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Abstract: Person Re-identification is the task of recognizing comparable subjects across a network of
nonoverlapping cameras. This is typically achieved by extracting from the source image a vector of
characteristic features of the specific person captured by the camera. Learning a good set of robust,
invariant and discriminative features is a complex task, often leveraging contrastive learning. In
this article, we explore a different approach, learning the representation of an individual as the
conditioning information required to generate images of the specific person starting from random
noise. In this way we decouple the identity of the individual from any other information relative to
a specific instance (pose, background, etc.), allowing interesting transformations from one identity
to another. As generative models, we use the recent diffusion models that have already proven
their sensibility to conditioning in many different contexts. The results presented in this article
serve as a proof-of-concept. While our current performance on common benchmarks is lower than
state-of-the-art techniques, the approach is intriguing and rich of innovative insights, suggesting a
wide range of potential improvements along various lines of investigation.

Keywords: person re-identification; image generation; diffusion models; latent space; representation
learning

1. Introduction

The challenge of person re-identification lies in recognizing comparable subjects across
a network of non-overlapping cameras, which is a common scenario in multi-camera
surveillance systems [1]. In its typical formulation, the person re-ID task aims to identify a
specific individual from an extensive collection of person images, known as the gallery, by
utilizing a query image [2]. While this task falls under the framework of image retrieval
problems, its unique objective of determining the identity of the person within a query
image, typically expressed by a distinctive ID label, introduces intriguing peculiarities.

At its core, person re-ID involves acquiring knowledge about distinct characteristics
of individuals, enabling the differentiation between images depicting the same person and
those featuring different individuals. The difficulty of this task stems from substantial
variations in viewpoint, pose, lighting, and image quality across diverse cameras in real-
world scenarios. In such situations, individuals may appear in multiple cameras across
various locations, thereby intensifying the challenge of feature acquisition [3].

The typical approach to the re-ID task involves a two-phase process: a representation
learning phase, where interesting and distinctive features of individuals are extracted, and
a metric learning phase, where training objectives are designed using various loss functions
or sampling strategies. This process aims to shape the embedding space in a way suitable
for searching and retrieval.

Both phases are complex and very interesting. For feature extraction, modern ap-
proaches have leveraged deep learning techniques, exploiting convolutional networks [4,5],
Generative Adversarial Networks [6–9], Visual Transformers [10–14], and different kinds
of attention mechanisms [15–18]. Features can be enhanced by exploiting part-based
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methods, focusing on extracting features from specific regions of interest [10,19,20], pre-
training [21,22], and multitasking [23] via a suitable set of pretext tasks.

Metric Learning is typically based on some form of contrastive learning [24], either
using contrastive loss [25–28] or, more frequently, triplet loss [29–32]. Both approaches aim
to encourage similar examples to be close in the feature space and dissimilar examples to
be separated. In the context of triplet loss, ref. [33] introduced a focal loss to the triplet
criterion, assigning more weight to negative samples compared to positives. Additionally,
computing centroids, such as the mean of all samples belonging to each instance, helps
with cluster creations as well [34–37]. The triplets can be extended to a quadruplet loss,
with two negative samples and one positive pair, to enlarge the inter-class variations [38]
or to N-tuple loss for joint optimization of multiple instances [39]. An extensive amount of
works use a form of contrastive loss in combination with the softmax loss [40,41], i.e., recent
works are [19,23,42]. Contrastive learning can also be used in combination with techniques
such as generative learning [43], multi-instance learning [44], and spatial attention [45].

Contrary to all such methods, we adopted a distinct approach by associating a unique
latent representation with each identity. This representation was learned as the conditioning
information necessary to generate diversified samples of the particular person from random
Gaussian noise (see Figure 1a). The generator takes as input a (learned) embedding of
the identity emb(id), a noise vector z, and produces a sample image GEN(emb(id), z).
The next step involves computing a right inverse GEN−1 to the generator, producing,
from an individual’s image X, an embedded identity idX and a noise vector zX , such that
GEN(idX , zX) = X (see Figure 1b). The idea is that idX should capture the interesting and
individual features of the person represented in X, while the “noise” z′X should contain all
information unrelated to the specific identity, such as background, pose, etc. The identity
idX is then used to retrieve samples from the gallery by comparing their embeddings in the
latent space.

(a) (b)

Figure 1. Conditional generative model (a) and its inversion (b). We trained a diffusion generative
model conditioned on an embedding of people’s identity. The embedding of identity labels was
learned along with the generator. In reverting the conditional generator, we obtained a model that
was able to split the image into the identity of the person, and all of the contextual information (pose,
background, and so on) that was mapped back to the noise.

The inversion of the generator was the most delicate part of the work and is discussed
in Section 4.

As the generative model, we employed an instance of the recent diffusion
models [46,47] due to their remarkable sensitivity to conditioning, unbiased sampling
capabilities, and excellent expressiveness. Examples of the generation of images condi-
tioned on the individual identity are given in Figure 2.

The generative quality is not perfect, and can probably be improved upon. In particular,
for this prototyping work, we used a low-resolution version of the dataset, with images of
a 64 × 32 dimension (instead of the usual 128 × 64). The embedding space for the identities
has 32 dimensions. In spite of being so small, the conditioning seems to work well, as
exemplified in Figure 2.

The results presented in this article represent a preliminary investigation in the direction
described above. They are primarily intended as a proof of concept, testing the feasibility of the
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approach. The current performance, measured on standard benchmarks such as Market-1501,
is encouraging, though it falls short of various state-of-the-art approaches.

Figure 2. Conditional generation. On the left, three sample identities taken from the Market1501
dataset. We sample 5 random noises, and for each of them we generate an image conditioned by the
given identity; the noise in each column is always the same.

1.1. Achievements

The goal of this work was to answer two conceptual questions, namely:

1. Is it possible to characterize a person’s identity (from the person re-ID perspective) as
the conditional information required to generate a diversified set of images relative to
the given person?

2. In that case, is it possible to compute a right inverse to the generator, extracting from
an image of a person their conditioning identity?

Although, from the point of view of person re-identification, our results are slightly
below the state of the art, our work provides evidence that both questions are likely to have
a positive answer.

1.2. Structure of the Work

The article is structured as follows. Section 2 discusses related work. Section 3
introduces the specific class of generative models utilized in this study, namely Denoising
Diffusion Models, with a focus on a particular subclass known as Implicit Models. The
methodology, including the inversion of the generative network, is detailed in Section 4.
Section 5 provides a comprehensive description of the neural network architecture. A brief
summary of our results is presented in Section 6. Section 7 explores the latent space of
identities, examining the spatial organization of latent representations and the significance
of different variation factors. Section 8 is dedicated to ablation studies and discusses
alternative solutions that were considered but ultimately not adopted. Concluding remarks
and directions for future research are provided in Section 9.
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2. Related Work

In the introduction, we provided an overview of the primary methodologies used
in addressing the person re-identification task. Given that this paper adopts a generative
paradigm, this section focuses on exploring relevant literature within this specific context.

Generative techniques in person re-identification have primarily been utilized for
data augmentation and unsupervised domain adaptation (UDA). The majority of these
works employ Generative Adversarial Networks (GANs), which have only recently been
challenged by the emergence of diffusion models.

Domain adaptation methods utilize style transformation techniques to adapt images
from a source domain to resemble those of a target domain. This transformation allows the
images to retain the content of the source domain while adopting the visual style of the
target domain. The new images obtained in this way are then used to fine-tune the network
parameters. GAN-based image style transfer has quickly become a popular method for
transferring knowledge between source and target domains in unsupervised cross-domain
person re-identification, as evidenced by [6,7,48,49].

CycleGANs, as discussed in [9,50], are employed for this purpose. In the first men-
tioned work, a target encoder is used to obtain a discriminative mapping of target images
into the transformed source feature space, thereby fooling a domain discriminator. The role
of the discriminator is to distinguish between the features of the target domain and those
of the transformed source domain. In [50], the objective is to swap features of the source
and target environments to generate cross-domain images that preserve identity-related
features associated with the source (or target) background features. This process is sub-
sequently reversed to reconstruct the original input image, facilitating a self-supervised
cyclic generation .

Chen et al. [43] propose an alternative approach in their study. They employ a 3D
mesh-guided GAN to generate views, which are then integrated with original images
through memory-based contrastive learning, aiming to achieve view-invariant representa-
tions of instances. In this methodology, training occurs jointly; the GAN learns the data
distribution through adversarial training, while the contrastive instance discriminator
acquires representations by retrieving each instance from a pool of candidates.

In [8], GANs fulfill a dual role. They utilize CycleGAN and Siamese networks to trans-
fer image styles between domains while ensuring pedestrian identities are preserved. This
is followed by iterative self-training with GANs to enhance both global and local features
within the target domain, thereby facilitating robust feature learning in unlabeled data.

In [51], the introduction of the PCDS-GAN model marks a significant advancement
in synthesizing source-labeled images against domain-specific backgrounds, effectively
bridging the domain gap and enhancing domain adaptation efficiency. This is accomplished
by separating pedestrian images into foreground, background, and style features. A U-Net-
based Hole-Filling Module (HFM) is employed for transferring the background between
different domains, tasked with reconstructing the scene areas previously occupied by the
source foreground. This technique enables the generation of person images set against a
variety of target domain backgrounds.

3. Denoising Diffusion Models

In this section, we provide a concise overview of diffusion models, a topic extensively
covered in existing literature. Readers familiar with this area may opt to skip this section.

Denoising Diffusion Models (DDMs) [46] mark a significant breakthrough in deep
generative modeling, posing a challenge to the longstanding predominance of Genera-
tive Adversarial Networks [52]. These models have been applied with great success in
various recent and notable projects, such as [53–55]. Key factors contributing to their
rising prominence include unparalleled generation quality, high adaptability and ease of
conditioning, the ability to generate diverse and robust samples, stable training processes,
and remarkable scalability.
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An important characteristic of this generative paradigm is its robust probabilistic
foundation. However, a formal exploration of the underlying theory behind denoising
diffusion models is beyond the scope of this article. For a deeper theoretical understanding,
we refer the reader to the extensive literature available [46,47]. Here, we aim to provide an
operationally focused description of the denoising model, comprehensible even without a
deep understanding of its theoretical background.

In very rough terms, a diffusion model trains a single network to denoise images
with a parametric amount of noise. This network is then used to generate new samples
in an iterative manner, starting from a purely ’noisy’ image and progressively removing a
decreasing amount of noise.

This process is traditionally referred to as reverse diffusion, as it aims to “invert” the
direct diffusion process, which consists of iteratively adding noise (see Figure 3).

Figure 3. Direct and reverse diffusion. Picture from [56].

We concentrated on a particular subclass of diffusion models, known as Implicit
Diffusion Models [47], which have been a focal point of our research in numerous previous
works. A key feature of these models is their fully deterministic reverse diffusion process.
This attribute is crucial for applications that require embedding the output back into
its latent representation, as discussed in [57]. Another significant advantage of Implicit
Diffusion Models is their efficiency, typically requiring only a minimal number of iterations
(about 10, as reported in [58,59])—a stark contrast to other techniques that may need
thousands of iterations. Additionally, their remarkable conditioning capabilities have been
demonstrated in the field of precipitation forecasting [56], where the goal is to predict
the probability distribution of a specific atmospheric parameter based on recent weather
conditions.

3.1. The Denoising Network

The only trainable component of the reverse diffusion process is a denoising network
ϵθ(xt, αt, c), which takes as input a noisy image xt, a signal rate αt, possibly a condition
c, and tries to guess the noise present in the image. The model is trained in a completely
supervised way. The main steps are the following:

1. pick a random image x0 from the train set, coherent with the condition c;
2. select a random step t of the process; to each step t is associated a signal rate αt defined

by a suitable noise scheduling (more in the sampling section);
3. sample a random Gaussian noise ϵ;
4. create a corrupted image as a weighted combination of x0 and ϵ:

xt =
√

αtx0 +
√

1−αtϵ

5. train the network to properly guess the amount of noise present in xt, by minimizing
the distance between ϵ(xt, αt, c) and ϵ.

The previous steps are summarized in the pseudocode of Algorithm 1, where q(x0|c)
denotes the distribution of training data, relative to the condition c.
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Algorithm 1 Training

1: repeat
2: x0 ∼ q(x0|c) ▷ take a sample coherent with c
3: t ∼Uniform(1,. . . ,T) ▷ choose a timestep
4: ϵ ∼ N (0; I) ▷ create random Gaussian noise
5: xt =

√
αtx0 +

√
1−αtϵ ▷ corrupt the sample with signal rate αt

6: Take a gradient descent step on ||ϵ − ϵθ(xt, αt, c)||2 ▷ backpropagate the loss
7: until converged

The approach to conditional training previously described was formally examined
in [60]. The paper proposes a blend of conditional and unconditional generation, a method
some researchers found beneficial for training, though we observed no
significant improvements.

Another strategy for implementing conditioning involves using an auxiliary classi-
fier [52], akin in concept to AC-GANs [61]. This method trains a classifier fϕ(c|xt) on a
noisy image xt to predict its class c. The gradient ∇x log fϕ(c|xt) is then utilized to steer
the diffusion sampling process, enhancing the generation of samples that more accurately
reflect the given condition. This technique remains untested in our work but represents a
potential avenue for future enhancements.

The preferred architecture for the denoising network adopts a U-Net structure [62].
Our specific version is discussed in Section 5.

To heighten the network’s sensitivity to the signal rate αt, this parameter is often en-
coded through a bespoke sinusoidal transformation, dividing it into a series of frequencies,
mirroring the technique of positional encodings in Transformers [63].

3.2. Sampling

Sampling is an iterative process. Starting from a purely noisy image xT , we progres-
sively remove noise by calling the denoising network. Specifically, if the error predicted by
the network at timestep t is ϵ = ϵ(xt, αt, c), then the corresponding denoised prediction is

x̂0 =
1√
αt
(xt −

√
1−αtϵ)

Next, ϵ is re-injected into the network at signal rate αt−1, to obtain the next noisy image:

xt−1 =
√

αt−1 x̃0 +
√

1 − αt−1ϵ

The pseudocode of the sampling process is given in Algorithm 2.

Algorithm 2 Sampling

1: xT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: ϵ = ϵθ(xt, αt, c) ▷ predict noise
4: x̃0 = 1√

αt
(xt −

√
1 − αtϵ) ▷ compute denoised result

5: xt−1 =
√

αt−1 x̃0 +
√

1 − αt−1ϵ ▷ re-inject noise at rate αt−1
6: end for

A significant component of the reverse diffusion process is the scheduling of diffusion
noise αt

T
t=1. The authors in [46] suggested the use of linear or quadratic schedules. However,

such choices lead to a rapid decrease in the initial steps, creating challenges in the generation
phase. The literature offers alternative scheduling functions that decrease more gradually,
including the “cosine” or “continuous cosine” schedule [64,65]. Opting for a gentler
scheduler not only solves the generation issues but also reduces the number of iterations
needed. For our purposes, we have implemented a generator with 10 diffusion steps.
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4. Methodology

As introduced earlier, the core concept is to assign a unique latent representation to
each identity, which is learned as the necessary conditioning information for generating
specific individual samples from random Gaussian noise. The overall structure of the
generative model is depicted in Figure 1a. This model is an example of a diffusion model,
as discussed in the preceding section.

The subsequent step involves reversing the generative model, as shown in Figure 1b.
This process enables us to derive, from an individual’s image, the latent representation of
their identity and noise that captures all details unrelated to identity, such as background
and pose. The latent identity holds significance for person re-identification because com-
paring it with the latent representations of gallery samples allows us to identify the most
similar identities.

The feasibility of inverting diffusion models through appropriately trained neural
networks has been explored in many of our prior works. The overall idea was presented
in [57]; this approach was applied in [58] for the “reification” of artistic portraits by em-
bedding a portrait into a latent space of human faces and reconstructing the closest real
approximation. In [59], the diffusion inversion was utilized to create a trajectory in the
latent space that induces a smooth rotation effect on human faces.

In this work, after several trials, we decided to divide the inversion networks into two
separate models, as illustrated in Figure 4. One model, named Img2ID, converts images
into latent identities, while the other, named Img2Noise, generates the noise. Given that
both models extract orthogonal features from the source image, there was no compelling
justification for them to share layers.

(a) single model inversion (b) double model inversion

Figure 4. The inversion of the generator can be realized through a single network (a), or split in two
distinct networks (b) .

There are a few different possibilities for training the inversion models. Suppose we
have a labelled image ⟨id, Xid⟩. We can train Img2ID to minimize the distance:

∥emb(id), img2ID(Xid)∥ (1)

where emb is the identity embedder of the generator. Similarly, Img2Noise can be trained
to minimize the error:

∥GEN(Img2Noise(Xid), emb(id)), Xid∥ (2)

as the noise synthesized by Img2Noise(Xid) should result in the generation of Xid when
conditioned over emb(id). One issue with this approach is that the Market1501 dataset is
relatively small. When constraining the inversion to images from the training set, where
identities are disjoint from the gallery, the technique struggles to generalize effectively to
new identities.

Given that we have a generator at our disposal, a natural idea is to leverage it to
expand the training data. We select a random identity from the latent space of identities,
along with a random noise ϵ, and generate an image Xid = Gen(ϵ, id). We then proceed as
previously described. However, a challenge arises from not knowing the distribution of
identities in the latent space, which could be arbitrary, making it difficult to select a random
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identity. Our solution involves utilizing an auxiliary ID generator to learn the distribution
of identities in the latent space, enabling us to sample effectively within this space.

Results of the inversion process are shown in Figure 5.

Figure 5. Reconstruction examples. In the fist row, we have original gallery images, in the middle
row the noise synthesized by inversion, and in the third row the reconstructed images.

The reconstruction is satisfactory, although not flawless. Some details are lost, which
could pose challenges for person re-ID.

For those interested, we also display the noise extracted from the image, which ideally
contains all information not specific to the individual (middle row). The noise, assumed
to have a Gaussian distribution, has been clipped within the range [−2.5, 2.5] and then
renormalized to [0, 1] before visualization.

The inverted generator obtained through this process is extremely robust. In principle,
it enables the derivation of the internal representation of any individual within any context,
provided that the individuals and contexts are akin to those encountered in the training set.

5. Neural Network Architectures

In Section 3, it was clarified that the only trainable component within a diffusion
model is the denoising network ϵθ(xt, αt, c). This network receives inputs including a noise
rate αt, an image xt corrupted with a corresponding level of noise, and a condition c, which
in our scenario represents the identifier of an instance. The objective is to predict the noise
present in the image.

This task aligns with the conventional image-to-image paradigm, and the denoising
network is typically constructed using the well-established U-net architecture [62]. The
architecture of our implemented denoising network is illustrated in Figure 6; the main
constituent blocks are depicted in Figure 7.

As is customary for U-nets, our network follows an encoder–decoder structure with
skip connections that link corresponding layers in the encoder and decoder. This architec-
tural choice facilitates the assimilation of both global and local structures within the image,
making it highly compatible with the demands of the diffusion model.
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The U-Net typically relies on parameters such as the number of downsampling blocks
and the number of channels for each block, with the upsampling structure being symmetric.
In our implementation, we opted for four downsampling blocks with respective channel
dimensions [48, 96, 192, 384].

Figure 6. Denoising network architecture.

(a) ID embedding block (b) N-th down and up blocks (c) Residual block

Figure 7. Main blocks of the Denoising Network. (a): The input ID undergoes processing through an
embedding layer; the resulting output, after reshaping and upsampling, is concatenated with the
various downblocks. (b): The nth downblock receives two inputs: the embedded ID and the output
of the previous block. The block outputs two elements: the skipping connections for the upblock at
the same level and the output for the next block. (c): a traditional Residual Block.

We emphasize that our work deals with images at a resolution of 64 × 32; for higher-
resolution images such as 128 × 64, an additional layer in the U-chain may be necessary.

The input pertaining to the noise variance αt is incorporated using sinusoidal po-
sitional embeddings. Subsequently, this information is vectorized, concatenated, and



Sensors 2024, 24, 1240 10 of 17

forwarded through the blocks along with the conditioning information of the ID and the
processing of the noisy image.

Regarding the inversion networks, Img2Noise entails an image-to-image process,
as the noise maintains the same spatial dimension as the input image. Based on prior
studies [57], the U-Net architecture has demonstrated superior performance for such tasks.

The Img2Id model follows a similar approach, employing only the encoder portion of
the U-Net. The processing is then finalized through a compact sequence of dense layers.

6. Evaluation

We conducted experiments utilizing the Market-1501 dataset [66], which comprises
images of 1501 individuals captured by six cameras situated in front of an outdoor super-
market at Tsinghua University. The dataset includes 32,668 annotated bounding boxes.
The training set comprises 12,936 images featuring 751 unique identities, while the gallery
set contains 19,732 images encompassing 751 distinct identities. The query set consists of
3368 images, with 750 identities consistent with those in the gallery set.

The current performance of our technique falls somewhat below the state of the art. On
Market1501, we achieved a mean average precision (mAP) of 73%, whereas state-of-the-art
techniques attain a MAP of 96% in the supervised setting and approximately 90% in the
unsupervised setting. The mAP score was computed following the guidelines provided by
the dataset.

Visually, the results are satisfactory, and the errors made by the model are quite
understandable given the low resolution we are working with. Distinguishing between
certain identities at this resolution presents a significant challenge (see Figure 8).

Figure 8. Person re-identification. In each row, the first image is the query, and the successive images
are the 5 best matchings in the gallery.

7. Latent Space Exploration

In our approach, latent representations are synthesized as the features of each indi-
vidual able to shape the generation of distinctive images of the person under different
noises. As is typical in generative processes, this naturally leads to the creation of a highly
informed and well-structured latent space, where similar persons yield similar encodings.
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Figure 9 presents some examples; in the first column, we have several identities, and in
the corresponding rows, we display five different individuals whose latent representations
are closest, in terms of Euclidean distance, to the representation of the given identity. These
images are sourced from the traditional Market1501 dataset [67], which we primarily used
for our experiments. Notably, we observe the significant similarity between different
identities, underscoring the non-trivial nature of the reidentification problem.

Figure 9. Inherent clustering of the latent space. For every ID in the initial column, we display five
distinct individuals whose latent representations are closer, in terms of Euclidean distance, to the
representation of the specified ID.

In Figure 10, we show the two closest identities, at a minimum distance of 0.14, and
the two more apart from each other, at a maximum distance of 0.99. The average Euclidean
distance is around 0.6.

closest identities more distant identities

Figure 10. On the left, we have the two closest identities in the latent space of Market1501; on the
right, the two more distant ones.

Another intriguing operation involves deciphering how different explanatory factors
of variation in the data are captured within the latent representation, akin to understanding
the meaning of nucleotide sequences in a genome. However, these factors can often be
entangled, meaning that a visible effect may depend on a combination of latent variables
rather than a single one.
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Our studies in this direction are very preliminary. As an illustration, in Figure 11, we
demonstrate the effect on generation when modifying a single variable in the latent space
of identities.

Figure 11. Effect of latent variables on generation. In each row, we keep the same random noise and
vary a given variable in a predefined range. The specific variable and its value are indicated above
the generated image.
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It is noteworthy to observe how the modification of a single variable can correspond
to a significantly different identity.

Furthermore, investigating interesting semantic trajectories within the latent space
can also facilitate the synthesis of new and distinct identities, which can be valuable, for
instance, for data augmentation purposes.

8. Ablation and Alternatives

Several iterations of the aforementioned architecture have undergone testing.
Prior to delving into learning the distribution of latent variables using an auxiliary

generator, we experimented with various regularization techniques to shape its distribution.
This ranged from straightforward methods such as employing BatchNormalization layers
to injecting a mild amount of noise. Subsequently, we explored a comprehensive variational
model that should enforce the adoption of a Gaussian-shaped latent space through Kullback–
Leibler regularization.

However, a drawback of the latter approach is the relatively weak signal influencing
the definition of latent representations. This poses a challenge in balancing it with the KL
component, as highlighted in [68]; in such a situation, the KL component could dominate,
leading to the well-known variable collapse phenomenon [69].

The utilization of an auxiliary generator can essentially be conceptualized as a two-
stage generative model [68,70]. Initially, we experimented with a variational autoencoder
for implementing the auxiliary generator. However, this endeavor resulted in a notable
increase in reconstruction loss, which corresponded to a loss of variance in generated
data [71]. In contrast, a diffusion model appears to learn the distribution much more
effectively in this regard.

Exploring a different research direction, we sought to increase the separation between
distinct latent representations through the incorporation of a "repulsive" loss, which was
proportionate to the inverse of their distance in the space, akin to a form of magnetic
repulsion. This was complemented by a weak attractive loss, which encouraged points to
remain close to the origin, effectively centering the latent space around it.

While we retained the latter, the repulsive loss did not appear to enhance performance
and could potentially be detrimental. Our hypothesis is that the loss primarily impacts
latent variables with minimal significance, attempting to segregate them across differ-
ent subjects. This segregation is artificial and lacks semantic predictability, rendering it
unreconstructable from the input images.

Finally, we conducted several experiments on the Embedding module for identities.
In the current implementation, it comprises a single Keras Embedding layer. Initially, this
layer expands labels to their categorical encoding and subsequently maps them to a latent
space of the desired dimension through a single dense layer.

In principle, this setup should not impose any restrictions, as any embedding can
potentially be learned from a categorical description. However, what remains unclear is
the model’s flexibility to adapt and enhance encodings during training, along with the
acquisition of additional knowledge. To explore this aspect, we experimented with more
complex embedding modules, although they did not yield any discernible benefits.

9. Conclusions

The work presented in this article is first of all a divertissment; we aimed to test the con-
ditional capabilities of generative diffusion models in a complex scenario. Specifically, we
sought to learn the latent representation of different individuals as the shared information
necessary to condition the generation of images of the given person from varying noise.
This approach enables the separation of an individual’s identity from other instance-specific
information, such as pose and background, expressed as part of the noise.

There are numerous avenues for improvement in this work. Both the generator and
the network used for its inversion could be enhanced. A natural research direction involves
repeating the experiments with images at the original 128 × 68 spatial resolution, potentially
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expanding the dimension of the latent space. Additionally, a detailed analysis of the errors
made during the re-identification process could lead to valuable insights and potential
enhancements. Leveraging the generator for intelligent and targeted data augmentation
presents another intriguing possibility.

A limitation of our approach is its reliance on supervised training; to train the condi-
tional generator, a significant number of instances of the same identity in different poses
and contexts are required. Exploring whether the methodology can be extended to an unsu-
pervised scenario presents a complex and interesting challenge. It is plausible that typical
unsupervised person re-ID approaches, predominantly based on clustering, centroids, and
pseudo-labels [72–74], could be adapted to our approach.
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