very attractive for final users also in terms of affordability.  

 
Index Terms— Soil-moisture, device, electric technique, inexpensive, moisture prediction.  

 
 

I. Introduction 

oil is a complex mixture of components in different states 
of matter (solid, liquid, and gaseous), and their proportion 

defines its quality [1]. Liquid-solid interactions are the main 
factor responsible for the physical properties of soil, which is 
affected by water fluxes of the land surface, precipitation, 
temperature, and evapotranspiration, which all play a 
significant role in agricultural practices and irrigation 
management [2]. Quantitatively, the liquid component is 
mainly represented by the amount of water in the pore spaces 
of unsaturated soil and can be expressed as gravimetric 
moisture content (ratio between the mass of moisture present in 
the sample to the dried mass) or volumetric moisture content 
(ratio between the volume of moisture present in the soil and 
the total volume of the soil). Thus, measurement of soil 
moisture content is fundamental, and according to the standard 
method, can be calculated by the difference in weight after 
drying the sample in an oven [3]. The traditional thermo-
gravimetric method, performed in a laboratory environment, is 
time-consuming, laborious, and unsuitable for real-time 
monitoring of soil moisture [4]. 
Given the importance, many alternative sensing techniques 
have been developed to estimate soil moisture content for 
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agricultural purposes [5]. These include remote sensing tools, 
which are suitable for large-scale estimations, and in-situ 
devices for in-field assessments [6]. In-situ sensing methods are 
point-based solutions that can require, or not, physical contact 
with the soil. In recent years, together with the advancements in 
sensor technology and modern industrial communication 
protocols (e.g., Internet of Things IoTs), several soil moisture 
sensors have been developed with various measurement 
methods, including tensiometers [7], radioactive techniques 
based on neutron scattering probes [8], heat pulse probes [9], γ-
ray projection or gamma ray attenuation theory [10], infrared 
spectroscopy [11], electromagnetic induction techniques [12], 
and dielectric methods [4]. However, for continuous 
monitoring, these techniques have several disadvantages. For 
example, a tensiometer is limited in spatial variability and has 
high maintenance costs, while gamma-ray and neutron probes 
are expensive and cannot be widely adopted because of 
radiation hazards [4]. Infrared remote sensing and dielectric 
spectroscopy [13]–[15] appear to be the most suitable 
alternatives. The interaction of the radiofrequency 
electromagnetic waves with matter is described by dielectric 
permittivity (Ɛ*=Ɛ’ - jƐ’’), a complex number containing both 
real (Ɛ’ related to the amount of energy stored) and imaginary 
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(Ɛ’’ or loss factor, related to the loss of energy) components. 
Water molecules show a relative dielectric permittivity of about 
80 at 20 °C (at a frequency up to 3 GHz), a value which is higher 
than that of the air (1.00059 at 101325 Pa) and other soil 
constituents (from 4.5 to 10) [16] such as minerals, salts, and 
organic matter. Even if not comparable to the role of the 
moisture content, texture and bulk density can influence 
dielectric properties [17], [18]. Several commercial sensing 
techniques are based on assessment of moisture content through 
soil dielectric permittivity and subsequent use of specific 
calibration models [19], [20]. These solutions include both 
point measurement techniques, such as time domain 
reflectometry (TDR) and frequency domain reflectometry 
(FDR), and remote measurement techniques such as ground 
penetrating radar (GPR). However, considering the complexity 
of the material and its relation with electromagnetic waves, the 
success of these measurement solutions is related to the ability 
of the calibration models to estimate the moisture content of soil 
and the interaction between its components, taking into account 
the frequency of measurements and temperature [14], [20]. 
More recently, to set up a reliable non-contact system, attention 
was dedicated to a technique based on an open-ended 
waveguide positioned in contact with the soil surface combined 
with multivariate tools (PLS regression) [21], [22]. The 
resulting spectra were influenced by differences in levels of soil 
moisture in both controlled laboratory conditions [22] and in a 
real environment experiment conducted using a portable device 
with the coefficients of the PLS predictive model embedded in 
the system [21]. PLS appeared to be able to model the 
variability as testified by the external validation conducted on 
spectra acquired on a range of soil types (silty clay loam soil 
characterized by moisture content ranging between 9% and 
32%), showing an R2 value of 0.892 and a root mean square 
error (RMSE) of 1.0%.   
Considering the needs of the primary sector need, cost is 
another crucial aspect of sensor development. As is known, 
instruments with high prices are not widely desired. Many 
sensors for estimation of soil moisture based on dielectric 
properties have been proposed in previous studies [4]. 
However, some of these are expensive [23]–[25], while others 
are characterized by a low-cost probe and expensive 
instrumental chain [26]–[30], becoming incompatible for the 
designated purpose. A selection of applicable soil moisture 
techniques based on dielectric properties and characterized by 
low cost is reported in Table I. The present work was also added 
to the table for easy comparison. 
As can be seen, experiments conducted on resistance [31], [32] 
have possible sources of error affecting the accuracy of 
measurements, mainly due to the variability introduced by 
irrigation procedures, which continuously change the ionic 
concentration of soil. In addition, several studies have been 
conducted in laboratories with homogenous soil samples [33]–
[35] or in a controlled environment [36] with added water, 
which is far from the actual hydration behavior in the field and 
renders samples more homogeneous.  
 
TABLE I Low-cost techniques for measurement of soil 

moisture based on dielectric properties. 

 
 
Only two studies measure the sensor’s performance in the field 
[37], [38]; moreover, the proposed solutions must be inserted 
into the soil, and relative performances have been shown by 
only exploring calibration procedures. Probe insertion in soil 
does not preserve the physical characteristics of the field, and 
can lead to possible errors [37]. Considering statistical aspects, 
not all studies have reported predictive indexes that define the 
robustness of the calibration models developed. 
The present work aims to: 

 explore the potential of an inexpensive and rapid 
instrumental tool for estimation of the gravimetric 
moisture content (%) in a real agricultural 
environment; 

 select and set up an instrumental chain composed of a 
miniaturized commercial nano-vector network 
analyzer (VNA) and a cavity antenna as a probe that 
is not to be inserted into the soil but just placed in 
contact with it; 

 develop a multivariate statistical model; both real and 
imaginary parts of the scattering parameter S11 are 
combined with PLS regression models to estimate the 
target physical parameter.  
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II. MATERIALS AND METHODS 

A. Soil characteristics 

Two fields with two different crops (rocket salad for seed, 
Eruca Sativa, and salad, Lactuca Sativa) were selected. The 
fields, characterized by the same texture and chemical 
composition, are located in Italy, in the northeastern Emilia 
Romagna region. The Emilia Romagna regional institute 
constantly monitors the composition of agricultural soils, and 
an interactive site (https://agri.regione.emilia-
romagna.it/Suoli/) allows consultation of the cartography of 
soils and maps of the natural foundation with all the relative 
characteristics are reported and available for all users.  
Accordingly, the land sites are precisely identified, and the 
characteristics are further reported. Loamy loam soil is very 
deep with a moderate, fine texture. The soil is scarcely 
calcareous and slightly alkaline in the upper part, while 
moderately alkaline and very calcareous in the lower part. The 
substratum is alternated by silty and sandy alluvium. The 
chemical-physical analysis of the soil revealed the following 
composition: 21.7% sand, 35.5% clay, pH 8, and total calcium 
4.8%. The organic matter is 1.8%, total nitrogen 1.3‰, and 
P2O5 34 mg/kg with K2O 158 mg/kg.  
Both fields were irrigated by the flooding method. Water was 
released twice during the season, from May to August 2022, 
and fields were leveled and milled. Traditional flood irrigation 
is still in use, and it involves simply letting water flow over the 
ground. Water is released in intervals; soil is leveled to be more 
efficient and limit evaporation, infiltration by capillarity, and 
loss by transpiration. Sensors can help the management of 
irrigation, especially the flooding method, by paying attention 
to the in-depth strategic placement of the probe. 

B. Device design: principle of detection 

In electrical engineering, losses caused by the line, antenna, and 
standing waves are undesirable, and signal analysis helps to 
control correct wave propagation along a cable, minimizing 
distortions [40]. In the present work, the reflection of the wave 
becomes an opportunity to study soil behavior. The response 
regarding dipole rotation of molecules and energy storage 
producing loss can be used to characterize the chemical-
physical properties of the material being tested. 
Considering constant composition and field milled treatment to 
be in very similar geometry of the ground analyzed, the 
moisture content could be considered the main parameter 
affecting electromagnetic wave interaction in the microwave 
range.  
In a radiofrequency incident signal on one port, part of this 
signal is sent to the probe and reflected back to the port, while 
the loss of the signal power is dissipated and absorbed. S-
parameters represent the response obtained when the 
electromagnetic wave encounters a discontinuity, in our case 
soil, causing the scattering of the signal. The reflection 
coefficient (Γ) is related to the load impedance and the real and 
imaginary parts of S11, according to the following equations: 
 

Γ = 
 

   = (𝑆11 + 𝑆11 ) 

 

𝑍 =  
𝑍

𝑅
 

 
where Zln is the load impedance normalized to R0, the system 
reference impedance, and S11re and S11im are the real (resistive) 
and imaginary part (reactive) of S11, respectively.  
Accordingly, real and imaginary parts of S11 can be used as 
signal parameters to correlate with soil properties. 

C. Layout of the instrumentation 

 
Figure 1. The instrumentation layout comprises a rectangular 
cavity antenna, a NanoVNA, and a personal computer.  
The instrumental chain is characterized by a rectangular cavity 
antenna connected via port CH0 with a semi-rigid coaxial cable 
(50 Ohm) to a NanoVNA, V2 (HCXQS in collaboration with 
OwOComm, China) and interfaced via USB with a PC (Figure 
1). These elements have been described, even if separately, in 
previous works [41]–[43]. Working as a probe, the dimensions 
of the internal section of the cavity antenna is 96 mm to 46 mm. 
The NanoVNA was fastened to the cavity antenna with a 
specific support. 
An antenna usually operates at or near its resonant frequencies, 
where its reactance equals zero [40]. The reactance (X) of the 
self-manufactured cavity antenna of the probe was measured 
using R-140 VNA (Vector Network Analyzer, Copper 
Mountains) interfaced via USB to a computer with appropriate 
software. For the cavity antenna, according to Figure 2 showing 
the reactance (X) against frequency (Hz), the resonant 
frequencies are 1.56 and 2.46 GHz (in air). 
Its producer kit (HCXQS in collaboration with OwOComm, 
China) calibrated the device, accounting for open, short, and 
load correction. The VNA has already been used by other 
authors [42], [43], and is a very affordable instrument. In 
addition, the NanoVNA is also very promising for in-field 
applications as it is portable and has an internal rechargeable 
battery. 
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Figure 2. Reactance (X) of the cavity antenna (in air) in the 1.5 
– 3.0 GHz frequency range.  
 
Data were acquired using the NanoVNA-saver software (GNU, 
General Public License, version 0.3.8, Rune Broberg), 
averaging 10 consecutive acquisitions. Each was composed of 
301 spectral points acquired in about 30 seconds. 
The NanoVNA acquisitions were set from one port in the 
frequency range from 1.5 to 3 GHz, and provides the real and 
imaginary parts of the scattering parameters (S11). 
Furthermore, the device penetration depth (the depth to which 
the instrumentation can detect a reflection) was empirically 
estimated to evaluate the feasibility of self-manufactured 
probes. In the microwave range, the penetration depth varies as 
a function of moisture content; the lower the percentage of 
water, the greater the thickness probed. Measurements were 
conducted on soil hydrated at 5% humidity (dry basis), 
representing a low moisture value. A metal plate was put into 
the material at different heights (3, 6, 9, 12, 15, and 28 cm) to 
directly measure the signal influence at different depths. 

D. Experimental setup 

The experimental plan included 315 in-field acquisitions, 
conducted by performing three probe rotations for each 
sampling area (with a step of about 45°). Measures of the three 
probe rotations were averaged. Accordingly, 105 samples were 
then used for model building. At the same time, soil samples 
were collected in correspondence with the probe position for 
assessment of moisture content (%). Measurements were 
conducted 10 times from May to August 2022, early in the 
morning, to limit the large oscillation in temperature. Soil 
temperatures between 17.5 and 29.0°C (± 0.2°C) were detected. 
Although within a closer temperature range, as Franceschelli et 
al. (2020) observed, the moisture content significantly 
influenced spectral waveforms more than temperature in the 
frequency range explored.  
The target parameter (moisture content, %) used for the 
statistical inference was obtained by the traditional destructive 
oven method by drying soil samples at 105°C for 24 h [21]. The 
thermogravimetric method was selected for its recognized 
accuracy. In detail, the moisture content was assessed on the 
first 5 cm of soil depth and ranged between 1.3% and 45.9.%.  

E. Statistical analysis 

A multivariate method was selected to build the regression 
models from real and imaginary signals (the spectral variables). 
These signals were used as independent variables (X) to build 
predictive models for estimation of moisture content (Y) using 
a bilinear regression tool, i.e. partial least squares regression 
analysis (PLSR). PLS projects X and Y in a new orthogonal 
space:  
 
X = T PT and Y = U QT  
 
where T is the latent vector called the score matrix of X, P is 
the loading matrix of X, U is the score of Y matrix, and Q is the 
loading of Y matrix [44], [45]. Starting from the simultaneous 
calculation of the projections of the X and Y matrices and 
maximizing the correlation of the two new spaces,  
coefficients and weights of the X matrix are obtained [44], [45]:   
 
Y=X  + 0 
 
Data were organized in two matrices composed of 105 samples 
and 301 spectral variables (for both real and imaginary parts). 
Spectral sample outliers were detected before the model-
building procedure on the entire dataset.  
Segmented and test set validations were then considered to 
understand how the models performed with unknown samples. 
Twenty segments, with five samples each, were randomly 
selected for segmented validation. Assuming the test set 
validation, 20% of samples were randomly extracted from the 
calibration dataset (80% of the samples) and used to validate 
the model. The procedure was repeated 10 times, and the results 
were averaged. The model’s ability in estimating soil moisture 
(%) was considered in terms of coefficient of determination 
(R2), root mean square error (RMSE), and significative PLS 
components (LVs) for both calibration and validations. The 
bias, known as the systematic difference between measured and 
predicted values, was also computed as the average of the 
residuals. Regression coefficient beta () and X-loading 
weights were exploited to show which part of the spectral range 
mainly contributes to sample variability in terms of moisture 
content.  
All statistical processes were carried out using Unscrambler ® 
(Unscrambler software, version 9.7, CAMO, Oslo, Norway).  

III. RESULTS AND DISCUSSION 

The instrumental chain described above was first tested in the 
laboratory to estimate the depth of penetration in the soil of the 
radiofrequency device, as described in the Materials and 
Methods. As an example, the real part of S11 of the soil 
analyzed with and without a metal plate placed at a depth of 28 
cm is shown in Figure 3. As observed, at this depth, the antenna 
is still sensitive to the metal plate. Accordingly, even if 
empirical, the penetration depth of the device can reach at least 
28 cm, considering a soil characterized by a low moisture 
content (5%). 
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Figure 3. The real part of S11 of soil (5% moisture) with and 
without a metal plate at a depth of 28 cm. 
 
In Figure 4, the real, imaginary parts and magnitude of the S11 
for the in-field soil measurements, colored to distinguish 
differences in moisture content, are shown in the frequency 
range of 1.5-3.0 GHz.  
 

 

 

Figure 4. The real and imaginary parts and magnitude of S11 

highlight differences in spectra due to moisture content.  

 
As observed, variations in moisture produce spectral 
modifications in terms of peak intensity and slope. The largest 
differences can be appreciated in the first part, between 1.5 and 
1.9 GHz, of the frequency range, considering real, imaginary, 
and magnitude. In particular, magnitude does not show an 

apparent, univocal behavior according to variations in the 
moisture content. Thus, a different effect of water in terms of 
absorption or reflection can be observed within the spectral 
range. The phenomenon could be related to the complexity of 
the characteristics of the device-soil system (e.g., the cavity 
antenna's geometry, soil's cloudiness, and radiation mode close 
to near-field conditions). As observed in previous research, for 
different types of soils changes in the moisture content led to 
appreciable differences in the spectral waveforms in the 1.5-2.7 
GHz frequency range in terms of gain and phase, especially in 
the 1.5-1.9 GHz and 2.5-2.7 portions [21], [22]. 
Water is the main physical substance in the microwave range 
that produces electromagnetic wave interaction, and the above-
cited ranges seem promising for their indirect estimation of 
water in different soil types [40]. It is known that soil texture 
can affect measurements and related regression models; 
however, tailored sensor calibrations with several soil textures 
and dedicated regression models could be a means of 
overcoming this. 
Results in terms of R2, RMSE, LVs, and bias of calibrated and 
validated PLS regression models obtained from averaged real 
and imaginary parts of S11 spectra are summarized in Table 1.   
 
Table 1. Results of PLS regression for S11 real and imaginary 
part considering different validation methods.  

 
 
Considering the real part of S11, PLS-validated models 
demonstrated a good prediction ability in terms of R2 values 
ranging from 0.854 (Segmented) to 0.825 (Test set) and RMSE 
values (between 4.4 % and 4.9%). The imaginary part reaches 
slightly higher results with R2 values ranging from 0.872 
(Segmented) to 0.862 (Test set), and RMSE values ranging 
from 4.1% to 4.3%. Another parameter confirming the good 
performance of the model is the low values of bias, or the error 
linked to the prediction. Considering the variability of soil 
samples measured in the field, the wide range of the moisture 
content, and the influence of temperature, PLS regression 
models seem to accurately estimate the moisture content (%). 
Better prediction appeared to be related to the imaginary part of 
S11, while the magnitude of S11 did not improve the predictive 
performance of the model.  
Predicted versus observed values of moisture content (%)for 
segmented validation and calibration of PLS models (see Table 
1) for both real and imaginary parts are shown in Figure 5.  
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Figure 5. Predicted versus observed moisture content (%) for 
segmented validation and calibration of PLS models for the real 
(left) and imaginary (right) parts of S11.  
 
The regression model of the real and imaginary parts of S11 
yields an equation in which the regression β-coefficient and X-
loading weights express a linear combination between observed 
and predicted values. Accordingly, which part of the signal 
contributes mainly to explaining data variability by plotting the 
β-coefficient (Figure 6) and X-loading weights (Figure 7) 
against frequency can be observed.  

 
Figure 6. Regression coefficient (β) for S11 (real and imaginary 
parts).  
 

 
Figure 7. X-loadings of LV1, LV2, and LV3 for S11 (real and 
imaginary parts). 

 
For both real and imaginary parts of S11, the maximum 
variation of the β-coefficient and X-loading weights of the first 
three LVs are around 1.6 GHz and 2.6 GHz.  
These two-frequency sub-ranges are the most sensitive for the 
cavity antenna, as shown in Figure 8, which describes the soil 
reactance (X) versus frequency (Hz) (moisture content of 45%).  
 

 
Figure 8. Reactance (X) for soil with a moisture content of 45% 
versus frequency (Hz). 
 
The values of the maximum sensitivity of the cavity antenna are 
represented by the points in which the reactance (X) (45% of 
soil moisture content) is zero, and it behaves as a resonator. 
These two sub-ranges, around 1.6 and 2.6 GHz, correspond to 
the frequency with the highest spectral variability. In addition, 
several studies have previously identified the frequency range 
1.6-2.6 GHz as one of the promising for estimation of moisture 
content. Accordingly, the β regression coefficient and X-
loading weights of the models show the highest variability in 
these frequency ranges and contribute to the highest prediction 
of moisture content (%).  

IV. CONCLUSION 

A rapid, simple, and non-destructive technique based on a 
cavity antenna coupled with a vector network analyzer was 
established to assess moisture content directly in the field on 
silty-clay-loam soil. The device’s accuracy, as far as the device 
penetration depth, was examined by providing a considerably 
mature base for commercial needs. At present, the economic 
aspect is important for large scale implementation, and the 
device presented meets this requirement, with a current 
estimated cost of $200 USD.  
Real and imaginary parts of S11 were used to build PLS 
multivariate models. The best results in terms of coefficient of 
determination R2 values were 0.854 (RMSE 4.4%) for the S11 
real part and 0.872 (RMSE 4.1%) for the S11 imaginary part 
(segmented validation). The best external validation results 
regarding R2 values were 0.825 (RMSE 4.9%) and 0.862 
(RMSE 4.3) for the real and imaginary parts, respectively. The 
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optimal operating bandwidth was determined to be from 1.5 to 
2.6 GHz. The limited bandwidth could give further strength to 
the affordability of the device.  
The cost-effective and easy-to-use device that can monitor in 
real-time and regulate moisture levels in the field appears 
promising and worthy of being further improved to meet the 
needs of agricultural farmers in an increasingly digitized world.  
 
FUTURE WORK  
Future studies should be carried to validate the feasibility of the 
device for soil moisture estimation in soil characterized by 
different granulometry and clodiness. For this purpose, the 
development of calibration models that are specific for a certain 
soil type may be required. One possibility, already implemented 
on other instruments, could be to perform and test different 
predictive models (e.g. based on non-linear PLS or artificial 
neural network) on the same samples or samples with similar 
characteristics. Moreover, some attempts could be made to 
implement a single model for a cluster of soil typologies 
considering only the three main types: silty, loam, and clay.  
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